1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/DebugLoc.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/MC/LaneBitmask.h" 100 #include "llvm/MC/MCInstrDesc.h" 101 #include "llvm/MC/MCInstrItineraries.h" 102 #include "llvm/MC/MCRegisterInfo.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 129 130 /// A command line option to turn software pipelining on or off. 131 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 132 cl::ZeroOrMore, 133 cl::desc("Enable Software Pipelining")); 134 135 /// A command line option to enable SWP at -Os. 136 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 137 cl::desc("Enable SWP at Os."), cl::Hidden, 138 cl::init(false)); 139 140 /// A command line argument to limit minimum initial interval for pipelining. 141 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 142 cl::desc("Size limit for the MII."), 143 cl::Hidden, cl::init(27)); 144 145 /// A command line argument to limit the number of stages in the pipeline. 146 static cl::opt<int> 147 SwpMaxStages("pipeliner-max-stages", 148 cl::desc("Maximum stages allowed in the generated scheduled."), 149 cl::Hidden, cl::init(3)); 150 151 /// A command line option to disable the pruning of chain dependences due to 152 /// an unrelated Phi. 153 static cl::opt<bool> 154 SwpPruneDeps("pipeliner-prune-deps", 155 cl::desc("Prune dependences between unrelated Phi nodes."), 156 cl::Hidden, cl::init(true)); 157 158 /// A command line option to disable the pruning of loop carried order 159 /// dependences. 160 static cl::opt<bool> 161 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 162 cl::desc("Prune loop carried order dependences."), 163 cl::Hidden, cl::init(true)); 164 165 #ifndef NDEBUG 166 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 167 #endif 168 169 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 170 cl::ReallyHidden, cl::init(false), 171 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 172 173 namespace { 174 175 class NodeSet; 176 class SMSchedule; 177 178 /// The main class in the implementation of the target independent 179 /// software pipeliner pass. 180 class MachinePipeliner : public MachineFunctionPass { 181 public: 182 MachineFunction *MF = nullptr; 183 const MachineLoopInfo *MLI = nullptr; 184 const MachineDominatorTree *MDT = nullptr; 185 const InstrItineraryData *InstrItins; 186 const TargetInstrInfo *TII = nullptr; 187 RegisterClassInfo RegClassInfo; 188 189 #ifndef NDEBUG 190 static int NumTries; 191 #endif 192 193 /// Cache the target analysis information about the loop. 194 struct LoopInfo { 195 MachineBasicBlock *TBB = nullptr; 196 MachineBasicBlock *FBB = nullptr; 197 SmallVector<MachineOperand, 4> BrCond; 198 MachineInstr *LoopInductionVar = nullptr; 199 MachineInstr *LoopCompare = nullptr; 200 }; 201 LoopInfo LI; 202 203 static char ID; 204 205 MachinePipeliner() : MachineFunctionPass(ID) { 206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnMachineFunction(MachineFunction &MF) override; 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addPreserved<AAResultsWrapperPass>(); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 private: 221 bool canPipelineLoop(MachineLoop &L); 222 bool scheduleLoop(MachineLoop &L); 223 bool swingModuloScheduler(MachineLoop &L); 224 }; 225 226 /// This class builds the dependence graph for the instructions in a loop, 227 /// and attempts to schedule the instructions using the SMS algorithm. 228 class SwingSchedulerDAG : public ScheduleDAGInstrs { 229 MachinePipeliner &Pass; 230 /// The minimum initiation interval between iterations for this schedule. 231 unsigned MII = 0; 232 /// Set to true if a valid pipelined schedule is found for the loop. 233 bool Scheduled = false; 234 MachineLoop &Loop; 235 LiveIntervals &LIS; 236 const RegisterClassInfo &RegClassInfo; 237 238 /// A toplogical ordering of the SUnits, which is needed for changing 239 /// dependences and iterating over the SUnits. 240 ScheduleDAGTopologicalSort Topo; 241 242 struct NodeInfo { 243 int ASAP = 0; 244 int ALAP = 0; 245 int ZeroLatencyDepth = 0; 246 int ZeroLatencyHeight = 0; 247 248 NodeInfo() = default; 249 }; 250 /// Computed properties for each node in the graph. 251 std::vector<NodeInfo> ScheduleInfo; 252 253 enum OrderKind { BottomUp = 0, TopDown = 1 }; 254 /// Computed node ordering for scheduling. 255 SetVector<SUnit *> NodeOrder; 256 257 using NodeSetType = SmallVector<NodeSet, 8>; 258 using ValueMapTy = DenseMap<unsigned, unsigned>; 259 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 260 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 261 262 /// Instructions to change when emitting the final schedule. 263 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 264 265 /// We may create a new instruction, so remember it because it 266 /// must be deleted when the pass is finished. 267 SmallPtrSet<MachineInstr *, 4> NewMIs; 268 269 /// Ordered list of DAG postprocessing steps. 270 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 271 272 /// Helper class to implement Johnson's circuit finding algorithm. 273 class Circuits { 274 std::vector<SUnit> &SUnits; 275 SetVector<SUnit *> Stack; 276 BitVector Blocked; 277 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 278 SmallVector<SmallVector<int, 4>, 16> AdjK; 279 unsigned NumPaths; 280 static unsigned MaxPaths; 281 282 public: 283 Circuits(std::vector<SUnit> &SUs) 284 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 285 286 /// Reset the data structures used in the circuit algorithm. 287 void reset() { 288 Stack.clear(); 289 Blocked.reset(); 290 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 291 NumPaths = 0; 292 } 293 294 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 295 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 296 void unblock(int U); 297 }; 298 299 public: 300 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 301 const RegisterClassInfo &rci) 302 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 303 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 304 P.MF->getSubtarget().getSMSMutations(Mutations); 305 } 306 307 void schedule() override; 308 void finishBlock() override; 309 310 /// Return true if the loop kernel has been scheduled. 311 bool hasNewSchedule() { return Scheduled; } 312 313 /// Return the earliest time an instruction may be scheduled. 314 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 315 316 /// Return the latest time an instruction my be scheduled. 317 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 318 319 /// The mobility function, which the number of slots in which 320 /// an instruction may be scheduled. 321 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 322 323 /// The depth, in the dependence graph, for a node. 324 int getDepth(SUnit *Node) { return Node->getDepth(); } 325 326 /// The maximum unweighted length of a path from an arbitrary node to the 327 /// given node in which each edge has latency 0 328 int getZeroLatencyDepth(SUnit *Node) { 329 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 330 } 331 332 /// The height, in the dependence graph, for a node. 333 int getHeight(SUnit *Node) { return Node->getHeight(); } 334 335 /// The maximum unweighted length of a path from the given node to an 336 /// arbitrary node in which each edge has latency 0 337 int getZeroLatencyHeight(SUnit *Node) { 338 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 339 } 340 341 /// Return true if the dependence is a back-edge in the data dependence graph. 342 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 343 /// using an anti dependence from a Phi to an instruction. 344 bool isBackedge(SUnit *Source, const SDep &Dep) { 345 if (Dep.getKind() != SDep::Anti) 346 return false; 347 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 348 } 349 350 /// Return true if the dependence is an order dependence between non-Phis. 351 static bool isOrder(SUnit *Source, const SDep &Dep) { 352 if (Dep.getKind() != SDep::Order) 353 return false; 354 return (!Source->getInstr()->isPHI() && 355 !Dep.getSUnit()->getInstr()->isPHI()); 356 } 357 358 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 359 360 /// The latency of the dependence. 361 unsigned getLatency(SUnit *Source, const SDep &Dep) { 362 // Anti dependences represent recurrences, so use the latency of the 363 // instruction on the back-edge. 364 if (Dep.getKind() == SDep::Anti) { 365 if (Source->getInstr()->isPHI()) 366 return Dep.getSUnit()->Latency; 367 if (Dep.getSUnit()->getInstr()->isPHI()) 368 return Source->Latency; 369 return Dep.getLatency(); 370 } 371 return Dep.getLatency(); 372 } 373 374 /// The distance function, which indicates that operation V of iteration I 375 /// depends on operations U of iteration I-distance. 376 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 377 // Instructions that feed a Phi have a distance of 1. Computing larger 378 // values for arrays requires data dependence information. 379 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 380 return 1; 381 return 0; 382 } 383 384 /// Set the Minimum Initiation Interval for this schedule attempt. 385 void setMII(unsigned mii) { MII = mii; } 386 387 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 388 389 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 390 391 /// Return the new base register that was stored away for the changed 392 /// instruction. 393 unsigned getInstrBaseReg(SUnit *SU) { 394 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 395 InstrChanges.find(SU); 396 if (It != InstrChanges.end()) 397 return It->second.first; 398 return 0; 399 } 400 401 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 402 Mutations.push_back(std::move(Mutation)); 403 } 404 405 private: 406 void addLoopCarriedDependences(AliasAnalysis *AA); 407 void updatePhiDependences(); 408 void changeDependences(); 409 unsigned calculateResMII(); 410 unsigned calculateRecMII(NodeSetType &RecNodeSets); 411 void findCircuits(NodeSetType &NodeSets); 412 void fuseRecs(NodeSetType &NodeSets); 413 void removeDuplicateNodes(NodeSetType &NodeSets); 414 void computeNodeFunctions(NodeSetType &NodeSets); 415 void registerPressureFilter(NodeSetType &NodeSets); 416 void colocateNodeSets(NodeSetType &NodeSets); 417 void checkNodeSets(NodeSetType &NodeSets); 418 void groupRemainingNodes(NodeSetType &NodeSets); 419 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 420 SetVector<SUnit *> &NodesAdded); 421 void computeNodeOrder(NodeSetType &NodeSets); 422 void checkValidNodeOrder(const NodeSetType &Circuits) const; 423 bool schedulePipeline(SMSchedule &Schedule); 424 void generatePipelinedLoop(SMSchedule &Schedule); 425 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 426 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 427 MBBVectorTy &PrologBBs); 428 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 429 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 430 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 431 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 432 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 433 SMSchedule &Schedule, ValueMapTy *VRMap, 434 InstrMapTy &InstrMap, unsigned LastStageNum, 435 unsigned CurStageNum, bool IsLast); 436 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 437 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 438 SMSchedule &Schedule, ValueMapTy *VRMap, 439 InstrMapTy &InstrMap, unsigned LastStageNum, 440 unsigned CurStageNum, bool IsLast); 441 void removeDeadInstructions(MachineBasicBlock *KernelBB, 442 MBBVectorTy &EpilogBBs); 443 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 444 SMSchedule &Schedule); 445 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 446 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 447 ValueMapTy *VRMap); 448 bool computeDelta(MachineInstr &MI, unsigned &Delta); 449 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 450 unsigned Num); 451 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 452 unsigned InstStageNum); 453 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 454 unsigned InstStageNum, 455 SMSchedule &Schedule); 456 void updateInstruction(MachineInstr *NewMI, bool LastDef, 457 unsigned CurStageNum, unsigned InstStageNum, 458 SMSchedule &Schedule, ValueMapTy *VRMap); 459 MachineInstr *findDefInLoop(unsigned Reg); 460 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 461 unsigned LoopStage, ValueMapTy *VRMap, 462 MachineBasicBlock *BB); 463 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 464 SMSchedule &Schedule, ValueMapTy *VRMap, 465 InstrMapTy &InstrMap); 466 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 467 InstrMapTy &InstrMap, unsigned CurStageNum, 468 unsigned PhiNum, MachineInstr *Phi, 469 unsigned OldReg, unsigned NewReg, 470 unsigned PrevReg = 0); 471 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 472 unsigned &OffsetPos, unsigned &NewBase, 473 int64_t &NewOffset); 474 void postprocessDAG(); 475 }; 476 477 /// A NodeSet contains a set of SUnit DAG nodes with additional information 478 /// that assigns a priority to the set. 479 class NodeSet { 480 SetVector<SUnit *> Nodes; 481 bool HasRecurrence = false; 482 unsigned RecMII = 0; 483 int MaxMOV = 0; 484 int MaxDepth = 0; 485 unsigned Colocate = 0; 486 SUnit *ExceedPressure = nullptr; 487 488 public: 489 using iterator = SetVector<SUnit *>::const_iterator; 490 491 NodeSet() = default; 492 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 493 494 bool insert(SUnit *SU) { return Nodes.insert(SU); } 495 496 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 497 498 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 499 return Nodes.remove_if(P); 500 } 501 502 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 503 504 bool hasRecurrence() { return HasRecurrence; }; 505 506 unsigned size() const { return Nodes.size(); } 507 508 bool empty() const { return Nodes.empty(); } 509 510 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 511 512 void setRecMII(unsigned mii) { RecMII = mii; }; 513 514 void setColocate(unsigned c) { Colocate = c; }; 515 516 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 517 518 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 519 520 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 521 522 int getRecMII() { return RecMII; } 523 524 /// Summarize node functions for the entire node set. 525 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 526 for (SUnit *SU : *this) { 527 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 528 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 529 } 530 } 531 532 void clear() { 533 Nodes.clear(); 534 RecMII = 0; 535 HasRecurrence = false; 536 MaxMOV = 0; 537 MaxDepth = 0; 538 Colocate = 0; 539 ExceedPressure = nullptr; 540 } 541 542 operator SetVector<SUnit *> &() { return Nodes; } 543 544 /// Sort the node sets by importance. First, rank them by recurrence MII, 545 /// then by mobility (least mobile done first), and finally by depth. 546 /// Each node set may contain a colocate value which is used as the first 547 /// tie breaker, if it's set. 548 bool operator>(const NodeSet &RHS) const { 549 if (RecMII == RHS.RecMII) { 550 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 551 return Colocate < RHS.Colocate; 552 if (MaxMOV == RHS.MaxMOV) 553 return MaxDepth > RHS.MaxDepth; 554 return MaxMOV < RHS.MaxMOV; 555 } 556 return RecMII > RHS.RecMII; 557 } 558 559 bool operator==(const NodeSet &RHS) const { 560 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 561 MaxDepth == RHS.MaxDepth; 562 } 563 564 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 565 566 iterator begin() { return Nodes.begin(); } 567 iterator end() { return Nodes.end(); } 568 569 void print(raw_ostream &os) const { 570 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 571 << " depth " << MaxDepth << " col " << Colocate << "\n"; 572 for (const auto &I : Nodes) 573 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 574 os << "\n"; 575 } 576 577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 578 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 579 #endif 580 }; 581 582 /// This class repesents the scheduled code. The main data structure is a 583 /// map from scheduled cycle to instructions. During scheduling, the 584 /// data structure explicitly represents all stages/iterations. When 585 /// the algorithm finshes, the schedule is collapsed into a single stage, 586 /// which represents instructions from different loop iterations. 587 /// 588 /// The SMS algorithm allows negative values for cycles, so the first cycle 589 /// in the schedule is the smallest cycle value. 590 class SMSchedule { 591 private: 592 /// Map from execution cycle to instructions. 593 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 594 595 /// Map from instruction to execution cycle. 596 std::map<SUnit *, int> InstrToCycle; 597 598 /// Map for each register and the max difference between its uses and def. 599 /// The first element in the pair is the max difference in stages. The 600 /// second is true if the register defines a Phi value and loop value is 601 /// scheduled before the Phi. 602 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 603 604 /// Keep track of the first cycle value in the schedule. It starts 605 /// as zero, but the algorithm allows negative values. 606 int FirstCycle = 0; 607 608 /// Keep track of the last cycle value in the schedule. 609 int LastCycle = 0; 610 611 /// The initiation interval (II) for the schedule. 612 int InitiationInterval = 0; 613 614 /// Target machine information. 615 const TargetSubtargetInfo &ST; 616 617 /// Virtual register information. 618 MachineRegisterInfo &MRI; 619 620 std::unique_ptr<DFAPacketizer> Resources; 621 622 public: 623 SMSchedule(MachineFunction *mf) 624 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 625 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 626 627 void reset() { 628 ScheduledInstrs.clear(); 629 InstrToCycle.clear(); 630 RegToStageDiff.clear(); 631 FirstCycle = 0; 632 LastCycle = 0; 633 InitiationInterval = 0; 634 } 635 636 /// Set the initiation interval for this schedule. 637 void setInitiationInterval(int ii) { InitiationInterval = ii; } 638 639 /// Return the first cycle in the completed schedule. This 640 /// can be a negative value. 641 int getFirstCycle() const { return FirstCycle; } 642 643 /// Return the last cycle in the finalized schedule. 644 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 645 646 /// Return the cycle of the earliest scheduled instruction in the dependence 647 /// chain. 648 int earliestCycleInChain(const SDep &Dep); 649 650 /// Return the cycle of the latest scheduled instruction in the dependence 651 /// chain. 652 int latestCycleInChain(const SDep &Dep); 653 654 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 655 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 656 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 657 658 /// Iterators for the cycle to instruction map. 659 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 660 using const_sched_iterator = 661 DenseMap<int, std::deque<SUnit *>>::const_iterator; 662 663 /// Return true if the instruction is scheduled at the specified stage. 664 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 665 return (stageScheduled(SU) == (int)StageNum); 666 } 667 668 /// Return the stage for a scheduled instruction. Return -1 if 669 /// the instruction has not been scheduled. 670 int stageScheduled(SUnit *SU) const { 671 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 672 if (it == InstrToCycle.end()) 673 return -1; 674 return (it->second - FirstCycle) / InitiationInterval; 675 } 676 677 /// Return the cycle for a scheduled instruction. This function normalizes 678 /// the first cycle to be 0. 679 unsigned cycleScheduled(SUnit *SU) const { 680 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 681 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 682 return (it->second - FirstCycle) % InitiationInterval; 683 } 684 685 /// Return the maximum stage count needed for this schedule. 686 unsigned getMaxStageCount() { 687 return (LastCycle - FirstCycle) / InitiationInterval; 688 } 689 690 /// Return the max. number of stages/iterations that can occur between a 691 /// register definition and its uses. 692 unsigned getStagesForReg(int Reg, unsigned CurStage) { 693 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 694 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 695 return 1; 696 return Stages.first; 697 } 698 699 /// The number of stages for a Phi is a little different than other 700 /// instructions. The minimum value computed in RegToStageDiff is 1 701 /// because we assume the Phi is needed for at least 1 iteration. 702 /// This is not the case if the loop value is scheduled prior to the 703 /// Phi in the same stage. This function returns the number of stages 704 /// or iterations needed between the Phi definition and any uses. 705 unsigned getStagesForPhi(int Reg) { 706 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 707 if (Stages.second) 708 return Stages.first; 709 return Stages.first - 1; 710 } 711 712 /// Return the instructions that are scheduled at the specified cycle. 713 std::deque<SUnit *> &getInstructions(int cycle) { 714 return ScheduledInstrs[cycle]; 715 } 716 717 bool isValidSchedule(SwingSchedulerDAG *SSD); 718 void finalizeSchedule(SwingSchedulerDAG *SSD); 719 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 720 std::deque<SUnit *> &Insts); 721 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 722 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 723 MachineOperand &MO); 724 void print(raw_ostream &os) const; 725 void dump() const; 726 }; 727 728 } // end anonymous namespace 729 730 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 731 char MachinePipeliner::ID = 0; 732 #ifndef NDEBUG 733 int MachinePipeliner::NumTries = 0; 734 #endif 735 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 736 737 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 738 "Modulo Software Pipelining", false, false) 739 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 740 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 741 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 742 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 743 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 744 "Modulo Software Pipelining", false, false) 745 746 /// The "main" function for implementing Swing Modulo Scheduling. 747 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 748 if (skipFunction(mf.getFunction())) 749 return false; 750 751 if (!EnableSWP) 752 return false; 753 754 if (mf.getFunction().getAttributes().hasAttribute( 755 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 756 !EnableSWPOptSize.getPosition()) 757 return false; 758 759 MF = &mf; 760 MLI = &getAnalysis<MachineLoopInfo>(); 761 MDT = &getAnalysis<MachineDominatorTree>(); 762 TII = MF->getSubtarget().getInstrInfo(); 763 RegClassInfo.runOnMachineFunction(*MF); 764 765 for (auto &L : *MLI) 766 scheduleLoop(*L); 767 768 return false; 769 } 770 771 /// Attempt to perform the SMS algorithm on the specified loop. This function is 772 /// the main entry point for the algorithm. The function identifies candidate 773 /// loops, calculates the minimum initiation interval, and attempts to schedule 774 /// the loop. 775 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 776 bool Changed = false; 777 for (auto &InnerLoop : L) 778 Changed |= scheduleLoop(*InnerLoop); 779 780 #ifndef NDEBUG 781 // Stop trying after reaching the limit (if any). 782 int Limit = SwpLoopLimit; 783 if (Limit >= 0) { 784 if (NumTries >= SwpLoopLimit) 785 return Changed; 786 NumTries++; 787 } 788 #endif 789 790 if (!canPipelineLoop(L)) 791 return Changed; 792 793 ++NumTrytoPipeline; 794 795 Changed = swingModuloScheduler(L); 796 797 return Changed; 798 } 799 800 /// Return true if the loop can be software pipelined. The algorithm is 801 /// restricted to loops with a single basic block. Make sure that the 802 /// branch in the loop can be analyzed. 803 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 804 if (L.getNumBlocks() != 1) 805 return false; 806 807 // Check if the branch can't be understood because we can't do pipelining 808 // if that's the case. 809 LI.TBB = nullptr; 810 LI.FBB = nullptr; 811 LI.BrCond.clear(); 812 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 813 return false; 814 815 LI.LoopInductionVar = nullptr; 816 LI.LoopCompare = nullptr; 817 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 818 return false; 819 820 if (!L.getLoopPreheader()) 821 return false; 822 823 // If any of the Phis contain subregs, then we can't pipeline 824 // because we don't know how to maintain subreg information in the 825 // VMap structure. 826 MachineBasicBlock *MBB = L.getHeader(); 827 for (auto &PHI : MBB->phis()) 828 for (unsigned i = 1; i != PHI.getNumOperands(); i += 2) 829 if (PHI.getOperand(i).getSubReg() != 0) 830 return false; 831 832 return true; 833 } 834 835 /// The SMS algorithm consists of the following main steps: 836 /// 1. Computation and analysis of the dependence graph. 837 /// 2. Ordering of the nodes (instructions). 838 /// 3. Attempt to Schedule the loop. 839 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 840 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 841 842 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 843 844 MachineBasicBlock *MBB = L.getHeader(); 845 // The kernel should not include any terminator instructions. These 846 // will be added back later. 847 SMS.startBlock(MBB); 848 849 // Compute the number of 'real' instructions in the basic block by 850 // ignoring terminators. 851 unsigned size = MBB->size(); 852 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 853 E = MBB->instr_end(); 854 I != E; ++I, --size) 855 ; 856 857 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 858 SMS.schedule(); 859 SMS.exitRegion(); 860 861 SMS.finishBlock(); 862 return SMS.hasNewSchedule(); 863 } 864 865 /// We override the schedule function in ScheduleDAGInstrs to implement the 866 /// scheduling part of the Swing Modulo Scheduling algorithm. 867 void SwingSchedulerDAG::schedule() { 868 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 869 buildSchedGraph(AA); 870 addLoopCarriedDependences(AA); 871 updatePhiDependences(); 872 Topo.InitDAGTopologicalSorting(); 873 postprocessDAG(); 874 changeDependences(); 875 DEBUG({ 876 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 877 SUnits[su].dumpAll(this); 878 }); 879 880 NodeSetType NodeSets; 881 findCircuits(NodeSets); 882 NodeSetType Circuits = NodeSets; 883 884 // Calculate the MII. 885 unsigned ResMII = calculateResMII(); 886 unsigned RecMII = calculateRecMII(NodeSets); 887 888 fuseRecs(NodeSets); 889 890 // This flag is used for testing and can cause correctness problems. 891 if (SwpIgnoreRecMII) 892 RecMII = 0; 893 894 MII = std::max(ResMII, RecMII); 895 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 896 << ")\n"); 897 898 // Can't schedule a loop without a valid MII. 899 if (MII == 0) 900 return; 901 902 // Don't pipeline large loops. 903 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 904 return; 905 906 computeNodeFunctions(NodeSets); 907 908 registerPressureFilter(NodeSets); 909 910 colocateNodeSets(NodeSets); 911 912 checkNodeSets(NodeSets); 913 914 DEBUG({ 915 for (auto &I : NodeSets) { 916 dbgs() << " Rec NodeSet "; 917 I.dump(); 918 } 919 }); 920 921 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 922 923 groupRemainingNodes(NodeSets); 924 925 removeDuplicateNodes(NodeSets); 926 927 DEBUG({ 928 for (auto &I : NodeSets) { 929 dbgs() << " NodeSet "; 930 I.dump(); 931 } 932 }); 933 934 computeNodeOrder(NodeSets); 935 936 // check for node order issues 937 checkValidNodeOrder(Circuits); 938 939 SMSchedule Schedule(Pass.MF); 940 Scheduled = schedulePipeline(Schedule); 941 942 if (!Scheduled) 943 return; 944 945 unsigned numStages = Schedule.getMaxStageCount(); 946 // No need to generate pipeline if there are no overlapped iterations. 947 if (numStages == 0) 948 return; 949 950 // Check that the maximum stage count is less than user-defined limit. 951 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 952 return; 953 954 generatePipelinedLoop(Schedule); 955 ++NumPipelined; 956 } 957 958 /// Clean up after the software pipeliner runs. 959 void SwingSchedulerDAG::finishBlock() { 960 for (MachineInstr *I : NewMIs) 961 MF.DeleteMachineInstr(I); 962 NewMIs.clear(); 963 964 // Call the superclass. 965 ScheduleDAGInstrs::finishBlock(); 966 } 967 968 /// Return the register values for the operands of a Phi instruction. 969 /// This function assume the instruction is a Phi. 970 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 971 unsigned &InitVal, unsigned &LoopVal) { 972 assert(Phi.isPHI() && "Expecting a Phi."); 973 974 InitVal = 0; 975 LoopVal = 0; 976 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 977 if (Phi.getOperand(i + 1).getMBB() != Loop) 978 InitVal = Phi.getOperand(i).getReg(); 979 else 980 LoopVal = Phi.getOperand(i).getReg(); 981 982 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 983 } 984 985 /// Return the Phi register value that comes from the incoming block. 986 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 987 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 988 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 989 return Phi.getOperand(i).getReg(); 990 return 0; 991 } 992 993 /// Return the Phi register value that comes the loop block. 994 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 995 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 996 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 997 return Phi.getOperand(i).getReg(); 998 return 0; 999 } 1000 1001 /// Return true if SUb can be reached from SUa following the chain edges. 1002 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1003 SmallPtrSet<SUnit *, 8> Visited; 1004 SmallVector<SUnit *, 8> Worklist; 1005 Worklist.push_back(SUa); 1006 while (!Worklist.empty()) { 1007 const SUnit *SU = Worklist.pop_back_val(); 1008 for (auto &SI : SU->Succs) { 1009 SUnit *SuccSU = SI.getSUnit(); 1010 if (SI.getKind() == SDep::Order) { 1011 if (Visited.count(SuccSU)) 1012 continue; 1013 if (SuccSU == SUb) 1014 return true; 1015 Worklist.push_back(SuccSU); 1016 Visited.insert(SuccSU); 1017 } 1018 } 1019 } 1020 return false; 1021 } 1022 1023 /// Return true if the instruction causes a chain between memory 1024 /// references before and after it. 1025 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1026 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1027 (MI.hasOrderedMemoryRef() && 1028 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1029 } 1030 1031 /// Return the underlying objects for the memory references of an instruction. 1032 /// This function calls the code in ValueTracking, but first checks that the 1033 /// instruction has a memory operand. 1034 static void getUnderlyingObjects(MachineInstr *MI, 1035 SmallVectorImpl<Value *> &Objs, 1036 const DataLayout &DL) { 1037 if (!MI->hasOneMemOperand()) 1038 return; 1039 MachineMemOperand *MM = *MI->memoperands_begin(); 1040 if (!MM->getValue()) 1041 return; 1042 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1043 } 1044 1045 /// Add a chain edge between a load and store if the store can be an 1046 /// alias of the load on a subsequent iteration, i.e., a loop carried 1047 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1048 /// but that code doesn't create loop carried dependences. 1049 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1050 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1051 for (auto &SU : SUnits) { 1052 MachineInstr &MI = *SU.getInstr(); 1053 if (isDependenceBarrier(MI, AA)) 1054 PendingLoads.clear(); 1055 else if (MI.mayLoad()) { 1056 SmallVector<Value *, 4> Objs; 1057 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1058 for (auto V : Objs) { 1059 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1060 SUs.push_back(&SU); 1061 } 1062 } else if (MI.mayStore()) { 1063 SmallVector<Value *, 4> Objs; 1064 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1065 for (auto V : Objs) { 1066 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1067 PendingLoads.find(V); 1068 if (I == PendingLoads.end()) 1069 continue; 1070 for (auto Load : I->second) { 1071 if (isSuccOrder(Load, &SU)) 1072 continue; 1073 MachineInstr &LdMI = *Load->getInstr(); 1074 // First, perform the cheaper check that compares the base register. 1075 // If they are the same and the load offset is less than the store 1076 // offset, then mark the dependence as loop carried potentially. 1077 unsigned BaseReg1, BaseReg2; 1078 int64_t Offset1, Offset2; 1079 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1080 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1081 SU.addPred(SDep(Load, SDep::Barrier)); 1082 continue; 1083 } 1084 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1085 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1086 "What happened to the chain edge?"); 1087 SU.addPred(SDep(Load, SDep::Barrier)); 1088 continue; 1089 } 1090 // Second, the more expensive check that uses alias analysis on the 1091 // base registers. If they alias, and the load offset is less than 1092 // the store offset, the mark the dependence as loop carried. 1093 if (!AA) { 1094 SU.addPred(SDep(Load, SDep::Barrier)); 1095 continue; 1096 } 1097 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1098 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1099 if (!MMO1->getValue() || !MMO2->getValue()) { 1100 SU.addPred(SDep(Load, SDep::Barrier)); 1101 continue; 1102 } 1103 if (MMO1->getValue() == MMO2->getValue() && 1104 MMO1->getOffset() <= MMO2->getOffset()) { 1105 SU.addPred(SDep(Load, SDep::Barrier)); 1106 continue; 1107 } 1108 AliasResult AAResult = AA->alias( 1109 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1110 MMO1->getAAInfo()), 1111 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1112 MMO2->getAAInfo())); 1113 1114 if (AAResult != NoAlias) 1115 SU.addPred(SDep(Load, SDep::Barrier)); 1116 } 1117 } 1118 } 1119 } 1120 } 1121 1122 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1123 /// processes dependences for PHIs. This function adds true dependences 1124 /// from a PHI to a use, and a loop carried dependence from the use to the 1125 /// PHI. The loop carried dependence is represented as an anti dependence 1126 /// edge. This function also removes chain dependences between unrelated 1127 /// PHIs. 1128 void SwingSchedulerDAG::updatePhiDependences() { 1129 SmallVector<SDep, 4> RemoveDeps; 1130 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1131 1132 // Iterate over each DAG node. 1133 for (SUnit &I : SUnits) { 1134 RemoveDeps.clear(); 1135 // Set to true if the instruction has an operand defined by a Phi. 1136 unsigned HasPhiUse = 0; 1137 unsigned HasPhiDef = 0; 1138 MachineInstr *MI = I.getInstr(); 1139 // Iterate over each operand, and we process the definitions. 1140 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1141 MOE = MI->operands_end(); 1142 MOI != MOE; ++MOI) { 1143 if (!MOI->isReg()) 1144 continue; 1145 unsigned Reg = MOI->getReg(); 1146 if (MOI->isDef()) { 1147 // If the register is used by a Phi, then create an anti dependence. 1148 for (MachineRegisterInfo::use_instr_iterator 1149 UI = MRI.use_instr_begin(Reg), 1150 UE = MRI.use_instr_end(); 1151 UI != UE; ++UI) { 1152 MachineInstr *UseMI = &*UI; 1153 SUnit *SU = getSUnit(UseMI); 1154 if (SU != nullptr && UseMI->isPHI()) { 1155 if (!MI->isPHI()) { 1156 SDep Dep(SU, SDep::Anti, Reg); 1157 I.addPred(Dep); 1158 } else { 1159 HasPhiDef = Reg; 1160 // Add a chain edge to a dependent Phi that isn't an existing 1161 // predecessor. 1162 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1163 I.addPred(SDep(SU, SDep::Barrier)); 1164 } 1165 } 1166 } 1167 } else if (MOI->isUse()) { 1168 // If the register is defined by a Phi, then create a true dependence. 1169 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1170 if (DefMI == nullptr) 1171 continue; 1172 SUnit *SU = getSUnit(DefMI); 1173 if (SU != nullptr && DefMI->isPHI()) { 1174 if (!MI->isPHI()) { 1175 SDep Dep(SU, SDep::Data, Reg); 1176 Dep.setLatency(0); 1177 ST.adjustSchedDependency(SU, &I, Dep); 1178 I.addPred(Dep); 1179 } else { 1180 HasPhiUse = Reg; 1181 // Add a chain edge to a dependent Phi that isn't an existing 1182 // predecessor. 1183 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1184 I.addPred(SDep(SU, SDep::Barrier)); 1185 } 1186 } 1187 } 1188 } 1189 // Remove order dependences from an unrelated Phi. 1190 if (!SwpPruneDeps) 1191 continue; 1192 for (auto &PI : I.Preds) { 1193 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1194 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1195 if (I.getInstr()->isPHI()) { 1196 if (PMI->getOperand(0).getReg() == HasPhiUse) 1197 continue; 1198 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1199 continue; 1200 } 1201 RemoveDeps.push_back(PI); 1202 } 1203 } 1204 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1205 I.removePred(RemoveDeps[i]); 1206 } 1207 } 1208 1209 /// Iterate over each DAG node and see if we can change any dependences 1210 /// in order to reduce the recurrence MII. 1211 void SwingSchedulerDAG::changeDependences() { 1212 // See if an instruction can use a value from the previous iteration. 1213 // If so, we update the base and offset of the instruction and change 1214 // the dependences. 1215 for (SUnit &I : SUnits) { 1216 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1217 int64_t NewOffset = 0; 1218 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1219 NewOffset)) 1220 continue; 1221 1222 // Get the MI and SUnit for the instruction that defines the original base. 1223 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1224 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1225 if (!DefMI) 1226 continue; 1227 SUnit *DefSU = getSUnit(DefMI); 1228 if (!DefSU) 1229 continue; 1230 // Get the MI and SUnit for the instruction that defins the new base. 1231 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1232 if (!LastMI) 1233 continue; 1234 SUnit *LastSU = getSUnit(LastMI); 1235 if (!LastSU) 1236 continue; 1237 1238 if (Topo.IsReachable(&I, LastSU)) 1239 continue; 1240 1241 // Remove the dependence. The value now depends on a prior iteration. 1242 SmallVector<SDep, 4> Deps; 1243 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1244 ++P) 1245 if (P->getSUnit() == DefSU) 1246 Deps.push_back(*P); 1247 for (int i = 0, e = Deps.size(); i != e; i++) { 1248 Topo.RemovePred(&I, Deps[i].getSUnit()); 1249 I.removePred(Deps[i]); 1250 } 1251 // Remove the chain dependence between the instructions. 1252 Deps.clear(); 1253 for (auto &P : LastSU->Preds) 1254 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1255 Deps.push_back(P); 1256 for (int i = 0, e = Deps.size(); i != e; i++) { 1257 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1258 LastSU->removePred(Deps[i]); 1259 } 1260 1261 // Add a dependence between the new instruction and the instruction 1262 // that defines the new base. 1263 SDep Dep(&I, SDep::Anti, NewBase); 1264 LastSU->addPred(Dep); 1265 1266 // Remember the base and offset information so that we can update the 1267 // instruction during code generation. 1268 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1269 } 1270 } 1271 1272 namespace { 1273 1274 // FuncUnitSorter - Comparison operator used to sort instructions by 1275 // the number of functional unit choices. 1276 struct FuncUnitSorter { 1277 const InstrItineraryData *InstrItins; 1278 DenseMap<unsigned, unsigned> Resources; 1279 1280 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1281 1282 // Compute the number of functional unit alternatives needed 1283 // at each stage, and take the minimum value. We prioritize the 1284 // instructions by the least number of choices first. 1285 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1286 unsigned schedClass = Inst->getDesc().getSchedClass(); 1287 unsigned min = UINT_MAX; 1288 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1289 *IE = InstrItins->endStage(schedClass); 1290 IS != IE; ++IS) { 1291 unsigned funcUnits = IS->getUnits(); 1292 unsigned numAlternatives = countPopulation(funcUnits); 1293 if (numAlternatives < min) { 1294 min = numAlternatives; 1295 F = funcUnits; 1296 } 1297 } 1298 return min; 1299 } 1300 1301 // Compute the critical resources needed by the instruction. This 1302 // function records the functional units needed by instructions that 1303 // must use only one functional unit. We use this as a tie breaker 1304 // for computing the resource MII. The instrutions that require 1305 // the same, highly used, functional unit have high priority. 1306 void calcCriticalResources(MachineInstr &MI) { 1307 unsigned SchedClass = MI.getDesc().getSchedClass(); 1308 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1309 *IE = InstrItins->endStage(SchedClass); 1310 IS != IE; ++IS) { 1311 unsigned FuncUnits = IS->getUnits(); 1312 if (countPopulation(FuncUnits) == 1) 1313 Resources[FuncUnits]++; 1314 } 1315 } 1316 1317 /// Return true if IS1 has less priority than IS2. 1318 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1319 unsigned F1 = 0, F2 = 0; 1320 unsigned MFUs1 = minFuncUnits(IS1, F1); 1321 unsigned MFUs2 = minFuncUnits(IS2, F2); 1322 if (MFUs1 == 1 && MFUs2 == 1) 1323 return Resources.lookup(F1) < Resources.lookup(F2); 1324 return MFUs1 > MFUs2; 1325 } 1326 }; 1327 1328 } // end anonymous namespace 1329 1330 /// Calculate the resource constrained minimum initiation interval for the 1331 /// specified loop. We use the DFA to model the resources needed for 1332 /// each instruction, and we ignore dependences. A different DFA is created 1333 /// for each cycle that is required. When adding a new instruction, we attempt 1334 /// to add it to each existing DFA, until a legal space is found. If the 1335 /// instruction cannot be reserved in an existing DFA, we create a new one. 1336 unsigned SwingSchedulerDAG::calculateResMII() { 1337 SmallVector<DFAPacketizer *, 8> Resources; 1338 MachineBasicBlock *MBB = Loop.getHeader(); 1339 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1340 1341 // Sort the instructions by the number of available choices for scheduling, 1342 // least to most. Use the number of critical resources as the tie breaker. 1343 FuncUnitSorter FUS = 1344 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1345 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1346 E = MBB->getFirstTerminator(); 1347 I != E; ++I) 1348 FUS.calcCriticalResources(*I); 1349 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1350 FuncUnitOrder(FUS); 1351 1352 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1353 E = MBB->getFirstTerminator(); 1354 I != E; ++I) 1355 FuncUnitOrder.push(&*I); 1356 1357 while (!FuncUnitOrder.empty()) { 1358 MachineInstr *MI = FuncUnitOrder.top(); 1359 FuncUnitOrder.pop(); 1360 if (TII->isZeroCost(MI->getOpcode())) 1361 continue; 1362 // Attempt to reserve the instruction in an existing DFA. At least one 1363 // DFA is needed for each cycle. 1364 unsigned NumCycles = getSUnit(MI)->Latency; 1365 unsigned ReservedCycles = 0; 1366 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1367 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1368 for (unsigned C = 0; C < NumCycles; ++C) 1369 while (RI != RE) { 1370 if ((*RI++)->canReserveResources(*MI)) { 1371 ++ReservedCycles; 1372 break; 1373 } 1374 } 1375 // Start reserving resources using existing DFAs. 1376 for (unsigned C = 0; C < ReservedCycles; ++C) { 1377 --RI; 1378 (*RI)->reserveResources(*MI); 1379 } 1380 // Add new DFAs, if needed, to reserve resources. 1381 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1382 DFAPacketizer *NewResource = 1383 TII->CreateTargetScheduleState(MF.getSubtarget()); 1384 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1385 NewResource->reserveResources(*MI); 1386 Resources.push_back(NewResource); 1387 } 1388 } 1389 int Resmii = Resources.size(); 1390 // Delete the memory for each of the DFAs that were created earlier. 1391 for (DFAPacketizer *RI : Resources) { 1392 DFAPacketizer *D = RI; 1393 delete D; 1394 } 1395 Resources.clear(); 1396 return Resmii; 1397 } 1398 1399 /// Calculate the recurrence-constrainted minimum initiation interval. 1400 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1401 /// for each circuit. The II needs to satisfy the inequality 1402 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1403 /// II that satistifies the inequality, and the RecMII is the maximum 1404 /// of those values. 1405 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1406 unsigned RecMII = 0; 1407 1408 for (NodeSet &Nodes : NodeSets) { 1409 if (Nodes.empty()) 1410 continue; 1411 1412 unsigned Delay = Nodes.size() - 1; 1413 unsigned Distance = 1; 1414 1415 // ii = ceil(delay / distance) 1416 unsigned CurMII = (Delay + Distance - 1) / Distance; 1417 Nodes.setRecMII(CurMII); 1418 if (CurMII > RecMII) 1419 RecMII = CurMII; 1420 } 1421 1422 return RecMII; 1423 } 1424 1425 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1426 /// but we do this to find the circuits, and then change them back. 1427 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1428 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1429 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1430 SUnit *SU = &SUnits[i]; 1431 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1432 IP != EP; ++IP) { 1433 if (IP->getKind() != SDep::Anti) 1434 continue; 1435 DepsAdded.push_back(std::make_pair(SU, *IP)); 1436 } 1437 } 1438 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1439 E = DepsAdded.end(); 1440 I != E; ++I) { 1441 // Remove this anti dependency and add one in the reverse direction. 1442 SUnit *SU = I->first; 1443 SDep &D = I->second; 1444 SUnit *TargetSU = D.getSUnit(); 1445 unsigned Reg = D.getReg(); 1446 unsigned Lat = D.getLatency(); 1447 SU->removePred(D); 1448 SDep Dep(SU, SDep::Anti, Reg); 1449 Dep.setLatency(Lat); 1450 TargetSU->addPred(Dep); 1451 } 1452 } 1453 1454 /// Create the adjacency structure of the nodes in the graph. 1455 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1456 SwingSchedulerDAG *DAG) { 1457 BitVector Added(SUnits.size()); 1458 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1459 Added.reset(); 1460 // Add any successor to the adjacency matrix and exclude duplicates. 1461 for (auto &SI : SUnits[i].Succs) { 1462 // Do not process a boundary node and a back-edge is processed only 1463 // if it goes to a Phi. 1464 if (SI.getSUnit()->isBoundaryNode() || 1465 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1466 continue; 1467 int N = SI.getSUnit()->NodeNum; 1468 if (!Added.test(N)) { 1469 AdjK[i].push_back(N); 1470 Added.set(N); 1471 } 1472 } 1473 // A chain edge between a store and a load is treated as a back-edge in the 1474 // adjacency matrix. 1475 for (auto &PI : SUnits[i].Preds) { 1476 if (!SUnits[i].getInstr()->mayStore() || 1477 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1478 continue; 1479 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1480 int N = PI.getSUnit()->NodeNum; 1481 if (!Added.test(N)) { 1482 AdjK[i].push_back(N); 1483 Added.set(N); 1484 } 1485 } 1486 } 1487 } 1488 } 1489 1490 /// Identify an elementary circuit in the dependence graph starting at the 1491 /// specified node. 1492 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1493 bool HasBackedge) { 1494 SUnit *SV = &SUnits[V]; 1495 bool F = false; 1496 Stack.insert(SV); 1497 Blocked.set(V); 1498 1499 for (auto W : AdjK[V]) { 1500 if (NumPaths > MaxPaths) 1501 break; 1502 if (W < S) 1503 continue; 1504 if (W == S) { 1505 if (!HasBackedge) 1506 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1507 F = true; 1508 ++NumPaths; 1509 break; 1510 } else if (!Blocked.test(W)) { 1511 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1512 F = true; 1513 } 1514 } 1515 1516 if (F) 1517 unblock(V); 1518 else { 1519 for (auto W : AdjK[V]) { 1520 if (W < S) 1521 continue; 1522 if (B[W].count(SV) == 0) 1523 B[W].insert(SV); 1524 } 1525 } 1526 Stack.pop_back(); 1527 return F; 1528 } 1529 1530 /// Unblock a node in the circuit finding algorithm. 1531 void SwingSchedulerDAG::Circuits::unblock(int U) { 1532 Blocked.reset(U); 1533 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1534 while (!BU.empty()) { 1535 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1536 assert(SI != BU.end() && "Invalid B set."); 1537 SUnit *W = *SI; 1538 BU.erase(W); 1539 if (Blocked.test(W->NodeNum)) 1540 unblock(W->NodeNum); 1541 } 1542 } 1543 1544 /// Identify all the elementary circuits in the dependence graph using 1545 /// Johnson's circuit algorithm. 1546 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1547 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1548 // but we do this to find the circuits, and then change them back. 1549 swapAntiDependences(SUnits); 1550 1551 Circuits Cir(SUnits); 1552 // Create the adjacency structure. 1553 Cir.createAdjacencyStructure(this); 1554 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1555 Cir.reset(); 1556 Cir.circuit(i, i, NodeSets); 1557 } 1558 1559 // Change the dependences back so that we've created a DAG again. 1560 swapAntiDependences(SUnits); 1561 } 1562 1563 /// Return true for DAG nodes that we ignore when computing the cost functions. 1564 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1565 /// in the calculation of the ASAP, ALAP, etc functions. 1566 static bool ignoreDependence(const SDep &D, bool isPred) { 1567 if (D.isArtificial()) 1568 return true; 1569 return D.getKind() == SDep::Anti && isPred; 1570 } 1571 1572 /// Compute several functions need to order the nodes for scheduling. 1573 /// ASAP - Earliest time to schedule a node. 1574 /// ALAP - Latest time to schedule a node. 1575 /// MOV - Mobility function, difference between ALAP and ASAP. 1576 /// D - Depth of each node. 1577 /// H - Height of each node. 1578 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1579 ScheduleInfo.resize(SUnits.size()); 1580 1581 DEBUG({ 1582 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1583 E = Topo.end(); 1584 I != E; ++I) { 1585 SUnit *SU = &SUnits[*I]; 1586 SU->dump(this); 1587 } 1588 }); 1589 1590 int maxASAP = 0; 1591 // Compute ASAP and ZeroLatencyDepth. 1592 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1593 E = Topo.end(); 1594 I != E; ++I) { 1595 int asap = 0; 1596 int zeroLatencyDepth = 0; 1597 SUnit *SU = &SUnits[*I]; 1598 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1599 EP = SU->Preds.end(); 1600 IP != EP; ++IP) { 1601 SUnit *pred = IP->getSUnit(); 1602 if (getLatency(SU, *IP) == 0) 1603 zeroLatencyDepth = 1604 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1605 if (ignoreDependence(*IP, true)) 1606 continue; 1607 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1608 getDistance(pred, SU, *IP) * MII)); 1609 } 1610 maxASAP = std::max(maxASAP, asap); 1611 ScheduleInfo[*I].ASAP = asap; 1612 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1613 } 1614 1615 // Compute ALAP, ZeroLatencyHeight, and MOV. 1616 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1617 E = Topo.rend(); 1618 I != E; ++I) { 1619 int alap = maxASAP; 1620 int zeroLatencyHeight = 0; 1621 SUnit *SU = &SUnits[*I]; 1622 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1623 ES = SU->Succs.end(); 1624 IS != ES; ++IS) { 1625 SUnit *succ = IS->getSUnit(); 1626 if (getLatency(SU, *IS) == 0) 1627 zeroLatencyHeight = 1628 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1629 if (ignoreDependence(*IS, true)) 1630 continue; 1631 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1632 getDistance(SU, succ, *IS) * MII)); 1633 } 1634 1635 ScheduleInfo[*I].ALAP = alap; 1636 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1637 } 1638 1639 // After computing the node functions, compute the summary for each node set. 1640 for (NodeSet &I : NodeSets) 1641 I.computeNodeSetInfo(this); 1642 1643 DEBUG({ 1644 for (unsigned i = 0; i < SUnits.size(); i++) { 1645 dbgs() << "\tNode " << i << ":\n"; 1646 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1647 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1648 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1649 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1650 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1651 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1652 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1653 } 1654 }); 1655 } 1656 1657 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1658 /// as the predecessors of the elements of NodeOrder that are not also in 1659 /// NodeOrder. 1660 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1661 SmallSetVector<SUnit *, 8> &Preds, 1662 const NodeSet *S = nullptr) { 1663 Preds.clear(); 1664 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1665 I != E; ++I) { 1666 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1667 PI != PE; ++PI) { 1668 if (S && S->count(PI->getSUnit()) == 0) 1669 continue; 1670 if (ignoreDependence(*PI, true)) 1671 continue; 1672 if (NodeOrder.count(PI->getSUnit()) == 0) 1673 Preds.insert(PI->getSUnit()); 1674 } 1675 // Back-edges are predecessors with an anti-dependence. 1676 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1677 ES = (*I)->Succs.end(); 1678 IS != ES; ++IS) { 1679 if (IS->getKind() != SDep::Anti) 1680 continue; 1681 if (S && S->count(IS->getSUnit()) == 0) 1682 continue; 1683 if (NodeOrder.count(IS->getSUnit()) == 0) 1684 Preds.insert(IS->getSUnit()); 1685 } 1686 } 1687 return !Preds.empty(); 1688 } 1689 1690 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1691 /// as the successors of the elements of NodeOrder that are not also in 1692 /// NodeOrder. 1693 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1694 SmallSetVector<SUnit *, 8> &Succs, 1695 const NodeSet *S = nullptr) { 1696 Succs.clear(); 1697 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1698 I != E; ++I) { 1699 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1700 SI != SE; ++SI) { 1701 if (S && S->count(SI->getSUnit()) == 0) 1702 continue; 1703 if (ignoreDependence(*SI, false)) 1704 continue; 1705 if (NodeOrder.count(SI->getSUnit()) == 0) 1706 Succs.insert(SI->getSUnit()); 1707 } 1708 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1709 PE = (*I)->Preds.end(); 1710 PI != PE; ++PI) { 1711 if (PI->getKind() != SDep::Anti) 1712 continue; 1713 if (S && S->count(PI->getSUnit()) == 0) 1714 continue; 1715 if (NodeOrder.count(PI->getSUnit()) == 0) 1716 Succs.insert(PI->getSUnit()); 1717 } 1718 } 1719 return !Succs.empty(); 1720 } 1721 1722 /// Return true if there is a path from the specified node to any of the nodes 1723 /// in DestNodes. Keep track and return the nodes in any path. 1724 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1725 SetVector<SUnit *> &DestNodes, 1726 SetVector<SUnit *> &Exclude, 1727 SmallPtrSet<SUnit *, 8> &Visited) { 1728 if (Cur->isBoundaryNode()) 1729 return false; 1730 if (Exclude.count(Cur) != 0) 1731 return false; 1732 if (DestNodes.count(Cur) != 0) 1733 return true; 1734 if (!Visited.insert(Cur).second) 1735 return Path.count(Cur) != 0; 1736 bool FoundPath = false; 1737 for (auto &SI : Cur->Succs) 1738 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1739 for (auto &PI : Cur->Preds) 1740 if (PI.getKind() == SDep::Anti) 1741 FoundPath |= 1742 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1743 if (FoundPath) 1744 Path.insert(Cur); 1745 return FoundPath; 1746 } 1747 1748 /// Return true if Set1 is a subset of Set2. 1749 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1750 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1751 if (Set2.count(*I) == 0) 1752 return false; 1753 return true; 1754 } 1755 1756 /// Compute the live-out registers for the instructions in a node-set. 1757 /// The live-out registers are those that are defined in the node-set, 1758 /// but not used. Except for use operands of Phis. 1759 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1760 NodeSet &NS) { 1761 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1762 MachineRegisterInfo &MRI = MF.getRegInfo(); 1763 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1764 SmallSet<unsigned, 4> Uses; 1765 for (SUnit *SU : NS) { 1766 const MachineInstr *MI = SU->getInstr(); 1767 if (MI->isPHI()) 1768 continue; 1769 for (const MachineOperand &MO : MI->operands()) 1770 if (MO.isReg() && MO.isUse()) { 1771 unsigned Reg = MO.getReg(); 1772 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1773 Uses.insert(Reg); 1774 else if (MRI.isAllocatable(Reg)) 1775 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1776 Uses.insert(*Units); 1777 } 1778 } 1779 for (SUnit *SU : NS) 1780 for (const MachineOperand &MO : SU->getInstr()->operands()) 1781 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1782 unsigned Reg = MO.getReg(); 1783 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1784 if (!Uses.count(Reg)) 1785 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1786 LaneBitmask::getNone())); 1787 } else if (MRI.isAllocatable(Reg)) { 1788 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1789 if (!Uses.count(*Units)) 1790 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1791 LaneBitmask::getNone())); 1792 } 1793 } 1794 RPTracker.addLiveRegs(LiveOutRegs); 1795 } 1796 1797 /// A heuristic to filter nodes in recurrent node-sets if the register 1798 /// pressure of a set is too high. 1799 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1800 for (auto &NS : NodeSets) { 1801 // Skip small node-sets since they won't cause register pressure problems. 1802 if (NS.size() <= 2) 1803 continue; 1804 IntervalPressure RecRegPressure; 1805 RegPressureTracker RecRPTracker(RecRegPressure); 1806 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1807 computeLiveOuts(MF, RecRPTracker, NS); 1808 RecRPTracker.closeBottom(); 1809 1810 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1811 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1812 return A->NodeNum > B->NodeNum; 1813 }); 1814 1815 for (auto &SU : SUnits) { 1816 // Since we're computing the register pressure for a subset of the 1817 // instructions in a block, we need to set the tracker for each 1818 // instruction in the node-set. The tracker is set to the instruction 1819 // just after the one we're interested in. 1820 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1821 RecRPTracker.setPos(std::next(CurInstI)); 1822 1823 RegPressureDelta RPDelta; 1824 ArrayRef<PressureChange> CriticalPSets; 1825 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1826 CriticalPSets, 1827 RecRegPressure.MaxSetPressure); 1828 if (RPDelta.Excess.isValid()) { 1829 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1830 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1831 << ":" << RPDelta.Excess.getUnitInc()); 1832 NS.setExceedPressure(SU); 1833 break; 1834 } 1835 RecRPTracker.recede(); 1836 } 1837 } 1838 } 1839 1840 /// A heuristic to colocate node sets that have the same set of 1841 /// successors. 1842 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1843 unsigned Colocate = 0; 1844 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1845 NodeSet &N1 = NodeSets[i]; 1846 SmallSetVector<SUnit *, 8> S1; 1847 if (N1.empty() || !succ_L(N1, S1)) 1848 continue; 1849 for (int j = i + 1; j < e; ++j) { 1850 NodeSet &N2 = NodeSets[j]; 1851 if (N1.compareRecMII(N2) != 0) 1852 continue; 1853 SmallSetVector<SUnit *, 8> S2; 1854 if (N2.empty() || !succ_L(N2, S2)) 1855 continue; 1856 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1857 N1.setColocate(++Colocate); 1858 N2.setColocate(Colocate); 1859 break; 1860 } 1861 } 1862 } 1863 } 1864 1865 /// Check if the existing node-sets are profitable. If not, then ignore the 1866 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1867 /// a heuristic. If the MII is large and there is a non-recurrent node with 1868 /// a large depth compared to the MII, then it's best to try and schedule 1869 /// all instruction together instead of starting with the recurrent node-sets. 1870 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1871 // Look for loops with a large MII. 1872 if (MII <= 20) 1873 return; 1874 // Check if the node-set contains only a simple add recurrence. 1875 for (auto &NS : NodeSets) 1876 if (NS.size() > 2) 1877 return; 1878 // If the depth of any instruction is significantly larger than the MII, then 1879 // ignore the recurrent node-sets and treat all instructions equally. 1880 for (auto &SU : SUnits) 1881 if (SU.getDepth() > MII * 1.5) { 1882 NodeSets.clear(); 1883 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1884 return; 1885 } 1886 } 1887 1888 /// Add the nodes that do not belong to a recurrence set into groups 1889 /// based upon connected componenets. 1890 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1891 SetVector<SUnit *> NodesAdded; 1892 SmallPtrSet<SUnit *, 8> Visited; 1893 // Add the nodes that are on a path between the previous node sets and 1894 // the current node set. 1895 for (NodeSet &I : NodeSets) { 1896 SmallSetVector<SUnit *, 8> N; 1897 // Add the nodes from the current node set to the previous node set. 1898 if (succ_L(I, N)) { 1899 SetVector<SUnit *> Path; 1900 for (SUnit *NI : N) { 1901 Visited.clear(); 1902 computePath(NI, Path, NodesAdded, I, Visited); 1903 } 1904 if (!Path.empty()) 1905 I.insert(Path.begin(), Path.end()); 1906 } 1907 // Add the nodes from the previous node set to the current node set. 1908 N.clear(); 1909 if (succ_L(NodesAdded, N)) { 1910 SetVector<SUnit *> Path; 1911 for (SUnit *NI : N) { 1912 Visited.clear(); 1913 computePath(NI, Path, I, NodesAdded, Visited); 1914 } 1915 if (!Path.empty()) 1916 I.insert(Path.begin(), Path.end()); 1917 } 1918 NodesAdded.insert(I.begin(), I.end()); 1919 } 1920 1921 // Create a new node set with the connected nodes of any successor of a node 1922 // in a recurrent set. 1923 NodeSet NewSet; 1924 SmallSetVector<SUnit *, 8> N; 1925 if (succ_L(NodesAdded, N)) 1926 for (SUnit *I : N) 1927 addConnectedNodes(I, NewSet, NodesAdded); 1928 if (!NewSet.empty()) 1929 NodeSets.push_back(NewSet); 1930 1931 // Create a new node set with the connected nodes of any predecessor of a node 1932 // in a recurrent set. 1933 NewSet.clear(); 1934 if (pred_L(NodesAdded, N)) 1935 for (SUnit *I : N) 1936 addConnectedNodes(I, NewSet, NodesAdded); 1937 if (!NewSet.empty()) 1938 NodeSets.push_back(NewSet); 1939 1940 // Create new nodes sets with the connected nodes any any remaining node that 1941 // has no predecessor. 1942 for (unsigned i = 0; i < SUnits.size(); ++i) { 1943 SUnit *SU = &SUnits[i]; 1944 if (NodesAdded.count(SU) == 0) { 1945 NewSet.clear(); 1946 addConnectedNodes(SU, NewSet, NodesAdded); 1947 if (!NewSet.empty()) 1948 NodeSets.push_back(NewSet); 1949 } 1950 } 1951 } 1952 1953 /// Add the node to the set, and add all is its connected nodes to the set. 1954 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1955 SetVector<SUnit *> &NodesAdded) { 1956 NewSet.insert(SU); 1957 NodesAdded.insert(SU); 1958 for (auto &SI : SU->Succs) { 1959 SUnit *Successor = SI.getSUnit(); 1960 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1961 addConnectedNodes(Successor, NewSet, NodesAdded); 1962 } 1963 for (auto &PI : SU->Preds) { 1964 SUnit *Predecessor = PI.getSUnit(); 1965 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1966 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1967 } 1968 } 1969 1970 /// Return true if Set1 contains elements in Set2. The elements in common 1971 /// are returned in a different container. 1972 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1973 SmallSetVector<SUnit *, 8> &Result) { 1974 Result.clear(); 1975 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1976 SUnit *SU = Set1[i]; 1977 if (Set2.count(SU) != 0) 1978 Result.insert(SU); 1979 } 1980 return !Result.empty(); 1981 } 1982 1983 /// Merge the recurrence node sets that have the same initial node. 1984 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1985 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1986 ++I) { 1987 NodeSet &NI = *I; 1988 for (NodeSetType::iterator J = I + 1; J != E;) { 1989 NodeSet &NJ = *J; 1990 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1991 if (NJ.compareRecMII(NI) > 0) 1992 NI.setRecMII(NJ.getRecMII()); 1993 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1994 ++NII) 1995 I->insert(*NII); 1996 NodeSets.erase(J); 1997 E = NodeSets.end(); 1998 } else { 1999 ++J; 2000 } 2001 } 2002 } 2003 } 2004 2005 /// Remove nodes that have been scheduled in previous NodeSets. 2006 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2007 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2008 ++I) 2009 for (NodeSetType::iterator J = I + 1; J != E;) { 2010 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2011 2012 if (J->empty()) { 2013 NodeSets.erase(J); 2014 E = NodeSets.end(); 2015 } else { 2016 ++J; 2017 } 2018 } 2019 } 2020 2021 /// Compute an ordered list of the dependence graph nodes, which 2022 /// indicates the order that the nodes will be scheduled. This is a 2023 /// two-level algorithm. First, a partial order is created, which 2024 /// consists of a list of sets ordered from highest to lowest priority. 2025 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2026 SmallSetVector<SUnit *, 8> R; 2027 NodeOrder.clear(); 2028 2029 for (auto &Nodes : NodeSets) { 2030 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2031 OrderKind Order; 2032 SmallSetVector<SUnit *, 8> N; 2033 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2034 R.insert(N.begin(), N.end()); 2035 Order = BottomUp; 2036 DEBUG(dbgs() << " Bottom up (preds) "); 2037 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2038 R.insert(N.begin(), N.end()); 2039 Order = TopDown; 2040 DEBUG(dbgs() << " Top down (succs) "); 2041 } else if (isIntersect(N, Nodes, R)) { 2042 // If some of the successors are in the existing node-set, then use the 2043 // top-down ordering. 2044 Order = TopDown; 2045 DEBUG(dbgs() << " Top down (intersect) "); 2046 } else if (NodeSets.size() == 1) { 2047 for (auto &N : Nodes) 2048 if (N->Succs.size() == 0) 2049 R.insert(N); 2050 Order = BottomUp; 2051 DEBUG(dbgs() << " Bottom up (all) "); 2052 } else { 2053 // Find the node with the highest ASAP. 2054 SUnit *maxASAP = nullptr; 2055 for (SUnit *SU : Nodes) { 2056 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 2057 maxASAP = SU; 2058 } 2059 R.insert(maxASAP); 2060 Order = BottomUp; 2061 DEBUG(dbgs() << " Bottom up (default) "); 2062 } 2063 2064 while (!R.empty()) { 2065 if (Order == TopDown) { 2066 // Choose the node with the maximum height. If more than one, choose 2067 // the node with the maximum ZeroLatencyHeight. If still more than one, 2068 // choose the node with the lowest MOV. 2069 while (!R.empty()) { 2070 SUnit *maxHeight = nullptr; 2071 for (SUnit *I : R) { 2072 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2073 maxHeight = I; 2074 else if (getHeight(I) == getHeight(maxHeight) && 2075 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2076 maxHeight = I; 2077 else if (getHeight(I) == getHeight(maxHeight) && 2078 getZeroLatencyHeight(I) == 2079 getZeroLatencyHeight(maxHeight) && 2080 getMOV(I) < getMOV(maxHeight)) 2081 maxHeight = I; 2082 } 2083 NodeOrder.insert(maxHeight); 2084 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2085 R.remove(maxHeight); 2086 for (const auto &I : maxHeight->Succs) { 2087 if (Nodes.count(I.getSUnit()) == 0) 2088 continue; 2089 if (NodeOrder.count(I.getSUnit()) != 0) 2090 continue; 2091 if (ignoreDependence(I, false)) 2092 continue; 2093 R.insert(I.getSUnit()); 2094 } 2095 // Back-edges are predecessors with an anti-dependence. 2096 for (const auto &I : maxHeight->Preds) { 2097 if (I.getKind() != SDep::Anti) 2098 continue; 2099 if (Nodes.count(I.getSUnit()) == 0) 2100 continue; 2101 if (NodeOrder.count(I.getSUnit()) != 0) 2102 continue; 2103 R.insert(I.getSUnit()); 2104 } 2105 } 2106 Order = BottomUp; 2107 DEBUG(dbgs() << "\n Switching order to bottom up "); 2108 SmallSetVector<SUnit *, 8> N; 2109 if (pred_L(NodeOrder, N, &Nodes)) 2110 R.insert(N.begin(), N.end()); 2111 } else { 2112 // Choose the node with the maximum depth. If more than one, choose 2113 // the node with the maximum ZeroLatencyDepth. If still more than one, 2114 // choose the node with the lowest MOV. 2115 while (!R.empty()) { 2116 SUnit *maxDepth = nullptr; 2117 for (SUnit *I : R) { 2118 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2119 maxDepth = I; 2120 else if (getDepth(I) == getDepth(maxDepth) && 2121 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2122 maxDepth = I; 2123 else if (getDepth(I) == getDepth(maxDepth) && 2124 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2125 getMOV(I) < getMOV(maxDepth)) 2126 maxDepth = I; 2127 } 2128 NodeOrder.insert(maxDepth); 2129 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2130 R.remove(maxDepth); 2131 if (Nodes.isExceedSU(maxDepth)) { 2132 Order = TopDown; 2133 R.clear(); 2134 R.insert(Nodes.getNode(0)); 2135 break; 2136 } 2137 for (const auto &I : maxDepth->Preds) { 2138 if (Nodes.count(I.getSUnit()) == 0) 2139 continue; 2140 if (NodeOrder.count(I.getSUnit()) != 0) 2141 continue; 2142 if (I.getKind() == SDep::Anti) 2143 continue; 2144 R.insert(I.getSUnit()); 2145 } 2146 // Back-edges are predecessors with an anti-dependence. 2147 for (const auto &I : maxDepth->Succs) { 2148 if (I.getKind() != SDep::Anti) 2149 continue; 2150 if (Nodes.count(I.getSUnit()) == 0) 2151 continue; 2152 if (NodeOrder.count(I.getSUnit()) != 0) 2153 continue; 2154 R.insert(I.getSUnit()); 2155 } 2156 } 2157 Order = TopDown; 2158 DEBUG(dbgs() << "\n Switching order to top down "); 2159 SmallSetVector<SUnit *, 8> N; 2160 if (succ_L(NodeOrder, N, &Nodes)) 2161 R.insert(N.begin(), N.end()); 2162 } 2163 } 2164 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2165 } 2166 2167 DEBUG({ 2168 dbgs() << "Node order: "; 2169 for (SUnit *I : NodeOrder) 2170 dbgs() << " " << I->NodeNum << " "; 2171 dbgs() << "\n"; 2172 }); 2173 } 2174 2175 /// Process the nodes in the computed order and create the pipelined schedule 2176 /// of the instructions, if possible. Return true if a schedule is found. 2177 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2178 if (NodeOrder.empty()) 2179 return false; 2180 2181 bool scheduleFound = false; 2182 // Keep increasing II until a valid schedule is found. 2183 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2184 Schedule.reset(); 2185 Schedule.setInitiationInterval(II); 2186 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2187 2188 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2189 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2190 do { 2191 SUnit *SU = *NI; 2192 2193 // Compute the schedule time for the instruction, which is based 2194 // upon the scheduled time for any predecessors/successors. 2195 int EarlyStart = INT_MIN; 2196 int LateStart = INT_MAX; 2197 // These values are set when the size of the schedule window is limited 2198 // due to chain dependences. 2199 int SchedEnd = INT_MAX; 2200 int SchedStart = INT_MIN; 2201 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2202 II, this); 2203 DEBUG({ 2204 dbgs() << "Inst (" << SU->NodeNum << ") "; 2205 SU->getInstr()->dump(); 2206 dbgs() << "\n"; 2207 }); 2208 DEBUG({ 2209 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2210 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2211 }); 2212 2213 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2214 SchedStart > LateStart) 2215 scheduleFound = false; 2216 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2217 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2218 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2219 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2220 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2221 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2222 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2223 SchedEnd = 2224 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2225 // When scheduling a Phi it is better to start at the late cycle and go 2226 // backwards. The default order may insert the Phi too far away from 2227 // its first dependence. 2228 if (SU->getInstr()->isPHI()) 2229 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2230 else 2231 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2232 } else { 2233 int FirstCycle = Schedule.getFirstCycle(); 2234 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2235 FirstCycle + getASAP(SU) + II - 1, II); 2236 } 2237 // Even if we find a schedule, make sure the schedule doesn't exceed the 2238 // allowable number of stages. We keep trying if this happens. 2239 if (scheduleFound) 2240 if (SwpMaxStages > -1 && 2241 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2242 scheduleFound = false; 2243 2244 DEBUG({ 2245 if (!scheduleFound) 2246 dbgs() << "\tCan't schedule\n"; 2247 }); 2248 } while (++NI != NE && scheduleFound); 2249 2250 // If a schedule is found, check if it is a valid schedule too. 2251 if (scheduleFound) 2252 scheduleFound = Schedule.isValidSchedule(this); 2253 } 2254 2255 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2256 2257 if (scheduleFound) 2258 Schedule.finalizeSchedule(this); 2259 else 2260 Schedule.reset(); 2261 2262 return scheduleFound && Schedule.getMaxStageCount() > 0; 2263 } 2264 2265 /// Given a schedule for the loop, generate a new version of the loop, 2266 /// and replace the old version. This function generates a prolog 2267 /// that contains the initial iterations in the pipeline, and kernel 2268 /// loop, and the epilogue that contains the code for the final 2269 /// iterations. 2270 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2271 // Create a new basic block for the kernel and add it to the CFG. 2272 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2273 2274 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2275 2276 // Remember the registers that are used in different stages. The index is 2277 // the iteration, or stage, that the instruction is scheduled in. This is 2278 // a map between register names in the orignal block and the names created 2279 // in each stage of the pipelined loop. 2280 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2281 InstrMapTy InstrMap; 2282 2283 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2284 // Generate the prolog instructions that set up the pipeline. 2285 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2286 MF.insert(BB->getIterator(), KernelBB); 2287 2288 // Rearrange the instructions to generate the new, pipelined loop, 2289 // and update register names as needed. 2290 for (int Cycle = Schedule.getFirstCycle(), 2291 LastCycle = Schedule.getFinalCycle(); 2292 Cycle <= LastCycle; ++Cycle) { 2293 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2294 // This inner loop schedules each instruction in the cycle. 2295 for (SUnit *CI : CycleInstrs) { 2296 if (CI->getInstr()->isPHI()) 2297 continue; 2298 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2299 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2300 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2301 KernelBB->push_back(NewMI); 2302 InstrMap[NewMI] = CI->getInstr(); 2303 } 2304 } 2305 2306 // Copy any terminator instructions to the new kernel, and update 2307 // names as needed. 2308 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2309 E = BB->instr_end(); 2310 I != E; ++I) { 2311 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2312 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2313 KernelBB->push_back(NewMI); 2314 InstrMap[NewMI] = &*I; 2315 } 2316 2317 KernelBB->transferSuccessors(BB); 2318 KernelBB->replaceSuccessor(BB, KernelBB); 2319 2320 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2321 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2322 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2323 InstrMap, MaxStageCount, MaxStageCount, false); 2324 2325 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2326 2327 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2328 // Generate the epilog instructions to complete the pipeline. 2329 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2330 PrologBBs); 2331 2332 // We need this step because the register allocation doesn't handle some 2333 // situations well, so we insert copies to help out. 2334 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2335 2336 // Remove dead instructions due to loop induction variables. 2337 removeDeadInstructions(KernelBB, EpilogBBs); 2338 2339 // Add branches between prolog and epilog blocks. 2340 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2341 2342 // Remove the original loop since it's no longer referenced. 2343 BB->clear(); 2344 BB->eraseFromParent(); 2345 2346 delete[] VRMap; 2347 } 2348 2349 /// Generate the pipeline prolog code. 2350 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2351 MachineBasicBlock *KernelBB, 2352 ValueMapTy *VRMap, 2353 MBBVectorTy &PrologBBs) { 2354 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2355 assert(PreheaderBB != nullptr && 2356 "Need to add code to handle loops w/o preheader"); 2357 MachineBasicBlock *PredBB = PreheaderBB; 2358 InstrMapTy InstrMap; 2359 2360 // Generate a basic block for each stage, not including the last stage, 2361 // which will be generated in the kernel. Each basic block may contain 2362 // instructions from multiple stages/iterations. 2363 for (unsigned i = 0; i < LastStage; ++i) { 2364 // Create and insert the prolog basic block prior to the original loop 2365 // basic block. The original loop is removed later. 2366 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2367 PrologBBs.push_back(NewBB); 2368 MF.insert(BB->getIterator(), NewBB); 2369 NewBB->transferSuccessors(PredBB); 2370 PredBB->addSuccessor(NewBB); 2371 PredBB = NewBB; 2372 2373 // Generate instructions for each appropriate stage. Process instructions 2374 // in original program order. 2375 for (int StageNum = i; StageNum >= 0; --StageNum) { 2376 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2377 BBE = BB->getFirstTerminator(); 2378 BBI != BBE; ++BBI) { 2379 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2380 if (BBI->isPHI()) 2381 continue; 2382 MachineInstr *NewMI = 2383 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2384 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2385 VRMap); 2386 NewBB->push_back(NewMI); 2387 InstrMap[NewMI] = &*BBI; 2388 } 2389 } 2390 } 2391 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2392 DEBUG({ 2393 dbgs() << "prolog:\n"; 2394 NewBB->dump(); 2395 }); 2396 } 2397 2398 PredBB->replaceSuccessor(BB, KernelBB); 2399 2400 // Check if we need to remove the branch from the preheader to the original 2401 // loop, and replace it with a branch to the new loop. 2402 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2403 if (numBranches) { 2404 SmallVector<MachineOperand, 0> Cond; 2405 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2406 } 2407 } 2408 2409 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2410 /// that were started in either the prolog or the kernel. We create a basic 2411 /// block for each stage that needs to complete. 2412 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2413 MachineBasicBlock *KernelBB, 2414 ValueMapTy *VRMap, 2415 MBBVectorTy &EpilogBBs, 2416 MBBVectorTy &PrologBBs) { 2417 // We need to change the branch from the kernel to the first epilog block, so 2418 // this call to analyze branch uses the kernel rather than the original BB. 2419 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2420 SmallVector<MachineOperand, 4> Cond; 2421 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2422 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2423 if (checkBranch) 2424 return; 2425 2426 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2427 if (*LoopExitI == KernelBB) 2428 ++LoopExitI; 2429 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2430 MachineBasicBlock *LoopExitBB = *LoopExitI; 2431 2432 MachineBasicBlock *PredBB = KernelBB; 2433 MachineBasicBlock *EpilogStart = LoopExitBB; 2434 InstrMapTy InstrMap; 2435 2436 // Generate a basic block for each stage, not including the last stage, 2437 // which was generated for the kernel. Each basic block may contain 2438 // instructions from multiple stages/iterations. 2439 int EpilogStage = LastStage + 1; 2440 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2441 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2442 EpilogBBs.push_back(NewBB); 2443 MF.insert(BB->getIterator(), NewBB); 2444 2445 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2446 NewBB->addSuccessor(LoopExitBB); 2447 2448 if (EpilogStart == LoopExitBB) 2449 EpilogStart = NewBB; 2450 2451 // Add instructions to the epilog depending on the current block. 2452 // Process instructions in original program order. 2453 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2454 for (auto &BBI : *BB) { 2455 if (BBI.isPHI()) 2456 continue; 2457 MachineInstr *In = &BBI; 2458 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2459 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2460 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2461 NewBB->push_back(NewMI); 2462 InstrMap[NewMI] = In; 2463 } 2464 } 2465 } 2466 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2467 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2468 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2469 InstrMap, LastStage, EpilogStage, i == 1); 2470 PredBB = NewBB; 2471 2472 DEBUG({ 2473 dbgs() << "epilog:\n"; 2474 NewBB->dump(); 2475 }); 2476 } 2477 2478 // Fix any Phi nodes in the loop exit block. 2479 for (MachineInstr &MI : *LoopExitBB) { 2480 if (!MI.isPHI()) 2481 break; 2482 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2483 MachineOperand &MO = MI.getOperand(i); 2484 if (MO.getMBB() == BB) 2485 MO.setMBB(PredBB); 2486 } 2487 } 2488 2489 // Create a branch to the new epilog from the kernel. 2490 // Remove the original branch and add a new branch to the epilog. 2491 TII->removeBranch(*KernelBB); 2492 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2493 // Add a branch to the loop exit. 2494 if (EpilogBBs.size() > 0) { 2495 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2496 SmallVector<MachineOperand, 4> Cond1; 2497 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2498 } 2499 } 2500 2501 /// Replace all uses of FromReg that appear outside the specified 2502 /// basic block with ToReg. 2503 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2504 MachineBasicBlock *MBB, 2505 MachineRegisterInfo &MRI, 2506 LiveIntervals &LIS) { 2507 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2508 E = MRI.use_end(); 2509 I != E;) { 2510 MachineOperand &O = *I; 2511 ++I; 2512 if (O.getParent()->getParent() != MBB) 2513 O.setReg(ToReg); 2514 } 2515 if (!LIS.hasInterval(ToReg)) 2516 LIS.createEmptyInterval(ToReg); 2517 } 2518 2519 /// Return true if the register has a use that occurs outside the 2520 /// specified loop. 2521 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2522 MachineRegisterInfo &MRI) { 2523 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2524 E = MRI.use_end(); 2525 I != E; ++I) 2526 if (I->getParent()->getParent() != BB) 2527 return true; 2528 return false; 2529 } 2530 2531 /// Generate Phis for the specific block in the generated pipelined code. 2532 /// This function looks at the Phis from the original code to guide the 2533 /// creation of new Phis. 2534 void SwingSchedulerDAG::generateExistingPhis( 2535 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2536 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2537 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2538 bool IsLast) { 2539 // Compute the stage number for the initial value of the Phi, which 2540 // comes from the prolog. The prolog to use depends on to which kernel/ 2541 // epilog that we're adding the Phi. 2542 unsigned PrologStage = 0; 2543 unsigned PrevStage = 0; 2544 bool InKernel = (LastStageNum == CurStageNum); 2545 if (InKernel) { 2546 PrologStage = LastStageNum - 1; 2547 PrevStage = CurStageNum; 2548 } else { 2549 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2550 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2551 } 2552 2553 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2554 BBE = BB->getFirstNonPHI(); 2555 BBI != BBE; ++BBI) { 2556 unsigned Def = BBI->getOperand(0).getReg(); 2557 2558 unsigned InitVal = 0; 2559 unsigned LoopVal = 0; 2560 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2561 2562 unsigned PhiOp1 = 0; 2563 // The Phi value from the loop body typically is defined in the loop, but 2564 // not always. So, we need to check if the value is defined in the loop. 2565 unsigned PhiOp2 = LoopVal; 2566 if (VRMap[LastStageNum].count(LoopVal)) 2567 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2568 2569 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2570 int LoopValStage = 2571 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2572 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2573 if (NumStages == 0) { 2574 // We don't need to generate a Phi anymore, but we need to rename any uses 2575 // of the Phi value. 2576 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2577 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2578 Def, NewReg); 2579 if (VRMap[CurStageNum].count(LoopVal)) 2580 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2581 } 2582 // Adjust the number of Phis needed depending on the number of prologs left, 2583 // and the distance from where the Phi is first scheduled. 2584 unsigned NumPhis = NumStages; 2585 if (!InKernel && (int)PrologStage < LoopValStage) 2586 // The NumPhis is the maximum number of new Phis needed during the steady 2587 // state. If the Phi has not been scheduled in current prolog, then we 2588 // need to generate less Phis. 2589 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2590 // The number of Phis cannot exceed the number of prolog stages. Each 2591 // stage can potentially define two values. 2592 NumPhis = std::min(NumPhis, PrologStage + 2); 2593 2594 unsigned NewReg = 0; 2595 2596 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2597 // In the epilog, we may need to look back one stage to get the correct 2598 // Phi name because the epilog and prolog blocks execute the same stage. 2599 // The correct name is from the previous block only when the Phi has 2600 // been completely scheduled prior to the epilog, and Phi value is not 2601 // needed in multiple stages. 2602 int StageDiff = 0; 2603 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2604 NumPhis == 1) 2605 StageDiff = 1; 2606 // Adjust the computations below when the phi and the loop definition 2607 // are scheduled in different stages. 2608 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2609 StageDiff = StageScheduled - LoopValStage; 2610 for (unsigned np = 0; np < NumPhis; ++np) { 2611 // If the Phi hasn't been scheduled, then use the initial Phi operand 2612 // value. Otherwise, use the scheduled version of the instruction. This 2613 // is a little complicated when a Phi references another Phi. 2614 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2615 PhiOp1 = InitVal; 2616 // Check if the Phi has already been scheduled in a prolog stage. 2617 else if (PrologStage >= AccessStage + StageDiff + np && 2618 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2619 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2620 // Check if the Phi has already been scheduled, but the loop intruction 2621 // is either another Phi, or doesn't occur in the loop. 2622 else if (PrologStage >= AccessStage + StageDiff + np) { 2623 // If the Phi references another Phi, we need to examine the other 2624 // Phi to get the correct value. 2625 PhiOp1 = LoopVal; 2626 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2627 int Indirects = 1; 2628 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2629 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2630 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2631 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2632 else 2633 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2634 InstOp1 = MRI.getVRegDef(PhiOp1); 2635 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2636 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2637 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2638 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2639 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2640 break; 2641 } 2642 ++Indirects; 2643 } 2644 } else 2645 PhiOp1 = InitVal; 2646 // If this references a generated Phi in the kernel, get the Phi operand 2647 // from the incoming block. 2648 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2649 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2650 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2651 2652 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2653 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2654 // In the epilog, a map lookup is needed to get the value from the kernel, 2655 // or previous epilog block. How is does this depends on if the 2656 // instruction is scheduled in the previous block. 2657 if (!InKernel) { 2658 int StageDiffAdj = 0; 2659 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2660 StageDiffAdj = StageScheduled - LoopValStage; 2661 // Use the loop value defined in the kernel, unless the kernel 2662 // contains the last definition of the Phi. 2663 if (np == 0 && PrevStage == LastStageNum && 2664 (StageScheduled != 0 || LoopValStage != 0) && 2665 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2666 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2667 // Use the value defined by the Phi. We add one because we switch 2668 // from looking at the loop value to the Phi definition. 2669 else if (np > 0 && PrevStage == LastStageNum && 2670 VRMap[PrevStage - np + 1].count(Def)) 2671 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2672 // Use the loop value defined in the kernel. 2673 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2674 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2675 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2676 // Use the value defined by the Phi, unless we're generating the first 2677 // epilog and the Phi refers to a Phi in a different stage. 2678 else if (VRMap[PrevStage - np].count(Def) && 2679 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2680 PhiOp2 = VRMap[PrevStage - np][Def]; 2681 } 2682 2683 // Check if we can reuse an existing Phi. This occurs when a Phi 2684 // references another Phi, and the other Phi is scheduled in an 2685 // earlier stage. We can try to reuse an existing Phi up until the last 2686 // stage of the current Phi. 2687 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { 2688 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2689 int StageDiff = (StageScheduled - LoopValStage); 2690 LVNumStages -= StageDiff; 2691 if (LVNumStages > (int)np) { 2692 NewReg = PhiOp2; 2693 unsigned ReuseStage = CurStageNum; 2694 if (Schedule.isLoopCarried(this, *PhiInst)) 2695 ReuseStage -= LVNumStages; 2696 // Check if the Phi to reuse has been generated yet. If not, then 2697 // there is nothing to reuse. 2698 if (VRMap[ReuseStage].count(LoopVal)) { 2699 NewReg = VRMap[ReuseStage][LoopVal]; 2700 2701 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2702 &*BBI, Def, NewReg); 2703 // Update the map with the new Phi name. 2704 VRMap[CurStageNum - np][Def] = NewReg; 2705 PhiOp2 = NewReg; 2706 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2707 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2708 2709 if (IsLast && np == NumPhis - 1) 2710 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2711 continue; 2712 } 2713 } else if (InKernel && StageDiff > 0 && 2714 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2715 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2716 } 2717 2718 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2719 NewReg = MRI.createVirtualRegister(RC); 2720 2721 MachineInstrBuilder NewPhi = 2722 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2723 TII->get(TargetOpcode::PHI), NewReg); 2724 NewPhi.addReg(PhiOp1).addMBB(BB1); 2725 NewPhi.addReg(PhiOp2).addMBB(BB2); 2726 if (np == 0) 2727 InstrMap[NewPhi] = &*BBI; 2728 2729 // We define the Phis after creating the new pipelined code, so 2730 // we need to rename the Phi values in scheduled instructions. 2731 2732 unsigned PrevReg = 0; 2733 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2734 PrevReg = VRMap[PrevStage - np][LoopVal]; 2735 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2736 Def, NewReg, PrevReg); 2737 // If the Phi has been scheduled, use the new name for rewriting. 2738 if (VRMap[CurStageNum - np].count(Def)) { 2739 unsigned R = VRMap[CurStageNum - np][Def]; 2740 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2741 R, NewReg); 2742 } 2743 2744 // Check if we need to rename any uses that occurs after the loop. The 2745 // register to replace depends on whether the Phi is scheduled in the 2746 // epilog. 2747 if (IsLast && np == NumPhis - 1) 2748 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2749 2750 // In the kernel, a dependent Phi uses the value from this Phi. 2751 if (InKernel) 2752 PhiOp2 = NewReg; 2753 2754 // Update the map with the new Phi name. 2755 VRMap[CurStageNum - np][Def] = NewReg; 2756 } 2757 2758 while (NumPhis++ < NumStages) { 2759 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2760 &*BBI, Def, NewReg, 0); 2761 } 2762 2763 // Check if we need to rename a Phi that has been eliminated due to 2764 // scheduling. 2765 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2766 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2767 } 2768 } 2769 2770 /// Generate Phis for the specified block in the generated pipelined code. 2771 /// These are new Phis needed because the definition is scheduled after the 2772 /// use in the pipelened sequence. 2773 void SwingSchedulerDAG::generatePhis( 2774 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2775 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2776 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2777 bool IsLast) { 2778 // Compute the stage number that contains the initial Phi value, and 2779 // the Phi from the previous stage. 2780 unsigned PrologStage = 0; 2781 unsigned PrevStage = 0; 2782 unsigned StageDiff = CurStageNum - LastStageNum; 2783 bool InKernel = (StageDiff == 0); 2784 if (InKernel) { 2785 PrologStage = LastStageNum - 1; 2786 PrevStage = CurStageNum; 2787 } else { 2788 PrologStage = LastStageNum - StageDiff; 2789 PrevStage = LastStageNum + StageDiff - 1; 2790 } 2791 2792 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2793 BBE = BB->instr_end(); 2794 BBI != BBE; ++BBI) { 2795 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2796 MachineOperand &MO = BBI->getOperand(i); 2797 if (!MO.isReg() || !MO.isDef() || 2798 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2799 continue; 2800 2801 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2802 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2803 unsigned Def = MO.getReg(); 2804 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2805 // An instruction scheduled in stage 0 and is used after the loop 2806 // requires a phi in the epilog for the last definition from either 2807 // the kernel or prolog. 2808 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2809 hasUseAfterLoop(Def, BB, MRI)) 2810 NumPhis = 1; 2811 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2812 continue; 2813 2814 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2815 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2816 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2817 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2818 // The number of Phis can't exceed the number of prolog stages. The 2819 // prolog stage number is zero based. 2820 if (NumPhis > PrologStage + 1 - StageScheduled) 2821 NumPhis = PrologStage + 1 - StageScheduled; 2822 for (unsigned np = 0; np < NumPhis; ++np) { 2823 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2824 if (np <= PrologStage) 2825 PhiOp1 = VRMap[PrologStage - np][Def]; 2826 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2827 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2828 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2829 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2830 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2831 } 2832 if (!InKernel) 2833 PhiOp2 = VRMap[PrevStage - np][Def]; 2834 2835 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2836 unsigned NewReg = MRI.createVirtualRegister(RC); 2837 2838 MachineInstrBuilder NewPhi = 2839 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2840 TII->get(TargetOpcode::PHI), NewReg); 2841 NewPhi.addReg(PhiOp1).addMBB(BB1); 2842 NewPhi.addReg(PhiOp2).addMBB(BB2); 2843 if (np == 0) 2844 InstrMap[NewPhi] = &*BBI; 2845 2846 // Rewrite uses and update the map. The actions depend upon whether 2847 // we generating code for the kernel or epilog blocks. 2848 if (InKernel) { 2849 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2850 &*BBI, PhiOp1, NewReg); 2851 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2852 &*BBI, PhiOp2, NewReg); 2853 2854 PhiOp2 = NewReg; 2855 VRMap[PrevStage - np - 1][Def] = NewReg; 2856 } else { 2857 VRMap[CurStageNum - np][Def] = NewReg; 2858 if (np == NumPhis - 1) 2859 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2860 &*BBI, Def, NewReg); 2861 } 2862 if (IsLast && np == NumPhis - 1) 2863 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2864 } 2865 } 2866 } 2867 } 2868 2869 /// Remove instructions that generate values with no uses. 2870 /// Typically, these are induction variable operations that generate values 2871 /// used in the loop itself. A dead instruction has a definition with 2872 /// no uses, or uses that occur in the original loop only. 2873 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2874 MBBVectorTy &EpilogBBs) { 2875 // For each epilog block, check that the value defined by each instruction 2876 // is used. If not, delete it. 2877 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2878 MBE = EpilogBBs.rend(); 2879 MBB != MBE; ++MBB) 2880 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2881 ME = (*MBB)->instr_rend(); 2882 MI != ME;) { 2883 // From DeadMachineInstructionElem. Don't delete inline assembly. 2884 if (MI->isInlineAsm()) { 2885 ++MI; 2886 continue; 2887 } 2888 bool SawStore = false; 2889 // Check if it's safe to remove the instruction due to side effects. 2890 // We can, and want to, remove Phis here. 2891 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2892 ++MI; 2893 continue; 2894 } 2895 bool used = true; 2896 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2897 MOE = MI->operands_end(); 2898 MOI != MOE; ++MOI) { 2899 if (!MOI->isReg() || !MOI->isDef()) 2900 continue; 2901 unsigned reg = MOI->getReg(); 2902 unsigned realUses = 0; 2903 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2904 EI = MRI.use_end(); 2905 UI != EI; ++UI) { 2906 // Check if there are any uses that occur only in the original 2907 // loop. If so, that's not a real use. 2908 if (UI->getParent()->getParent() != BB) { 2909 realUses++; 2910 used = true; 2911 break; 2912 } 2913 } 2914 if (realUses > 0) 2915 break; 2916 used = false; 2917 } 2918 if (!used) { 2919 MI++->eraseFromParent(); 2920 continue; 2921 } 2922 ++MI; 2923 } 2924 // In the kernel block, check if we can remove a Phi that generates a value 2925 // used in an instruction removed in the epilog block. 2926 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2927 BBE = KernelBB->getFirstNonPHI(); 2928 BBI != BBE;) { 2929 MachineInstr *MI = &*BBI; 2930 ++BBI; 2931 unsigned reg = MI->getOperand(0).getReg(); 2932 if (MRI.use_begin(reg) == MRI.use_end()) { 2933 MI->eraseFromParent(); 2934 } 2935 } 2936 } 2937 2938 /// For loop carried definitions, we split the lifetime of a virtual register 2939 /// that has uses past the definition in the next iteration. A copy with a new 2940 /// virtual register is inserted before the definition, which helps with 2941 /// generating a better register assignment. 2942 /// 2943 /// v1 = phi(a, v2) v1 = phi(a, v2) 2944 /// v2 = phi(b, v3) v2 = phi(b, v3) 2945 /// v3 = .. v4 = copy v1 2946 /// .. = V1 v3 = .. 2947 /// .. = v4 2948 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2949 MBBVectorTy &EpilogBBs, 2950 SMSchedule &Schedule) { 2951 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2952 for (auto &PHI : KernelBB->phis()) { 2953 unsigned Def = PHI.getOperand(0).getReg(); 2954 // Check for any Phi definition that used as an operand of another Phi 2955 // in the same block. 2956 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2957 E = MRI.use_instr_end(); 2958 I != E; ++I) { 2959 if (I->isPHI() && I->getParent() == KernelBB) { 2960 // Get the loop carried definition. 2961 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2962 if (!LCDef) 2963 continue; 2964 MachineInstr *MI = MRI.getVRegDef(LCDef); 2965 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2966 continue; 2967 // Search through the rest of the block looking for uses of the Phi 2968 // definition. If one occurs, then split the lifetime. 2969 unsigned SplitReg = 0; 2970 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2971 KernelBB->instr_end())) 2972 if (BBJ.readsRegister(Def)) { 2973 // We split the lifetime when we find the first use. 2974 if (SplitReg == 0) { 2975 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2976 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2977 TII->get(TargetOpcode::COPY), SplitReg) 2978 .addReg(Def); 2979 } 2980 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2981 } 2982 if (!SplitReg) 2983 continue; 2984 // Search through each of the epilog blocks for any uses to be renamed. 2985 for (auto &Epilog : EpilogBBs) 2986 for (auto &I : *Epilog) 2987 if (I.readsRegister(Def)) 2988 I.substituteRegister(Def, SplitReg, 0, *TRI); 2989 break; 2990 } 2991 } 2992 } 2993 } 2994 2995 /// Remove the incoming block from the Phis in a basic block. 2996 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2997 for (MachineInstr &MI : *BB) { 2998 if (!MI.isPHI()) 2999 break; 3000 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3001 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3002 MI.RemoveOperand(i + 1); 3003 MI.RemoveOperand(i); 3004 break; 3005 } 3006 } 3007 } 3008 3009 /// Create branches from each prolog basic block to the appropriate epilog 3010 /// block. These edges are needed if the loop ends before reaching the 3011 /// kernel. 3012 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3013 MachineBasicBlock *KernelBB, 3014 MBBVectorTy &EpilogBBs, 3015 SMSchedule &Schedule, ValueMapTy *VRMap) { 3016 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3017 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3018 MachineInstr *Cmp = Pass.LI.LoopCompare; 3019 MachineBasicBlock *LastPro = KernelBB; 3020 MachineBasicBlock *LastEpi = KernelBB; 3021 3022 // Start from the blocks connected to the kernel and work "out" 3023 // to the first prolog and the last epilog blocks. 3024 SmallVector<MachineInstr *, 4> PrevInsts; 3025 unsigned MaxIter = PrologBBs.size() - 1; 3026 unsigned LC = UINT_MAX; 3027 unsigned LCMin = UINT_MAX; 3028 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3029 // Add branches to the prolog that go to the corresponding 3030 // epilog, and the fall-thru prolog/kernel block. 3031 MachineBasicBlock *Prolog = PrologBBs[j]; 3032 MachineBasicBlock *Epilog = EpilogBBs[i]; 3033 // We've executed one iteration, so decrement the loop count and check for 3034 // the loop end. 3035 SmallVector<MachineOperand, 4> Cond; 3036 // Check if the LOOP0 has already been removed. If so, then there is no need 3037 // to reduce the trip count. 3038 if (LC != 0) 3039 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3040 MaxIter); 3041 3042 // Record the value of the first trip count, which is used to determine if 3043 // branches and blocks can be removed for constant trip counts. 3044 if (LCMin == UINT_MAX) 3045 LCMin = LC; 3046 3047 unsigned numAdded = 0; 3048 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3049 Prolog->addSuccessor(Epilog); 3050 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3051 } else if (j >= LCMin) { 3052 Prolog->addSuccessor(Epilog); 3053 Prolog->removeSuccessor(LastPro); 3054 LastEpi->removeSuccessor(Epilog); 3055 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3056 removePhis(Epilog, LastEpi); 3057 // Remove the blocks that are no longer referenced. 3058 if (LastPro != LastEpi) { 3059 LastEpi->clear(); 3060 LastEpi->eraseFromParent(); 3061 } 3062 LastPro->clear(); 3063 LastPro->eraseFromParent(); 3064 } else { 3065 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3066 removePhis(Epilog, Prolog); 3067 } 3068 LastPro = Prolog; 3069 LastEpi = Epilog; 3070 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3071 E = Prolog->instr_rend(); 3072 I != E && numAdded > 0; ++I, --numAdded) 3073 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3074 } 3075 } 3076 3077 /// Return true if we can compute the amount the instruction changes 3078 /// during each iteration. Set Delta to the amount of the change. 3079 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3081 unsigned BaseReg; 3082 int64_t Offset; 3083 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3084 return false; 3085 3086 MachineRegisterInfo &MRI = MF.getRegInfo(); 3087 // Check if there is a Phi. If so, get the definition in the loop. 3088 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3089 if (BaseDef && BaseDef->isPHI()) { 3090 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3091 BaseDef = MRI.getVRegDef(BaseReg); 3092 } 3093 if (!BaseDef) 3094 return false; 3095 3096 int D = 0; 3097 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3098 return false; 3099 3100 Delta = D; 3101 return true; 3102 } 3103 3104 /// Update the memory operand with a new offset when the pipeliner 3105 /// generates a new copy of the instruction that refers to a 3106 /// different memory location. 3107 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3108 MachineInstr &OldMI, unsigned Num) { 3109 if (Num == 0) 3110 return; 3111 // If the instruction has memory operands, then adjust the offset 3112 // when the instruction appears in different stages. 3113 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3114 if (NumRefs == 0) 3115 return; 3116 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3117 unsigned Refs = 0; 3118 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3119 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3120 (!MMO->getValue())) { 3121 NewMemRefs[Refs++] = MMO; 3122 continue; 3123 } 3124 unsigned Delta; 3125 if (computeDelta(OldMI, Delta)) { 3126 int64_t AdjOffset = Delta * Num; 3127 NewMemRefs[Refs++] = 3128 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3129 } else { 3130 NewMI.dropMemRefs(); 3131 return; 3132 } 3133 } 3134 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3135 } 3136 3137 /// Clone the instruction for the new pipelined loop and update the 3138 /// memory operands, if needed. 3139 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3140 unsigned CurStageNum, 3141 unsigned InstStageNum) { 3142 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3143 // Check for tied operands in inline asm instructions. This should be handled 3144 // elsewhere, but I'm not sure of the best solution. 3145 if (OldMI->isInlineAsm()) 3146 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3147 const auto &MO = OldMI->getOperand(i); 3148 if (MO.isReg() && MO.isUse()) 3149 break; 3150 unsigned UseIdx; 3151 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3152 NewMI->tieOperands(i, UseIdx); 3153 } 3154 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3155 return NewMI; 3156 } 3157 3158 /// Clone the instruction for the new pipelined loop. If needed, this 3159 /// function updates the instruction using the values saved in the 3160 /// InstrChanges structure. 3161 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3162 unsigned CurStageNum, 3163 unsigned InstStageNum, 3164 SMSchedule &Schedule) { 3165 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3166 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3167 InstrChanges.find(getSUnit(OldMI)); 3168 if (It != InstrChanges.end()) { 3169 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3170 unsigned BasePos, OffsetPos; 3171 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3172 return nullptr; 3173 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3174 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3175 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3176 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3177 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3178 } 3179 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3180 return NewMI; 3181 } 3182 3183 /// Update the machine instruction with new virtual registers. This 3184 /// function may change the defintions and/or uses. 3185 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3186 unsigned CurStageNum, 3187 unsigned InstrStageNum, 3188 SMSchedule &Schedule, 3189 ValueMapTy *VRMap) { 3190 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3191 MachineOperand &MO = NewMI->getOperand(i); 3192 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3193 continue; 3194 unsigned reg = MO.getReg(); 3195 if (MO.isDef()) { 3196 // Create a new virtual register for the definition. 3197 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3198 unsigned NewReg = MRI.createVirtualRegister(RC); 3199 MO.setReg(NewReg); 3200 VRMap[CurStageNum][reg] = NewReg; 3201 if (LastDef) 3202 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3203 } else if (MO.isUse()) { 3204 MachineInstr *Def = MRI.getVRegDef(reg); 3205 // Compute the stage that contains the last definition for instruction. 3206 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3207 unsigned StageNum = CurStageNum; 3208 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3209 // Compute the difference in stages between the defintion and the use. 3210 unsigned StageDiff = (InstrStageNum - DefStageNum); 3211 // Make an adjustment to get the last definition. 3212 StageNum -= StageDiff; 3213 } 3214 if (VRMap[StageNum].count(reg)) 3215 MO.setReg(VRMap[StageNum][reg]); 3216 } 3217 } 3218 } 3219 3220 /// Return the instruction in the loop that defines the register. 3221 /// If the definition is a Phi, then follow the Phi operand to 3222 /// the instruction in the loop. 3223 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3224 SmallPtrSet<MachineInstr *, 8> Visited; 3225 MachineInstr *Def = MRI.getVRegDef(Reg); 3226 while (Def->isPHI()) { 3227 if (!Visited.insert(Def).second) 3228 break; 3229 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3230 if (Def->getOperand(i + 1).getMBB() == BB) { 3231 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3232 break; 3233 } 3234 } 3235 return Def; 3236 } 3237 3238 /// Return the new name for the value from the previous stage. 3239 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3240 unsigned LoopVal, unsigned LoopStage, 3241 ValueMapTy *VRMap, 3242 MachineBasicBlock *BB) { 3243 unsigned PrevVal = 0; 3244 if (StageNum > PhiStage) { 3245 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3246 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3247 // The name is defined in the previous stage. 3248 PrevVal = VRMap[StageNum - 1][LoopVal]; 3249 else if (VRMap[StageNum].count(LoopVal)) 3250 // The previous name is defined in the current stage when the instruction 3251 // order is swapped. 3252 PrevVal = VRMap[StageNum][LoopVal]; 3253 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3254 // The loop value hasn't yet been scheduled. 3255 PrevVal = LoopVal; 3256 else if (StageNum == PhiStage + 1) 3257 // The loop value is another phi, which has not been scheduled. 3258 PrevVal = getInitPhiReg(*LoopInst, BB); 3259 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3260 // The loop value is another phi, which has been scheduled. 3261 PrevVal = 3262 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3263 LoopStage, VRMap, BB); 3264 } 3265 return PrevVal; 3266 } 3267 3268 /// Rewrite the Phi values in the specified block to use the mappings 3269 /// from the initial operand. Once the Phi is scheduled, we switch 3270 /// to using the loop value instead of the Phi value, so those names 3271 /// do not need to be rewritten. 3272 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3273 unsigned StageNum, 3274 SMSchedule &Schedule, 3275 ValueMapTy *VRMap, 3276 InstrMapTy &InstrMap) { 3277 for (auto &PHI : BB->phis()) { 3278 unsigned InitVal = 0; 3279 unsigned LoopVal = 0; 3280 getPhiRegs(PHI, BB, InitVal, LoopVal); 3281 unsigned PhiDef = PHI.getOperand(0).getReg(); 3282 3283 unsigned PhiStage = 3284 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3285 unsigned LoopStage = 3286 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3287 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3288 if (NumPhis > StageNum) 3289 NumPhis = StageNum; 3290 for (unsigned np = 0; np <= NumPhis; ++np) { 3291 unsigned NewVal = 3292 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3293 if (!NewVal) 3294 NewVal = InitVal; 3295 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3296 PhiDef, NewVal); 3297 } 3298 } 3299 } 3300 3301 /// Rewrite a previously scheduled instruction to use the register value 3302 /// from the new instruction. Make sure the instruction occurs in the 3303 /// basic block, and we don't change the uses in the new instruction. 3304 void SwingSchedulerDAG::rewriteScheduledInstr( 3305 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3306 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3307 unsigned NewReg, unsigned PrevReg) { 3308 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3309 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3310 // Rewrite uses that have been scheduled already to use the new 3311 // Phi register. 3312 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3313 EI = MRI.use_end(); 3314 UI != EI;) { 3315 MachineOperand &UseOp = *UI; 3316 MachineInstr *UseMI = UseOp.getParent(); 3317 ++UI; 3318 if (UseMI->getParent() != BB) 3319 continue; 3320 if (UseMI->isPHI()) { 3321 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3322 continue; 3323 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3324 continue; 3325 } 3326 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3327 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3328 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3329 int StageSched = Schedule.stageScheduled(OrigMISU); 3330 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3331 unsigned ReplaceReg = 0; 3332 // This is the stage for the scheduled instruction. 3333 if (StagePhi == StageSched && Phi->isPHI()) { 3334 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3335 if (PrevReg && InProlog) 3336 ReplaceReg = PrevReg; 3337 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3338 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3339 ReplaceReg = PrevReg; 3340 else 3341 ReplaceReg = NewReg; 3342 } 3343 // The scheduled instruction occurs before the scheduled Phi, and the 3344 // Phi is not loop carried. 3345 if (!InProlog && StagePhi + 1 == StageSched && 3346 !Schedule.isLoopCarried(this, *Phi)) 3347 ReplaceReg = NewReg; 3348 if (StagePhi > StageSched && Phi->isPHI()) 3349 ReplaceReg = NewReg; 3350 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3351 ReplaceReg = NewReg; 3352 if (ReplaceReg) { 3353 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3354 UseOp.setReg(ReplaceReg); 3355 } 3356 } 3357 } 3358 3359 /// Check if we can change the instruction to use an offset value from the 3360 /// previous iteration. If so, return true and set the base and offset values 3361 /// so that we can rewrite the load, if necessary. 3362 /// v1 = Phi(v0, v3) 3363 /// v2 = load v1, 0 3364 /// v3 = post_store v1, 4, x 3365 /// This function enables the load to be rewritten as v2 = load v3, 4. 3366 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3367 unsigned &BasePos, 3368 unsigned &OffsetPos, 3369 unsigned &NewBase, 3370 int64_t &Offset) { 3371 // Get the load instruction. 3372 if (TII->isPostIncrement(*MI)) 3373 return false; 3374 unsigned BasePosLd, OffsetPosLd; 3375 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3376 return false; 3377 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3378 3379 // Look for the Phi instruction. 3380 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3381 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3382 if (!Phi || !Phi->isPHI()) 3383 return false; 3384 // Get the register defined in the loop block. 3385 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3386 if (!PrevReg) 3387 return false; 3388 3389 // Check for the post-increment load/store instruction. 3390 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3391 if (!PrevDef || PrevDef == MI) 3392 return false; 3393 3394 if (!TII->isPostIncrement(*PrevDef)) 3395 return false; 3396 3397 unsigned BasePos1 = 0, OffsetPos1 = 0; 3398 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3399 return false; 3400 3401 // Make sure offset values are both positive or both negative. 3402 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3403 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3404 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3405 return false; 3406 3407 // Set the return value once we determine that we return true. 3408 BasePos = BasePosLd; 3409 OffsetPos = OffsetPosLd; 3410 NewBase = PrevReg; 3411 Offset = StoreOffset; 3412 return true; 3413 } 3414 3415 /// Apply changes to the instruction if needed. The changes are need 3416 /// to improve the scheduling and depend up on the final schedule. 3417 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3418 SMSchedule &Schedule) { 3419 SUnit *SU = getSUnit(MI); 3420 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3421 InstrChanges.find(SU); 3422 if (It != InstrChanges.end()) { 3423 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3424 unsigned BasePos, OffsetPos; 3425 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3426 return; 3427 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3428 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3429 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3430 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3431 int BaseStageNum = Schedule.stageScheduled(SU); 3432 int BaseCycleNum = Schedule.cycleScheduled(SU); 3433 if (BaseStageNum < DefStageNum) { 3434 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3435 int OffsetDiff = DefStageNum - BaseStageNum; 3436 if (DefCycleNum < BaseCycleNum) { 3437 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3438 if (OffsetDiff > 0) 3439 --OffsetDiff; 3440 } 3441 int64_t NewOffset = 3442 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3443 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3444 SU->setInstr(NewMI); 3445 MISUnitMap[NewMI] = SU; 3446 NewMIs.insert(NewMI); 3447 } 3448 } 3449 } 3450 3451 /// Return true for an order dependence that is loop carried potentially. 3452 /// An order dependence is loop carried if the destination defines a value 3453 /// that may be used by the source in a subsequent iteration. 3454 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3455 bool isSucc) { 3456 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3457 return false; 3458 3459 if (!SwpPruneLoopCarried) 3460 return true; 3461 3462 MachineInstr *SI = Source->getInstr(); 3463 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3464 if (!isSucc) 3465 std::swap(SI, DI); 3466 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3467 3468 // Assume ordered loads and stores may have a loop carried dependence. 3469 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3470 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3471 return true; 3472 3473 // Only chain dependences between a load and store can be loop carried. 3474 if (!DI->mayStore() || !SI->mayLoad()) 3475 return false; 3476 3477 unsigned DeltaS, DeltaD; 3478 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3479 return true; 3480 3481 unsigned BaseRegS, BaseRegD; 3482 int64_t OffsetS, OffsetD; 3483 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3484 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3485 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3486 return true; 3487 3488 if (BaseRegS != BaseRegD) 3489 return true; 3490 3491 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3492 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3493 3494 // This is the main test, which checks the offset values and the loop 3495 // increment value to determine if the accesses may be loop carried. 3496 if (OffsetS >= OffsetD) 3497 return OffsetS + AccessSizeS > DeltaS; 3498 else 3499 return OffsetD + AccessSizeD > DeltaD; 3500 3501 return true; 3502 } 3503 3504 void SwingSchedulerDAG::postprocessDAG() { 3505 for (auto &M : Mutations) 3506 M->apply(this); 3507 } 3508 3509 /// Try to schedule the node at the specified StartCycle and continue 3510 /// until the node is schedule or the EndCycle is reached. This function 3511 /// returns true if the node is scheduled. This routine may search either 3512 /// forward or backward for a place to insert the instruction based upon 3513 /// the relative values of StartCycle and EndCycle. 3514 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3515 bool forward = true; 3516 if (StartCycle > EndCycle) 3517 forward = false; 3518 3519 // The terminating condition depends on the direction. 3520 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3521 for (int curCycle = StartCycle; curCycle != termCycle; 3522 forward ? ++curCycle : --curCycle) { 3523 3524 // Add the already scheduled instructions at the specified cycle to the DFA. 3525 Resources->clearResources(); 3526 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3527 checkCycle <= LastCycle; checkCycle += II) { 3528 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3529 3530 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3531 E = cycleInstrs.end(); 3532 I != E; ++I) { 3533 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3534 continue; 3535 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3536 "These instructions have already been scheduled."); 3537 Resources->reserveResources(*(*I)->getInstr()); 3538 } 3539 } 3540 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3541 Resources->canReserveResources(*SU->getInstr())) { 3542 DEBUG({ 3543 dbgs() << "\tinsert at cycle " << curCycle << " "; 3544 SU->getInstr()->dump(); 3545 }); 3546 3547 ScheduledInstrs[curCycle].push_back(SU); 3548 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3549 if (curCycle > LastCycle) 3550 LastCycle = curCycle; 3551 if (curCycle < FirstCycle) 3552 FirstCycle = curCycle; 3553 return true; 3554 } 3555 DEBUG({ 3556 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3557 SU->getInstr()->dump(); 3558 }); 3559 } 3560 return false; 3561 } 3562 3563 // Return the cycle of the earliest scheduled instruction in the chain. 3564 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3565 SmallPtrSet<SUnit *, 8> Visited; 3566 SmallVector<SDep, 8> Worklist; 3567 Worklist.push_back(Dep); 3568 int EarlyCycle = INT_MAX; 3569 while (!Worklist.empty()) { 3570 const SDep &Cur = Worklist.pop_back_val(); 3571 SUnit *PrevSU = Cur.getSUnit(); 3572 if (Visited.count(PrevSU)) 3573 continue; 3574 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3575 if (it == InstrToCycle.end()) 3576 continue; 3577 EarlyCycle = std::min(EarlyCycle, it->second); 3578 for (const auto &PI : PrevSU->Preds) 3579 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3580 Worklist.push_back(PI); 3581 Visited.insert(PrevSU); 3582 } 3583 return EarlyCycle; 3584 } 3585 3586 // Return the cycle of the latest scheduled instruction in the chain. 3587 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3588 SmallPtrSet<SUnit *, 8> Visited; 3589 SmallVector<SDep, 8> Worklist; 3590 Worklist.push_back(Dep); 3591 int LateCycle = INT_MIN; 3592 while (!Worklist.empty()) { 3593 const SDep &Cur = Worklist.pop_back_val(); 3594 SUnit *SuccSU = Cur.getSUnit(); 3595 if (Visited.count(SuccSU)) 3596 continue; 3597 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3598 if (it == InstrToCycle.end()) 3599 continue; 3600 LateCycle = std::max(LateCycle, it->second); 3601 for (const auto &SI : SuccSU->Succs) 3602 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3603 Worklist.push_back(SI); 3604 Visited.insert(SuccSU); 3605 } 3606 return LateCycle; 3607 } 3608 3609 /// If an instruction has a use that spans multiple iterations, then 3610 /// return true. These instructions are characterized by having a back-ege 3611 /// to a Phi, which contains a reference to another Phi. 3612 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3613 for (auto &P : SU->Preds) 3614 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3615 for (auto &S : P.getSUnit()->Succs) 3616 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3617 return P.getSUnit(); 3618 return nullptr; 3619 } 3620 3621 /// Compute the scheduling start slot for the instruction. The start slot 3622 /// depends on any predecessor or successor nodes scheduled already. 3623 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3624 int *MinEnd, int *MaxStart, int II, 3625 SwingSchedulerDAG *DAG) { 3626 // Iterate over each instruction that has been scheduled already. The start 3627 // slot computuation depends on whether the previously scheduled instruction 3628 // is a predecessor or successor of the specified instruction. 3629 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3630 3631 // Iterate over each instruction in the current cycle. 3632 for (SUnit *I : getInstructions(cycle)) { 3633 // Because we're processing a DAG for the dependences, we recognize 3634 // the back-edge in recurrences by anti dependences. 3635 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3636 const SDep &Dep = SU->Preds[i]; 3637 if (Dep.getSUnit() == I) { 3638 if (!DAG->isBackedge(SU, Dep)) { 3639 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3640 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3641 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3642 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3643 int End = earliestCycleInChain(Dep) + (II - 1); 3644 *MinEnd = std::min(*MinEnd, End); 3645 } 3646 } else { 3647 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3648 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3649 *MinLateStart = std::min(*MinLateStart, LateStart); 3650 } 3651 } 3652 // For instruction that requires multiple iterations, make sure that 3653 // the dependent instruction is not scheduled past the definition. 3654 SUnit *BE = multipleIterations(I, DAG); 3655 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3656 !SU->isPred(I)) 3657 *MinLateStart = std::min(*MinLateStart, cycle); 3658 } 3659 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3660 if (SU->Succs[i].getSUnit() == I) { 3661 const SDep &Dep = SU->Succs[i]; 3662 if (!DAG->isBackedge(SU, Dep)) { 3663 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3664 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3665 *MinLateStart = std::min(*MinLateStart, LateStart); 3666 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3667 int Start = latestCycleInChain(Dep) + 1 - II; 3668 *MaxStart = std::max(*MaxStart, Start); 3669 } 3670 } else { 3671 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3672 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3673 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3674 } 3675 } 3676 } 3677 } 3678 } 3679 3680 /// Order the instructions within a cycle so that the definitions occur 3681 /// before the uses. Returns true if the instruction is added to the start 3682 /// of the list, or false if added to the end. 3683 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3684 std::deque<SUnit *> &Insts) { 3685 MachineInstr *MI = SU->getInstr(); 3686 bool OrderBeforeUse = false; 3687 bool OrderAfterDef = false; 3688 bool OrderBeforeDef = false; 3689 unsigned MoveDef = 0; 3690 unsigned MoveUse = 0; 3691 int StageInst1 = stageScheduled(SU); 3692 3693 unsigned Pos = 0; 3694 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3695 ++I, ++Pos) { 3696 // Relative order of Phis does not matter. 3697 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3698 continue; 3699 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3700 MachineOperand &MO = MI->getOperand(i); 3701 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3702 continue; 3703 unsigned Reg = MO.getReg(); 3704 unsigned BasePos, OffsetPos; 3705 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3706 if (MI->getOperand(BasePos).getReg() == Reg) 3707 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3708 Reg = NewReg; 3709 bool Reads, Writes; 3710 std::tie(Reads, Writes) = 3711 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3712 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3713 OrderBeforeUse = true; 3714 MoveUse = Pos; 3715 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3716 // Add the instruction after the scheduled instruction. 3717 OrderAfterDef = true; 3718 MoveDef = Pos; 3719 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3720 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3721 OrderBeforeUse = true; 3722 MoveUse = Pos; 3723 } else { 3724 OrderAfterDef = true; 3725 MoveDef = Pos; 3726 } 3727 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3728 OrderBeforeUse = true; 3729 MoveUse = Pos; 3730 if (MoveUse != 0) { 3731 OrderAfterDef = true; 3732 MoveDef = Pos - 1; 3733 } 3734 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3735 // Add the instruction before the scheduled instruction. 3736 OrderBeforeUse = true; 3737 MoveUse = Pos; 3738 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3739 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3740 OrderBeforeDef = true; 3741 MoveUse = Pos; 3742 } 3743 } 3744 // Check for order dependences between instructions. Make sure the source 3745 // is ordered before the destination. 3746 for (auto &S : SU->Succs) 3747 if (S.getKind() == SDep::Order) { 3748 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3749 OrderBeforeUse = true; 3750 MoveUse = Pos; 3751 } 3752 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3753 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3754 if (S.isAssignedRegDep()) { 3755 OrderAfterDef = true; 3756 MoveDef = Pos; 3757 } 3758 } else { 3759 OrderBeforeUse = true; 3760 MoveUse = Pos; 3761 } 3762 } 3763 for (auto &P : SU->Preds) 3764 if (P.getKind() == SDep::Order) { 3765 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3766 OrderAfterDef = true; 3767 MoveDef = Pos; 3768 } 3769 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3770 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3771 if (P.isAssignedRegDep()) { 3772 OrderBeforeUse = true; 3773 MoveUse = Pos; 3774 } 3775 } else { 3776 OrderAfterDef = true; 3777 MoveDef = Pos; 3778 } 3779 } 3780 } 3781 3782 // A circular dependence. 3783 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3784 OrderBeforeUse = false; 3785 3786 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3787 // to a loop-carried dependence. 3788 if (OrderBeforeDef) 3789 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3790 3791 // The uncommon case when the instruction order needs to be updated because 3792 // there is both a use and def. 3793 if (OrderBeforeUse && OrderAfterDef) { 3794 SUnit *UseSU = Insts.at(MoveUse); 3795 SUnit *DefSU = Insts.at(MoveDef); 3796 if (MoveUse > MoveDef) { 3797 Insts.erase(Insts.begin() + MoveUse); 3798 Insts.erase(Insts.begin() + MoveDef); 3799 } else { 3800 Insts.erase(Insts.begin() + MoveDef); 3801 Insts.erase(Insts.begin() + MoveUse); 3802 } 3803 if (orderDependence(SSD, UseSU, Insts)) { 3804 Insts.push_front(SU); 3805 orderDependence(SSD, DefSU, Insts); 3806 return true; 3807 } 3808 Insts.pop_back(); 3809 Insts.push_back(SU); 3810 Insts.push_back(UseSU); 3811 orderDependence(SSD, DefSU, Insts); 3812 return false; 3813 } 3814 // Put the new instruction first if there is a use in the list. Otherwise, 3815 // put it at the end of the list. 3816 if (OrderBeforeUse) 3817 Insts.push_front(SU); 3818 else 3819 Insts.push_back(SU); 3820 return OrderBeforeUse; 3821 } 3822 3823 /// Return true if the scheduled Phi has a loop carried operand. 3824 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3825 if (!Phi.isPHI()) 3826 return false; 3827 assert(Phi.isPHI() && "Expecing a Phi."); 3828 SUnit *DefSU = SSD->getSUnit(&Phi); 3829 unsigned DefCycle = cycleScheduled(DefSU); 3830 int DefStage = stageScheduled(DefSU); 3831 3832 unsigned InitVal = 0; 3833 unsigned LoopVal = 0; 3834 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3835 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3836 if (!UseSU) 3837 return true; 3838 if (UseSU->getInstr()->isPHI()) 3839 return true; 3840 unsigned LoopCycle = cycleScheduled(UseSU); 3841 int LoopStage = stageScheduled(UseSU); 3842 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3843 } 3844 3845 /// Return true if the instruction is a definition that is loop carried 3846 /// and defines the use on the next iteration. 3847 /// v1 = phi(v2, v3) 3848 /// (Def) v3 = op v1 3849 /// (MO) = v1 3850 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3851 /// register. 3852 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3853 MachineInstr *Def, MachineOperand &MO) { 3854 if (!MO.isReg()) 3855 return false; 3856 if (Def->isPHI()) 3857 return false; 3858 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3859 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3860 return false; 3861 if (!isLoopCarried(SSD, *Phi)) 3862 return false; 3863 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3864 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3865 MachineOperand &DMO = Def->getOperand(i); 3866 if (!DMO.isReg() || !DMO.isDef()) 3867 continue; 3868 if (DMO.getReg() == LoopReg) 3869 return true; 3870 } 3871 return false; 3872 } 3873 3874 // Check if the generated schedule is valid. This function checks if 3875 // an instruction that uses a physical register is scheduled in a 3876 // different stage than the definition. The pipeliner does not handle 3877 // physical register values that may cross a basic block boundary. 3878 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3879 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3880 SUnit &SU = SSD->SUnits[i]; 3881 if (!SU.hasPhysRegDefs) 3882 continue; 3883 int StageDef = stageScheduled(&SU); 3884 assert(StageDef != -1 && "Instruction should have been scheduled."); 3885 for (auto &SI : SU.Succs) 3886 if (SI.isAssignedRegDep()) 3887 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3888 if (stageScheduled(SI.getSUnit()) != StageDef) 3889 return false; 3890 } 3891 return true; 3892 } 3893 3894 /// A property of the node order in swing-modulo-scheduling is 3895 /// that for nodes outside circuits the following holds: 3896 /// none of them is scheduled after both a successor and a 3897 /// predecessor. 3898 /// The method below checks whether the property is met. 3899 /// If not, debug information is printed and statistics information updated. 3900 /// Note that we do not use an assert statement. 3901 /// The reason is that although an invalid node oder may prevent 3902 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3903 /// it does not lead to the generation of incorrect code. 3904 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3905 3906 // a sorted vector that maps each SUnit to its index in the NodeOrder 3907 typedef std::pair<SUnit *, unsigned> UnitIndex; 3908 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3909 3910 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3911 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3912 3913 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3914 return std::get<0>(i1) < std::get<0>(i2); 3915 }; 3916 3917 // sort, so that we can perform a binary search 3918 std::sort(Indices.begin(), Indices.end(), CompareKey); 3919 3920 bool Valid = true; 3921 // for each SUnit in the NodeOrder, check whether 3922 // it appears after both a successor and a predecessor 3923 // of the SUnit. If this is the case, and the SUnit 3924 // is not part of circuit, then the NodeOrder is not 3925 // valid. 3926 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3927 SUnit *SU = NodeOrder[i]; 3928 unsigned Index = i; 3929 3930 bool PredBefore = false; 3931 bool SuccBefore = false; 3932 3933 SUnit *Succ; 3934 SUnit *Pred; 3935 3936 for (SDep &PredEdge : SU->Preds) { 3937 SUnit *PredSU = PredEdge.getSUnit(); 3938 unsigned PredIndex = 3939 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3940 std::make_pair(PredSU, 0), CompareKey)); 3941 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3942 PredBefore = true; 3943 Pred = PredSU; 3944 break; 3945 } 3946 } 3947 3948 for (SDep &SuccEdge : SU->Succs) { 3949 SUnit *SuccSU = SuccEdge.getSUnit(); 3950 unsigned SuccIndex = 3951 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3952 std::make_pair(SuccSU, 0), CompareKey)); 3953 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3954 SuccBefore = true; 3955 Succ = SuccSU; 3956 break; 3957 } 3958 } 3959 3960 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3961 // instructions in circuits are allowed to be scheduled 3962 // after both a successor and predecessor. 3963 bool InCircuit = std::any_of( 3964 Circuits.begin(), Circuits.end(), 3965 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3966 if (InCircuit) 3967 DEBUG(dbgs() << "In a circuit, predecessor ";); 3968 else { 3969 Valid = false; 3970 NumNodeOrderIssues++; 3971 DEBUG(dbgs() << "Predecessor ";); 3972 } 3973 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3974 << " are scheduled before node " << SU->NodeNum << "\n";); 3975 } 3976 } 3977 3978 DEBUG({ 3979 if (!Valid) 3980 dbgs() << "Invalid node order found!\n"; 3981 }); 3982 } 3983 3984 /// Attempt to fix the degenerate cases when the instruction serialization 3985 /// causes the register lifetimes to overlap. For example, 3986 /// p' = store_pi(p, b) 3987 /// = load p, offset 3988 /// In this case p and p' overlap, which means that two registers are needed. 3989 /// Instead, this function changes the load to use p' and updates the offset. 3990 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3991 unsigned OverlapReg = 0; 3992 unsigned NewBaseReg = 0; 3993 for (SUnit *SU : Instrs) { 3994 MachineInstr *MI = SU->getInstr(); 3995 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3996 const MachineOperand &MO = MI->getOperand(i); 3997 // Look for an instruction that uses p. The instruction occurs in the 3998 // same cycle but occurs later in the serialized order. 3999 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4000 // Check that the instruction appears in the InstrChanges structure, 4001 // which contains instructions that can have the offset updated. 4002 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4003 InstrChanges.find(SU); 4004 if (It != InstrChanges.end()) { 4005 unsigned BasePos, OffsetPos; 4006 // Update the base register and adjust the offset. 4007 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4008 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4009 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4010 int64_t NewOffset = 4011 MI->getOperand(OffsetPos).getImm() - It->second.second; 4012 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4013 SU->setInstr(NewMI); 4014 MISUnitMap[NewMI] = SU; 4015 NewMIs.insert(NewMI); 4016 } 4017 } 4018 OverlapReg = 0; 4019 NewBaseReg = 0; 4020 break; 4021 } 4022 // Look for an instruction of the form p' = op(p), which uses and defines 4023 // two virtual registers that get allocated to the same physical register. 4024 unsigned TiedUseIdx = 0; 4025 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4026 // OverlapReg is p in the example above. 4027 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4028 // NewBaseReg is p' in the example above. 4029 NewBaseReg = MI->getOperand(i).getReg(); 4030 break; 4031 } 4032 } 4033 } 4034 } 4035 4036 /// After the schedule has been formed, call this function to combine 4037 /// the instructions from the different stages/cycles. That is, this 4038 /// function creates a schedule that represents a single iteration. 4039 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4040 // Move all instructions to the first stage from later stages. 4041 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4042 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4043 ++stage) { 4044 std::deque<SUnit *> &cycleInstrs = 4045 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4046 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4047 E = cycleInstrs.rend(); 4048 I != E; ++I) 4049 ScheduledInstrs[cycle].push_front(*I); 4050 } 4051 } 4052 // Iterate over the definitions in each instruction, and compute the 4053 // stage difference for each use. Keep the maximum value. 4054 for (auto &I : InstrToCycle) { 4055 int DefStage = stageScheduled(I.first); 4056 MachineInstr *MI = I.first->getInstr(); 4057 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4058 MachineOperand &Op = MI->getOperand(i); 4059 if (!Op.isReg() || !Op.isDef()) 4060 continue; 4061 4062 unsigned Reg = Op.getReg(); 4063 unsigned MaxDiff = 0; 4064 bool PhiIsSwapped = false; 4065 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4066 EI = MRI.use_end(); 4067 UI != EI; ++UI) { 4068 MachineOperand &UseOp = *UI; 4069 MachineInstr *UseMI = UseOp.getParent(); 4070 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4071 int UseStage = stageScheduled(SUnitUse); 4072 unsigned Diff = 0; 4073 if (UseStage != -1 && UseStage >= DefStage) 4074 Diff = UseStage - DefStage; 4075 if (MI->isPHI()) { 4076 if (isLoopCarried(SSD, *MI)) 4077 ++Diff; 4078 else 4079 PhiIsSwapped = true; 4080 } 4081 MaxDiff = std::max(Diff, MaxDiff); 4082 } 4083 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4084 } 4085 } 4086 4087 // Erase all the elements in the later stages. Only one iteration should 4088 // remain in the scheduled list, and it contains all the instructions. 4089 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4090 ScheduledInstrs.erase(cycle); 4091 4092 // Change the registers in instruction as specified in the InstrChanges 4093 // map. We need to use the new registers to create the correct order. 4094 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4095 SUnit *SU = &SSD->SUnits[i]; 4096 SSD->applyInstrChange(SU->getInstr(), *this); 4097 } 4098 4099 // Reorder the instructions in each cycle to fix and improve the 4100 // generated code. 4101 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4102 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4103 std::deque<SUnit *> newOrderZC; 4104 // Put the zero-cost, pseudo instructions at the start of the cycle. 4105 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4106 SUnit *SU = cycleInstrs[i]; 4107 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 4108 orderDependence(SSD, SU, newOrderZC); 4109 } 4110 std::deque<SUnit *> newOrderI; 4111 // Then, add the regular instructions back. 4112 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4113 SUnit *SU = cycleInstrs[i]; 4114 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 4115 orderDependence(SSD, SU, newOrderI); 4116 } 4117 // Replace the old order with the new order. 4118 cycleInstrs.swap(newOrderZC); 4119 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4120 SSD->fixupRegisterOverlaps(cycleInstrs); 4121 } 4122 4123 DEBUG(dump();); 4124 } 4125 4126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4127 /// Print the schedule information to the given output. 4128 void SMSchedule::print(raw_ostream &os) const { 4129 // Iterate over each cycle. 4130 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4131 // Iterate over each instruction in the cycle. 4132 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4133 for (SUnit *CI : cycleInstrs->second) { 4134 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4135 os << "(" << CI->NodeNum << ") "; 4136 CI->getInstr()->print(os); 4137 os << "\n"; 4138 } 4139 } 4140 } 4141 4142 /// Utility function used for debugging to print the schedule. 4143 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4144 #endif 4145