1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and exploits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/BitVector.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PriorityQueue.h" 66 #include "llvm/ADT/SetVector.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/MemoryLocation.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/CodeGen/DFAPacketizer.h" 76 #include "llvm/CodeGen/LiveIntervals.h" 77 #include "llvm/CodeGen/MachineBasicBlock.h" 78 #include "llvm/CodeGen/MachineDominators.h" 79 #include "llvm/CodeGen/MachineFunction.h" 80 #include "llvm/CodeGen/MachineFunctionPass.h" 81 #include "llvm/CodeGen/MachineInstr.h" 82 #include "llvm/CodeGen/MachineInstrBuilder.h" 83 #include "llvm/CodeGen/MachineLoopInfo.h" 84 #include "llvm/CodeGen/MachineMemOperand.h" 85 #include "llvm/CodeGen/MachineOperand.h" 86 #include "llvm/CodeGen/MachineRegisterInfo.h" 87 #include "llvm/CodeGen/RegisterClassInfo.h" 88 #include "llvm/CodeGen/RegisterPressure.h" 89 #include "llvm/CodeGen/ScheduleDAG.h" 90 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 91 #include "llvm/CodeGen/ScheduleDAGMutation.h" 92 #include "llvm/CodeGen/TargetInstrInfo.h" 93 #include "llvm/CodeGen/TargetOpcodes.h" 94 #include "llvm/CodeGen/TargetRegisterInfo.h" 95 #include "llvm/CodeGen/TargetSubtargetInfo.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/DebugLoc.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/MC/LaneBitmask.h" 100 #include "llvm/MC/MCInstrDesc.h" 101 #include "llvm/MC/MCInstrItineraries.h" 102 #include "llvm/MC/MCRegisterInfo.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <climits> 112 #include <cstdint> 113 #include <deque> 114 #include <functional> 115 #include <iterator> 116 #include <map> 117 #include <memory> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "pipeliner" 125 126 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 127 STATISTIC(NumPipelined, "Number of loops software pipelined"); 128 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 129 130 /// A command line option to turn software pipelining on or off. 131 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 132 cl::ZeroOrMore, 133 cl::desc("Enable Software Pipelining")); 134 135 /// A command line option to enable SWP at -Os. 136 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 137 cl::desc("Enable SWP at Os."), cl::Hidden, 138 cl::init(false)); 139 140 /// A command line argument to limit minimum initial interval for pipelining. 141 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 142 cl::desc("Size limit for the MII."), 143 cl::Hidden, cl::init(27)); 144 145 /// A command line argument to limit the number of stages in the pipeline. 146 static cl::opt<int> 147 SwpMaxStages("pipeliner-max-stages", 148 cl::desc("Maximum stages allowed in the generated scheduled."), 149 cl::Hidden, cl::init(3)); 150 151 /// A command line option to disable the pruning of chain dependences due to 152 /// an unrelated Phi. 153 static cl::opt<bool> 154 SwpPruneDeps("pipeliner-prune-deps", 155 cl::desc("Prune dependences between unrelated Phi nodes."), 156 cl::Hidden, cl::init(true)); 157 158 /// A command line option to disable the pruning of loop carried order 159 /// dependences. 160 static cl::opt<bool> 161 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 162 cl::desc("Prune loop carried order dependences."), 163 cl::Hidden, cl::init(true)); 164 165 #ifndef NDEBUG 166 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 167 #endif 168 169 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 170 cl::ReallyHidden, cl::init(false), 171 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 172 173 namespace { 174 175 class NodeSet; 176 class SMSchedule; 177 178 /// The main class in the implementation of the target independent 179 /// software pipeliner pass. 180 class MachinePipeliner : public MachineFunctionPass { 181 public: 182 MachineFunction *MF = nullptr; 183 const MachineLoopInfo *MLI = nullptr; 184 const MachineDominatorTree *MDT = nullptr; 185 const InstrItineraryData *InstrItins; 186 const TargetInstrInfo *TII = nullptr; 187 RegisterClassInfo RegClassInfo; 188 189 #ifndef NDEBUG 190 static int NumTries; 191 #endif 192 193 /// Cache the target analysis information about the loop. 194 struct LoopInfo { 195 MachineBasicBlock *TBB = nullptr; 196 MachineBasicBlock *FBB = nullptr; 197 SmallVector<MachineOperand, 4> BrCond; 198 MachineInstr *LoopInductionVar = nullptr; 199 MachineInstr *LoopCompare = nullptr; 200 }; 201 LoopInfo LI; 202 203 static char ID; 204 205 MachinePipeliner() : MachineFunctionPass(ID) { 206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnMachineFunction(MachineFunction &MF) override; 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addPreserved<AAResultsWrapperPass>(); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 private: 221 void preprocessPhiNodes(MachineBasicBlock &B); 222 bool canPipelineLoop(MachineLoop &L); 223 bool scheduleLoop(MachineLoop &L); 224 bool swingModuloScheduler(MachineLoop &L); 225 }; 226 227 /// This class builds the dependence graph for the instructions in a loop, 228 /// and attempts to schedule the instructions using the SMS algorithm. 229 class SwingSchedulerDAG : public ScheduleDAGInstrs { 230 MachinePipeliner &Pass; 231 /// The minimum initiation interval between iterations for this schedule. 232 unsigned MII = 0; 233 /// Set to true if a valid pipelined schedule is found for the loop. 234 bool Scheduled = false; 235 MachineLoop &Loop; 236 LiveIntervals &LIS; 237 const RegisterClassInfo &RegClassInfo; 238 239 /// A toplogical ordering of the SUnits, which is needed for changing 240 /// dependences and iterating over the SUnits. 241 ScheduleDAGTopologicalSort Topo; 242 243 struct NodeInfo { 244 int ASAP = 0; 245 int ALAP = 0; 246 int ZeroLatencyDepth = 0; 247 int ZeroLatencyHeight = 0; 248 249 NodeInfo() = default; 250 }; 251 /// Computed properties for each node in the graph. 252 std::vector<NodeInfo> ScheduleInfo; 253 254 enum OrderKind { BottomUp = 0, TopDown = 1 }; 255 /// Computed node ordering for scheduling. 256 SetVector<SUnit *> NodeOrder; 257 258 using NodeSetType = SmallVector<NodeSet, 8>; 259 using ValueMapTy = DenseMap<unsigned, unsigned>; 260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; 261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; 262 263 /// Instructions to change when emitting the final schedule. 264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 265 266 /// We may create a new instruction, so remember it because it 267 /// must be deleted when the pass is finished. 268 SmallPtrSet<MachineInstr *, 4> NewMIs; 269 270 /// Ordered list of DAG postprocessing steps. 271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 272 273 /// Helper class to implement Johnson's circuit finding algorithm. 274 class Circuits { 275 std::vector<SUnit> &SUnits; 276 SetVector<SUnit *> Stack; 277 BitVector Blocked; 278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 279 SmallVector<SmallVector<int, 4>, 16> AdjK; 280 unsigned NumPaths; 281 static unsigned MaxPaths; 282 283 public: 284 Circuits(std::vector<SUnit> &SUs) 285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} 286 287 /// Reset the data structures used in the circuit algorithm. 288 void reset() { 289 Stack.clear(); 290 Blocked.reset(); 291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 292 NumPaths = 0; 293 } 294 295 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 297 void unblock(int U); 298 }; 299 300 public: 301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 302 const RegisterClassInfo &rci) 303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), 304 RegClassInfo(rci), Topo(SUnits, &ExitSU) { 305 P.MF->getSubtarget().getSMSMutations(Mutations); 306 } 307 308 void schedule() override; 309 void finishBlock() override; 310 311 /// Return true if the loop kernel has been scheduled. 312 bool hasNewSchedule() { return Scheduled; } 313 314 /// Return the earliest time an instruction may be scheduled. 315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 316 317 /// Return the latest time an instruction my be scheduled. 318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 319 320 /// The mobility function, which the number of slots in which 321 /// an instruction may be scheduled. 322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 323 324 /// The depth, in the dependence graph, for a node. 325 unsigned getDepth(SUnit *Node) { return Node->getDepth(); } 326 327 /// The maximum unweighted length of a path from an arbitrary node to the 328 /// given node in which each edge has latency 0 329 int getZeroLatencyDepth(SUnit *Node) { 330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; 331 } 332 333 /// The height, in the dependence graph, for a node. 334 unsigned getHeight(SUnit *Node) { return Node->getHeight(); } 335 336 /// The maximum unweighted length of a path from the given node to an 337 /// arbitrary node in which each edge has latency 0 338 int getZeroLatencyHeight(SUnit *Node) { 339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; 340 } 341 342 /// Return true if the dependence is a back-edge in the data dependence graph. 343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 344 /// using an anti dependence from a Phi to an instruction. 345 bool isBackedge(SUnit *Source, const SDep &Dep) { 346 if (Dep.getKind() != SDep::Anti) 347 return false; 348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 349 } 350 351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); 352 353 /// The distance function, which indicates that operation V of iteration I 354 /// depends on operations U of iteration I-distance. 355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 356 // Instructions that feed a Phi have a distance of 1. Computing larger 357 // values for arrays requires data dependence information. 358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 359 return 1; 360 return 0; 361 } 362 363 /// Set the Minimum Initiation Interval for this schedule attempt. 364 void setMII(unsigned mii) { MII = mii; } 365 366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); 367 368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); 369 370 /// Return the new base register that was stored away for the changed 371 /// instruction. 372 unsigned getInstrBaseReg(SUnit *SU) { 373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 374 InstrChanges.find(SU); 375 if (It != InstrChanges.end()) 376 return It->second.first; 377 return 0; 378 } 379 380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { 381 Mutations.push_back(std::move(Mutation)); 382 } 383 384 private: 385 void addLoopCarriedDependences(AliasAnalysis *AA); 386 void updatePhiDependences(); 387 void changeDependences(); 388 unsigned calculateResMII(); 389 unsigned calculateRecMII(NodeSetType &RecNodeSets); 390 void findCircuits(NodeSetType &NodeSets); 391 void fuseRecs(NodeSetType &NodeSets); 392 void removeDuplicateNodes(NodeSetType &NodeSets); 393 void computeNodeFunctions(NodeSetType &NodeSets); 394 void registerPressureFilter(NodeSetType &NodeSets); 395 void colocateNodeSets(NodeSetType &NodeSets); 396 void checkNodeSets(NodeSetType &NodeSets); 397 void groupRemainingNodes(NodeSetType &NodeSets); 398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 399 SetVector<SUnit *> &NodesAdded); 400 void computeNodeOrder(NodeSetType &NodeSets); 401 void checkValidNodeOrder(const NodeSetType &Circuits) const; 402 bool schedulePipeline(SMSchedule &Schedule); 403 void generatePipelinedLoop(SMSchedule &Schedule); 404 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 406 MBBVectorTy &PrologBBs); 407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 412 SMSchedule &Schedule, ValueMapTy *VRMap, 413 InstrMapTy &InstrMap, unsigned LastStageNum, 414 unsigned CurStageNum, bool IsLast); 415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 417 SMSchedule &Schedule, ValueMapTy *VRMap, 418 InstrMapTy &InstrMap, unsigned LastStageNum, 419 unsigned CurStageNum, bool IsLast); 420 void removeDeadInstructions(MachineBasicBlock *KernelBB, 421 MBBVectorTy &EpilogBBs); 422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 423 SMSchedule &Schedule); 424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 426 ValueMapTy *VRMap); 427 bool computeDelta(MachineInstr &MI, unsigned &Delta); 428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 429 unsigned Num); 430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 431 unsigned InstStageNum); 432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 433 unsigned InstStageNum, 434 SMSchedule &Schedule); 435 void updateInstruction(MachineInstr *NewMI, bool LastDef, 436 unsigned CurStageNum, unsigned InstStageNum, 437 SMSchedule &Schedule, ValueMapTy *VRMap); 438 MachineInstr *findDefInLoop(unsigned Reg); 439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 440 unsigned LoopStage, ValueMapTy *VRMap, 441 MachineBasicBlock *BB); 442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 443 SMSchedule &Schedule, ValueMapTy *VRMap, 444 InstrMapTy &InstrMap); 445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 446 InstrMapTy &InstrMap, unsigned CurStageNum, 447 unsigned PhiNum, MachineInstr *Phi, 448 unsigned OldReg, unsigned NewReg, 449 unsigned PrevReg = 0); 450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 451 unsigned &OffsetPos, unsigned &NewBase, 452 int64_t &NewOffset); 453 void postprocessDAG(); 454 }; 455 456 /// A NodeSet contains a set of SUnit DAG nodes with additional information 457 /// that assigns a priority to the set. 458 class NodeSet { 459 SetVector<SUnit *> Nodes; 460 bool HasRecurrence = false; 461 unsigned RecMII = 0; 462 int MaxMOV = 0; 463 unsigned MaxDepth = 0; 464 unsigned Colocate = 0; 465 SUnit *ExceedPressure = nullptr; 466 unsigned Latency = 0; 467 468 public: 469 using iterator = SetVector<SUnit *>::const_iterator; 470 471 NodeSet() = default; 472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { 473 Latency = 0; 474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i) 475 for (const SDep &Succ : Nodes[i]->Succs) 476 if (Nodes.count(Succ.getSUnit())) 477 Latency += Succ.getLatency(); 478 } 479 480 bool insert(SUnit *SU) { return Nodes.insert(SU); } 481 482 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 483 484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 485 return Nodes.remove_if(P); 486 } 487 488 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 489 490 bool hasRecurrence() { return HasRecurrence; }; 491 492 unsigned size() const { return Nodes.size(); } 493 494 bool empty() const { return Nodes.empty(); } 495 496 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 497 498 void setRecMII(unsigned mii) { RecMII = mii; }; 499 500 void setColocate(unsigned c) { Colocate = c; }; 501 502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 503 504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 505 506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 507 508 int getRecMII() { return RecMII; } 509 510 /// Summarize node functions for the entire node set. 511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 512 for (SUnit *SU : *this) { 513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 515 } 516 } 517 518 unsigned getLatency() { return Latency; } 519 520 unsigned getMaxDepth() { return MaxDepth; } 521 522 void clear() { 523 Nodes.clear(); 524 RecMII = 0; 525 HasRecurrence = false; 526 MaxMOV = 0; 527 MaxDepth = 0; 528 Colocate = 0; 529 ExceedPressure = nullptr; 530 } 531 532 operator SetVector<SUnit *> &() { return Nodes; } 533 534 /// Sort the node sets by importance. First, rank them by recurrence MII, 535 /// then by mobility (least mobile done first), and finally by depth. 536 /// Each node set may contain a colocate value which is used as the first 537 /// tie breaker, if it's set. 538 bool operator>(const NodeSet &RHS) const { 539 if (RecMII == RHS.RecMII) { 540 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 541 return Colocate < RHS.Colocate; 542 if (MaxMOV == RHS.MaxMOV) 543 return MaxDepth > RHS.MaxDepth; 544 return MaxMOV < RHS.MaxMOV; 545 } 546 return RecMII > RHS.RecMII; 547 } 548 549 bool operator==(const NodeSet &RHS) const { 550 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 551 MaxDepth == RHS.MaxDepth; 552 } 553 554 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 555 556 iterator begin() { return Nodes.begin(); } 557 iterator end() { return Nodes.end(); } 558 559 void print(raw_ostream &os) const { 560 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 561 << " depth " << MaxDepth << " col " << Colocate << "\n"; 562 for (const auto &I : Nodes) 563 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 564 os << "\n"; 565 } 566 567 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 568 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 569 #endif 570 }; 571 572 /// This class repesents the scheduled code. The main data structure is a 573 /// map from scheduled cycle to instructions. During scheduling, the 574 /// data structure explicitly represents all stages/iterations. When 575 /// the algorithm finshes, the schedule is collapsed into a single stage, 576 /// which represents instructions from different loop iterations. 577 /// 578 /// The SMS algorithm allows negative values for cycles, so the first cycle 579 /// in the schedule is the smallest cycle value. 580 class SMSchedule { 581 private: 582 /// Map from execution cycle to instructions. 583 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 584 585 /// Map from instruction to execution cycle. 586 std::map<SUnit *, int> InstrToCycle; 587 588 /// Map for each register and the max difference between its uses and def. 589 /// The first element in the pair is the max difference in stages. The 590 /// second is true if the register defines a Phi value and loop value is 591 /// scheduled before the Phi. 592 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 593 594 /// Keep track of the first cycle value in the schedule. It starts 595 /// as zero, but the algorithm allows negative values. 596 int FirstCycle = 0; 597 598 /// Keep track of the last cycle value in the schedule. 599 int LastCycle = 0; 600 601 /// The initiation interval (II) for the schedule. 602 int InitiationInterval = 0; 603 604 /// Target machine information. 605 const TargetSubtargetInfo &ST; 606 607 /// Virtual register information. 608 MachineRegisterInfo &MRI; 609 610 std::unique_ptr<DFAPacketizer> Resources; 611 612 public: 613 SMSchedule(MachineFunction *mf) 614 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 615 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} 616 617 void reset() { 618 ScheduledInstrs.clear(); 619 InstrToCycle.clear(); 620 RegToStageDiff.clear(); 621 FirstCycle = 0; 622 LastCycle = 0; 623 InitiationInterval = 0; 624 } 625 626 /// Set the initiation interval for this schedule. 627 void setInitiationInterval(int ii) { InitiationInterval = ii; } 628 629 /// Return the first cycle in the completed schedule. This 630 /// can be a negative value. 631 int getFirstCycle() const { return FirstCycle; } 632 633 /// Return the last cycle in the finalized schedule. 634 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 635 636 /// Return the cycle of the earliest scheduled instruction in the dependence 637 /// chain. 638 int earliestCycleInChain(const SDep &Dep); 639 640 /// Return the cycle of the latest scheduled instruction in the dependence 641 /// chain. 642 int latestCycleInChain(const SDep &Dep); 643 644 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 645 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 646 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 647 648 /// Iterators for the cycle to instruction map. 649 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; 650 using const_sched_iterator = 651 DenseMap<int, std::deque<SUnit *>>::const_iterator; 652 653 /// Return true if the instruction is scheduled at the specified stage. 654 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 655 return (stageScheduled(SU) == (int)StageNum); 656 } 657 658 /// Return the stage for a scheduled instruction. Return -1 if 659 /// the instruction has not been scheduled. 660 int stageScheduled(SUnit *SU) const { 661 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 662 if (it == InstrToCycle.end()) 663 return -1; 664 return (it->second - FirstCycle) / InitiationInterval; 665 } 666 667 /// Return the cycle for a scheduled instruction. This function normalizes 668 /// the first cycle to be 0. 669 unsigned cycleScheduled(SUnit *SU) const { 670 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 671 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 672 return (it->second - FirstCycle) % InitiationInterval; 673 } 674 675 /// Return the maximum stage count needed for this schedule. 676 unsigned getMaxStageCount() { 677 return (LastCycle - FirstCycle) / InitiationInterval; 678 } 679 680 /// Return the max. number of stages/iterations that can occur between a 681 /// register definition and its uses. 682 unsigned getStagesForReg(int Reg, unsigned CurStage) { 683 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 684 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 685 return 1; 686 return Stages.first; 687 } 688 689 /// The number of stages for a Phi is a little different than other 690 /// instructions. The minimum value computed in RegToStageDiff is 1 691 /// because we assume the Phi is needed for at least 1 iteration. 692 /// This is not the case if the loop value is scheduled prior to the 693 /// Phi in the same stage. This function returns the number of stages 694 /// or iterations needed between the Phi definition and any uses. 695 unsigned getStagesForPhi(int Reg) { 696 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 697 if (Stages.second) 698 return Stages.first; 699 return Stages.first - 1; 700 } 701 702 /// Return the instructions that are scheduled at the specified cycle. 703 std::deque<SUnit *> &getInstructions(int cycle) { 704 return ScheduledInstrs[cycle]; 705 } 706 707 bool isValidSchedule(SwingSchedulerDAG *SSD); 708 void finalizeSchedule(SwingSchedulerDAG *SSD); 709 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 710 std::deque<SUnit *> &Insts); 711 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 712 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 713 MachineOperand &MO); 714 void print(raw_ostream &os) const; 715 void dump() const; 716 }; 717 718 } // end anonymous namespace 719 720 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 721 char MachinePipeliner::ID = 0; 722 #ifndef NDEBUG 723 int MachinePipeliner::NumTries = 0; 724 #endif 725 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 726 727 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 728 "Modulo Software Pipelining", false, false) 729 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 730 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 731 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 732 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 733 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 734 "Modulo Software Pipelining", false, false) 735 736 /// The "main" function for implementing Swing Modulo Scheduling. 737 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 738 if (skipFunction(mf.getFunction())) 739 return false; 740 741 if (!EnableSWP) 742 return false; 743 744 if (mf.getFunction().getAttributes().hasAttribute( 745 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 746 !EnableSWPOptSize.getPosition()) 747 return false; 748 749 MF = &mf; 750 MLI = &getAnalysis<MachineLoopInfo>(); 751 MDT = &getAnalysis<MachineDominatorTree>(); 752 TII = MF->getSubtarget().getInstrInfo(); 753 RegClassInfo.runOnMachineFunction(*MF); 754 755 for (auto &L : *MLI) 756 scheduleLoop(*L); 757 758 return false; 759 } 760 761 /// Attempt to perform the SMS algorithm on the specified loop. This function is 762 /// the main entry point for the algorithm. The function identifies candidate 763 /// loops, calculates the minimum initiation interval, and attempts to schedule 764 /// the loop. 765 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 766 bool Changed = false; 767 for (auto &InnerLoop : L) 768 Changed |= scheduleLoop(*InnerLoop); 769 770 #ifndef NDEBUG 771 // Stop trying after reaching the limit (if any). 772 int Limit = SwpLoopLimit; 773 if (Limit >= 0) { 774 if (NumTries >= SwpLoopLimit) 775 return Changed; 776 NumTries++; 777 } 778 #endif 779 780 if (!canPipelineLoop(L)) 781 return Changed; 782 783 ++NumTrytoPipeline; 784 785 Changed = swingModuloScheduler(L); 786 787 return Changed; 788 } 789 790 /// Return true if the loop can be software pipelined. The algorithm is 791 /// restricted to loops with a single basic block. Make sure that the 792 /// branch in the loop can be analyzed. 793 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 794 if (L.getNumBlocks() != 1) 795 return false; 796 797 // Check if the branch can't be understood because we can't do pipelining 798 // if that's the case. 799 LI.TBB = nullptr; 800 LI.FBB = nullptr; 801 LI.BrCond.clear(); 802 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 803 return false; 804 805 LI.LoopInductionVar = nullptr; 806 LI.LoopCompare = nullptr; 807 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 808 return false; 809 810 if (!L.getLoopPreheader()) 811 return false; 812 813 // Remove any subregisters from inputs to phi nodes. 814 preprocessPhiNodes(*L.getHeader()); 815 return true; 816 } 817 818 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 819 MachineRegisterInfo &MRI = MF->getRegInfo(); 820 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 821 822 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 823 MachineOperand &DefOp = PI.getOperand(0); 824 assert(DefOp.getSubReg() == 0); 825 auto *RC = MRI.getRegClass(DefOp.getReg()); 826 827 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 828 MachineOperand &RegOp = PI.getOperand(i); 829 if (RegOp.getSubReg() == 0) 830 continue; 831 832 // If the operand uses a subregister, replace it with a new register 833 // without subregisters, and generate a copy to the new register. 834 unsigned NewReg = MRI.createVirtualRegister(RC); 835 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 836 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 837 const DebugLoc &DL = PredB.findDebugLoc(At); 838 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 839 .addReg(RegOp.getReg(), getRegState(RegOp), 840 RegOp.getSubReg()); 841 Slots.insertMachineInstrInMaps(*Copy); 842 RegOp.setReg(NewReg); 843 RegOp.setSubReg(0); 844 } 845 } 846 } 847 848 /// The SMS algorithm consists of the following main steps: 849 /// 1. Computation and analysis of the dependence graph. 850 /// 2. Ordering of the nodes (instructions). 851 /// 3. Attempt to Schedule the loop. 852 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 853 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 854 855 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 856 857 MachineBasicBlock *MBB = L.getHeader(); 858 // The kernel should not include any terminator instructions. These 859 // will be added back later. 860 SMS.startBlock(MBB); 861 862 // Compute the number of 'real' instructions in the basic block by 863 // ignoring terminators. 864 unsigned size = MBB->size(); 865 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 866 E = MBB->instr_end(); 867 I != E; ++I, --size) 868 ; 869 870 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 871 SMS.schedule(); 872 SMS.exitRegion(); 873 874 SMS.finishBlock(); 875 return SMS.hasNewSchedule(); 876 } 877 878 /// We override the schedule function in ScheduleDAGInstrs to implement the 879 /// scheduling part of the Swing Modulo Scheduling algorithm. 880 void SwingSchedulerDAG::schedule() { 881 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 882 buildSchedGraph(AA); 883 addLoopCarriedDependences(AA); 884 updatePhiDependences(); 885 Topo.InitDAGTopologicalSorting(); 886 postprocessDAG(); 887 changeDependences(); 888 DEBUG({ 889 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 890 SUnits[su].dumpAll(this); 891 }); 892 893 NodeSetType NodeSets; 894 findCircuits(NodeSets); 895 NodeSetType Circuits = NodeSets; 896 897 // Calculate the MII. 898 unsigned ResMII = calculateResMII(); 899 unsigned RecMII = calculateRecMII(NodeSets); 900 901 fuseRecs(NodeSets); 902 903 // This flag is used for testing and can cause correctness problems. 904 if (SwpIgnoreRecMII) 905 RecMII = 0; 906 907 MII = std::max(ResMII, RecMII); 908 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 909 << ")\n"); 910 911 // Can't schedule a loop without a valid MII. 912 if (MII == 0) 913 return; 914 915 // Don't pipeline large loops. 916 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 917 return; 918 919 computeNodeFunctions(NodeSets); 920 921 registerPressureFilter(NodeSets); 922 923 colocateNodeSets(NodeSets); 924 925 checkNodeSets(NodeSets); 926 927 DEBUG({ 928 for (auto &I : NodeSets) { 929 dbgs() << " Rec NodeSet "; 930 I.dump(); 931 } 932 }); 933 934 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 935 936 groupRemainingNodes(NodeSets); 937 938 removeDuplicateNodes(NodeSets); 939 940 DEBUG({ 941 for (auto &I : NodeSets) { 942 dbgs() << " NodeSet "; 943 I.dump(); 944 } 945 }); 946 947 computeNodeOrder(NodeSets); 948 949 // check for node order issues 950 checkValidNodeOrder(Circuits); 951 952 SMSchedule Schedule(Pass.MF); 953 Scheduled = schedulePipeline(Schedule); 954 955 if (!Scheduled) 956 return; 957 958 unsigned numStages = Schedule.getMaxStageCount(); 959 // No need to generate pipeline if there are no overlapped iterations. 960 if (numStages == 0) 961 return; 962 963 // Check that the maximum stage count is less than user-defined limit. 964 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 965 return; 966 967 generatePipelinedLoop(Schedule); 968 ++NumPipelined; 969 } 970 971 /// Clean up after the software pipeliner runs. 972 void SwingSchedulerDAG::finishBlock() { 973 for (MachineInstr *I : NewMIs) 974 MF.DeleteMachineInstr(I); 975 NewMIs.clear(); 976 977 // Call the superclass. 978 ScheduleDAGInstrs::finishBlock(); 979 } 980 981 /// Return the register values for the operands of a Phi instruction. 982 /// This function assume the instruction is a Phi. 983 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 984 unsigned &InitVal, unsigned &LoopVal) { 985 assert(Phi.isPHI() && "Expecting a Phi."); 986 987 InitVal = 0; 988 LoopVal = 0; 989 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 990 if (Phi.getOperand(i + 1).getMBB() != Loop) 991 InitVal = Phi.getOperand(i).getReg(); 992 else 993 LoopVal = Phi.getOperand(i).getReg(); 994 995 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 996 } 997 998 /// Return the Phi register value that comes from the incoming block. 999 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1000 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1001 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 1002 return Phi.getOperand(i).getReg(); 1003 return 0; 1004 } 1005 1006 /// Return the Phi register value that comes the loop block. 1007 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 1008 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 1009 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 1010 return Phi.getOperand(i).getReg(); 1011 return 0; 1012 } 1013 1014 /// Return true if SUb can be reached from SUa following the chain edges. 1015 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 1016 SmallPtrSet<SUnit *, 8> Visited; 1017 SmallVector<SUnit *, 8> Worklist; 1018 Worklist.push_back(SUa); 1019 while (!Worklist.empty()) { 1020 const SUnit *SU = Worklist.pop_back_val(); 1021 for (auto &SI : SU->Succs) { 1022 SUnit *SuccSU = SI.getSUnit(); 1023 if (SI.getKind() == SDep::Order) { 1024 if (Visited.count(SuccSU)) 1025 continue; 1026 if (SuccSU == SUb) 1027 return true; 1028 Worklist.push_back(SuccSU); 1029 Visited.insert(SuccSU); 1030 } 1031 } 1032 } 1033 return false; 1034 } 1035 1036 /// Return true if the instruction causes a chain between memory 1037 /// references before and after it. 1038 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 1039 return MI.isCall() || MI.hasUnmodeledSideEffects() || 1040 (MI.hasOrderedMemoryRef() && 1041 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 1042 } 1043 1044 /// Return the underlying objects for the memory references of an instruction. 1045 /// This function calls the code in ValueTracking, but first checks that the 1046 /// instruction has a memory operand. 1047 static void getUnderlyingObjects(MachineInstr *MI, 1048 SmallVectorImpl<Value *> &Objs, 1049 const DataLayout &DL) { 1050 if (!MI->hasOneMemOperand()) 1051 return; 1052 MachineMemOperand *MM = *MI->memoperands_begin(); 1053 if (!MM->getValue()) 1054 return; 1055 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 1056 for (Value *V : Objs) { 1057 if (!isIdentifiedObject(V)) { 1058 Objs.clear(); 1059 return; 1060 } 1061 Objs.push_back(V); 1062 } 1063 } 1064 1065 /// Add a chain edge between a load and store if the store can be an 1066 /// alias of the load on a subsequent iteration, i.e., a loop carried 1067 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 1068 /// but that code doesn't create loop carried dependences. 1069 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 1070 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 1071 Value *UnknownValue = 1072 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 1073 for (auto &SU : SUnits) { 1074 MachineInstr &MI = *SU.getInstr(); 1075 if (isDependenceBarrier(MI, AA)) 1076 PendingLoads.clear(); 1077 else if (MI.mayLoad()) { 1078 SmallVector<Value *, 4> Objs; 1079 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1080 if (Objs.empty()) 1081 Objs.push_back(UnknownValue); 1082 for (auto V : Objs) { 1083 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1084 SUs.push_back(&SU); 1085 } 1086 } else if (MI.mayStore()) { 1087 SmallVector<Value *, 4> Objs; 1088 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1089 if (Objs.empty()) 1090 Objs.push_back(UnknownValue); 1091 for (auto V : Objs) { 1092 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1093 PendingLoads.find(V); 1094 if (I == PendingLoads.end()) 1095 continue; 1096 for (auto Load : I->second) { 1097 if (isSuccOrder(Load, &SU)) 1098 continue; 1099 MachineInstr &LdMI = *Load->getInstr(); 1100 // First, perform the cheaper check that compares the base register. 1101 // If they are the same and the load offset is less than the store 1102 // offset, then mark the dependence as loop carried potentially. 1103 unsigned BaseReg1, BaseReg2; 1104 int64_t Offset1, Offset2; 1105 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && 1106 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1107 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1108 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1109 "What happened to the chain edge?"); 1110 SDep Dep(Load, SDep::Barrier); 1111 Dep.setLatency(1); 1112 SU.addPred(Dep); 1113 continue; 1114 } 1115 } 1116 // Second, the more expensive check that uses alias analysis on the 1117 // base registers. If they alias, and the load offset is less than 1118 // the store offset, the mark the dependence as loop carried. 1119 if (!AA) { 1120 SDep Dep(Load, SDep::Barrier); 1121 Dep.setLatency(1); 1122 SU.addPred(Dep); 1123 continue; 1124 } 1125 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1126 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1127 if (!MMO1->getValue() || !MMO2->getValue()) { 1128 SDep Dep(Load, SDep::Barrier); 1129 Dep.setLatency(1); 1130 SU.addPred(Dep); 1131 continue; 1132 } 1133 if (MMO1->getValue() == MMO2->getValue() && 1134 MMO1->getOffset() <= MMO2->getOffset()) { 1135 SDep Dep(Load, SDep::Barrier); 1136 Dep.setLatency(1); 1137 SU.addPred(Dep); 1138 continue; 1139 } 1140 AliasResult AAResult = AA->alias( 1141 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1142 MMO1->getAAInfo()), 1143 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1144 MMO2->getAAInfo())); 1145 1146 if (AAResult != NoAlias) { 1147 SDep Dep(Load, SDep::Barrier); 1148 Dep.setLatency(1); 1149 SU.addPred(Dep); 1150 } 1151 } 1152 } 1153 } 1154 } 1155 } 1156 1157 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1158 /// processes dependences for PHIs. This function adds true dependences 1159 /// from a PHI to a use, and a loop carried dependence from the use to the 1160 /// PHI. The loop carried dependence is represented as an anti dependence 1161 /// edge. This function also removes chain dependences between unrelated 1162 /// PHIs. 1163 void SwingSchedulerDAG::updatePhiDependences() { 1164 SmallVector<SDep, 4> RemoveDeps; 1165 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1166 1167 // Iterate over each DAG node. 1168 for (SUnit &I : SUnits) { 1169 RemoveDeps.clear(); 1170 // Set to true if the instruction has an operand defined by a Phi. 1171 unsigned HasPhiUse = 0; 1172 unsigned HasPhiDef = 0; 1173 MachineInstr *MI = I.getInstr(); 1174 // Iterate over each operand, and we process the definitions. 1175 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1176 MOE = MI->operands_end(); 1177 MOI != MOE; ++MOI) { 1178 if (!MOI->isReg()) 1179 continue; 1180 unsigned Reg = MOI->getReg(); 1181 if (MOI->isDef()) { 1182 // If the register is used by a Phi, then create an anti dependence. 1183 for (MachineRegisterInfo::use_instr_iterator 1184 UI = MRI.use_instr_begin(Reg), 1185 UE = MRI.use_instr_end(); 1186 UI != UE; ++UI) { 1187 MachineInstr *UseMI = &*UI; 1188 SUnit *SU = getSUnit(UseMI); 1189 if (SU != nullptr && UseMI->isPHI()) { 1190 if (!MI->isPHI()) { 1191 SDep Dep(SU, SDep::Anti, Reg); 1192 Dep.setLatency(1); 1193 I.addPred(Dep); 1194 } else { 1195 HasPhiDef = Reg; 1196 // Add a chain edge to a dependent Phi that isn't an existing 1197 // predecessor. 1198 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1199 I.addPred(SDep(SU, SDep::Barrier)); 1200 } 1201 } 1202 } 1203 } else if (MOI->isUse()) { 1204 // If the register is defined by a Phi, then create a true dependence. 1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1206 if (DefMI == nullptr) 1207 continue; 1208 SUnit *SU = getSUnit(DefMI); 1209 if (SU != nullptr && DefMI->isPHI()) { 1210 if (!MI->isPHI()) { 1211 SDep Dep(SU, SDep::Data, Reg); 1212 Dep.setLatency(0); 1213 ST.adjustSchedDependency(SU, &I, Dep); 1214 I.addPred(Dep); 1215 } else { 1216 HasPhiUse = Reg; 1217 // Add a chain edge to a dependent Phi that isn't an existing 1218 // predecessor. 1219 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1220 I.addPred(SDep(SU, SDep::Barrier)); 1221 } 1222 } 1223 } 1224 } 1225 // Remove order dependences from an unrelated Phi. 1226 if (!SwpPruneDeps) 1227 continue; 1228 for (auto &PI : I.Preds) { 1229 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1230 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1231 if (I.getInstr()->isPHI()) { 1232 if (PMI->getOperand(0).getReg() == HasPhiUse) 1233 continue; 1234 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1235 continue; 1236 } 1237 RemoveDeps.push_back(PI); 1238 } 1239 } 1240 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1241 I.removePred(RemoveDeps[i]); 1242 } 1243 } 1244 1245 /// Iterate over each DAG node and see if we can change any dependences 1246 /// in order to reduce the recurrence MII. 1247 void SwingSchedulerDAG::changeDependences() { 1248 // See if an instruction can use a value from the previous iteration. 1249 // If so, we update the base and offset of the instruction and change 1250 // the dependences. 1251 for (SUnit &I : SUnits) { 1252 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1253 int64_t NewOffset = 0; 1254 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1255 NewOffset)) 1256 continue; 1257 1258 // Get the MI and SUnit for the instruction that defines the original base. 1259 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1260 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1261 if (!DefMI) 1262 continue; 1263 SUnit *DefSU = getSUnit(DefMI); 1264 if (!DefSU) 1265 continue; 1266 // Get the MI and SUnit for the instruction that defins the new base. 1267 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1268 if (!LastMI) 1269 continue; 1270 SUnit *LastSU = getSUnit(LastMI); 1271 if (!LastSU) 1272 continue; 1273 1274 if (Topo.IsReachable(&I, LastSU)) 1275 continue; 1276 1277 // Remove the dependence. The value now depends on a prior iteration. 1278 SmallVector<SDep, 4> Deps; 1279 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1280 ++P) 1281 if (P->getSUnit() == DefSU) 1282 Deps.push_back(*P); 1283 for (int i = 0, e = Deps.size(); i != e; i++) { 1284 Topo.RemovePred(&I, Deps[i].getSUnit()); 1285 I.removePred(Deps[i]); 1286 } 1287 // Remove the chain dependence between the instructions. 1288 Deps.clear(); 1289 for (auto &P : LastSU->Preds) 1290 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1291 Deps.push_back(P); 1292 for (int i = 0, e = Deps.size(); i != e; i++) { 1293 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1294 LastSU->removePred(Deps[i]); 1295 } 1296 1297 // Add a dependence between the new instruction and the instruction 1298 // that defines the new base. 1299 SDep Dep(&I, SDep::Anti, NewBase); 1300 LastSU->addPred(Dep); 1301 1302 // Remember the base and offset information so that we can update the 1303 // instruction during code generation. 1304 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1305 } 1306 } 1307 1308 namespace { 1309 1310 // FuncUnitSorter - Comparison operator used to sort instructions by 1311 // the number of functional unit choices. 1312 struct FuncUnitSorter { 1313 const InstrItineraryData *InstrItins; 1314 DenseMap<unsigned, unsigned> Resources; 1315 1316 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1317 1318 // Compute the number of functional unit alternatives needed 1319 // at each stage, and take the minimum value. We prioritize the 1320 // instructions by the least number of choices first. 1321 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1322 unsigned schedClass = Inst->getDesc().getSchedClass(); 1323 unsigned min = UINT_MAX; 1324 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1325 *IE = InstrItins->endStage(schedClass); 1326 IS != IE; ++IS) { 1327 unsigned funcUnits = IS->getUnits(); 1328 unsigned numAlternatives = countPopulation(funcUnits); 1329 if (numAlternatives < min) { 1330 min = numAlternatives; 1331 F = funcUnits; 1332 } 1333 } 1334 return min; 1335 } 1336 1337 // Compute the critical resources needed by the instruction. This 1338 // function records the functional units needed by instructions that 1339 // must use only one functional unit. We use this as a tie breaker 1340 // for computing the resource MII. The instrutions that require 1341 // the same, highly used, functional unit have high priority. 1342 void calcCriticalResources(MachineInstr &MI) { 1343 unsigned SchedClass = MI.getDesc().getSchedClass(); 1344 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1345 *IE = InstrItins->endStage(SchedClass); 1346 IS != IE; ++IS) { 1347 unsigned FuncUnits = IS->getUnits(); 1348 if (countPopulation(FuncUnits) == 1) 1349 Resources[FuncUnits]++; 1350 } 1351 } 1352 1353 /// Return true if IS1 has less priority than IS2. 1354 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1355 unsigned F1 = 0, F2 = 0; 1356 unsigned MFUs1 = minFuncUnits(IS1, F1); 1357 unsigned MFUs2 = minFuncUnits(IS2, F2); 1358 if (MFUs1 == 1 && MFUs2 == 1) 1359 return Resources.lookup(F1) < Resources.lookup(F2); 1360 return MFUs1 > MFUs2; 1361 } 1362 }; 1363 1364 } // end anonymous namespace 1365 1366 /// Calculate the resource constrained minimum initiation interval for the 1367 /// specified loop. We use the DFA to model the resources needed for 1368 /// each instruction, and we ignore dependences. A different DFA is created 1369 /// for each cycle that is required. When adding a new instruction, we attempt 1370 /// to add it to each existing DFA, until a legal space is found. If the 1371 /// instruction cannot be reserved in an existing DFA, we create a new one. 1372 unsigned SwingSchedulerDAG::calculateResMII() { 1373 SmallVector<DFAPacketizer *, 8> Resources; 1374 MachineBasicBlock *MBB = Loop.getHeader(); 1375 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1376 1377 // Sort the instructions by the number of available choices for scheduling, 1378 // least to most. Use the number of critical resources as the tie breaker. 1379 FuncUnitSorter FUS = 1380 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1381 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1382 E = MBB->getFirstTerminator(); 1383 I != E; ++I) 1384 FUS.calcCriticalResources(*I); 1385 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1386 FuncUnitOrder(FUS); 1387 1388 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1389 E = MBB->getFirstTerminator(); 1390 I != E; ++I) 1391 FuncUnitOrder.push(&*I); 1392 1393 while (!FuncUnitOrder.empty()) { 1394 MachineInstr *MI = FuncUnitOrder.top(); 1395 FuncUnitOrder.pop(); 1396 if (TII->isZeroCost(MI->getOpcode())) 1397 continue; 1398 // Attempt to reserve the instruction in an existing DFA. At least one 1399 // DFA is needed for each cycle. 1400 unsigned NumCycles = getSUnit(MI)->Latency; 1401 unsigned ReservedCycles = 0; 1402 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1403 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1404 for (unsigned C = 0; C < NumCycles; ++C) 1405 while (RI != RE) { 1406 if ((*RI++)->canReserveResources(*MI)) { 1407 ++ReservedCycles; 1408 break; 1409 } 1410 } 1411 // Start reserving resources using existing DFAs. 1412 for (unsigned C = 0; C < ReservedCycles; ++C) { 1413 --RI; 1414 (*RI)->reserveResources(*MI); 1415 } 1416 // Add new DFAs, if needed, to reserve resources. 1417 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1418 DFAPacketizer *NewResource = 1419 TII->CreateTargetScheduleState(MF.getSubtarget()); 1420 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1421 NewResource->reserveResources(*MI); 1422 Resources.push_back(NewResource); 1423 } 1424 } 1425 int Resmii = Resources.size(); 1426 // Delete the memory for each of the DFAs that were created earlier. 1427 for (DFAPacketizer *RI : Resources) { 1428 DFAPacketizer *D = RI; 1429 delete D; 1430 } 1431 Resources.clear(); 1432 return Resmii; 1433 } 1434 1435 /// Calculate the recurrence-constrainted minimum initiation interval. 1436 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1437 /// for each circuit. The II needs to satisfy the inequality 1438 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1439 /// II that satistifies the inequality, and the RecMII is the maximum 1440 /// of those values. 1441 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1442 unsigned RecMII = 0; 1443 1444 for (NodeSet &Nodes : NodeSets) { 1445 if (Nodes.empty()) 1446 continue; 1447 1448 unsigned Delay = Nodes.getLatency(); 1449 unsigned Distance = 1; 1450 1451 // ii = ceil(delay / distance) 1452 unsigned CurMII = (Delay + Distance - 1) / Distance; 1453 Nodes.setRecMII(CurMII); 1454 if (CurMII > RecMII) 1455 RecMII = CurMII; 1456 } 1457 1458 return RecMII; 1459 } 1460 1461 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1462 /// but we do this to find the circuits, and then change them back. 1463 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1464 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1465 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1466 SUnit *SU = &SUnits[i]; 1467 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1468 IP != EP; ++IP) { 1469 if (IP->getKind() != SDep::Anti) 1470 continue; 1471 DepsAdded.push_back(std::make_pair(SU, *IP)); 1472 } 1473 } 1474 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1475 E = DepsAdded.end(); 1476 I != E; ++I) { 1477 // Remove this anti dependency and add one in the reverse direction. 1478 SUnit *SU = I->first; 1479 SDep &D = I->second; 1480 SUnit *TargetSU = D.getSUnit(); 1481 unsigned Reg = D.getReg(); 1482 unsigned Lat = D.getLatency(); 1483 SU->removePred(D); 1484 SDep Dep(SU, SDep::Anti, Reg); 1485 Dep.setLatency(Lat); 1486 TargetSU->addPred(Dep); 1487 } 1488 } 1489 1490 /// Create the adjacency structure of the nodes in the graph. 1491 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1492 SwingSchedulerDAG *DAG) { 1493 BitVector Added(SUnits.size()); 1494 DenseMap<int, int> OutputDeps; 1495 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1496 Added.reset(); 1497 // Add any successor to the adjacency matrix and exclude duplicates. 1498 for (auto &SI : SUnits[i].Succs) { 1499 // Only create a back-edge on the first and last nodes of a dependence 1500 // chain. This records any chains and adds them later. 1501 if (SI.getKind() == SDep::Output) { 1502 int N = SI.getSUnit()->NodeNum; 1503 int BackEdge = i; 1504 auto Dep = OutputDeps.find(BackEdge); 1505 if (Dep != OutputDeps.end()) { 1506 BackEdge = Dep->second; 1507 OutputDeps.erase(Dep); 1508 } 1509 OutputDeps[N] = BackEdge; 1510 } 1511 // Do not process a boundary node and a back-edge is processed only 1512 // if it goes to a Phi. 1513 if (SI.getSUnit()->isBoundaryNode() || 1514 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1515 continue; 1516 int N = SI.getSUnit()->NodeNum; 1517 if (!Added.test(N)) { 1518 AdjK[i].push_back(N); 1519 Added.set(N); 1520 } 1521 } 1522 // A chain edge between a store and a load is treated as a back-edge in the 1523 // adjacency matrix. 1524 for (auto &PI : SUnits[i].Preds) { 1525 if (!SUnits[i].getInstr()->mayStore() || 1526 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1527 continue; 1528 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1529 int N = PI.getSUnit()->NodeNum; 1530 if (!Added.test(N)) { 1531 AdjK[i].push_back(N); 1532 Added.set(N); 1533 } 1534 } 1535 } 1536 } 1537 // Add back-eges in the adjacency matrix for the output dependences. 1538 for (auto &OD : OutputDeps) 1539 if (!Added.test(OD.second)) { 1540 AdjK[OD.first].push_back(OD.second); 1541 Added.set(OD.second); 1542 } 1543 } 1544 1545 /// Identify an elementary circuit in the dependence graph starting at the 1546 /// specified node. 1547 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1548 bool HasBackedge) { 1549 SUnit *SV = &SUnits[V]; 1550 bool F = false; 1551 Stack.insert(SV); 1552 Blocked.set(V); 1553 1554 for (auto W : AdjK[V]) { 1555 if (NumPaths > MaxPaths) 1556 break; 1557 if (W < S) 1558 continue; 1559 if (W == S) { 1560 if (!HasBackedge) 1561 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1562 F = true; 1563 ++NumPaths; 1564 break; 1565 } else if (!Blocked.test(W)) { 1566 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1567 F = true; 1568 } 1569 } 1570 1571 if (F) 1572 unblock(V); 1573 else { 1574 for (auto W : AdjK[V]) { 1575 if (W < S) 1576 continue; 1577 if (B[W].count(SV) == 0) 1578 B[W].insert(SV); 1579 } 1580 } 1581 Stack.pop_back(); 1582 return F; 1583 } 1584 1585 /// Unblock a node in the circuit finding algorithm. 1586 void SwingSchedulerDAG::Circuits::unblock(int U) { 1587 Blocked.reset(U); 1588 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1589 while (!BU.empty()) { 1590 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1591 assert(SI != BU.end() && "Invalid B set."); 1592 SUnit *W = *SI; 1593 BU.erase(W); 1594 if (Blocked.test(W->NodeNum)) 1595 unblock(W->NodeNum); 1596 } 1597 } 1598 1599 /// Identify all the elementary circuits in the dependence graph using 1600 /// Johnson's circuit algorithm. 1601 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1602 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1603 // but we do this to find the circuits, and then change them back. 1604 swapAntiDependences(SUnits); 1605 1606 Circuits Cir(SUnits); 1607 // Create the adjacency structure. 1608 Cir.createAdjacencyStructure(this); 1609 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1610 Cir.reset(); 1611 Cir.circuit(i, i, NodeSets); 1612 } 1613 1614 // Change the dependences back so that we've created a DAG again. 1615 swapAntiDependences(SUnits); 1616 } 1617 1618 /// Return true for DAG nodes that we ignore when computing the cost functions. 1619 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1620 /// in the calculation of the ASAP, ALAP, etc functions. 1621 static bool ignoreDependence(const SDep &D, bool isPred) { 1622 if (D.isArtificial()) 1623 return true; 1624 return D.getKind() == SDep::Anti && isPred; 1625 } 1626 1627 /// Compute several functions need to order the nodes for scheduling. 1628 /// ASAP - Earliest time to schedule a node. 1629 /// ALAP - Latest time to schedule a node. 1630 /// MOV - Mobility function, difference between ALAP and ASAP. 1631 /// D - Depth of each node. 1632 /// H - Height of each node. 1633 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1634 ScheduleInfo.resize(SUnits.size()); 1635 1636 DEBUG({ 1637 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1638 E = Topo.end(); 1639 I != E; ++I) { 1640 SUnit *SU = &SUnits[*I]; 1641 SU->dump(this); 1642 } 1643 }); 1644 1645 int maxASAP = 0; 1646 // Compute ASAP and ZeroLatencyDepth. 1647 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1648 E = Topo.end(); 1649 I != E; ++I) { 1650 int asap = 0; 1651 int zeroLatencyDepth = 0; 1652 SUnit *SU = &SUnits[*I]; 1653 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1654 EP = SU->Preds.end(); 1655 IP != EP; ++IP) { 1656 SUnit *pred = IP->getSUnit(); 1657 if (IP->getLatency() == 0) 1658 zeroLatencyDepth = 1659 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1660 if (ignoreDependence(*IP, true)) 1661 continue; 1662 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1663 getDistance(pred, SU, *IP) * MII)); 1664 } 1665 maxASAP = std::max(maxASAP, asap); 1666 ScheduleInfo[*I].ASAP = asap; 1667 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1668 } 1669 1670 // Compute ALAP, ZeroLatencyHeight, and MOV. 1671 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1672 E = Topo.rend(); 1673 I != E; ++I) { 1674 int alap = maxASAP; 1675 int zeroLatencyHeight = 0; 1676 SUnit *SU = &SUnits[*I]; 1677 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1678 ES = SU->Succs.end(); 1679 IS != ES; ++IS) { 1680 SUnit *succ = IS->getSUnit(); 1681 if (IS->getLatency() == 0) 1682 zeroLatencyHeight = 1683 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1684 if (ignoreDependence(*IS, true)) 1685 continue; 1686 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1687 getDistance(SU, succ, *IS) * MII)); 1688 } 1689 1690 ScheduleInfo[*I].ALAP = alap; 1691 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1692 } 1693 1694 // After computing the node functions, compute the summary for each node set. 1695 for (NodeSet &I : NodeSets) 1696 I.computeNodeSetInfo(this); 1697 1698 DEBUG({ 1699 for (unsigned i = 0; i < SUnits.size(); i++) { 1700 dbgs() << "\tNode " << i << ":\n"; 1701 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1702 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1703 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1704 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1705 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1706 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1707 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1708 } 1709 }); 1710 } 1711 1712 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1713 /// as the predecessors of the elements of NodeOrder that are not also in 1714 /// NodeOrder. 1715 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1716 SmallSetVector<SUnit *, 8> &Preds, 1717 const NodeSet *S = nullptr) { 1718 Preds.clear(); 1719 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1720 I != E; ++I) { 1721 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1722 PI != PE; ++PI) { 1723 if (S && S->count(PI->getSUnit()) == 0) 1724 continue; 1725 if (ignoreDependence(*PI, true)) 1726 continue; 1727 if (NodeOrder.count(PI->getSUnit()) == 0) 1728 Preds.insert(PI->getSUnit()); 1729 } 1730 // Back-edges are predecessors with an anti-dependence. 1731 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1732 ES = (*I)->Succs.end(); 1733 IS != ES; ++IS) { 1734 if (IS->getKind() != SDep::Anti) 1735 continue; 1736 if (S && S->count(IS->getSUnit()) == 0) 1737 continue; 1738 if (NodeOrder.count(IS->getSUnit()) == 0) 1739 Preds.insert(IS->getSUnit()); 1740 } 1741 } 1742 return !Preds.empty(); 1743 } 1744 1745 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1746 /// as the successors of the elements of NodeOrder that are not also in 1747 /// NodeOrder. 1748 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1749 SmallSetVector<SUnit *, 8> &Succs, 1750 const NodeSet *S = nullptr) { 1751 Succs.clear(); 1752 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1753 I != E; ++I) { 1754 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1755 SI != SE; ++SI) { 1756 if (S && S->count(SI->getSUnit()) == 0) 1757 continue; 1758 if (ignoreDependence(*SI, false)) 1759 continue; 1760 if (NodeOrder.count(SI->getSUnit()) == 0) 1761 Succs.insert(SI->getSUnit()); 1762 } 1763 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1764 PE = (*I)->Preds.end(); 1765 PI != PE; ++PI) { 1766 if (PI->getKind() != SDep::Anti) 1767 continue; 1768 if (S && S->count(PI->getSUnit()) == 0) 1769 continue; 1770 if (NodeOrder.count(PI->getSUnit()) == 0) 1771 Succs.insert(PI->getSUnit()); 1772 } 1773 } 1774 return !Succs.empty(); 1775 } 1776 1777 /// Return true if there is a path from the specified node to any of the nodes 1778 /// in DestNodes. Keep track and return the nodes in any path. 1779 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1780 SetVector<SUnit *> &DestNodes, 1781 SetVector<SUnit *> &Exclude, 1782 SmallPtrSet<SUnit *, 8> &Visited) { 1783 if (Cur->isBoundaryNode()) 1784 return false; 1785 if (Exclude.count(Cur) != 0) 1786 return false; 1787 if (DestNodes.count(Cur) != 0) 1788 return true; 1789 if (!Visited.insert(Cur).second) 1790 return Path.count(Cur) != 0; 1791 bool FoundPath = false; 1792 for (auto &SI : Cur->Succs) 1793 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1794 for (auto &PI : Cur->Preds) 1795 if (PI.getKind() == SDep::Anti) 1796 FoundPath |= 1797 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1798 if (FoundPath) 1799 Path.insert(Cur); 1800 return FoundPath; 1801 } 1802 1803 /// Return true if Set1 is a subset of Set2. 1804 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1805 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1806 if (Set2.count(*I) == 0) 1807 return false; 1808 return true; 1809 } 1810 1811 /// Compute the live-out registers for the instructions in a node-set. 1812 /// The live-out registers are those that are defined in the node-set, 1813 /// but not used. Except for use operands of Phis. 1814 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1815 NodeSet &NS) { 1816 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1817 MachineRegisterInfo &MRI = MF.getRegInfo(); 1818 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1819 SmallSet<unsigned, 4> Uses; 1820 for (SUnit *SU : NS) { 1821 const MachineInstr *MI = SU->getInstr(); 1822 if (MI->isPHI()) 1823 continue; 1824 for (const MachineOperand &MO : MI->operands()) 1825 if (MO.isReg() && MO.isUse()) { 1826 unsigned Reg = MO.getReg(); 1827 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1828 Uses.insert(Reg); 1829 else if (MRI.isAllocatable(Reg)) 1830 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1831 Uses.insert(*Units); 1832 } 1833 } 1834 for (SUnit *SU : NS) 1835 for (const MachineOperand &MO : SU->getInstr()->operands()) 1836 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1837 unsigned Reg = MO.getReg(); 1838 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1839 if (!Uses.count(Reg)) 1840 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1841 LaneBitmask::getNone())); 1842 } else if (MRI.isAllocatable(Reg)) { 1843 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1844 if (!Uses.count(*Units)) 1845 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1846 LaneBitmask::getNone())); 1847 } 1848 } 1849 RPTracker.addLiveRegs(LiveOutRegs); 1850 } 1851 1852 /// A heuristic to filter nodes in recurrent node-sets if the register 1853 /// pressure of a set is too high. 1854 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1855 for (auto &NS : NodeSets) { 1856 // Skip small node-sets since they won't cause register pressure problems. 1857 if (NS.size() <= 2) 1858 continue; 1859 IntervalPressure RecRegPressure; 1860 RegPressureTracker RecRPTracker(RecRegPressure); 1861 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1862 computeLiveOuts(MF, RecRPTracker, NS); 1863 RecRPTracker.closeBottom(); 1864 1865 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1866 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1867 return A->NodeNum > B->NodeNum; 1868 }); 1869 1870 for (auto &SU : SUnits) { 1871 // Since we're computing the register pressure for a subset of the 1872 // instructions in a block, we need to set the tracker for each 1873 // instruction in the node-set. The tracker is set to the instruction 1874 // just after the one we're interested in. 1875 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1876 RecRPTracker.setPos(std::next(CurInstI)); 1877 1878 RegPressureDelta RPDelta; 1879 ArrayRef<PressureChange> CriticalPSets; 1880 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1881 CriticalPSets, 1882 RecRegPressure.MaxSetPressure); 1883 if (RPDelta.Excess.isValid()) { 1884 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1885 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1886 << ":" << RPDelta.Excess.getUnitInc()); 1887 NS.setExceedPressure(SU); 1888 break; 1889 } 1890 RecRPTracker.recede(); 1891 } 1892 } 1893 } 1894 1895 /// A heuristic to colocate node sets that have the same set of 1896 /// successors. 1897 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1898 unsigned Colocate = 0; 1899 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1900 NodeSet &N1 = NodeSets[i]; 1901 SmallSetVector<SUnit *, 8> S1; 1902 if (N1.empty() || !succ_L(N1, S1)) 1903 continue; 1904 for (int j = i + 1; j < e; ++j) { 1905 NodeSet &N2 = NodeSets[j]; 1906 if (N1.compareRecMII(N2) != 0) 1907 continue; 1908 SmallSetVector<SUnit *, 8> S2; 1909 if (N2.empty() || !succ_L(N2, S2)) 1910 continue; 1911 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1912 N1.setColocate(++Colocate); 1913 N2.setColocate(Colocate); 1914 break; 1915 } 1916 } 1917 } 1918 } 1919 1920 /// Check if the existing node-sets are profitable. If not, then ignore the 1921 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1922 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1923 /// then it's best to try to schedule all instructions together instead of 1924 /// starting with the recurrent node-sets. 1925 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1926 // Look for loops with a large MII. 1927 if (MII < 17) 1928 return; 1929 // Check if the node-set contains only a simple add recurrence. 1930 for (auto &NS : NodeSets) { 1931 if (NS.getRecMII() > 2) 1932 return; 1933 if (NS.getMaxDepth() > MII) 1934 return; 1935 } 1936 NodeSets.clear(); 1937 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1938 return; 1939 } 1940 1941 /// Add the nodes that do not belong to a recurrence set into groups 1942 /// based upon connected componenets. 1943 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1944 SetVector<SUnit *> NodesAdded; 1945 SmallPtrSet<SUnit *, 8> Visited; 1946 // Add the nodes that are on a path between the previous node sets and 1947 // the current node set. 1948 for (NodeSet &I : NodeSets) { 1949 SmallSetVector<SUnit *, 8> N; 1950 // Add the nodes from the current node set to the previous node set. 1951 if (succ_L(I, N)) { 1952 SetVector<SUnit *> Path; 1953 for (SUnit *NI : N) { 1954 Visited.clear(); 1955 computePath(NI, Path, NodesAdded, I, Visited); 1956 } 1957 if (!Path.empty()) 1958 I.insert(Path.begin(), Path.end()); 1959 } 1960 // Add the nodes from the previous node set to the current node set. 1961 N.clear(); 1962 if (succ_L(NodesAdded, N)) { 1963 SetVector<SUnit *> Path; 1964 for (SUnit *NI : N) { 1965 Visited.clear(); 1966 computePath(NI, Path, I, NodesAdded, Visited); 1967 } 1968 if (!Path.empty()) 1969 I.insert(Path.begin(), Path.end()); 1970 } 1971 NodesAdded.insert(I.begin(), I.end()); 1972 } 1973 1974 // Create a new node set with the connected nodes of any successor of a node 1975 // in a recurrent set. 1976 NodeSet NewSet; 1977 SmallSetVector<SUnit *, 8> N; 1978 if (succ_L(NodesAdded, N)) 1979 for (SUnit *I : N) 1980 addConnectedNodes(I, NewSet, NodesAdded); 1981 if (!NewSet.empty()) 1982 NodeSets.push_back(NewSet); 1983 1984 // Create a new node set with the connected nodes of any predecessor of a node 1985 // in a recurrent set. 1986 NewSet.clear(); 1987 if (pred_L(NodesAdded, N)) 1988 for (SUnit *I : N) 1989 addConnectedNodes(I, NewSet, NodesAdded); 1990 if (!NewSet.empty()) 1991 NodeSets.push_back(NewSet); 1992 1993 // Create new nodes sets with the connected nodes any any remaining node that 1994 // has no predecessor. 1995 for (unsigned i = 0; i < SUnits.size(); ++i) { 1996 SUnit *SU = &SUnits[i]; 1997 if (NodesAdded.count(SU) == 0) { 1998 NewSet.clear(); 1999 addConnectedNodes(SU, NewSet, NodesAdded); 2000 if (!NewSet.empty()) 2001 NodeSets.push_back(NewSet); 2002 } 2003 } 2004 } 2005 2006 /// Add the node to the set, and add all is its connected nodes to the set. 2007 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2008 SetVector<SUnit *> &NodesAdded) { 2009 NewSet.insert(SU); 2010 NodesAdded.insert(SU); 2011 for (auto &SI : SU->Succs) { 2012 SUnit *Successor = SI.getSUnit(); 2013 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 2014 addConnectedNodes(Successor, NewSet, NodesAdded); 2015 } 2016 for (auto &PI : SU->Preds) { 2017 SUnit *Predecessor = PI.getSUnit(); 2018 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2019 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2020 } 2021 } 2022 2023 /// Return true if Set1 contains elements in Set2. The elements in common 2024 /// are returned in a different container. 2025 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2026 SmallSetVector<SUnit *, 8> &Result) { 2027 Result.clear(); 2028 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 2029 SUnit *SU = Set1[i]; 2030 if (Set2.count(SU) != 0) 2031 Result.insert(SU); 2032 } 2033 return !Result.empty(); 2034 } 2035 2036 /// Merge the recurrence node sets that have the same initial node. 2037 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2038 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2039 ++I) { 2040 NodeSet &NI = *I; 2041 for (NodeSetType::iterator J = I + 1; J != E;) { 2042 NodeSet &NJ = *J; 2043 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2044 if (NJ.compareRecMII(NI) > 0) 2045 NI.setRecMII(NJ.getRecMII()); 2046 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 2047 ++NII) 2048 I->insert(*NII); 2049 NodeSets.erase(J); 2050 E = NodeSets.end(); 2051 } else { 2052 ++J; 2053 } 2054 } 2055 } 2056 } 2057 2058 /// Remove nodes that have been scheduled in previous NodeSets. 2059 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2060 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2061 ++I) 2062 for (NodeSetType::iterator J = I + 1; J != E;) { 2063 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2064 2065 if (J->empty()) { 2066 NodeSets.erase(J); 2067 E = NodeSets.end(); 2068 } else { 2069 ++J; 2070 } 2071 } 2072 } 2073 2074 /// Compute an ordered list of the dependence graph nodes, which 2075 /// indicates the order that the nodes will be scheduled. This is a 2076 /// two-level algorithm. First, a partial order is created, which 2077 /// consists of a list of sets ordered from highest to lowest priority. 2078 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2079 SmallSetVector<SUnit *, 8> R; 2080 NodeOrder.clear(); 2081 2082 for (auto &Nodes : NodeSets) { 2083 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2084 OrderKind Order; 2085 SmallSetVector<SUnit *, 8> N; 2086 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 2087 R.insert(N.begin(), N.end()); 2088 Order = BottomUp; 2089 DEBUG(dbgs() << " Bottom up (preds) "); 2090 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 2091 R.insert(N.begin(), N.end()); 2092 Order = TopDown; 2093 DEBUG(dbgs() << " Top down (succs) "); 2094 } else if (isIntersect(N, Nodes, R)) { 2095 // If some of the successors are in the existing node-set, then use the 2096 // top-down ordering. 2097 Order = TopDown; 2098 DEBUG(dbgs() << " Top down (intersect) "); 2099 } else if (NodeSets.size() == 1) { 2100 for (auto &N : Nodes) 2101 if (N->Succs.size() == 0) 2102 R.insert(N); 2103 Order = BottomUp; 2104 DEBUG(dbgs() << " Bottom up (all) "); 2105 } else { 2106 // Find the node with the highest ASAP. 2107 SUnit *maxASAP = nullptr; 2108 for (SUnit *SU : Nodes) { 2109 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2110 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2111 maxASAP = SU; 2112 } 2113 R.insert(maxASAP); 2114 Order = BottomUp; 2115 DEBUG(dbgs() << " Bottom up (default) "); 2116 } 2117 2118 while (!R.empty()) { 2119 if (Order == TopDown) { 2120 // Choose the node with the maximum height. If more than one, choose 2121 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2122 // choose the node with the lowest MOV. 2123 while (!R.empty()) { 2124 SUnit *maxHeight = nullptr; 2125 for (SUnit *I : R) { 2126 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2127 maxHeight = I; 2128 else if (getHeight(I) == getHeight(maxHeight) && 2129 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2130 maxHeight = I; 2131 else if (getHeight(I) == getHeight(maxHeight) && 2132 getZeroLatencyHeight(I) == 2133 getZeroLatencyHeight(maxHeight) && 2134 getMOV(I) < getMOV(maxHeight)) 2135 maxHeight = I; 2136 } 2137 NodeOrder.insert(maxHeight); 2138 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2139 R.remove(maxHeight); 2140 for (const auto &I : maxHeight->Succs) { 2141 if (Nodes.count(I.getSUnit()) == 0) 2142 continue; 2143 if (NodeOrder.count(I.getSUnit()) != 0) 2144 continue; 2145 if (ignoreDependence(I, false)) 2146 continue; 2147 R.insert(I.getSUnit()); 2148 } 2149 // Back-edges are predecessors with an anti-dependence. 2150 for (const auto &I : maxHeight->Preds) { 2151 if (I.getKind() != SDep::Anti) 2152 continue; 2153 if (Nodes.count(I.getSUnit()) == 0) 2154 continue; 2155 if (NodeOrder.count(I.getSUnit()) != 0) 2156 continue; 2157 R.insert(I.getSUnit()); 2158 } 2159 } 2160 Order = BottomUp; 2161 DEBUG(dbgs() << "\n Switching order to bottom up "); 2162 SmallSetVector<SUnit *, 8> N; 2163 if (pred_L(NodeOrder, N, &Nodes)) 2164 R.insert(N.begin(), N.end()); 2165 } else { 2166 // Choose the node with the maximum depth. If more than one, choose 2167 // the node with the maximum ZeroLatencyDepth. If still more than one, 2168 // choose the node with the lowest MOV. 2169 while (!R.empty()) { 2170 SUnit *maxDepth = nullptr; 2171 for (SUnit *I : R) { 2172 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2173 maxDepth = I; 2174 else if (getDepth(I) == getDepth(maxDepth) && 2175 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2176 maxDepth = I; 2177 else if (getDepth(I) == getDepth(maxDepth) && 2178 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2179 getMOV(I) < getMOV(maxDepth)) 2180 maxDepth = I; 2181 } 2182 NodeOrder.insert(maxDepth); 2183 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2184 R.remove(maxDepth); 2185 if (Nodes.isExceedSU(maxDepth)) { 2186 Order = TopDown; 2187 R.clear(); 2188 R.insert(Nodes.getNode(0)); 2189 break; 2190 } 2191 for (const auto &I : maxDepth->Preds) { 2192 if (Nodes.count(I.getSUnit()) == 0) 2193 continue; 2194 if (NodeOrder.count(I.getSUnit()) != 0) 2195 continue; 2196 R.insert(I.getSUnit()); 2197 } 2198 // Back-edges are predecessors with an anti-dependence. 2199 for (const auto &I : maxDepth->Succs) { 2200 if (I.getKind() != SDep::Anti) 2201 continue; 2202 if (Nodes.count(I.getSUnit()) == 0) 2203 continue; 2204 if (NodeOrder.count(I.getSUnit()) != 0) 2205 continue; 2206 R.insert(I.getSUnit()); 2207 } 2208 } 2209 Order = TopDown; 2210 DEBUG(dbgs() << "\n Switching order to top down "); 2211 SmallSetVector<SUnit *, 8> N; 2212 if (succ_L(NodeOrder, N, &Nodes)) 2213 R.insert(N.begin(), N.end()); 2214 } 2215 } 2216 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2217 } 2218 2219 DEBUG({ 2220 dbgs() << "Node order: "; 2221 for (SUnit *I : NodeOrder) 2222 dbgs() << " " << I->NodeNum << " "; 2223 dbgs() << "\n"; 2224 }); 2225 } 2226 2227 /// Process the nodes in the computed order and create the pipelined schedule 2228 /// of the instructions, if possible. Return true if a schedule is found. 2229 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2230 if (NodeOrder.empty()) 2231 return false; 2232 2233 bool scheduleFound = false; 2234 // Keep increasing II until a valid schedule is found. 2235 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2236 Schedule.reset(); 2237 Schedule.setInitiationInterval(II); 2238 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2239 2240 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2241 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2242 do { 2243 SUnit *SU = *NI; 2244 2245 // Compute the schedule time for the instruction, which is based 2246 // upon the scheduled time for any predecessors/successors. 2247 int EarlyStart = INT_MIN; 2248 int LateStart = INT_MAX; 2249 // These values are set when the size of the schedule window is limited 2250 // due to chain dependences. 2251 int SchedEnd = INT_MAX; 2252 int SchedStart = INT_MIN; 2253 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2254 II, this); 2255 DEBUG({ 2256 dbgs() << "Inst (" << SU->NodeNum << ") "; 2257 SU->getInstr()->dump(); 2258 dbgs() << "\n"; 2259 }); 2260 DEBUG({ 2261 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2262 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2263 }); 2264 2265 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2266 SchedStart > LateStart) 2267 scheduleFound = false; 2268 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2269 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2270 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2271 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2272 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2273 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2274 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2275 SchedEnd = 2276 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2277 // When scheduling a Phi it is better to start at the late cycle and go 2278 // backwards. The default order may insert the Phi too far away from 2279 // its first dependence. 2280 if (SU->getInstr()->isPHI()) 2281 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2282 else 2283 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2284 } else { 2285 int FirstCycle = Schedule.getFirstCycle(); 2286 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2287 FirstCycle + getASAP(SU) + II - 1, II); 2288 } 2289 // Even if we find a schedule, make sure the schedule doesn't exceed the 2290 // allowable number of stages. We keep trying if this happens. 2291 if (scheduleFound) 2292 if (SwpMaxStages > -1 && 2293 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2294 scheduleFound = false; 2295 2296 DEBUG({ 2297 if (!scheduleFound) 2298 dbgs() << "\tCan't schedule\n"; 2299 }); 2300 } while (++NI != NE && scheduleFound); 2301 2302 // If a schedule is found, check if it is a valid schedule too. 2303 if (scheduleFound) 2304 scheduleFound = Schedule.isValidSchedule(this); 2305 } 2306 2307 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2308 2309 if (scheduleFound) 2310 Schedule.finalizeSchedule(this); 2311 else 2312 Schedule.reset(); 2313 2314 return scheduleFound && Schedule.getMaxStageCount() > 0; 2315 } 2316 2317 /// Given a schedule for the loop, generate a new version of the loop, 2318 /// and replace the old version. This function generates a prolog 2319 /// that contains the initial iterations in the pipeline, and kernel 2320 /// loop, and the epilogue that contains the code for the final 2321 /// iterations. 2322 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2323 // Create a new basic block for the kernel and add it to the CFG. 2324 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2325 2326 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2327 2328 // Remember the registers that are used in different stages. The index is 2329 // the iteration, or stage, that the instruction is scheduled in. This is 2330 // a map between register names in the orignal block and the names created 2331 // in each stage of the pipelined loop. 2332 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2333 InstrMapTy InstrMap; 2334 2335 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2336 // Generate the prolog instructions that set up the pipeline. 2337 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2338 MF.insert(BB->getIterator(), KernelBB); 2339 2340 // Rearrange the instructions to generate the new, pipelined loop, 2341 // and update register names as needed. 2342 for (int Cycle = Schedule.getFirstCycle(), 2343 LastCycle = Schedule.getFinalCycle(); 2344 Cycle <= LastCycle; ++Cycle) { 2345 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2346 // This inner loop schedules each instruction in the cycle. 2347 for (SUnit *CI : CycleInstrs) { 2348 if (CI->getInstr()->isPHI()) 2349 continue; 2350 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2351 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2352 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2353 KernelBB->push_back(NewMI); 2354 InstrMap[NewMI] = CI->getInstr(); 2355 } 2356 } 2357 2358 // Copy any terminator instructions to the new kernel, and update 2359 // names as needed. 2360 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2361 E = BB->instr_end(); 2362 I != E; ++I) { 2363 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2364 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2365 KernelBB->push_back(NewMI); 2366 InstrMap[NewMI] = &*I; 2367 } 2368 2369 KernelBB->transferSuccessors(BB); 2370 KernelBB->replaceSuccessor(BB, KernelBB); 2371 2372 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2373 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2374 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2375 InstrMap, MaxStageCount, MaxStageCount, false); 2376 2377 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2378 2379 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2380 // Generate the epilog instructions to complete the pipeline. 2381 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2382 PrologBBs); 2383 2384 // We need this step because the register allocation doesn't handle some 2385 // situations well, so we insert copies to help out. 2386 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2387 2388 // Remove dead instructions due to loop induction variables. 2389 removeDeadInstructions(KernelBB, EpilogBBs); 2390 2391 // Add branches between prolog and epilog blocks. 2392 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2393 2394 // Remove the original loop since it's no longer referenced. 2395 for (auto &I : *BB) 2396 LIS.RemoveMachineInstrFromMaps(I); 2397 BB->clear(); 2398 BB->eraseFromParent(); 2399 2400 delete[] VRMap; 2401 } 2402 2403 /// Generate the pipeline prolog code. 2404 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2405 MachineBasicBlock *KernelBB, 2406 ValueMapTy *VRMap, 2407 MBBVectorTy &PrologBBs) { 2408 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2409 assert(PreheaderBB != nullptr && 2410 "Need to add code to handle loops w/o preheader"); 2411 MachineBasicBlock *PredBB = PreheaderBB; 2412 InstrMapTy InstrMap; 2413 2414 // Generate a basic block for each stage, not including the last stage, 2415 // which will be generated in the kernel. Each basic block may contain 2416 // instructions from multiple stages/iterations. 2417 for (unsigned i = 0; i < LastStage; ++i) { 2418 // Create and insert the prolog basic block prior to the original loop 2419 // basic block. The original loop is removed later. 2420 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2421 PrologBBs.push_back(NewBB); 2422 MF.insert(BB->getIterator(), NewBB); 2423 NewBB->transferSuccessors(PredBB); 2424 PredBB->addSuccessor(NewBB); 2425 PredBB = NewBB; 2426 2427 // Generate instructions for each appropriate stage. Process instructions 2428 // in original program order. 2429 for (int StageNum = i; StageNum >= 0; --StageNum) { 2430 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2431 BBE = BB->getFirstTerminator(); 2432 BBI != BBE; ++BBI) { 2433 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2434 if (BBI->isPHI()) 2435 continue; 2436 MachineInstr *NewMI = 2437 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2438 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2439 VRMap); 2440 NewBB->push_back(NewMI); 2441 InstrMap[NewMI] = &*BBI; 2442 } 2443 } 2444 } 2445 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2446 DEBUG({ 2447 dbgs() << "prolog:\n"; 2448 NewBB->dump(); 2449 }); 2450 } 2451 2452 PredBB->replaceSuccessor(BB, KernelBB); 2453 2454 // Check if we need to remove the branch from the preheader to the original 2455 // loop, and replace it with a branch to the new loop. 2456 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2457 if (numBranches) { 2458 SmallVector<MachineOperand, 0> Cond; 2459 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2460 } 2461 } 2462 2463 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2464 /// that were started in either the prolog or the kernel. We create a basic 2465 /// block for each stage that needs to complete. 2466 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2467 MachineBasicBlock *KernelBB, 2468 ValueMapTy *VRMap, 2469 MBBVectorTy &EpilogBBs, 2470 MBBVectorTy &PrologBBs) { 2471 // We need to change the branch from the kernel to the first epilog block, so 2472 // this call to analyze branch uses the kernel rather than the original BB. 2473 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2474 SmallVector<MachineOperand, 4> Cond; 2475 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2476 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2477 if (checkBranch) 2478 return; 2479 2480 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2481 if (*LoopExitI == KernelBB) 2482 ++LoopExitI; 2483 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2484 MachineBasicBlock *LoopExitBB = *LoopExitI; 2485 2486 MachineBasicBlock *PredBB = KernelBB; 2487 MachineBasicBlock *EpilogStart = LoopExitBB; 2488 InstrMapTy InstrMap; 2489 2490 // Generate a basic block for each stage, not including the last stage, 2491 // which was generated for the kernel. Each basic block may contain 2492 // instructions from multiple stages/iterations. 2493 int EpilogStage = LastStage + 1; 2494 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2495 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2496 EpilogBBs.push_back(NewBB); 2497 MF.insert(BB->getIterator(), NewBB); 2498 2499 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2500 NewBB->addSuccessor(LoopExitBB); 2501 2502 if (EpilogStart == LoopExitBB) 2503 EpilogStart = NewBB; 2504 2505 // Add instructions to the epilog depending on the current block. 2506 // Process instructions in original program order. 2507 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2508 for (auto &BBI : *BB) { 2509 if (BBI.isPHI()) 2510 continue; 2511 MachineInstr *In = &BBI; 2512 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2513 // Instructions with memoperands in the epilog are updated with 2514 // conservative values. 2515 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2516 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2517 NewBB->push_back(NewMI); 2518 InstrMap[NewMI] = In; 2519 } 2520 } 2521 } 2522 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2523 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2524 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2525 InstrMap, LastStage, EpilogStage, i == 1); 2526 PredBB = NewBB; 2527 2528 DEBUG({ 2529 dbgs() << "epilog:\n"; 2530 NewBB->dump(); 2531 }); 2532 } 2533 2534 // Fix any Phi nodes in the loop exit block. 2535 for (MachineInstr &MI : *LoopExitBB) { 2536 if (!MI.isPHI()) 2537 break; 2538 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2539 MachineOperand &MO = MI.getOperand(i); 2540 if (MO.getMBB() == BB) 2541 MO.setMBB(PredBB); 2542 } 2543 } 2544 2545 // Create a branch to the new epilog from the kernel. 2546 // Remove the original branch and add a new branch to the epilog. 2547 TII->removeBranch(*KernelBB); 2548 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2549 // Add a branch to the loop exit. 2550 if (EpilogBBs.size() > 0) { 2551 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2552 SmallVector<MachineOperand, 4> Cond1; 2553 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2554 } 2555 } 2556 2557 /// Replace all uses of FromReg that appear outside the specified 2558 /// basic block with ToReg. 2559 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2560 MachineBasicBlock *MBB, 2561 MachineRegisterInfo &MRI, 2562 LiveIntervals &LIS) { 2563 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2564 E = MRI.use_end(); 2565 I != E;) { 2566 MachineOperand &O = *I; 2567 ++I; 2568 if (O.getParent()->getParent() != MBB) 2569 O.setReg(ToReg); 2570 } 2571 if (!LIS.hasInterval(ToReg)) 2572 LIS.createEmptyInterval(ToReg); 2573 } 2574 2575 /// Return true if the register has a use that occurs outside the 2576 /// specified loop. 2577 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2578 MachineRegisterInfo &MRI) { 2579 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2580 E = MRI.use_end(); 2581 I != E; ++I) 2582 if (I->getParent()->getParent() != BB) 2583 return true; 2584 return false; 2585 } 2586 2587 /// Generate Phis for the specific block in the generated pipelined code. 2588 /// This function looks at the Phis from the original code to guide the 2589 /// creation of new Phis. 2590 void SwingSchedulerDAG::generateExistingPhis( 2591 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2592 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2593 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2594 bool IsLast) { 2595 // Compute the stage number for the initial value of the Phi, which 2596 // comes from the prolog. The prolog to use depends on to which kernel/ 2597 // epilog that we're adding the Phi. 2598 unsigned PrologStage = 0; 2599 unsigned PrevStage = 0; 2600 bool InKernel = (LastStageNum == CurStageNum); 2601 if (InKernel) { 2602 PrologStage = LastStageNum - 1; 2603 PrevStage = CurStageNum; 2604 } else { 2605 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2606 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2607 } 2608 2609 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2610 BBE = BB->getFirstNonPHI(); 2611 BBI != BBE; ++BBI) { 2612 unsigned Def = BBI->getOperand(0).getReg(); 2613 2614 unsigned InitVal = 0; 2615 unsigned LoopVal = 0; 2616 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2617 2618 unsigned PhiOp1 = 0; 2619 // The Phi value from the loop body typically is defined in the loop, but 2620 // not always. So, we need to check if the value is defined in the loop. 2621 unsigned PhiOp2 = LoopVal; 2622 if (VRMap[LastStageNum].count(LoopVal)) 2623 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2624 2625 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2626 int LoopValStage = 2627 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2628 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2629 if (NumStages == 0) { 2630 // We don't need to generate a Phi anymore, but we need to rename any uses 2631 // of the Phi value. 2632 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2633 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2634 Def, InitVal, NewReg); 2635 if (VRMap[CurStageNum].count(LoopVal)) 2636 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2637 } 2638 // Adjust the number of Phis needed depending on the number of prologs left, 2639 // and the distance from where the Phi is first scheduled. The number of 2640 // Phis cannot exceed the number of prolog stages. Each stage can 2641 // potentially define two values. 2642 unsigned MaxPhis = PrologStage + 2; 2643 if (!InKernel && (int)PrologStage <= LoopValStage) 2644 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2645 unsigned NumPhis = std::min(NumStages, MaxPhis); 2646 2647 unsigned NewReg = 0; 2648 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2649 // In the epilog, we may need to look back one stage to get the correct 2650 // Phi name because the epilog and prolog blocks execute the same stage. 2651 // The correct name is from the previous block only when the Phi has 2652 // been completely scheduled prior to the epilog, and Phi value is not 2653 // needed in multiple stages. 2654 int StageDiff = 0; 2655 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2656 NumPhis == 1) 2657 StageDiff = 1; 2658 // Adjust the computations below when the phi and the loop definition 2659 // are scheduled in different stages. 2660 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2661 StageDiff = StageScheduled - LoopValStage; 2662 for (unsigned np = 0; np < NumPhis; ++np) { 2663 // If the Phi hasn't been scheduled, then use the initial Phi operand 2664 // value. Otherwise, use the scheduled version of the instruction. This 2665 // is a little complicated when a Phi references another Phi. 2666 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2667 PhiOp1 = InitVal; 2668 // Check if the Phi has already been scheduled in a prolog stage. 2669 else if (PrologStage >= AccessStage + StageDiff + np && 2670 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2671 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2672 // Check if the Phi has already been scheduled, but the loop intruction 2673 // is either another Phi, or doesn't occur in the loop. 2674 else if (PrologStage >= AccessStage + StageDiff + np) { 2675 // If the Phi references another Phi, we need to examine the other 2676 // Phi to get the correct value. 2677 PhiOp1 = LoopVal; 2678 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2679 int Indirects = 1; 2680 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2681 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2682 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2683 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2684 else 2685 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2686 InstOp1 = MRI.getVRegDef(PhiOp1); 2687 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2688 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2689 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2690 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2691 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2692 break; 2693 } 2694 ++Indirects; 2695 } 2696 } else 2697 PhiOp1 = InitVal; 2698 // If this references a generated Phi in the kernel, get the Phi operand 2699 // from the incoming block. 2700 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2701 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2702 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2703 2704 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2705 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2706 // In the epilog, a map lookup is needed to get the value from the kernel, 2707 // or previous epilog block. How is does this depends on if the 2708 // instruction is scheduled in the previous block. 2709 if (!InKernel) { 2710 int StageDiffAdj = 0; 2711 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2712 StageDiffAdj = StageScheduled - LoopValStage; 2713 // Use the loop value defined in the kernel, unless the kernel 2714 // contains the last definition of the Phi. 2715 if (np == 0 && PrevStage == LastStageNum && 2716 (StageScheduled != 0 || LoopValStage != 0) && 2717 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2718 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2719 // Use the value defined by the Phi. We add one because we switch 2720 // from looking at the loop value to the Phi definition. 2721 else if (np > 0 && PrevStage == LastStageNum && 2722 VRMap[PrevStage - np + 1].count(Def)) 2723 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2724 // Use the loop value defined in the kernel. 2725 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2726 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2727 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2728 // Use the value defined by the Phi, unless we're generating the first 2729 // epilog and the Phi refers to a Phi in a different stage. 2730 else if (VRMap[PrevStage - np].count(Def) && 2731 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2732 PhiOp2 = VRMap[PrevStage - np][Def]; 2733 } 2734 2735 // Check if we can reuse an existing Phi. This occurs when a Phi 2736 // references another Phi, and the other Phi is scheduled in an 2737 // earlier stage. We can try to reuse an existing Phi up until the last 2738 // stage of the current Phi. 2739 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) { 2740 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2741 int StageDiff = (StageScheduled - LoopValStage); 2742 LVNumStages -= StageDiff; 2743 // Make sure the loop value Phi has been processed already. 2744 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2745 NewReg = PhiOp2; 2746 unsigned ReuseStage = CurStageNum; 2747 if (Schedule.isLoopCarried(this, *PhiInst)) 2748 ReuseStage -= LVNumStages; 2749 // Check if the Phi to reuse has been generated yet. If not, then 2750 // there is nothing to reuse. 2751 if (VRMap[ReuseStage - np].count(LoopVal)) { 2752 NewReg = VRMap[ReuseStage - np][LoopVal]; 2753 2754 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2755 &*BBI, Def, NewReg); 2756 // Update the map with the new Phi name. 2757 VRMap[CurStageNum - np][Def] = NewReg; 2758 PhiOp2 = NewReg; 2759 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2760 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2761 2762 if (IsLast && np == NumPhis - 1) 2763 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2764 continue; 2765 } 2766 } else if (InKernel && StageDiff > 0 && 2767 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2768 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2769 } 2770 2771 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2772 NewReg = MRI.createVirtualRegister(RC); 2773 2774 MachineInstrBuilder NewPhi = 2775 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2776 TII->get(TargetOpcode::PHI), NewReg); 2777 NewPhi.addReg(PhiOp1).addMBB(BB1); 2778 NewPhi.addReg(PhiOp2).addMBB(BB2); 2779 if (np == 0) 2780 InstrMap[NewPhi] = &*BBI; 2781 2782 // We define the Phis after creating the new pipelined code, so 2783 // we need to rename the Phi values in scheduled instructions. 2784 2785 unsigned PrevReg = 0; 2786 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2787 PrevReg = VRMap[PrevStage - np][LoopVal]; 2788 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2789 Def, NewReg, PrevReg); 2790 // If the Phi has been scheduled, use the new name for rewriting. 2791 if (VRMap[CurStageNum - np].count(Def)) { 2792 unsigned R = VRMap[CurStageNum - np][Def]; 2793 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2794 R, NewReg); 2795 } 2796 2797 // Check if we need to rename any uses that occurs after the loop. The 2798 // register to replace depends on whether the Phi is scheduled in the 2799 // epilog. 2800 if (IsLast && np == NumPhis - 1) 2801 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2802 2803 // In the kernel, a dependent Phi uses the value from this Phi. 2804 if (InKernel) 2805 PhiOp2 = NewReg; 2806 2807 // Update the map with the new Phi name. 2808 VRMap[CurStageNum - np][Def] = NewReg; 2809 } 2810 2811 while (NumPhis++ < NumStages) { 2812 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2813 &*BBI, Def, NewReg, 0); 2814 } 2815 2816 // Check if we need to rename a Phi that has been eliminated due to 2817 // scheduling. 2818 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2819 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2820 } 2821 } 2822 2823 /// Generate Phis for the specified block in the generated pipelined code. 2824 /// These are new Phis needed because the definition is scheduled after the 2825 /// use in the pipelened sequence. 2826 void SwingSchedulerDAG::generatePhis( 2827 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2828 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2829 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2830 bool IsLast) { 2831 // Compute the stage number that contains the initial Phi value, and 2832 // the Phi from the previous stage. 2833 unsigned PrologStage = 0; 2834 unsigned PrevStage = 0; 2835 unsigned StageDiff = CurStageNum - LastStageNum; 2836 bool InKernel = (StageDiff == 0); 2837 if (InKernel) { 2838 PrologStage = LastStageNum - 1; 2839 PrevStage = CurStageNum; 2840 } else { 2841 PrologStage = LastStageNum - StageDiff; 2842 PrevStage = LastStageNum + StageDiff - 1; 2843 } 2844 2845 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2846 BBE = BB->instr_end(); 2847 BBI != BBE; ++BBI) { 2848 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2849 MachineOperand &MO = BBI->getOperand(i); 2850 if (!MO.isReg() || !MO.isDef() || 2851 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2852 continue; 2853 2854 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2855 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2856 unsigned Def = MO.getReg(); 2857 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2858 // An instruction scheduled in stage 0 and is used after the loop 2859 // requires a phi in the epilog for the last definition from either 2860 // the kernel or prolog. 2861 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2862 hasUseAfterLoop(Def, BB, MRI)) 2863 NumPhis = 1; 2864 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2865 continue; 2866 2867 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2868 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2869 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2870 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2871 // The number of Phis can't exceed the number of prolog stages. The 2872 // prolog stage number is zero based. 2873 if (NumPhis > PrologStage + 1 - StageScheduled) 2874 NumPhis = PrologStage + 1 - StageScheduled; 2875 for (unsigned np = 0; np < NumPhis; ++np) { 2876 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2877 if (np <= PrologStage) 2878 PhiOp1 = VRMap[PrologStage - np][Def]; 2879 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2880 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2881 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2882 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2883 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2884 } 2885 if (!InKernel) 2886 PhiOp2 = VRMap[PrevStage - np][Def]; 2887 2888 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2889 unsigned NewReg = MRI.createVirtualRegister(RC); 2890 2891 MachineInstrBuilder NewPhi = 2892 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2893 TII->get(TargetOpcode::PHI), NewReg); 2894 NewPhi.addReg(PhiOp1).addMBB(BB1); 2895 NewPhi.addReg(PhiOp2).addMBB(BB2); 2896 if (np == 0) 2897 InstrMap[NewPhi] = &*BBI; 2898 2899 // Rewrite uses and update the map. The actions depend upon whether 2900 // we generating code for the kernel or epilog blocks. 2901 if (InKernel) { 2902 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2903 &*BBI, PhiOp1, NewReg); 2904 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2905 &*BBI, PhiOp2, NewReg); 2906 2907 PhiOp2 = NewReg; 2908 VRMap[PrevStage - np - 1][Def] = NewReg; 2909 } else { 2910 VRMap[CurStageNum - np][Def] = NewReg; 2911 if (np == NumPhis - 1) 2912 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2913 &*BBI, Def, NewReg); 2914 } 2915 if (IsLast && np == NumPhis - 1) 2916 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2917 } 2918 } 2919 } 2920 } 2921 2922 /// Remove instructions that generate values with no uses. 2923 /// Typically, these are induction variable operations that generate values 2924 /// used in the loop itself. A dead instruction has a definition with 2925 /// no uses, or uses that occur in the original loop only. 2926 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2927 MBBVectorTy &EpilogBBs) { 2928 // For each epilog block, check that the value defined by each instruction 2929 // is used. If not, delete it. 2930 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2931 MBE = EpilogBBs.rend(); 2932 MBB != MBE; ++MBB) 2933 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2934 ME = (*MBB)->instr_rend(); 2935 MI != ME;) { 2936 // From DeadMachineInstructionElem. Don't delete inline assembly. 2937 if (MI->isInlineAsm()) { 2938 ++MI; 2939 continue; 2940 } 2941 bool SawStore = false; 2942 // Check if it's safe to remove the instruction due to side effects. 2943 // We can, and want to, remove Phis here. 2944 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2945 ++MI; 2946 continue; 2947 } 2948 bool used = true; 2949 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2950 MOE = MI->operands_end(); 2951 MOI != MOE; ++MOI) { 2952 if (!MOI->isReg() || !MOI->isDef()) 2953 continue; 2954 unsigned reg = MOI->getReg(); 2955 // Assume physical registers are used, unless they are marked dead. 2956 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2957 used = !MOI->isDead(); 2958 if (used) 2959 break; 2960 continue; 2961 } 2962 unsigned realUses = 0; 2963 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2964 EI = MRI.use_end(); 2965 UI != EI; ++UI) { 2966 // Check if there are any uses that occur only in the original 2967 // loop. If so, that's not a real use. 2968 if (UI->getParent()->getParent() != BB) { 2969 realUses++; 2970 used = true; 2971 break; 2972 } 2973 } 2974 if (realUses > 0) 2975 break; 2976 used = false; 2977 } 2978 if (!used) { 2979 LIS.RemoveMachineInstrFromMaps(*MI); 2980 MI++->eraseFromParent(); 2981 continue; 2982 } 2983 ++MI; 2984 } 2985 // In the kernel block, check if we can remove a Phi that generates a value 2986 // used in an instruction removed in the epilog block. 2987 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2988 BBE = KernelBB->getFirstNonPHI(); 2989 BBI != BBE;) { 2990 MachineInstr *MI = &*BBI; 2991 ++BBI; 2992 unsigned reg = MI->getOperand(0).getReg(); 2993 if (MRI.use_begin(reg) == MRI.use_end()) { 2994 LIS.RemoveMachineInstrFromMaps(*MI); 2995 MI->eraseFromParent(); 2996 } 2997 } 2998 } 2999 3000 /// For loop carried definitions, we split the lifetime of a virtual register 3001 /// that has uses past the definition in the next iteration. A copy with a new 3002 /// virtual register is inserted before the definition, which helps with 3003 /// generating a better register assignment. 3004 /// 3005 /// v1 = phi(a, v2) v1 = phi(a, v2) 3006 /// v2 = phi(b, v3) v2 = phi(b, v3) 3007 /// v3 = .. v4 = copy v1 3008 /// .. = V1 v3 = .. 3009 /// .. = v4 3010 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 3011 MBBVectorTy &EpilogBBs, 3012 SMSchedule &Schedule) { 3013 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3014 for (auto &PHI : KernelBB->phis()) { 3015 unsigned Def = PHI.getOperand(0).getReg(); 3016 // Check for any Phi definition that used as an operand of another Phi 3017 // in the same block. 3018 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 3019 E = MRI.use_instr_end(); 3020 I != E; ++I) { 3021 if (I->isPHI() && I->getParent() == KernelBB) { 3022 // Get the loop carried definition. 3023 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 3024 if (!LCDef) 3025 continue; 3026 MachineInstr *MI = MRI.getVRegDef(LCDef); 3027 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 3028 continue; 3029 // Search through the rest of the block looking for uses of the Phi 3030 // definition. If one occurs, then split the lifetime. 3031 unsigned SplitReg = 0; 3032 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 3033 KernelBB->instr_end())) 3034 if (BBJ.readsRegister(Def)) { 3035 // We split the lifetime when we find the first use. 3036 if (SplitReg == 0) { 3037 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 3038 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 3039 TII->get(TargetOpcode::COPY), SplitReg) 3040 .addReg(Def); 3041 } 3042 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 3043 } 3044 if (!SplitReg) 3045 continue; 3046 // Search through each of the epilog blocks for any uses to be renamed. 3047 for (auto &Epilog : EpilogBBs) 3048 for (auto &I : *Epilog) 3049 if (I.readsRegister(Def)) 3050 I.substituteRegister(Def, SplitReg, 0, *TRI); 3051 break; 3052 } 3053 } 3054 } 3055 } 3056 3057 /// Remove the incoming block from the Phis in a basic block. 3058 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 3059 for (MachineInstr &MI : *BB) { 3060 if (!MI.isPHI()) 3061 break; 3062 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 3063 if (MI.getOperand(i + 1).getMBB() == Incoming) { 3064 MI.RemoveOperand(i + 1); 3065 MI.RemoveOperand(i); 3066 break; 3067 } 3068 } 3069 } 3070 3071 /// Create branches from each prolog basic block to the appropriate epilog 3072 /// block. These edges are needed if the loop ends before reaching the 3073 /// kernel. 3074 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 3075 MachineBasicBlock *KernelBB, 3076 MBBVectorTy &EpilogBBs, 3077 SMSchedule &Schedule, ValueMapTy *VRMap) { 3078 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 3079 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 3080 MachineInstr *Cmp = Pass.LI.LoopCompare; 3081 MachineBasicBlock *LastPro = KernelBB; 3082 MachineBasicBlock *LastEpi = KernelBB; 3083 3084 // Start from the blocks connected to the kernel and work "out" 3085 // to the first prolog and the last epilog blocks. 3086 SmallVector<MachineInstr *, 4> PrevInsts; 3087 unsigned MaxIter = PrologBBs.size() - 1; 3088 unsigned LC = UINT_MAX; 3089 unsigned LCMin = UINT_MAX; 3090 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 3091 // Add branches to the prolog that go to the corresponding 3092 // epilog, and the fall-thru prolog/kernel block. 3093 MachineBasicBlock *Prolog = PrologBBs[j]; 3094 MachineBasicBlock *Epilog = EpilogBBs[i]; 3095 // We've executed one iteration, so decrement the loop count and check for 3096 // the loop end. 3097 SmallVector<MachineOperand, 4> Cond; 3098 // Check if the LOOP0 has already been removed. If so, then there is no need 3099 // to reduce the trip count. 3100 if (LC != 0) 3101 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 3102 MaxIter); 3103 3104 // Record the value of the first trip count, which is used to determine if 3105 // branches and blocks can be removed for constant trip counts. 3106 if (LCMin == UINT_MAX) 3107 LCMin = LC; 3108 3109 unsigned numAdded = 0; 3110 if (TargetRegisterInfo::isVirtualRegister(LC)) { 3111 Prolog->addSuccessor(Epilog); 3112 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 3113 } else if (j >= LCMin) { 3114 Prolog->addSuccessor(Epilog); 3115 Prolog->removeSuccessor(LastPro); 3116 LastEpi->removeSuccessor(Epilog); 3117 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 3118 removePhis(Epilog, LastEpi); 3119 // Remove the blocks that are no longer referenced. 3120 if (LastPro != LastEpi) { 3121 LastEpi->clear(); 3122 LastEpi->eraseFromParent(); 3123 } 3124 LastPro->clear(); 3125 LastPro->eraseFromParent(); 3126 } else { 3127 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 3128 removePhis(Epilog, Prolog); 3129 } 3130 LastPro = Prolog; 3131 LastEpi = Epilog; 3132 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3133 E = Prolog->instr_rend(); 3134 I != E && numAdded > 0; ++I, --numAdded) 3135 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3136 } 3137 } 3138 3139 /// Return true if we can compute the amount the instruction changes 3140 /// during each iteration. Set Delta to the amount of the change. 3141 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3142 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3143 unsigned BaseReg; 3144 int64_t Offset; 3145 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3146 return false; 3147 3148 MachineRegisterInfo &MRI = MF.getRegInfo(); 3149 // Check if there is a Phi. If so, get the definition in the loop. 3150 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3151 if (BaseDef && BaseDef->isPHI()) { 3152 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3153 BaseDef = MRI.getVRegDef(BaseReg); 3154 } 3155 if (!BaseDef) 3156 return false; 3157 3158 int D = 0; 3159 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 3160 return false; 3161 3162 Delta = D; 3163 return true; 3164 } 3165 3166 /// Update the memory operand with a new offset when the pipeliner 3167 /// generates a new copy of the instruction that refers to a 3168 /// different memory location. 3169 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3170 MachineInstr &OldMI, unsigned Num) { 3171 if (Num == 0) 3172 return; 3173 // If the instruction has memory operands, then adjust the offset 3174 // when the instruction appears in different stages. 3175 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3176 if (NumRefs == 0) 3177 return; 3178 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3179 unsigned Refs = 0; 3180 for (MachineMemOperand *MMO : NewMI.memoperands()) { 3181 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 3182 (!MMO->getValue())) { 3183 NewMemRefs[Refs++] = MMO; 3184 continue; 3185 } 3186 unsigned Delta; 3187 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 3188 int64_t AdjOffset = Delta * Num; 3189 NewMemRefs[Refs++] = 3190 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); 3191 } else { 3192 NewMI.dropMemRefs(); 3193 return; 3194 } 3195 } 3196 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3197 } 3198 3199 /// Clone the instruction for the new pipelined loop and update the 3200 /// memory operands, if needed. 3201 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3202 unsigned CurStageNum, 3203 unsigned InstStageNum) { 3204 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3205 // Check for tied operands in inline asm instructions. This should be handled 3206 // elsewhere, but I'm not sure of the best solution. 3207 if (OldMI->isInlineAsm()) 3208 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3209 const auto &MO = OldMI->getOperand(i); 3210 if (MO.isReg() && MO.isUse()) 3211 break; 3212 unsigned UseIdx; 3213 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3214 NewMI->tieOperands(i, UseIdx); 3215 } 3216 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3217 return NewMI; 3218 } 3219 3220 /// Clone the instruction for the new pipelined loop. If needed, this 3221 /// function updates the instruction using the values saved in the 3222 /// InstrChanges structure. 3223 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3224 unsigned CurStageNum, 3225 unsigned InstStageNum, 3226 SMSchedule &Schedule) { 3227 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3228 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3229 InstrChanges.find(getSUnit(OldMI)); 3230 if (It != InstrChanges.end()) { 3231 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3232 unsigned BasePos, OffsetPos; 3233 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 3234 return nullptr; 3235 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3236 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3237 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3238 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3239 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3240 } 3241 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3242 return NewMI; 3243 } 3244 3245 /// Update the machine instruction with new virtual registers. This 3246 /// function may change the defintions and/or uses. 3247 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3248 unsigned CurStageNum, 3249 unsigned InstrStageNum, 3250 SMSchedule &Schedule, 3251 ValueMapTy *VRMap) { 3252 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3253 MachineOperand &MO = NewMI->getOperand(i); 3254 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3255 continue; 3256 unsigned reg = MO.getReg(); 3257 if (MO.isDef()) { 3258 // Create a new virtual register for the definition. 3259 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3260 unsigned NewReg = MRI.createVirtualRegister(RC); 3261 MO.setReg(NewReg); 3262 VRMap[CurStageNum][reg] = NewReg; 3263 if (LastDef) 3264 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3265 } else if (MO.isUse()) { 3266 MachineInstr *Def = MRI.getVRegDef(reg); 3267 // Compute the stage that contains the last definition for instruction. 3268 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3269 unsigned StageNum = CurStageNum; 3270 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3271 // Compute the difference in stages between the defintion and the use. 3272 unsigned StageDiff = (InstrStageNum - DefStageNum); 3273 // Make an adjustment to get the last definition. 3274 StageNum -= StageDiff; 3275 } 3276 if (VRMap[StageNum].count(reg)) 3277 MO.setReg(VRMap[StageNum][reg]); 3278 } 3279 } 3280 } 3281 3282 /// Return the instruction in the loop that defines the register. 3283 /// If the definition is a Phi, then follow the Phi operand to 3284 /// the instruction in the loop. 3285 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3286 SmallPtrSet<MachineInstr *, 8> Visited; 3287 MachineInstr *Def = MRI.getVRegDef(Reg); 3288 while (Def->isPHI()) { 3289 if (!Visited.insert(Def).second) 3290 break; 3291 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3292 if (Def->getOperand(i + 1).getMBB() == BB) { 3293 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3294 break; 3295 } 3296 } 3297 return Def; 3298 } 3299 3300 /// Return the new name for the value from the previous stage. 3301 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3302 unsigned LoopVal, unsigned LoopStage, 3303 ValueMapTy *VRMap, 3304 MachineBasicBlock *BB) { 3305 unsigned PrevVal = 0; 3306 if (StageNum > PhiStage) { 3307 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3308 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3309 // The name is defined in the previous stage. 3310 PrevVal = VRMap[StageNum - 1][LoopVal]; 3311 else if (VRMap[StageNum].count(LoopVal)) 3312 // The previous name is defined in the current stage when the instruction 3313 // order is swapped. 3314 PrevVal = VRMap[StageNum][LoopVal]; 3315 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3316 // The loop value hasn't yet been scheduled. 3317 PrevVal = LoopVal; 3318 else if (StageNum == PhiStage + 1) 3319 // The loop value is another phi, which has not been scheduled. 3320 PrevVal = getInitPhiReg(*LoopInst, BB); 3321 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3322 // The loop value is another phi, which has been scheduled. 3323 PrevVal = 3324 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3325 LoopStage, VRMap, BB); 3326 } 3327 return PrevVal; 3328 } 3329 3330 /// Rewrite the Phi values in the specified block to use the mappings 3331 /// from the initial operand. Once the Phi is scheduled, we switch 3332 /// to using the loop value instead of the Phi value, so those names 3333 /// do not need to be rewritten. 3334 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3335 unsigned StageNum, 3336 SMSchedule &Schedule, 3337 ValueMapTy *VRMap, 3338 InstrMapTy &InstrMap) { 3339 for (auto &PHI : BB->phis()) { 3340 unsigned InitVal = 0; 3341 unsigned LoopVal = 0; 3342 getPhiRegs(PHI, BB, InitVal, LoopVal); 3343 unsigned PhiDef = PHI.getOperand(0).getReg(); 3344 3345 unsigned PhiStage = 3346 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3347 unsigned LoopStage = 3348 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3349 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3350 if (NumPhis > StageNum) 3351 NumPhis = StageNum; 3352 for (unsigned np = 0; np <= NumPhis; ++np) { 3353 unsigned NewVal = 3354 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3355 if (!NewVal) 3356 NewVal = InitVal; 3357 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3358 PhiDef, NewVal); 3359 } 3360 } 3361 } 3362 3363 /// Rewrite a previously scheduled instruction to use the register value 3364 /// from the new instruction. Make sure the instruction occurs in the 3365 /// basic block, and we don't change the uses in the new instruction. 3366 void SwingSchedulerDAG::rewriteScheduledInstr( 3367 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3368 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3369 unsigned NewReg, unsigned PrevReg) { 3370 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3371 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3372 // Rewrite uses that have been scheduled already to use the new 3373 // Phi register. 3374 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3375 EI = MRI.use_end(); 3376 UI != EI;) { 3377 MachineOperand &UseOp = *UI; 3378 MachineInstr *UseMI = UseOp.getParent(); 3379 ++UI; 3380 if (UseMI->getParent() != BB) 3381 continue; 3382 if (UseMI->isPHI()) { 3383 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3384 continue; 3385 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3386 continue; 3387 } 3388 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3389 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3390 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3391 int StageSched = Schedule.stageScheduled(OrigMISU); 3392 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3393 unsigned ReplaceReg = 0; 3394 // This is the stage for the scheduled instruction. 3395 if (StagePhi == StageSched && Phi->isPHI()) { 3396 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3397 if (PrevReg && InProlog) 3398 ReplaceReg = PrevReg; 3399 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3400 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3401 ReplaceReg = PrevReg; 3402 else 3403 ReplaceReg = NewReg; 3404 } 3405 // The scheduled instruction occurs before the scheduled Phi, and the 3406 // Phi is not loop carried. 3407 if (!InProlog && StagePhi + 1 == StageSched && 3408 !Schedule.isLoopCarried(this, *Phi)) 3409 ReplaceReg = NewReg; 3410 if (StagePhi > StageSched && Phi->isPHI()) 3411 ReplaceReg = NewReg; 3412 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3413 ReplaceReg = NewReg; 3414 if (ReplaceReg) { 3415 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3416 UseOp.setReg(ReplaceReg); 3417 } 3418 } 3419 } 3420 3421 /// Check if we can change the instruction to use an offset value from the 3422 /// previous iteration. If so, return true and set the base and offset values 3423 /// so that we can rewrite the load, if necessary. 3424 /// v1 = Phi(v0, v3) 3425 /// v2 = load v1, 0 3426 /// v3 = post_store v1, 4, x 3427 /// This function enables the load to be rewritten as v2 = load v3, 4. 3428 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3429 unsigned &BasePos, 3430 unsigned &OffsetPos, 3431 unsigned &NewBase, 3432 int64_t &Offset) { 3433 // Get the load instruction. 3434 if (TII->isPostIncrement(*MI)) 3435 return false; 3436 unsigned BasePosLd, OffsetPosLd; 3437 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3438 return false; 3439 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3440 3441 // Look for the Phi instruction. 3442 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3443 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3444 if (!Phi || !Phi->isPHI()) 3445 return false; 3446 // Get the register defined in the loop block. 3447 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3448 if (!PrevReg) 3449 return false; 3450 3451 // Check for the post-increment load/store instruction. 3452 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3453 if (!PrevDef || PrevDef == MI) 3454 return false; 3455 3456 if (!TII->isPostIncrement(*PrevDef)) 3457 return false; 3458 3459 unsigned BasePos1 = 0, OffsetPos1 = 0; 3460 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3461 return false; 3462 3463 // Make sure that the instructions do not access the same memory location in 3464 // the next iteration. 3465 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3466 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3467 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3468 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3469 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3470 MF.DeleteMachineInstr(NewMI); 3471 if (!Disjoint) 3472 return false; 3473 3474 // Set the return value once we determine that we return true. 3475 BasePos = BasePosLd; 3476 OffsetPos = OffsetPosLd; 3477 NewBase = PrevReg; 3478 Offset = StoreOffset; 3479 return true; 3480 } 3481 3482 /// Apply changes to the instruction if needed. The changes are need 3483 /// to improve the scheduling and depend up on the final schedule. 3484 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3485 SMSchedule &Schedule) { 3486 SUnit *SU = getSUnit(MI); 3487 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3488 InstrChanges.find(SU); 3489 if (It != InstrChanges.end()) { 3490 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3491 unsigned BasePos, OffsetPos; 3492 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3493 return; 3494 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3495 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3496 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3497 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3498 int BaseStageNum = Schedule.stageScheduled(SU); 3499 int BaseCycleNum = Schedule.cycleScheduled(SU); 3500 if (BaseStageNum < DefStageNum) { 3501 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3502 int OffsetDiff = DefStageNum - BaseStageNum; 3503 if (DefCycleNum < BaseCycleNum) { 3504 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3505 if (OffsetDiff > 0) 3506 --OffsetDiff; 3507 } 3508 int64_t NewOffset = 3509 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3510 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3511 SU->setInstr(NewMI); 3512 MISUnitMap[NewMI] = SU; 3513 NewMIs.insert(NewMI); 3514 } 3515 } 3516 } 3517 3518 /// Return true for an order or output dependence that is loop carried 3519 /// potentially. A dependence is loop carried if the destination defines a valu 3520 /// that may be used or defined by the source in a subsequent iteration. 3521 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3522 bool isSucc) { 3523 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3524 Dep.isArtificial()) 3525 return false; 3526 3527 if (!SwpPruneLoopCarried) 3528 return true; 3529 3530 if (Dep.getKind() == SDep::Output) 3531 return true; 3532 3533 MachineInstr *SI = Source->getInstr(); 3534 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3535 if (!isSucc) 3536 std::swap(SI, DI); 3537 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3538 3539 // Assume ordered loads and stores may have a loop carried dependence. 3540 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3541 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3542 return true; 3543 3544 // Only chain dependences between a load and store can be loop carried. 3545 if (!DI->mayStore() || !SI->mayLoad()) 3546 return false; 3547 3548 unsigned DeltaS, DeltaD; 3549 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3550 return true; 3551 3552 unsigned BaseRegS, BaseRegD; 3553 int64_t OffsetS, OffsetD; 3554 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3555 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3556 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3557 return true; 3558 3559 if (BaseRegS != BaseRegD) 3560 return true; 3561 3562 // Check that the base register is incremented by a constant value for each 3563 // iteration. 3564 MachineInstr *Def = MRI.getVRegDef(BaseRegS); 3565 if (!Def || !Def->isPHI()) 3566 return true; 3567 unsigned InitVal = 0; 3568 unsigned LoopVal = 0; 3569 getPhiRegs(*Def, BB, InitVal, LoopVal); 3570 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3571 int D = 0; 3572 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3573 return true; 3574 3575 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3576 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3577 3578 // This is the main test, which checks the offset values and the loop 3579 // increment value to determine if the accesses may be loop carried. 3580 if (OffsetS >= OffsetD) 3581 return OffsetS + AccessSizeS > DeltaS; 3582 else 3583 return OffsetD + AccessSizeD > DeltaD; 3584 3585 return true; 3586 } 3587 3588 void SwingSchedulerDAG::postprocessDAG() { 3589 for (auto &M : Mutations) 3590 M->apply(this); 3591 } 3592 3593 /// Try to schedule the node at the specified StartCycle and continue 3594 /// until the node is schedule or the EndCycle is reached. This function 3595 /// returns true if the node is scheduled. This routine may search either 3596 /// forward or backward for a place to insert the instruction based upon 3597 /// the relative values of StartCycle and EndCycle. 3598 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3599 bool forward = true; 3600 if (StartCycle > EndCycle) 3601 forward = false; 3602 3603 // The terminating condition depends on the direction. 3604 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3605 for (int curCycle = StartCycle; curCycle != termCycle; 3606 forward ? ++curCycle : --curCycle) { 3607 3608 // Add the already scheduled instructions at the specified cycle to the DFA. 3609 Resources->clearResources(); 3610 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3611 checkCycle <= LastCycle; checkCycle += II) { 3612 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3613 3614 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3615 E = cycleInstrs.end(); 3616 I != E; ++I) { 3617 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3618 continue; 3619 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3620 "These instructions have already been scheduled."); 3621 Resources->reserveResources(*(*I)->getInstr()); 3622 } 3623 } 3624 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3625 Resources->canReserveResources(*SU->getInstr())) { 3626 DEBUG({ 3627 dbgs() << "\tinsert at cycle " << curCycle << " "; 3628 SU->getInstr()->dump(); 3629 }); 3630 3631 ScheduledInstrs[curCycle].push_back(SU); 3632 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3633 if (curCycle > LastCycle) 3634 LastCycle = curCycle; 3635 if (curCycle < FirstCycle) 3636 FirstCycle = curCycle; 3637 return true; 3638 } 3639 DEBUG({ 3640 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3641 SU->getInstr()->dump(); 3642 }); 3643 } 3644 return false; 3645 } 3646 3647 // Return the cycle of the earliest scheduled instruction in the chain. 3648 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3649 SmallPtrSet<SUnit *, 8> Visited; 3650 SmallVector<SDep, 8> Worklist; 3651 Worklist.push_back(Dep); 3652 int EarlyCycle = INT_MAX; 3653 while (!Worklist.empty()) { 3654 const SDep &Cur = Worklist.pop_back_val(); 3655 SUnit *PrevSU = Cur.getSUnit(); 3656 if (Visited.count(PrevSU)) 3657 continue; 3658 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3659 if (it == InstrToCycle.end()) 3660 continue; 3661 EarlyCycle = std::min(EarlyCycle, it->second); 3662 for (const auto &PI : PrevSU->Preds) 3663 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3664 Worklist.push_back(PI); 3665 Visited.insert(PrevSU); 3666 } 3667 return EarlyCycle; 3668 } 3669 3670 // Return the cycle of the latest scheduled instruction in the chain. 3671 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3672 SmallPtrSet<SUnit *, 8> Visited; 3673 SmallVector<SDep, 8> Worklist; 3674 Worklist.push_back(Dep); 3675 int LateCycle = INT_MIN; 3676 while (!Worklist.empty()) { 3677 const SDep &Cur = Worklist.pop_back_val(); 3678 SUnit *SuccSU = Cur.getSUnit(); 3679 if (Visited.count(SuccSU)) 3680 continue; 3681 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3682 if (it == InstrToCycle.end()) 3683 continue; 3684 LateCycle = std::max(LateCycle, it->second); 3685 for (const auto &SI : SuccSU->Succs) 3686 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3687 Worklist.push_back(SI); 3688 Visited.insert(SuccSU); 3689 } 3690 return LateCycle; 3691 } 3692 3693 /// If an instruction has a use that spans multiple iterations, then 3694 /// return true. These instructions are characterized by having a back-ege 3695 /// to a Phi, which contains a reference to another Phi. 3696 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3697 for (auto &P : SU->Preds) 3698 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3699 for (auto &S : P.getSUnit()->Succs) 3700 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3701 return P.getSUnit(); 3702 return nullptr; 3703 } 3704 3705 /// Compute the scheduling start slot for the instruction. The start slot 3706 /// depends on any predecessor or successor nodes scheduled already. 3707 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3708 int *MinEnd, int *MaxStart, int II, 3709 SwingSchedulerDAG *DAG) { 3710 // Iterate over each instruction that has been scheduled already. The start 3711 // slot computuation depends on whether the previously scheduled instruction 3712 // is a predecessor or successor of the specified instruction. 3713 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3714 3715 // Iterate over each instruction in the current cycle. 3716 for (SUnit *I : getInstructions(cycle)) { 3717 // Because we're processing a DAG for the dependences, we recognize 3718 // the back-edge in recurrences by anti dependences. 3719 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3720 const SDep &Dep = SU->Preds[i]; 3721 if (Dep.getSUnit() == I) { 3722 if (!DAG->isBackedge(SU, Dep)) { 3723 int EarlyStart = cycle + Dep.getLatency() - 3724 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3725 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3726 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3727 int End = earliestCycleInChain(Dep) + (II - 1); 3728 *MinEnd = std::min(*MinEnd, End); 3729 } 3730 } else { 3731 int LateStart = cycle - Dep.getLatency() + 3732 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3733 *MinLateStart = std::min(*MinLateStart, LateStart); 3734 } 3735 } 3736 // For instruction that requires multiple iterations, make sure that 3737 // the dependent instruction is not scheduled past the definition. 3738 SUnit *BE = multipleIterations(I, DAG); 3739 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3740 !SU->isPred(I)) 3741 *MinLateStart = std::min(*MinLateStart, cycle); 3742 } 3743 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3744 if (SU->Succs[i].getSUnit() == I) { 3745 const SDep &Dep = SU->Succs[i]; 3746 if (!DAG->isBackedge(SU, Dep)) { 3747 int LateStart = cycle - Dep.getLatency() + 3748 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3749 *MinLateStart = std::min(*MinLateStart, LateStart); 3750 if (DAG->isLoopCarriedDep(SU, Dep)) { 3751 int Start = latestCycleInChain(Dep) + 1 - II; 3752 *MaxStart = std::max(*MaxStart, Start); 3753 } 3754 } else { 3755 int EarlyStart = cycle + Dep.getLatency() - 3756 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3757 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3758 } 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 /// Order the instructions within a cycle so that the definitions occur 3766 /// before the uses. Returns true if the instruction is added to the start 3767 /// of the list, or false if added to the end. 3768 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3769 std::deque<SUnit *> &Insts) { 3770 MachineInstr *MI = SU->getInstr(); 3771 bool OrderBeforeUse = false; 3772 bool OrderAfterDef = false; 3773 bool OrderBeforeDef = false; 3774 unsigned MoveDef = 0; 3775 unsigned MoveUse = 0; 3776 int StageInst1 = stageScheduled(SU); 3777 3778 unsigned Pos = 0; 3779 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3780 ++I, ++Pos) { 3781 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3782 MachineOperand &MO = MI->getOperand(i); 3783 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3784 continue; 3785 3786 unsigned Reg = MO.getReg(); 3787 unsigned BasePos, OffsetPos; 3788 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3789 if (MI->getOperand(BasePos).getReg() == Reg) 3790 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3791 Reg = NewReg; 3792 bool Reads, Writes; 3793 std::tie(Reads, Writes) = 3794 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3795 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3796 OrderBeforeUse = true; 3797 if (MoveUse == 0) 3798 MoveUse = Pos; 3799 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3800 // Add the instruction after the scheduled instruction. 3801 OrderAfterDef = true; 3802 MoveDef = Pos; 3803 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3804 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3805 OrderBeforeUse = true; 3806 if (MoveUse == 0) 3807 MoveUse = Pos; 3808 } else { 3809 OrderAfterDef = true; 3810 MoveDef = Pos; 3811 } 3812 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3813 OrderBeforeUse = true; 3814 if (MoveUse == 0) 3815 MoveUse = Pos; 3816 if (MoveUse != 0) { 3817 OrderAfterDef = true; 3818 MoveDef = Pos - 1; 3819 } 3820 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3821 // Add the instruction before the scheduled instruction. 3822 OrderBeforeUse = true; 3823 if (MoveUse == 0) 3824 MoveUse = Pos; 3825 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3826 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3827 if (MoveUse == 0) { 3828 OrderBeforeDef = true; 3829 MoveUse = Pos; 3830 } 3831 } 3832 } 3833 // Check for order dependences between instructions. Make sure the source 3834 // is ordered before the destination. 3835 for (auto &S : SU->Succs) { 3836 if (S.getSUnit() != *I) 3837 continue; 3838 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3839 OrderBeforeUse = true; 3840 if (Pos < MoveUse) 3841 MoveUse = Pos; 3842 } 3843 } 3844 for (auto &P : SU->Preds) { 3845 if (P.getSUnit() != *I) 3846 continue; 3847 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3848 OrderAfterDef = true; 3849 MoveDef = Pos; 3850 } 3851 } 3852 } 3853 3854 // A circular dependence. 3855 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3856 OrderBeforeUse = false; 3857 3858 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3859 // to a loop-carried dependence. 3860 if (OrderBeforeDef) 3861 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3862 3863 // The uncommon case when the instruction order needs to be updated because 3864 // there is both a use and def. 3865 if (OrderBeforeUse && OrderAfterDef) { 3866 SUnit *UseSU = Insts.at(MoveUse); 3867 SUnit *DefSU = Insts.at(MoveDef); 3868 if (MoveUse > MoveDef) { 3869 Insts.erase(Insts.begin() + MoveUse); 3870 Insts.erase(Insts.begin() + MoveDef); 3871 } else { 3872 Insts.erase(Insts.begin() + MoveDef); 3873 Insts.erase(Insts.begin() + MoveUse); 3874 } 3875 orderDependence(SSD, UseSU, Insts); 3876 orderDependence(SSD, SU, Insts); 3877 orderDependence(SSD, DefSU, Insts); 3878 return; 3879 } 3880 // Put the new instruction first if there is a use in the list. Otherwise, 3881 // put it at the end of the list. 3882 if (OrderBeforeUse) 3883 Insts.push_front(SU); 3884 else 3885 Insts.push_back(SU); 3886 } 3887 3888 /// Return true if the scheduled Phi has a loop carried operand. 3889 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3890 if (!Phi.isPHI()) 3891 return false; 3892 assert(Phi.isPHI() && "Expecing a Phi."); 3893 SUnit *DefSU = SSD->getSUnit(&Phi); 3894 unsigned DefCycle = cycleScheduled(DefSU); 3895 int DefStage = stageScheduled(DefSU); 3896 3897 unsigned InitVal = 0; 3898 unsigned LoopVal = 0; 3899 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3900 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3901 if (!UseSU) 3902 return true; 3903 if (UseSU->getInstr()->isPHI()) 3904 return true; 3905 unsigned LoopCycle = cycleScheduled(UseSU); 3906 int LoopStage = stageScheduled(UseSU); 3907 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3908 } 3909 3910 /// Return true if the instruction is a definition that is loop carried 3911 /// and defines the use on the next iteration. 3912 /// v1 = phi(v2, v3) 3913 /// (Def) v3 = op v1 3914 /// (MO) = v1 3915 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3916 /// register. 3917 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3918 MachineInstr *Def, MachineOperand &MO) { 3919 if (!MO.isReg()) 3920 return false; 3921 if (Def->isPHI()) 3922 return false; 3923 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3924 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3925 return false; 3926 if (!isLoopCarried(SSD, *Phi)) 3927 return false; 3928 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3929 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3930 MachineOperand &DMO = Def->getOperand(i); 3931 if (!DMO.isReg() || !DMO.isDef()) 3932 continue; 3933 if (DMO.getReg() == LoopReg) 3934 return true; 3935 } 3936 return false; 3937 } 3938 3939 // Check if the generated schedule is valid. This function checks if 3940 // an instruction that uses a physical register is scheduled in a 3941 // different stage than the definition. The pipeliner does not handle 3942 // physical register values that may cross a basic block boundary. 3943 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3944 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3945 SUnit &SU = SSD->SUnits[i]; 3946 if (!SU.hasPhysRegDefs) 3947 continue; 3948 int StageDef = stageScheduled(&SU); 3949 assert(StageDef != -1 && "Instruction should have been scheduled."); 3950 for (auto &SI : SU.Succs) 3951 if (SI.isAssignedRegDep()) 3952 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3953 if (stageScheduled(SI.getSUnit()) != StageDef) 3954 return false; 3955 } 3956 return true; 3957 } 3958 3959 /// A property of the node order in swing-modulo-scheduling is 3960 /// that for nodes outside circuits the following holds: 3961 /// none of them is scheduled after both a successor and a 3962 /// predecessor. 3963 /// The method below checks whether the property is met. 3964 /// If not, debug information is printed and statistics information updated. 3965 /// Note that we do not use an assert statement. 3966 /// The reason is that although an invalid node oder may prevent 3967 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3968 /// it does not lead to the generation of incorrect code. 3969 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3970 3971 // a sorted vector that maps each SUnit to its index in the NodeOrder 3972 typedef std::pair<SUnit *, unsigned> UnitIndex; 3973 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3974 3975 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3976 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3977 3978 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3979 return std::get<0>(i1) < std::get<0>(i2); 3980 }; 3981 3982 // sort, so that we can perform a binary search 3983 std::sort(Indices.begin(), Indices.end(), CompareKey); 3984 3985 bool Valid = true; 3986 (void)Valid; 3987 // for each SUnit in the NodeOrder, check whether 3988 // it appears after both a successor and a predecessor 3989 // of the SUnit. If this is the case, and the SUnit 3990 // is not part of circuit, then the NodeOrder is not 3991 // valid. 3992 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3993 SUnit *SU = NodeOrder[i]; 3994 unsigned Index = i; 3995 3996 bool PredBefore = false; 3997 bool SuccBefore = false; 3998 3999 SUnit *Succ; 4000 SUnit *Pred; 4001 (void)Succ; 4002 (void)Pred; 4003 4004 for (SDep &PredEdge : SU->Preds) { 4005 SUnit *PredSU = PredEdge.getSUnit(); 4006 unsigned PredIndex = 4007 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4008 std::make_pair(PredSU, 0), CompareKey)); 4009 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 4010 PredBefore = true; 4011 Pred = PredSU; 4012 break; 4013 } 4014 } 4015 4016 for (SDep &SuccEdge : SU->Succs) { 4017 SUnit *SuccSU = SuccEdge.getSUnit(); 4018 unsigned SuccIndex = 4019 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 4020 std::make_pair(SuccSU, 0), CompareKey)); 4021 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 4022 SuccBefore = true; 4023 Succ = SuccSU; 4024 break; 4025 } 4026 } 4027 4028 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 4029 // instructions in circuits are allowed to be scheduled 4030 // after both a successor and predecessor. 4031 bool InCircuit = std::any_of( 4032 Circuits.begin(), Circuits.end(), 4033 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 4034 if (InCircuit) 4035 DEBUG(dbgs() << "In a circuit, predecessor ";); 4036 else { 4037 Valid = false; 4038 NumNodeOrderIssues++; 4039 DEBUG(dbgs() << "Predecessor ";); 4040 } 4041 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 4042 << " are scheduled before node " << SU->NodeNum << "\n";); 4043 } 4044 } 4045 4046 DEBUG({ 4047 if (!Valid) 4048 dbgs() << "Invalid node order found!\n"; 4049 }); 4050 } 4051 4052 /// Attempt to fix the degenerate cases when the instruction serialization 4053 /// causes the register lifetimes to overlap. For example, 4054 /// p' = store_pi(p, b) 4055 /// = load p, offset 4056 /// In this case p and p' overlap, which means that two registers are needed. 4057 /// Instead, this function changes the load to use p' and updates the offset. 4058 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 4059 unsigned OverlapReg = 0; 4060 unsigned NewBaseReg = 0; 4061 for (SUnit *SU : Instrs) { 4062 MachineInstr *MI = SU->getInstr(); 4063 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4064 const MachineOperand &MO = MI->getOperand(i); 4065 // Look for an instruction that uses p. The instruction occurs in the 4066 // same cycle but occurs later in the serialized order. 4067 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 4068 // Check that the instruction appears in the InstrChanges structure, 4069 // which contains instructions that can have the offset updated. 4070 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 4071 InstrChanges.find(SU); 4072 if (It != InstrChanges.end()) { 4073 unsigned BasePos, OffsetPos; 4074 // Update the base register and adjust the offset. 4075 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 4076 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 4077 NewMI->getOperand(BasePos).setReg(NewBaseReg); 4078 int64_t NewOffset = 4079 MI->getOperand(OffsetPos).getImm() - It->second.second; 4080 NewMI->getOperand(OffsetPos).setImm(NewOffset); 4081 SU->setInstr(NewMI); 4082 MISUnitMap[NewMI] = SU; 4083 NewMIs.insert(NewMI); 4084 } 4085 } 4086 OverlapReg = 0; 4087 NewBaseReg = 0; 4088 break; 4089 } 4090 // Look for an instruction of the form p' = op(p), which uses and defines 4091 // two virtual registers that get allocated to the same physical register. 4092 unsigned TiedUseIdx = 0; 4093 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 4094 // OverlapReg is p in the example above. 4095 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 4096 // NewBaseReg is p' in the example above. 4097 NewBaseReg = MI->getOperand(i).getReg(); 4098 break; 4099 } 4100 } 4101 } 4102 } 4103 4104 /// After the schedule has been formed, call this function to combine 4105 /// the instructions from the different stages/cycles. That is, this 4106 /// function creates a schedule that represents a single iteration. 4107 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 4108 // Move all instructions to the first stage from later stages. 4109 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4110 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 4111 ++stage) { 4112 std::deque<SUnit *> &cycleInstrs = 4113 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 4114 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 4115 E = cycleInstrs.rend(); 4116 I != E; ++I) 4117 ScheduledInstrs[cycle].push_front(*I); 4118 } 4119 } 4120 // Iterate over the definitions in each instruction, and compute the 4121 // stage difference for each use. Keep the maximum value. 4122 for (auto &I : InstrToCycle) { 4123 int DefStage = stageScheduled(I.first); 4124 MachineInstr *MI = I.first->getInstr(); 4125 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 4126 MachineOperand &Op = MI->getOperand(i); 4127 if (!Op.isReg() || !Op.isDef()) 4128 continue; 4129 4130 unsigned Reg = Op.getReg(); 4131 unsigned MaxDiff = 0; 4132 bool PhiIsSwapped = false; 4133 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 4134 EI = MRI.use_end(); 4135 UI != EI; ++UI) { 4136 MachineOperand &UseOp = *UI; 4137 MachineInstr *UseMI = UseOp.getParent(); 4138 SUnit *SUnitUse = SSD->getSUnit(UseMI); 4139 int UseStage = stageScheduled(SUnitUse); 4140 unsigned Diff = 0; 4141 if (UseStage != -1 && UseStage >= DefStage) 4142 Diff = UseStage - DefStage; 4143 if (MI->isPHI()) { 4144 if (isLoopCarried(SSD, *MI)) 4145 ++Diff; 4146 else 4147 PhiIsSwapped = true; 4148 } 4149 MaxDiff = std::max(Diff, MaxDiff); 4150 } 4151 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 4152 } 4153 } 4154 4155 // Erase all the elements in the later stages. Only one iteration should 4156 // remain in the scheduled list, and it contains all the instructions. 4157 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 4158 ScheduledInstrs.erase(cycle); 4159 4160 // Change the registers in instruction as specified in the InstrChanges 4161 // map. We need to use the new registers to create the correct order. 4162 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 4163 SUnit *SU = &SSD->SUnits[i]; 4164 SSD->applyInstrChange(SU->getInstr(), *this); 4165 } 4166 4167 // Reorder the instructions in each cycle to fix and improve the 4168 // generated code. 4169 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 4170 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 4171 std::deque<SUnit *> newOrderPhi; 4172 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4173 SUnit *SU = cycleInstrs[i]; 4174 if (SU->getInstr()->isPHI()) 4175 newOrderPhi.push_back(SU); 4176 } 4177 std::deque<SUnit *> newOrderI; 4178 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 4179 SUnit *SU = cycleInstrs[i]; 4180 if (!SU->getInstr()->isPHI()) 4181 orderDependence(SSD, SU, newOrderI); 4182 } 4183 // Replace the old order with the new order. 4184 cycleInstrs.swap(newOrderPhi); 4185 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 4186 SSD->fixupRegisterOverlaps(cycleInstrs); 4187 } 4188 4189 DEBUG(dump();); 4190 } 4191 4192 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4193 /// Print the schedule information to the given output. 4194 void SMSchedule::print(raw_ostream &os) const { 4195 // Iterate over each cycle. 4196 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 4197 // Iterate over each instruction in the cycle. 4198 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 4199 for (SUnit *CI : cycleInstrs->second) { 4200 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 4201 os << "(" << CI->NodeNum << ") "; 4202 CI->getInstr()->print(os); 4203 os << "\n"; 4204 } 4205 } 4206 } 4207 4208 /// Utility function used for debugging to print the schedule. 4209 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 4210 #endif 4211