1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/ModuloSchedule.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 108 109 /// A command line option to turn software pipelining on or off. 110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 111 cl::ZeroOrMore, 112 cl::desc("Enable Software Pipelining")); 113 114 /// A command line option to enable SWP at -Os. 115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 116 cl::desc("Enable SWP at Os."), cl::Hidden, 117 cl::init(false)); 118 119 /// A command line argument to limit minimum initial interval for pipelining. 120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 121 cl::desc("Size limit for the MII."), 122 cl::Hidden, cl::init(27)); 123 124 /// A command line argument to limit the number of stages in the pipeline. 125 static cl::opt<int> 126 SwpMaxStages("pipeliner-max-stages", 127 cl::desc("Maximum stages allowed in the generated scheduled."), 128 cl::Hidden, cl::init(3)); 129 130 /// A command line option to disable the pruning of chain dependences due to 131 /// an unrelated Phi. 132 static cl::opt<bool> 133 SwpPruneDeps("pipeliner-prune-deps", 134 cl::desc("Prune dependences between unrelated Phi nodes."), 135 cl::Hidden, cl::init(true)); 136 137 /// A command line option to disable the pruning of loop carried order 138 /// dependences. 139 static cl::opt<bool> 140 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 141 cl::desc("Prune loop carried order dependences."), 142 cl::Hidden, cl::init(true)); 143 144 #ifndef NDEBUG 145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 146 #endif 147 148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 149 cl::ReallyHidden, cl::init(false), 150 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 151 152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 153 cl::init(false)); 154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 155 cl::init(false)); 156 157 static cl::opt<bool> EmitTestAnnotations( 158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 159 cl::desc("Instead of emitting the pipelined code, annotate instructions " 160 "with the generated schedule for feeding into the " 161 "-modulo-schedule-test pass")); 162 163 static cl::opt<bool> ExperimentalCodeGen( 164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 165 cl::desc( 166 "Use the experimental peeling code generator for software pipelining")); 167 168 namespace llvm { 169 170 // A command line option to enable the CopyToPhi DAG mutation. 171 cl::opt<bool> 172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 173 cl::init(true), cl::ZeroOrMore, 174 cl::desc("Enable CopyToPhi DAG Mutation")); 175 176 } // end namespace llvm 177 178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 179 char MachinePipeliner::ID = 0; 180 #ifndef NDEBUG 181 int MachinePipeliner::NumTries = 0; 182 #endif 183 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 184 185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 186 "Modulo Software Pipelining", false, false) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 192 "Modulo Software Pipelining", false, false) 193 194 /// The "main" function for implementing Swing Modulo Scheduling. 195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 196 if (skipFunction(mf.getFunction())) 197 return false; 198 199 if (!EnableSWP) 200 return false; 201 202 if (mf.getFunction().getAttributes().hasAttribute( 203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 221 TII = MF->getSubtarget().getInstrInfo(); 222 RegClassInfo.runOnMachineFunction(*MF); 223 224 for (auto &L : *MLI) 225 scheduleLoop(*L); 226 227 return false; 228 } 229 230 /// Attempt to perform the SMS algorithm on the specified loop. This function is 231 /// the main entry point for the algorithm. The function identifies candidate 232 /// loops, calculates the minimum initiation interval, and attempts to schedule 233 /// the loop. 234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 235 bool Changed = false; 236 for (auto &InnerLoop : L) 237 Changed |= scheduleLoop(*InnerLoop); 238 239 #ifndef NDEBUG 240 // Stop trying after reaching the limit (if any). 241 int Limit = SwpLoopLimit; 242 if (Limit >= 0) { 243 if (NumTries >= SwpLoopLimit) 244 return Changed; 245 NumTries++; 246 } 247 #endif 248 249 setPragmaPipelineOptions(L); 250 if (!canPipelineLoop(L)) { 251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 252 ORE->emit([&]() { 253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 254 L.getStartLoc(), L.getHeader()) 255 << "Failed to pipeline loop"; 256 }); 257 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 II_setByPragma = 0; 272 273 MachineBasicBlock *LBLK = L.getTopBlock(); 274 275 if (LBLK == nullptr) 276 return; 277 278 const BasicBlock *BBLK = LBLK->getBasicBlock(); 279 if (BBLK == nullptr) 280 return; 281 282 const Instruction *TI = BBLK->getTerminator(); 283 if (TI == nullptr) 284 return; 285 286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 287 if (LoopID == nullptr) 288 return; 289 290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 291 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 292 293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 295 296 if (MD == nullptr) 297 continue; 298 299 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 300 301 if (S == nullptr) 302 continue; 303 304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 305 assert(MD->getNumOperands() == 2 && 306 "Pipeline initiation interval hint metadata should have two operands."); 307 II_setByPragma = 308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 310 } else if (S->getString() == "llvm.loop.pipeline.disable") { 311 disabledByPragma = true; 312 } 313 } 314 } 315 316 /// Return true if the loop can be software pipelined. The algorithm is 317 /// restricted to loops with a single basic block. Make sure that the 318 /// branch in the loop can be analyzed. 319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 320 if (L.getNumBlocks() != 1) { 321 ORE->emit([&]() { 322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 323 L.getStartLoc(), L.getHeader()) 324 << "Not a single basic block: " 325 << ore::NV("NumBlocks", L.getNumBlocks()); 326 }); 327 return false; 328 } 329 330 if (disabledByPragma) { 331 ORE->emit([&]() { 332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 333 L.getStartLoc(), L.getHeader()) 334 << "Disabled by Pragma."; 335 }); 336 return false; 337 } 338 339 // Check if the branch can't be understood because we can't do pipelining 340 // if that's the case. 341 LI.TBB = nullptr; 342 LI.FBB = nullptr; 343 LI.BrCond.clear(); 344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 346 NumFailBranch++; 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "The branch can't be understood"; 351 }); 352 return false; 353 } 354 355 LI.LoopInductionVar = nullptr; 356 LI.LoopCompare = nullptr; 357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 359 NumFailLoop++; 360 ORE->emit([&]() { 361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 362 L.getStartLoc(), L.getHeader()) 363 << "The loop structure is not supported"; 364 }); 365 return false; 366 } 367 368 if (!L.getLoopPreheader()) { 369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 370 NumFailPreheader++; 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "No loop preheader found"; 375 }); 376 return false; 377 } 378 379 // Remove any subregisters from inputs to phi nodes. 380 preprocessPhiNodes(*L.getHeader()); 381 return true; 382 } 383 384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 385 MachineRegisterInfo &MRI = MF->getRegInfo(); 386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 387 388 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 389 MachineOperand &DefOp = PI.getOperand(0); 390 assert(DefOp.getSubReg() == 0); 391 auto *RC = MRI.getRegClass(DefOp.getReg()); 392 393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 394 MachineOperand &RegOp = PI.getOperand(i); 395 if (RegOp.getSubReg() == 0) 396 continue; 397 398 // If the operand uses a subregister, replace it with a new register 399 // without subregisters, and generate a copy to the new register. 400 Register NewReg = MRI.createVirtualRegister(RC); 401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 402 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 403 const DebugLoc &DL = PredB.findDebugLoc(At); 404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 405 .addReg(RegOp.getReg(), getRegState(RegOp), 406 RegOp.getSubReg()); 407 Slots.insertMachineInstrInMaps(*Copy); 408 RegOp.setReg(NewReg); 409 RegOp.setSubReg(0); 410 } 411 } 412 } 413 414 /// The SMS algorithm consists of the following main steps: 415 /// 1. Computation and analysis of the dependence graph. 416 /// 2. Ordering of the nodes (instructions). 417 /// 3. Attempt to Schedule the loop. 418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 420 421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 422 II_setByPragma); 423 424 MachineBasicBlock *MBB = L.getHeader(); 425 // The kernel should not include any terminator instructions. These 426 // will be added back later. 427 SMS.startBlock(MBB); 428 429 // Compute the number of 'real' instructions in the basic block by 430 // ignoring terminators. 431 unsigned size = MBB->size(); 432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 433 E = MBB->instr_end(); 434 I != E; ++I, --size) 435 ; 436 437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 438 SMS.schedule(); 439 SMS.exitRegion(); 440 441 SMS.finishBlock(); 442 return SMS.hasNewSchedule(); 443 } 444 445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 446 AU.addRequired<AAResultsWrapperPass>(); 447 AU.addPreserved<AAResultsWrapperPass>(); 448 AU.addRequired<MachineLoopInfo>(); 449 AU.addRequired<MachineDominatorTree>(); 450 AU.addRequired<LiveIntervals>(); 451 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 452 MachineFunctionPass::getAnalysisUsage(AU); 453 } 454 455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 456 if (II_setByPragma > 0) 457 MII = II_setByPragma; 458 else 459 MII = std::max(ResMII, RecMII); 460 } 461 462 void SwingSchedulerDAG::setMAX_II() { 463 if (II_setByPragma > 0) 464 MAX_II = II_setByPragma; 465 else 466 MAX_II = MII + 10; 467 } 468 469 /// We override the schedule function in ScheduleDAGInstrs to implement the 470 /// scheduling part of the Swing Modulo Scheduling algorithm. 471 void SwingSchedulerDAG::schedule() { 472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 buildSchedGraph(AA); 474 addLoopCarriedDependences(AA); 475 updatePhiDependences(); 476 Topo.InitDAGTopologicalSorting(); 477 changeDependences(); 478 postprocessDAG(); 479 LLVM_DEBUG(dump()); 480 481 NodeSetType NodeSets; 482 findCircuits(NodeSets); 483 NodeSetType Circuits = NodeSets; 484 485 // Calculate the MII. 486 unsigned ResMII = calculateResMII(); 487 unsigned RecMII = calculateRecMII(NodeSets); 488 489 fuseRecs(NodeSets); 490 491 // This flag is used for testing and can cause correctness problems. 492 if (SwpIgnoreRecMII) 493 RecMII = 0; 494 495 setMII(ResMII, RecMII); 496 setMAX_II(); 497 498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 500 501 // Can't schedule a loop without a valid MII. 502 if (MII == 0) { 503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 504 NumFailZeroMII++; 505 Pass.ORE->emit([&]() { 506 return MachineOptimizationRemarkAnalysis( 507 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 508 << "Invalid Minimal Initiation Interval: 0"; 509 }); 510 return; 511 } 512 513 // Don't pipeline large loops. 514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 516 << ", we don't pipleline large loops\n"); 517 NumFailLargeMaxMII++; 518 Pass.ORE->emit([&]() { 519 return MachineOptimizationRemarkAnalysis( 520 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 521 << "Minimal Initiation Interval too large: " 522 << ore::NV("MII", (int)MII) << " > " 523 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 524 << "Refer to -pipeliner-max-mii."; 525 }); 526 return; 527 } 528 529 computeNodeFunctions(NodeSets); 530 531 registerPressureFilter(NodeSets); 532 533 colocateNodeSets(NodeSets); 534 535 checkNodeSets(NodeSets); 536 537 LLVM_DEBUG({ 538 for (auto &I : NodeSets) { 539 dbgs() << " Rec NodeSet "; 540 I.dump(); 541 } 542 }); 543 544 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 545 546 groupRemainingNodes(NodeSets); 547 548 removeDuplicateNodes(NodeSets); 549 550 LLVM_DEBUG({ 551 for (auto &I : NodeSets) { 552 dbgs() << " NodeSet "; 553 I.dump(); 554 } 555 }); 556 557 computeNodeOrder(NodeSets); 558 559 // check for node order issues 560 checkValidNodeOrder(Circuits); 561 562 SMSchedule Schedule(Pass.MF); 563 Scheduled = schedulePipeline(Schedule); 564 565 if (!Scheduled){ 566 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 567 NumFailNoSchedule++; 568 Pass.ORE->emit([&]() { 569 return MachineOptimizationRemarkAnalysis( 570 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 571 << "Unable to find schedule"; 572 }); 573 return; 574 } 575 576 unsigned numStages = Schedule.getMaxStageCount(); 577 // No need to generate pipeline if there are no overlapped iterations. 578 if (numStages == 0) { 579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 580 NumFailZeroStage++; 581 Pass.ORE->emit([&]() { 582 return MachineOptimizationRemarkAnalysis( 583 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 584 << "No need to pipeline - no overlapped iterations in schedule."; 585 }); 586 return; 587 } 588 // Check that the maximum stage count is less than user-defined limit. 589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 591 << " : too many stages, abort\n"); 592 NumFailLargeMaxStage++; 593 Pass.ORE->emit([&]() { 594 return MachineOptimizationRemarkAnalysis( 595 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 596 << "Too many stages in schedule: " 597 << ore::NV("numStages", (int)numStages) << " > " 598 << ore::NV("SwpMaxStages", SwpMaxStages) 599 << ". Refer to -pipeliner-max-stages."; 600 }); 601 return; 602 } 603 604 Pass.ORE->emit([&]() { 605 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 606 Loop.getHeader()) 607 << "Pipelined succesfully!"; 608 }); 609 610 // Generate the schedule as a ModuloSchedule. 611 DenseMap<MachineInstr *, int> Cycles, Stages; 612 std::vector<MachineInstr *> OrderedInsts; 613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 614 ++Cycle) { 615 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 616 OrderedInsts.push_back(SU->getInstr()); 617 Cycles[SU->getInstr()] = Cycle; 618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 619 } 620 } 621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 622 for (auto &KV : NewMIs) { 623 Cycles[KV.first] = Cycles[KV.second]; 624 Stages[KV.first] = Stages[KV.second]; 625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 626 } 627 628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 629 std::move(Stages)); 630 if (EmitTestAnnotations) { 631 assert(NewInstrChanges.empty() && 632 "Cannot serialize a schedule with InstrChanges!"); 633 ModuloScheduleTestAnnotater MSTI(MF, MS); 634 MSTI.annotate(); 635 return; 636 } 637 // The experimental code generator can't work if there are InstChanges. 638 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 640 MSE.expand(); 641 } else { 642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 643 MSE.expand(); 644 MSE.cleanup(); 645 } 646 ++NumPipelined; 647 } 648 649 /// Clean up after the software pipeliner runs. 650 void SwingSchedulerDAG::finishBlock() { 651 for (auto &KV : NewMIs) 652 MF.DeleteMachineInstr(KV.second); 653 NewMIs.clear(); 654 655 // Call the superclass. 656 ScheduleDAGInstrs::finishBlock(); 657 } 658 659 /// Return the register values for the operands of a Phi instruction. 660 /// This function assume the instruction is a Phi. 661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 662 unsigned &InitVal, unsigned &LoopVal) { 663 assert(Phi.isPHI() && "Expecting a Phi."); 664 665 InitVal = 0; 666 LoopVal = 0; 667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668 if (Phi.getOperand(i + 1).getMBB() != Loop) 669 InitVal = Phi.getOperand(i).getReg(); 670 else 671 LoopVal = Phi.getOperand(i).getReg(); 672 673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 674 } 675 676 /// Return the Phi register value that comes the loop block. 677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 679 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 680 return Phi.getOperand(i).getReg(); 681 return 0; 682 } 683 684 /// Return true if SUb can be reached from SUa following the chain edges. 685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 686 SmallPtrSet<SUnit *, 8> Visited; 687 SmallVector<SUnit *, 8> Worklist; 688 Worklist.push_back(SUa); 689 while (!Worklist.empty()) { 690 const SUnit *SU = Worklist.pop_back_val(); 691 for (auto &SI : SU->Succs) { 692 SUnit *SuccSU = SI.getSUnit(); 693 if (SI.getKind() == SDep::Order) { 694 if (Visited.count(SuccSU)) 695 continue; 696 if (SuccSU == SUb) 697 return true; 698 Worklist.push_back(SuccSU); 699 Visited.insert(SuccSU); 700 } 701 } 702 } 703 return false; 704 } 705 706 /// Return true if the instruction causes a chain between memory 707 /// references before and after it. 708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 709 return MI.isCall() || MI.mayRaiseFPException() || 710 MI.hasUnmodeledSideEffects() || 711 (MI.hasOrderedMemoryRef() && 712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 713 } 714 715 /// Return the underlying objects for the memory references of an instruction. 716 /// This function calls the code in ValueTracking, but first checks that the 717 /// instruction has a memory operand. 718 static void getUnderlyingObjects(const MachineInstr *MI, 719 SmallVectorImpl<const Value *> &Objs) { 720 if (!MI->hasOneMemOperand()) 721 return; 722 MachineMemOperand *MM = *MI->memoperands_begin(); 723 if (!MM->getValue()) 724 return; 725 getUnderlyingObjects(MM->getValue(), Objs); 726 for (const Value *V : Objs) { 727 if (!isIdentifiedObject(V)) { 728 Objs.clear(); 729 return; 730 } 731 Objs.push_back(V); 732 } 733 } 734 735 /// Add a chain edge between a load and store if the store can be an 736 /// alias of the load on a subsequent iteration, i.e., a loop carried 737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 738 /// but that code doesn't create loop carried dependences. 739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 741 Value *UnknownValue = 742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 743 for (auto &SU : SUnits) { 744 MachineInstr &MI = *SU.getInstr(); 745 if (isDependenceBarrier(MI, AA)) 746 PendingLoads.clear(); 747 else if (MI.mayLoad()) { 748 SmallVector<const Value *, 4> Objs; 749 ::getUnderlyingObjects(&MI, Objs); 750 if (Objs.empty()) 751 Objs.push_back(UnknownValue); 752 for (auto V : Objs) { 753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 754 SUs.push_back(&SU); 755 } 756 } else if (MI.mayStore()) { 757 SmallVector<const Value *, 4> Objs; 758 ::getUnderlyingObjects(&MI, Objs); 759 if (Objs.empty()) 760 Objs.push_back(UnknownValue); 761 for (auto V : Objs) { 762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 763 PendingLoads.find(V); 764 if (I == PendingLoads.end()) 765 continue; 766 for (auto Load : I->second) { 767 if (isSuccOrder(Load, &SU)) 768 continue; 769 MachineInstr &LdMI = *Load->getInstr(); 770 // First, perform the cheaper check that compares the base register. 771 // If they are the same and the load offset is less than the store 772 // offset, then mark the dependence as loop carried potentially. 773 const MachineOperand *BaseOp1, *BaseOp2; 774 int64_t Offset1, Offset2; 775 bool Offset1IsScalable, Offset2IsScalable; 776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 777 Offset1IsScalable, TRI) && 778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 779 Offset2IsScalable, TRI)) { 780 if (BaseOp1->isIdenticalTo(*BaseOp2) && 781 Offset1IsScalable == Offset2IsScalable && 782 (int)Offset1 < (int)Offset2) { 783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 784 "What happened to the chain edge?"); 785 SDep Dep(Load, SDep::Barrier); 786 Dep.setLatency(1); 787 SU.addPred(Dep); 788 continue; 789 } 790 } 791 // Second, the more expensive check that uses alias analysis on the 792 // base registers. If they alias, and the load offset is less than 793 // the store offset, the mark the dependence as loop carried. 794 if (!AA) { 795 SDep Dep(Load, SDep::Barrier); 796 Dep.setLatency(1); 797 SU.addPred(Dep); 798 continue; 799 } 800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 801 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 802 if (!MMO1->getValue() || !MMO2->getValue()) { 803 SDep Dep(Load, SDep::Barrier); 804 Dep.setLatency(1); 805 SU.addPred(Dep); 806 continue; 807 } 808 if (MMO1->getValue() == MMO2->getValue() && 809 MMO1->getOffset() <= MMO2->getOffset()) { 810 SDep Dep(Load, SDep::Barrier); 811 Dep.setLatency(1); 812 SU.addPred(Dep); 813 continue; 814 } 815 AliasResult AAResult = AA->alias( 816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 817 MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); 818 819 if (AAResult != NoAlias) { 820 SDep Dep(Load, SDep::Barrier); 821 Dep.setLatency(1); 822 SU.addPred(Dep); 823 } 824 } 825 } 826 } 827 } 828 } 829 830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 831 /// processes dependences for PHIs. This function adds true dependences 832 /// from a PHI to a use, and a loop carried dependence from the use to the 833 /// PHI. The loop carried dependence is represented as an anti dependence 834 /// edge. This function also removes chain dependences between unrelated 835 /// PHIs. 836 void SwingSchedulerDAG::updatePhiDependences() { 837 SmallVector<SDep, 4> RemoveDeps; 838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 839 840 // Iterate over each DAG node. 841 for (SUnit &I : SUnits) { 842 RemoveDeps.clear(); 843 // Set to true if the instruction has an operand defined by a Phi. 844 unsigned HasPhiUse = 0; 845 unsigned HasPhiDef = 0; 846 MachineInstr *MI = I.getInstr(); 847 // Iterate over each operand, and we process the definitions. 848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 849 MOE = MI->operands_end(); 850 MOI != MOE; ++MOI) { 851 if (!MOI->isReg()) 852 continue; 853 Register Reg = MOI->getReg(); 854 if (MOI->isDef()) { 855 // If the register is used by a Phi, then create an anti dependence. 856 for (MachineRegisterInfo::use_instr_iterator 857 UI = MRI.use_instr_begin(Reg), 858 UE = MRI.use_instr_end(); 859 UI != UE; ++UI) { 860 MachineInstr *UseMI = &*UI; 861 SUnit *SU = getSUnit(UseMI); 862 if (SU != nullptr && UseMI->isPHI()) { 863 if (!MI->isPHI()) { 864 SDep Dep(SU, SDep::Anti, Reg); 865 Dep.setLatency(1); 866 I.addPred(Dep); 867 } else { 868 HasPhiDef = Reg; 869 // Add a chain edge to a dependent Phi that isn't an existing 870 // predecessor. 871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 872 I.addPred(SDep(SU, SDep::Barrier)); 873 } 874 } 875 } 876 } else if (MOI->isUse()) { 877 // If the register is defined by a Phi, then create a true dependence. 878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 879 if (DefMI == nullptr) 880 continue; 881 SUnit *SU = getSUnit(DefMI); 882 if (SU != nullptr && DefMI->isPHI()) { 883 if (!MI->isPHI()) { 884 SDep Dep(SU, SDep::Data, Reg); 885 Dep.setLatency(0); 886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 887 I.addPred(Dep); 888 } else { 889 HasPhiUse = Reg; 890 // Add a chain edge to a dependent Phi that isn't an existing 891 // predecessor. 892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 893 I.addPred(SDep(SU, SDep::Barrier)); 894 } 895 } 896 } 897 } 898 // Remove order dependences from an unrelated Phi. 899 if (!SwpPruneDeps) 900 continue; 901 for (auto &PI : I.Preds) { 902 MachineInstr *PMI = PI.getSUnit()->getInstr(); 903 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 904 if (I.getInstr()->isPHI()) { 905 if (PMI->getOperand(0).getReg() == HasPhiUse) 906 continue; 907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 908 continue; 909 } 910 RemoveDeps.push_back(PI); 911 } 912 } 913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 914 I.removePred(RemoveDeps[i]); 915 } 916 } 917 918 /// Iterate over each DAG node and see if we can change any dependences 919 /// in order to reduce the recurrence MII. 920 void SwingSchedulerDAG::changeDependences() { 921 // See if an instruction can use a value from the previous iteration. 922 // If so, we update the base and offset of the instruction and change 923 // the dependences. 924 for (SUnit &I : SUnits) { 925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 926 int64_t NewOffset = 0; 927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 928 NewOffset)) 929 continue; 930 931 // Get the MI and SUnit for the instruction that defines the original base. 932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 934 if (!DefMI) 935 continue; 936 SUnit *DefSU = getSUnit(DefMI); 937 if (!DefSU) 938 continue; 939 // Get the MI and SUnit for the instruction that defins the new base. 940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 941 if (!LastMI) 942 continue; 943 SUnit *LastSU = getSUnit(LastMI); 944 if (!LastSU) 945 continue; 946 947 if (Topo.IsReachable(&I, LastSU)) 948 continue; 949 950 // Remove the dependence. The value now depends on a prior iteration. 951 SmallVector<SDep, 4> Deps; 952 for (const SDep &P : I.Preds) 953 if (P.getSUnit() == DefSU) 954 Deps.push_back(P); 955 for (int i = 0, e = Deps.size(); i != e; i++) { 956 Topo.RemovePred(&I, Deps[i].getSUnit()); 957 I.removePred(Deps[i]); 958 } 959 // Remove the chain dependence between the instructions. 960 Deps.clear(); 961 for (auto &P : LastSU->Preds) 962 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 963 Deps.push_back(P); 964 for (int i = 0, e = Deps.size(); i != e; i++) { 965 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 966 LastSU->removePred(Deps[i]); 967 } 968 969 // Add a dependence between the new instruction and the instruction 970 // that defines the new base. 971 SDep Dep(&I, SDep::Anti, NewBase); 972 Topo.AddPred(LastSU, &I); 973 LastSU->addPred(Dep); 974 975 // Remember the base and offset information so that we can update the 976 // instruction during code generation. 977 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 978 } 979 } 980 981 namespace { 982 983 // FuncUnitSorter - Comparison operator used to sort instructions by 984 // the number of functional unit choices. 985 struct FuncUnitSorter { 986 const InstrItineraryData *InstrItins; 987 const MCSubtargetInfo *STI; 988 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 989 990 FuncUnitSorter(const TargetSubtargetInfo &TSI) 991 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 992 993 // Compute the number of functional unit alternatives needed 994 // at each stage, and take the minimum value. We prioritize the 995 // instructions by the least number of choices first. 996 unsigned minFuncUnits(const MachineInstr *Inst, 997 InstrStage::FuncUnits &F) const { 998 unsigned SchedClass = Inst->getDesc().getSchedClass(); 999 unsigned min = UINT_MAX; 1000 if (InstrItins && !InstrItins->isEmpty()) { 1001 for (const InstrStage &IS : 1002 make_range(InstrItins->beginStage(SchedClass), 1003 InstrItins->endStage(SchedClass))) { 1004 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1005 unsigned numAlternatives = countPopulation(funcUnits); 1006 if (numAlternatives < min) { 1007 min = numAlternatives; 1008 F = funcUnits; 1009 } 1010 } 1011 return min; 1012 } 1013 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1014 const MCSchedClassDesc *SCDesc = 1015 STI->getSchedModel().getSchedClassDesc(SchedClass); 1016 if (!SCDesc->isValid()) 1017 // No valid Schedule Class Desc for schedClass, should be 1018 // Pseudo/PostRAPseudo 1019 return min; 1020 1021 for (const MCWriteProcResEntry &PRE : 1022 make_range(STI->getWriteProcResBegin(SCDesc), 1023 STI->getWriteProcResEnd(SCDesc))) { 1024 if (!PRE.Cycles) 1025 continue; 1026 const MCProcResourceDesc *ProcResource = 1027 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1028 unsigned NumUnits = ProcResource->NumUnits; 1029 if (NumUnits < min) { 1030 min = NumUnits; 1031 F = PRE.ProcResourceIdx; 1032 } 1033 } 1034 return min; 1035 } 1036 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1037 } 1038 1039 // Compute the critical resources needed by the instruction. This 1040 // function records the functional units needed by instructions that 1041 // must use only one functional unit. We use this as a tie breaker 1042 // for computing the resource MII. The instrutions that require 1043 // the same, highly used, functional unit have high priority. 1044 void calcCriticalResources(MachineInstr &MI) { 1045 unsigned SchedClass = MI.getDesc().getSchedClass(); 1046 if (InstrItins && !InstrItins->isEmpty()) { 1047 for (const InstrStage &IS : 1048 make_range(InstrItins->beginStage(SchedClass), 1049 InstrItins->endStage(SchedClass))) { 1050 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1051 if (countPopulation(FuncUnits) == 1) 1052 Resources[FuncUnits]++; 1053 } 1054 return; 1055 } 1056 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1057 const MCSchedClassDesc *SCDesc = 1058 STI->getSchedModel().getSchedClassDesc(SchedClass); 1059 if (!SCDesc->isValid()) 1060 // No valid Schedule Class Desc for schedClass, should be 1061 // Pseudo/PostRAPseudo 1062 return; 1063 1064 for (const MCWriteProcResEntry &PRE : 1065 make_range(STI->getWriteProcResBegin(SCDesc), 1066 STI->getWriteProcResEnd(SCDesc))) { 1067 if (!PRE.Cycles) 1068 continue; 1069 Resources[PRE.ProcResourceIdx]++; 1070 } 1071 return; 1072 } 1073 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1074 } 1075 1076 /// Return true if IS1 has less priority than IS2. 1077 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1078 InstrStage::FuncUnits F1 = 0, F2 = 0; 1079 unsigned MFUs1 = minFuncUnits(IS1, F1); 1080 unsigned MFUs2 = minFuncUnits(IS2, F2); 1081 if (MFUs1 == MFUs2) 1082 return Resources.lookup(F1) < Resources.lookup(F2); 1083 return MFUs1 > MFUs2; 1084 } 1085 }; 1086 1087 } // end anonymous namespace 1088 1089 /// Calculate the resource constrained minimum initiation interval for the 1090 /// specified loop. We use the DFA to model the resources needed for 1091 /// each instruction, and we ignore dependences. A different DFA is created 1092 /// for each cycle that is required. When adding a new instruction, we attempt 1093 /// to add it to each existing DFA, until a legal space is found. If the 1094 /// instruction cannot be reserved in an existing DFA, we create a new one. 1095 unsigned SwingSchedulerDAG::calculateResMII() { 1096 1097 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1098 SmallVector<ResourceManager*, 8> Resources; 1099 MachineBasicBlock *MBB = Loop.getHeader(); 1100 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1101 1102 // Sort the instructions by the number of available choices for scheduling, 1103 // least to most. Use the number of critical resources as the tie breaker. 1104 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1105 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1106 E = MBB->getFirstTerminator(); 1107 I != E; ++I) 1108 FUS.calcCriticalResources(*I); 1109 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1110 FuncUnitOrder(FUS); 1111 1112 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1113 E = MBB->getFirstTerminator(); 1114 I != E; ++I) 1115 FuncUnitOrder.push(&*I); 1116 1117 while (!FuncUnitOrder.empty()) { 1118 MachineInstr *MI = FuncUnitOrder.top(); 1119 FuncUnitOrder.pop(); 1120 if (TII->isZeroCost(MI->getOpcode())) 1121 continue; 1122 // Attempt to reserve the instruction in an existing DFA. At least one 1123 // DFA is needed for each cycle. 1124 unsigned NumCycles = getSUnit(MI)->Latency; 1125 unsigned ReservedCycles = 0; 1126 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1127 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1128 LLVM_DEBUG({ 1129 dbgs() << "Trying to reserve resource for " << NumCycles 1130 << " cycles for \n"; 1131 MI->dump(); 1132 }); 1133 for (unsigned C = 0; C < NumCycles; ++C) 1134 while (RI != RE) { 1135 if ((*RI)->canReserveResources(*MI)) { 1136 (*RI)->reserveResources(*MI); 1137 ++ReservedCycles; 1138 break; 1139 } 1140 RI++; 1141 } 1142 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1143 << ", NumCycles:" << NumCycles << "\n"); 1144 // Add new DFAs, if needed, to reserve resources. 1145 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1146 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1147 << "NewResource created to reserve resources" 1148 << "\n"); 1149 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1150 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1151 NewResource->reserveResources(*MI); 1152 Resources.push_back(NewResource); 1153 } 1154 } 1155 int Resmii = Resources.size(); 1156 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1157 // Delete the memory for each of the DFAs that were created earlier. 1158 for (ResourceManager *RI : Resources) { 1159 ResourceManager *D = RI; 1160 delete D; 1161 } 1162 Resources.clear(); 1163 return Resmii; 1164 } 1165 1166 /// Calculate the recurrence-constrainted minimum initiation interval. 1167 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1168 /// for each circuit. The II needs to satisfy the inequality 1169 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1170 /// II that satisfies the inequality, and the RecMII is the maximum 1171 /// of those values. 1172 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1173 unsigned RecMII = 0; 1174 1175 for (NodeSet &Nodes : NodeSets) { 1176 if (Nodes.empty()) 1177 continue; 1178 1179 unsigned Delay = Nodes.getLatency(); 1180 unsigned Distance = 1; 1181 1182 // ii = ceil(delay / distance) 1183 unsigned CurMII = (Delay + Distance - 1) / Distance; 1184 Nodes.setRecMII(CurMII); 1185 if (CurMII > RecMII) 1186 RecMII = CurMII; 1187 } 1188 1189 return RecMII; 1190 } 1191 1192 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1193 /// but we do this to find the circuits, and then change them back. 1194 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1195 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1196 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1197 SUnit *SU = &SUnits[i]; 1198 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1199 IP != EP; ++IP) { 1200 if (IP->getKind() != SDep::Anti) 1201 continue; 1202 DepsAdded.push_back(std::make_pair(SU, *IP)); 1203 } 1204 } 1205 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1206 // Remove this anti dependency and add one in the reverse direction. 1207 SUnit *SU = P.first; 1208 SDep &D = P.second; 1209 SUnit *TargetSU = D.getSUnit(); 1210 unsigned Reg = D.getReg(); 1211 unsigned Lat = D.getLatency(); 1212 SU->removePred(D); 1213 SDep Dep(SU, SDep::Anti, Reg); 1214 Dep.setLatency(Lat); 1215 TargetSU->addPred(Dep); 1216 } 1217 } 1218 1219 /// Create the adjacency structure of the nodes in the graph. 1220 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1221 SwingSchedulerDAG *DAG) { 1222 BitVector Added(SUnits.size()); 1223 DenseMap<int, int> OutputDeps; 1224 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1225 Added.reset(); 1226 // Add any successor to the adjacency matrix and exclude duplicates. 1227 for (auto &SI : SUnits[i].Succs) { 1228 // Only create a back-edge on the first and last nodes of a dependence 1229 // chain. This records any chains and adds them later. 1230 if (SI.getKind() == SDep::Output) { 1231 int N = SI.getSUnit()->NodeNum; 1232 int BackEdge = i; 1233 auto Dep = OutputDeps.find(BackEdge); 1234 if (Dep != OutputDeps.end()) { 1235 BackEdge = Dep->second; 1236 OutputDeps.erase(Dep); 1237 } 1238 OutputDeps[N] = BackEdge; 1239 } 1240 // Do not process a boundary node, an artificial node. 1241 // A back-edge is processed only if it goes to a Phi. 1242 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1243 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1244 continue; 1245 int N = SI.getSUnit()->NodeNum; 1246 if (!Added.test(N)) { 1247 AdjK[i].push_back(N); 1248 Added.set(N); 1249 } 1250 } 1251 // A chain edge between a store and a load is treated as a back-edge in the 1252 // adjacency matrix. 1253 for (auto &PI : SUnits[i].Preds) { 1254 if (!SUnits[i].getInstr()->mayStore() || 1255 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1256 continue; 1257 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1258 int N = PI.getSUnit()->NodeNum; 1259 if (!Added.test(N)) { 1260 AdjK[i].push_back(N); 1261 Added.set(N); 1262 } 1263 } 1264 } 1265 } 1266 // Add back-edges in the adjacency matrix for the output dependences. 1267 for (auto &OD : OutputDeps) 1268 if (!Added.test(OD.second)) { 1269 AdjK[OD.first].push_back(OD.second); 1270 Added.set(OD.second); 1271 } 1272 } 1273 1274 /// Identify an elementary circuit in the dependence graph starting at the 1275 /// specified node. 1276 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1277 bool HasBackedge) { 1278 SUnit *SV = &SUnits[V]; 1279 bool F = false; 1280 Stack.insert(SV); 1281 Blocked.set(V); 1282 1283 for (auto W : AdjK[V]) { 1284 if (NumPaths > MaxPaths) 1285 break; 1286 if (W < S) 1287 continue; 1288 if (W == S) { 1289 if (!HasBackedge) 1290 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1291 F = true; 1292 ++NumPaths; 1293 break; 1294 } else if (!Blocked.test(W)) { 1295 if (circuit(W, S, NodeSets, 1296 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1297 F = true; 1298 } 1299 } 1300 1301 if (F) 1302 unblock(V); 1303 else { 1304 for (auto W : AdjK[V]) { 1305 if (W < S) 1306 continue; 1307 if (B[W].count(SV) == 0) 1308 B[W].insert(SV); 1309 } 1310 } 1311 Stack.pop_back(); 1312 return F; 1313 } 1314 1315 /// Unblock a node in the circuit finding algorithm. 1316 void SwingSchedulerDAG::Circuits::unblock(int U) { 1317 Blocked.reset(U); 1318 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1319 while (!BU.empty()) { 1320 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1321 assert(SI != BU.end() && "Invalid B set."); 1322 SUnit *W = *SI; 1323 BU.erase(W); 1324 if (Blocked.test(W->NodeNum)) 1325 unblock(W->NodeNum); 1326 } 1327 } 1328 1329 /// Identify all the elementary circuits in the dependence graph using 1330 /// Johnson's circuit algorithm. 1331 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1332 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1333 // but we do this to find the circuits, and then change them back. 1334 swapAntiDependences(SUnits); 1335 1336 Circuits Cir(SUnits, Topo); 1337 // Create the adjacency structure. 1338 Cir.createAdjacencyStructure(this); 1339 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1340 Cir.reset(); 1341 Cir.circuit(i, i, NodeSets); 1342 } 1343 1344 // Change the dependences back so that we've created a DAG again. 1345 swapAntiDependences(SUnits); 1346 } 1347 1348 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1349 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1350 // additional copies that are needed across iterations. An artificial dependence 1351 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1352 1353 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1354 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1355 // PHI-------True-Dep------> USEOfPhi 1356 1357 // The mutation creates 1358 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1359 1360 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1361 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1362 // late to avoid additional copies across iterations. The possible scheduling 1363 // order would be 1364 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1365 1366 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1367 for (SUnit &SU : DAG->SUnits) { 1368 // Find the COPY/REG_SEQUENCE instruction. 1369 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1370 continue; 1371 1372 // Record the loop carried PHIs. 1373 SmallVector<SUnit *, 4> PHISUs; 1374 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1375 SmallVector<SUnit *, 4> SrcSUs; 1376 1377 for (auto &Dep : SU.Preds) { 1378 SUnit *TmpSU = Dep.getSUnit(); 1379 MachineInstr *TmpMI = TmpSU->getInstr(); 1380 SDep::Kind DepKind = Dep.getKind(); 1381 // Save the loop carried PHI. 1382 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1383 PHISUs.push_back(TmpSU); 1384 // Save the source of COPY/REG_SEQUENCE. 1385 // If the source has no pre-decessors, we will end up creating cycles. 1386 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1387 SrcSUs.push_back(TmpSU); 1388 } 1389 1390 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1391 continue; 1392 1393 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1394 // SUnit to the container. 1395 SmallVector<SUnit *, 8> UseSUs; 1396 // Do not use iterator based loop here as we are updating the container. 1397 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1398 for (auto &Dep : PHISUs[Index]->Succs) { 1399 if (Dep.getKind() != SDep::Data) 1400 continue; 1401 1402 SUnit *TmpSU = Dep.getSUnit(); 1403 MachineInstr *TmpMI = TmpSU->getInstr(); 1404 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1405 PHISUs.push_back(TmpSU); 1406 continue; 1407 } 1408 UseSUs.push_back(TmpSU); 1409 } 1410 } 1411 1412 if (UseSUs.size() == 0) 1413 continue; 1414 1415 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1416 // Add the artificial dependencies if it does not form a cycle. 1417 for (auto I : UseSUs) { 1418 for (auto Src : SrcSUs) { 1419 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1420 Src->addPred(SDep(I, SDep::Artificial)); 1421 SDAG->Topo.AddPred(Src, I); 1422 } 1423 } 1424 } 1425 } 1426 } 1427 1428 /// Return true for DAG nodes that we ignore when computing the cost functions. 1429 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1430 /// in the calculation of the ASAP, ALAP, etc functions. 1431 static bool ignoreDependence(const SDep &D, bool isPred) { 1432 if (D.isArtificial()) 1433 return true; 1434 return D.getKind() == SDep::Anti && isPred; 1435 } 1436 1437 /// Compute several functions need to order the nodes for scheduling. 1438 /// ASAP - Earliest time to schedule a node. 1439 /// ALAP - Latest time to schedule a node. 1440 /// MOV - Mobility function, difference between ALAP and ASAP. 1441 /// D - Depth of each node. 1442 /// H - Height of each node. 1443 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1444 ScheduleInfo.resize(SUnits.size()); 1445 1446 LLVM_DEBUG({ 1447 for (int I : Topo) { 1448 const SUnit &SU = SUnits[I]; 1449 dumpNode(SU); 1450 } 1451 }); 1452 1453 int maxASAP = 0; 1454 // Compute ASAP and ZeroLatencyDepth. 1455 for (int I : Topo) { 1456 int asap = 0; 1457 int zeroLatencyDepth = 0; 1458 SUnit *SU = &SUnits[I]; 1459 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1460 EP = SU->Preds.end(); 1461 IP != EP; ++IP) { 1462 SUnit *pred = IP->getSUnit(); 1463 if (IP->getLatency() == 0) 1464 zeroLatencyDepth = 1465 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1466 if (ignoreDependence(*IP, true)) 1467 continue; 1468 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1469 getDistance(pred, SU, *IP) * MII)); 1470 } 1471 maxASAP = std::max(maxASAP, asap); 1472 ScheduleInfo[I].ASAP = asap; 1473 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1474 } 1475 1476 // Compute ALAP, ZeroLatencyHeight, and MOV. 1477 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1478 E = Topo.rend(); 1479 I != E; ++I) { 1480 int alap = maxASAP; 1481 int zeroLatencyHeight = 0; 1482 SUnit *SU = &SUnits[*I]; 1483 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1484 ES = SU->Succs.end(); 1485 IS != ES; ++IS) { 1486 SUnit *succ = IS->getSUnit(); 1487 if (IS->getLatency() == 0) 1488 zeroLatencyHeight = 1489 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1490 if (ignoreDependence(*IS, true)) 1491 continue; 1492 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1493 getDistance(SU, succ, *IS) * MII)); 1494 } 1495 1496 ScheduleInfo[*I].ALAP = alap; 1497 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1498 } 1499 1500 // After computing the node functions, compute the summary for each node set. 1501 for (NodeSet &I : NodeSets) 1502 I.computeNodeSetInfo(this); 1503 1504 LLVM_DEBUG({ 1505 for (unsigned i = 0; i < SUnits.size(); i++) { 1506 dbgs() << "\tNode " << i << ":\n"; 1507 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1508 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1509 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1510 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1511 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1512 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1513 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1514 } 1515 }); 1516 } 1517 1518 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1519 /// as the predecessors of the elements of NodeOrder that are not also in 1520 /// NodeOrder. 1521 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1522 SmallSetVector<SUnit *, 8> &Preds, 1523 const NodeSet *S = nullptr) { 1524 Preds.clear(); 1525 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1526 I != E; ++I) { 1527 for (const SDep &Pred : (*I)->Preds) { 1528 if (S && S->count(Pred.getSUnit()) == 0) 1529 continue; 1530 if (ignoreDependence(Pred, true)) 1531 continue; 1532 if (NodeOrder.count(Pred.getSUnit()) == 0) 1533 Preds.insert(Pred.getSUnit()); 1534 } 1535 // Back-edges are predecessors with an anti-dependence. 1536 for (const SDep &Succ : (*I)->Succs) { 1537 if (Succ.getKind() != SDep::Anti) 1538 continue; 1539 if (S && S->count(Succ.getSUnit()) == 0) 1540 continue; 1541 if (NodeOrder.count(Succ.getSUnit()) == 0) 1542 Preds.insert(Succ.getSUnit()); 1543 } 1544 } 1545 return !Preds.empty(); 1546 } 1547 1548 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1549 /// as the successors of the elements of NodeOrder that are not also in 1550 /// NodeOrder. 1551 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1552 SmallSetVector<SUnit *, 8> &Succs, 1553 const NodeSet *S = nullptr) { 1554 Succs.clear(); 1555 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1556 I != E; ++I) { 1557 for (SDep &Succ : (*I)->Succs) { 1558 if (S && S->count(Succ.getSUnit()) == 0) 1559 continue; 1560 if (ignoreDependence(Succ, false)) 1561 continue; 1562 if (NodeOrder.count(Succ.getSUnit()) == 0) 1563 Succs.insert(Succ.getSUnit()); 1564 } 1565 for (SDep &Pred : (*I)->Preds) { 1566 if (Pred.getKind() != SDep::Anti) 1567 continue; 1568 if (S && S->count(Pred.getSUnit()) == 0) 1569 continue; 1570 if (NodeOrder.count(Pred.getSUnit()) == 0) 1571 Succs.insert(Pred.getSUnit()); 1572 } 1573 } 1574 return !Succs.empty(); 1575 } 1576 1577 /// Return true if there is a path from the specified node to any of the nodes 1578 /// in DestNodes. Keep track and return the nodes in any path. 1579 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1580 SetVector<SUnit *> &DestNodes, 1581 SetVector<SUnit *> &Exclude, 1582 SmallPtrSet<SUnit *, 8> &Visited) { 1583 if (Cur->isBoundaryNode()) 1584 return false; 1585 if (Exclude.contains(Cur)) 1586 return false; 1587 if (DestNodes.contains(Cur)) 1588 return true; 1589 if (!Visited.insert(Cur).second) 1590 return Path.contains(Cur); 1591 bool FoundPath = false; 1592 for (auto &SI : Cur->Succs) 1593 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1594 for (auto &PI : Cur->Preds) 1595 if (PI.getKind() == SDep::Anti) 1596 FoundPath |= 1597 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1598 if (FoundPath) 1599 Path.insert(Cur); 1600 return FoundPath; 1601 } 1602 1603 /// Return true if Set1 is a subset of Set2. 1604 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1605 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1606 if (Set2.count(*I) == 0) 1607 return false; 1608 return true; 1609 } 1610 1611 /// Compute the live-out registers for the instructions in a node-set. 1612 /// The live-out registers are those that are defined in the node-set, 1613 /// but not used. Except for use operands of Phis. 1614 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1615 NodeSet &NS) { 1616 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1617 MachineRegisterInfo &MRI = MF.getRegInfo(); 1618 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1619 SmallSet<unsigned, 4> Uses; 1620 for (SUnit *SU : NS) { 1621 const MachineInstr *MI = SU->getInstr(); 1622 if (MI->isPHI()) 1623 continue; 1624 for (const MachineOperand &MO : MI->operands()) 1625 if (MO.isReg() && MO.isUse()) { 1626 Register Reg = MO.getReg(); 1627 if (Register::isVirtualRegister(Reg)) 1628 Uses.insert(Reg); 1629 else if (MRI.isAllocatable(Reg)) 1630 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1631 ++Units) 1632 Uses.insert(*Units); 1633 } 1634 } 1635 for (SUnit *SU : NS) 1636 for (const MachineOperand &MO : SU->getInstr()->operands()) 1637 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1638 Register Reg = MO.getReg(); 1639 if (Register::isVirtualRegister(Reg)) { 1640 if (!Uses.count(Reg)) 1641 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1642 LaneBitmask::getNone())); 1643 } else if (MRI.isAllocatable(Reg)) { 1644 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1645 ++Units) 1646 if (!Uses.count(*Units)) 1647 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1648 LaneBitmask::getNone())); 1649 } 1650 } 1651 RPTracker.addLiveRegs(LiveOutRegs); 1652 } 1653 1654 /// A heuristic to filter nodes in recurrent node-sets if the register 1655 /// pressure of a set is too high. 1656 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1657 for (auto &NS : NodeSets) { 1658 // Skip small node-sets since they won't cause register pressure problems. 1659 if (NS.size() <= 2) 1660 continue; 1661 IntervalPressure RecRegPressure; 1662 RegPressureTracker RecRPTracker(RecRegPressure); 1663 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1664 computeLiveOuts(MF, RecRPTracker, NS); 1665 RecRPTracker.closeBottom(); 1666 1667 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1668 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1669 return A->NodeNum > B->NodeNum; 1670 }); 1671 1672 for (auto &SU : SUnits) { 1673 // Since we're computing the register pressure for a subset of the 1674 // instructions in a block, we need to set the tracker for each 1675 // instruction in the node-set. The tracker is set to the instruction 1676 // just after the one we're interested in. 1677 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1678 RecRPTracker.setPos(std::next(CurInstI)); 1679 1680 RegPressureDelta RPDelta; 1681 ArrayRef<PressureChange> CriticalPSets; 1682 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1683 CriticalPSets, 1684 RecRegPressure.MaxSetPressure); 1685 if (RPDelta.Excess.isValid()) { 1686 LLVM_DEBUG( 1687 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1688 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1689 << ":" << RPDelta.Excess.getUnitInc()); 1690 NS.setExceedPressure(SU); 1691 break; 1692 } 1693 RecRPTracker.recede(); 1694 } 1695 } 1696 } 1697 1698 /// A heuristic to colocate node sets that have the same set of 1699 /// successors. 1700 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1701 unsigned Colocate = 0; 1702 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1703 NodeSet &N1 = NodeSets[i]; 1704 SmallSetVector<SUnit *, 8> S1; 1705 if (N1.empty() || !succ_L(N1, S1)) 1706 continue; 1707 for (int j = i + 1; j < e; ++j) { 1708 NodeSet &N2 = NodeSets[j]; 1709 if (N1.compareRecMII(N2) != 0) 1710 continue; 1711 SmallSetVector<SUnit *, 8> S2; 1712 if (N2.empty() || !succ_L(N2, S2)) 1713 continue; 1714 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1715 N1.setColocate(++Colocate); 1716 N2.setColocate(Colocate); 1717 break; 1718 } 1719 } 1720 } 1721 } 1722 1723 /// Check if the existing node-sets are profitable. If not, then ignore the 1724 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1725 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1726 /// then it's best to try to schedule all instructions together instead of 1727 /// starting with the recurrent node-sets. 1728 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1729 // Look for loops with a large MII. 1730 if (MII < 17) 1731 return; 1732 // Check if the node-set contains only a simple add recurrence. 1733 for (auto &NS : NodeSets) { 1734 if (NS.getRecMII() > 2) 1735 return; 1736 if (NS.getMaxDepth() > MII) 1737 return; 1738 } 1739 NodeSets.clear(); 1740 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1741 } 1742 1743 /// Add the nodes that do not belong to a recurrence set into groups 1744 /// based upon connected componenets. 1745 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1746 SetVector<SUnit *> NodesAdded; 1747 SmallPtrSet<SUnit *, 8> Visited; 1748 // Add the nodes that are on a path between the previous node sets and 1749 // the current node set. 1750 for (NodeSet &I : NodeSets) { 1751 SmallSetVector<SUnit *, 8> N; 1752 // Add the nodes from the current node set to the previous node set. 1753 if (succ_L(I, N)) { 1754 SetVector<SUnit *> Path; 1755 for (SUnit *NI : N) { 1756 Visited.clear(); 1757 computePath(NI, Path, NodesAdded, I, Visited); 1758 } 1759 if (!Path.empty()) 1760 I.insert(Path.begin(), Path.end()); 1761 } 1762 // Add the nodes from the previous node set to the current node set. 1763 N.clear(); 1764 if (succ_L(NodesAdded, N)) { 1765 SetVector<SUnit *> Path; 1766 for (SUnit *NI : N) { 1767 Visited.clear(); 1768 computePath(NI, Path, I, NodesAdded, Visited); 1769 } 1770 if (!Path.empty()) 1771 I.insert(Path.begin(), Path.end()); 1772 } 1773 NodesAdded.insert(I.begin(), I.end()); 1774 } 1775 1776 // Create a new node set with the connected nodes of any successor of a node 1777 // in a recurrent set. 1778 NodeSet NewSet; 1779 SmallSetVector<SUnit *, 8> N; 1780 if (succ_L(NodesAdded, N)) 1781 for (SUnit *I : N) 1782 addConnectedNodes(I, NewSet, NodesAdded); 1783 if (!NewSet.empty()) 1784 NodeSets.push_back(NewSet); 1785 1786 // Create a new node set with the connected nodes of any predecessor of a node 1787 // in a recurrent set. 1788 NewSet.clear(); 1789 if (pred_L(NodesAdded, N)) 1790 for (SUnit *I : N) 1791 addConnectedNodes(I, NewSet, NodesAdded); 1792 if (!NewSet.empty()) 1793 NodeSets.push_back(NewSet); 1794 1795 // Create new nodes sets with the connected nodes any remaining node that 1796 // has no predecessor. 1797 for (SUnit &SU : SUnits) { 1798 if (NodesAdded.count(&SU) == 0) { 1799 NewSet.clear(); 1800 addConnectedNodes(&SU, NewSet, NodesAdded); 1801 if (!NewSet.empty()) 1802 NodeSets.push_back(NewSet); 1803 } 1804 } 1805 } 1806 1807 /// Add the node to the set, and add all of its connected nodes to the set. 1808 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1809 SetVector<SUnit *> &NodesAdded) { 1810 NewSet.insert(SU); 1811 NodesAdded.insert(SU); 1812 for (auto &SI : SU->Succs) { 1813 SUnit *Successor = SI.getSUnit(); 1814 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1815 addConnectedNodes(Successor, NewSet, NodesAdded); 1816 } 1817 for (auto &PI : SU->Preds) { 1818 SUnit *Predecessor = PI.getSUnit(); 1819 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1820 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1821 } 1822 } 1823 1824 /// Return true if Set1 contains elements in Set2. The elements in common 1825 /// are returned in a different container. 1826 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1827 SmallSetVector<SUnit *, 8> &Result) { 1828 Result.clear(); 1829 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1830 SUnit *SU = Set1[i]; 1831 if (Set2.count(SU) != 0) 1832 Result.insert(SU); 1833 } 1834 return !Result.empty(); 1835 } 1836 1837 /// Merge the recurrence node sets that have the same initial node. 1838 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1839 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1840 ++I) { 1841 NodeSet &NI = *I; 1842 for (NodeSetType::iterator J = I + 1; J != E;) { 1843 NodeSet &NJ = *J; 1844 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1845 if (NJ.compareRecMII(NI) > 0) 1846 NI.setRecMII(NJ.getRecMII()); 1847 for (SUnit *SU : *J) 1848 I->insert(SU); 1849 NodeSets.erase(J); 1850 E = NodeSets.end(); 1851 } else { 1852 ++J; 1853 } 1854 } 1855 } 1856 } 1857 1858 /// Remove nodes that have been scheduled in previous NodeSets. 1859 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1860 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1861 ++I) 1862 for (NodeSetType::iterator J = I + 1; J != E;) { 1863 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1864 1865 if (J->empty()) { 1866 NodeSets.erase(J); 1867 E = NodeSets.end(); 1868 } else { 1869 ++J; 1870 } 1871 } 1872 } 1873 1874 /// Compute an ordered list of the dependence graph nodes, which 1875 /// indicates the order that the nodes will be scheduled. This is a 1876 /// two-level algorithm. First, a partial order is created, which 1877 /// consists of a list of sets ordered from highest to lowest priority. 1878 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1879 SmallSetVector<SUnit *, 8> R; 1880 NodeOrder.clear(); 1881 1882 for (auto &Nodes : NodeSets) { 1883 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1884 OrderKind Order; 1885 SmallSetVector<SUnit *, 8> N; 1886 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1887 R.insert(N.begin(), N.end()); 1888 Order = BottomUp; 1889 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1890 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1891 R.insert(N.begin(), N.end()); 1892 Order = TopDown; 1893 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1894 } else if (isIntersect(N, Nodes, R)) { 1895 // If some of the successors are in the existing node-set, then use the 1896 // top-down ordering. 1897 Order = TopDown; 1898 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1899 } else if (NodeSets.size() == 1) { 1900 for (auto &N : Nodes) 1901 if (N->Succs.size() == 0) 1902 R.insert(N); 1903 Order = BottomUp; 1904 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1905 } else { 1906 // Find the node with the highest ASAP. 1907 SUnit *maxASAP = nullptr; 1908 for (SUnit *SU : Nodes) { 1909 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1910 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1911 maxASAP = SU; 1912 } 1913 R.insert(maxASAP); 1914 Order = BottomUp; 1915 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1916 } 1917 1918 while (!R.empty()) { 1919 if (Order == TopDown) { 1920 // Choose the node with the maximum height. If more than one, choose 1921 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1922 // choose the node with the lowest MOV. 1923 while (!R.empty()) { 1924 SUnit *maxHeight = nullptr; 1925 for (SUnit *I : R) { 1926 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1927 maxHeight = I; 1928 else if (getHeight(I) == getHeight(maxHeight) && 1929 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1930 maxHeight = I; 1931 else if (getHeight(I) == getHeight(maxHeight) && 1932 getZeroLatencyHeight(I) == 1933 getZeroLatencyHeight(maxHeight) && 1934 getMOV(I) < getMOV(maxHeight)) 1935 maxHeight = I; 1936 } 1937 NodeOrder.insert(maxHeight); 1938 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1939 R.remove(maxHeight); 1940 for (const auto &I : maxHeight->Succs) { 1941 if (Nodes.count(I.getSUnit()) == 0) 1942 continue; 1943 if (NodeOrder.contains(I.getSUnit())) 1944 continue; 1945 if (ignoreDependence(I, false)) 1946 continue; 1947 R.insert(I.getSUnit()); 1948 } 1949 // Back-edges are predecessors with an anti-dependence. 1950 for (const auto &I : maxHeight->Preds) { 1951 if (I.getKind() != SDep::Anti) 1952 continue; 1953 if (Nodes.count(I.getSUnit()) == 0) 1954 continue; 1955 if (NodeOrder.contains(I.getSUnit())) 1956 continue; 1957 R.insert(I.getSUnit()); 1958 } 1959 } 1960 Order = BottomUp; 1961 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1962 SmallSetVector<SUnit *, 8> N; 1963 if (pred_L(NodeOrder, N, &Nodes)) 1964 R.insert(N.begin(), N.end()); 1965 } else { 1966 // Choose the node with the maximum depth. If more than one, choose 1967 // the node with the maximum ZeroLatencyDepth. If still more than one, 1968 // choose the node with the lowest MOV. 1969 while (!R.empty()) { 1970 SUnit *maxDepth = nullptr; 1971 for (SUnit *I : R) { 1972 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1973 maxDepth = I; 1974 else if (getDepth(I) == getDepth(maxDepth) && 1975 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1976 maxDepth = I; 1977 else if (getDepth(I) == getDepth(maxDepth) && 1978 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1979 getMOV(I) < getMOV(maxDepth)) 1980 maxDepth = I; 1981 } 1982 NodeOrder.insert(maxDepth); 1983 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1984 R.remove(maxDepth); 1985 if (Nodes.isExceedSU(maxDepth)) { 1986 Order = TopDown; 1987 R.clear(); 1988 R.insert(Nodes.getNode(0)); 1989 break; 1990 } 1991 for (const auto &I : maxDepth->Preds) { 1992 if (Nodes.count(I.getSUnit()) == 0) 1993 continue; 1994 if (NodeOrder.contains(I.getSUnit())) 1995 continue; 1996 R.insert(I.getSUnit()); 1997 } 1998 // Back-edges are predecessors with an anti-dependence. 1999 for (const auto &I : maxDepth->Succs) { 2000 if (I.getKind() != SDep::Anti) 2001 continue; 2002 if (Nodes.count(I.getSUnit()) == 0) 2003 continue; 2004 if (NodeOrder.contains(I.getSUnit())) 2005 continue; 2006 R.insert(I.getSUnit()); 2007 } 2008 } 2009 Order = TopDown; 2010 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2011 SmallSetVector<SUnit *, 8> N; 2012 if (succ_L(NodeOrder, N, &Nodes)) 2013 R.insert(N.begin(), N.end()); 2014 } 2015 } 2016 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2017 } 2018 2019 LLVM_DEBUG({ 2020 dbgs() << "Node order: "; 2021 for (SUnit *I : NodeOrder) 2022 dbgs() << " " << I->NodeNum << " "; 2023 dbgs() << "\n"; 2024 }); 2025 } 2026 2027 /// Process the nodes in the computed order and create the pipelined schedule 2028 /// of the instructions, if possible. Return true if a schedule is found. 2029 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2030 2031 if (NodeOrder.empty()){ 2032 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2033 return false; 2034 } 2035 2036 bool scheduleFound = false; 2037 // Keep increasing II until a valid schedule is found. 2038 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2039 Schedule.reset(); 2040 Schedule.setInitiationInterval(II); 2041 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2042 2043 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2044 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2045 do { 2046 SUnit *SU = *NI; 2047 2048 // Compute the schedule time for the instruction, which is based 2049 // upon the scheduled time for any predecessors/successors. 2050 int EarlyStart = INT_MIN; 2051 int LateStart = INT_MAX; 2052 // These values are set when the size of the schedule window is limited 2053 // due to chain dependences. 2054 int SchedEnd = INT_MAX; 2055 int SchedStart = INT_MIN; 2056 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2057 II, this); 2058 LLVM_DEBUG({ 2059 dbgs() << "\n"; 2060 dbgs() << "Inst (" << SU->NodeNum << ") "; 2061 SU->getInstr()->dump(); 2062 dbgs() << "\n"; 2063 }); 2064 LLVM_DEBUG({ 2065 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2066 LateStart, SchedEnd, SchedStart); 2067 }); 2068 2069 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2070 SchedStart > LateStart) 2071 scheduleFound = false; 2072 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2073 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2074 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2075 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2076 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2077 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2078 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2079 SchedEnd = 2080 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2081 // When scheduling a Phi it is better to start at the late cycle and go 2082 // backwards. The default order may insert the Phi too far away from 2083 // its first dependence. 2084 if (SU->getInstr()->isPHI()) 2085 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2086 else 2087 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2088 } else { 2089 int FirstCycle = Schedule.getFirstCycle(); 2090 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2091 FirstCycle + getASAP(SU) + II - 1, II); 2092 } 2093 // Even if we find a schedule, make sure the schedule doesn't exceed the 2094 // allowable number of stages. We keep trying if this happens. 2095 if (scheduleFound) 2096 if (SwpMaxStages > -1 && 2097 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2098 scheduleFound = false; 2099 2100 LLVM_DEBUG({ 2101 if (!scheduleFound) 2102 dbgs() << "\tCan't schedule\n"; 2103 }); 2104 } while (++NI != NE && scheduleFound); 2105 2106 // If a schedule is found, check if it is a valid schedule too. 2107 if (scheduleFound) 2108 scheduleFound = Schedule.isValidSchedule(this); 2109 } 2110 2111 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2112 << " (II=" << Schedule.getInitiationInterval() 2113 << ")\n"); 2114 2115 if (scheduleFound) { 2116 Schedule.finalizeSchedule(this); 2117 Pass.ORE->emit([&]() { 2118 return MachineOptimizationRemarkAnalysis( 2119 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2120 << "Schedule found with Initiation Interval: " 2121 << ore::NV("II", Schedule.getInitiationInterval()) 2122 << ", MaxStageCount: " 2123 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2124 }); 2125 } else 2126 Schedule.reset(); 2127 2128 return scheduleFound && Schedule.getMaxStageCount() > 0; 2129 } 2130 2131 /// Return true if we can compute the amount the instruction changes 2132 /// during each iteration. Set Delta to the amount of the change. 2133 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2134 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2135 const MachineOperand *BaseOp; 2136 int64_t Offset; 2137 bool OffsetIsScalable; 2138 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2139 return false; 2140 2141 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2142 if (OffsetIsScalable) 2143 return false; 2144 2145 if (!BaseOp->isReg()) 2146 return false; 2147 2148 Register BaseReg = BaseOp->getReg(); 2149 2150 MachineRegisterInfo &MRI = MF.getRegInfo(); 2151 // Check if there is a Phi. If so, get the definition in the loop. 2152 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2153 if (BaseDef && BaseDef->isPHI()) { 2154 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2155 BaseDef = MRI.getVRegDef(BaseReg); 2156 } 2157 if (!BaseDef) 2158 return false; 2159 2160 int D = 0; 2161 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2162 return false; 2163 2164 Delta = D; 2165 return true; 2166 } 2167 2168 /// Check if we can change the instruction to use an offset value from the 2169 /// previous iteration. If so, return true and set the base and offset values 2170 /// so that we can rewrite the load, if necessary. 2171 /// v1 = Phi(v0, v3) 2172 /// v2 = load v1, 0 2173 /// v3 = post_store v1, 4, x 2174 /// This function enables the load to be rewritten as v2 = load v3, 4. 2175 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2176 unsigned &BasePos, 2177 unsigned &OffsetPos, 2178 unsigned &NewBase, 2179 int64_t &Offset) { 2180 // Get the load instruction. 2181 if (TII->isPostIncrement(*MI)) 2182 return false; 2183 unsigned BasePosLd, OffsetPosLd; 2184 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2185 return false; 2186 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2187 2188 // Look for the Phi instruction. 2189 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2190 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2191 if (!Phi || !Phi->isPHI()) 2192 return false; 2193 // Get the register defined in the loop block. 2194 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2195 if (!PrevReg) 2196 return false; 2197 2198 // Check for the post-increment load/store instruction. 2199 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2200 if (!PrevDef || PrevDef == MI) 2201 return false; 2202 2203 if (!TII->isPostIncrement(*PrevDef)) 2204 return false; 2205 2206 unsigned BasePos1 = 0, OffsetPos1 = 0; 2207 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2208 return false; 2209 2210 // Make sure that the instructions do not access the same memory location in 2211 // the next iteration. 2212 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2213 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2214 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2215 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2216 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2217 MF.DeleteMachineInstr(NewMI); 2218 if (!Disjoint) 2219 return false; 2220 2221 // Set the return value once we determine that we return true. 2222 BasePos = BasePosLd; 2223 OffsetPos = OffsetPosLd; 2224 NewBase = PrevReg; 2225 Offset = StoreOffset; 2226 return true; 2227 } 2228 2229 /// Apply changes to the instruction if needed. The changes are need 2230 /// to improve the scheduling and depend up on the final schedule. 2231 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2232 SMSchedule &Schedule) { 2233 SUnit *SU = getSUnit(MI); 2234 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2235 InstrChanges.find(SU); 2236 if (It != InstrChanges.end()) { 2237 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2238 unsigned BasePos, OffsetPos; 2239 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2240 return; 2241 Register BaseReg = MI->getOperand(BasePos).getReg(); 2242 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2243 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2244 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2245 int BaseStageNum = Schedule.stageScheduled(SU); 2246 int BaseCycleNum = Schedule.cycleScheduled(SU); 2247 if (BaseStageNum < DefStageNum) { 2248 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2249 int OffsetDiff = DefStageNum - BaseStageNum; 2250 if (DefCycleNum < BaseCycleNum) { 2251 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2252 if (OffsetDiff > 0) 2253 --OffsetDiff; 2254 } 2255 int64_t NewOffset = 2256 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2257 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2258 SU->setInstr(NewMI); 2259 MISUnitMap[NewMI] = SU; 2260 NewMIs[MI] = NewMI; 2261 } 2262 } 2263 } 2264 2265 /// Return the instruction in the loop that defines the register. 2266 /// If the definition is a Phi, then follow the Phi operand to 2267 /// the instruction in the loop. 2268 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2269 SmallPtrSet<MachineInstr *, 8> Visited; 2270 MachineInstr *Def = MRI.getVRegDef(Reg); 2271 while (Def->isPHI()) { 2272 if (!Visited.insert(Def).second) 2273 break; 2274 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2275 if (Def->getOperand(i + 1).getMBB() == BB) { 2276 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2277 break; 2278 } 2279 } 2280 return Def; 2281 } 2282 2283 /// Return true for an order or output dependence that is loop carried 2284 /// potentially. A dependence is loop carried if the destination defines a valu 2285 /// that may be used or defined by the source in a subsequent iteration. 2286 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2287 bool isSucc) { 2288 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2289 Dep.isArtificial()) 2290 return false; 2291 2292 if (!SwpPruneLoopCarried) 2293 return true; 2294 2295 if (Dep.getKind() == SDep::Output) 2296 return true; 2297 2298 MachineInstr *SI = Source->getInstr(); 2299 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2300 if (!isSucc) 2301 std::swap(SI, DI); 2302 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2303 2304 // Assume ordered loads and stores may have a loop carried dependence. 2305 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2306 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2307 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2308 return true; 2309 2310 // Only chain dependences between a load and store can be loop carried. 2311 if (!DI->mayStore() || !SI->mayLoad()) 2312 return false; 2313 2314 unsigned DeltaS, DeltaD; 2315 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2316 return true; 2317 2318 const MachineOperand *BaseOpS, *BaseOpD; 2319 int64_t OffsetS, OffsetD; 2320 bool OffsetSIsScalable, OffsetDIsScalable; 2321 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2322 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2323 TRI) || 2324 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2325 TRI)) 2326 return true; 2327 2328 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2329 "Expected offsets to be byte offsets"); 2330 2331 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2332 return true; 2333 2334 // Check that the base register is incremented by a constant value for each 2335 // iteration. 2336 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2337 if (!Def || !Def->isPHI()) 2338 return true; 2339 unsigned InitVal = 0; 2340 unsigned LoopVal = 0; 2341 getPhiRegs(*Def, BB, InitVal, LoopVal); 2342 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2343 int D = 0; 2344 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2345 return true; 2346 2347 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2348 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2349 2350 // This is the main test, which checks the offset values and the loop 2351 // increment value to determine if the accesses may be loop carried. 2352 if (AccessSizeS == MemoryLocation::UnknownSize || 2353 AccessSizeD == MemoryLocation::UnknownSize) 2354 return true; 2355 2356 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2357 return true; 2358 2359 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2360 } 2361 2362 void SwingSchedulerDAG::postprocessDAG() { 2363 for (auto &M : Mutations) 2364 M->apply(this); 2365 } 2366 2367 /// Try to schedule the node at the specified StartCycle and continue 2368 /// until the node is schedule or the EndCycle is reached. This function 2369 /// returns true if the node is scheduled. This routine may search either 2370 /// forward or backward for a place to insert the instruction based upon 2371 /// the relative values of StartCycle and EndCycle. 2372 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2373 bool forward = true; 2374 LLVM_DEBUG({ 2375 dbgs() << "Trying to insert node between " << StartCycle << " and " 2376 << EndCycle << " II: " << II << "\n"; 2377 }); 2378 if (StartCycle > EndCycle) 2379 forward = false; 2380 2381 // The terminating condition depends on the direction. 2382 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2383 for (int curCycle = StartCycle; curCycle != termCycle; 2384 forward ? ++curCycle : --curCycle) { 2385 2386 // Add the already scheduled instructions at the specified cycle to the 2387 // DFA. 2388 ProcItinResources.clearResources(); 2389 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2390 checkCycle <= LastCycle; checkCycle += II) { 2391 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2392 2393 for (SUnit *CI : cycleInstrs) { 2394 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2395 continue; 2396 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2397 "These instructions have already been scheduled."); 2398 ProcItinResources.reserveResources(*CI->getInstr()); 2399 } 2400 } 2401 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2402 ProcItinResources.canReserveResources(*SU->getInstr())) { 2403 LLVM_DEBUG({ 2404 dbgs() << "\tinsert at cycle " << curCycle << " "; 2405 SU->getInstr()->dump(); 2406 }); 2407 2408 ScheduledInstrs[curCycle].push_back(SU); 2409 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2410 if (curCycle > LastCycle) 2411 LastCycle = curCycle; 2412 if (curCycle < FirstCycle) 2413 FirstCycle = curCycle; 2414 return true; 2415 } 2416 LLVM_DEBUG({ 2417 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2418 SU->getInstr()->dump(); 2419 }); 2420 } 2421 return false; 2422 } 2423 2424 // Return the cycle of the earliest scheduled instruction in the chain. 2425 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2426 SmallPtrSet<SUnit *, 8> Visited; 2427 SmallVector<SDep, 8> Worklist; 2428 Worklist.push_back(Dep); 2429 int EarlyCycle = INT_MAX; 2430 while (!Worklist.empty()) { 2431 const SDep &Cur = Worklist.pop_back_val(); 2432 SUnit *PrevSU = Cur.getSUnit(); 2433 if (Visited.count(PrevSU)) 2434 continue; 2435 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2436 if (it == InstrToCycle.end()) 2437 continue; 2438 EarlyCycle = std::min(EarlyCycle, it->second); 2439 for (const auto &PI : PrevSU->Preds) 2440 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2441 Worklist.push_back(PI); 2442 Visited.insert(PrevSU); 2443 } 2444 return EarlyCycle; 2445 } 2446 2447 // Return the cycle of the latest scheduled instruction in the chain. 2448 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2449 SmallPtrSet<SUnit *, 8> Visited; 2450 SmallVector<SDep, 8> Worklist; 2451 Worklist.push_back(Dep); 2452 int LateCycle = INT_MIN; 2453 while (!Worklist.empty()) { 2454 const SDep &Cur = Worklist.pop_back_val(); 2455 SUnit *SuccSU = Cur.getSUnit(); 2456 if (Visited.count(SuccSU)) 2457 continue; 2458 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2459 if (it == InstrToCycle.end()) 2460 continue; 2461 LateCycle = std::max(LateCycle, it->second); 2462 for (const auto &SI : SuccSU->Succs) 2463 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2464 Worklist.push_back(SI); 2465 Visited.insert(SuccSU); 2466 } 2467 return LateCycle; 2468 } 2469 2470 /// If an instruction has a use that spans multiple iterations, then 2471 /// return true. These instructions are characterized by having a back-ege 2472 /// to a Phi, which contains a reference to another Phi. 2473 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2474 for (auto &P : SU->Preds) 2475 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2476 for (auto &S : P.getSUnit()->Succs) 2477 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2478 return P.getSUnit(); 2479 return nullptr; 2480 } 2481 2482 /// Compute the scheduling start slot for the instruction. The start slot 2483 /// depends on any predecessor or successor nodes scheduled already. 2484 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2485 int *MinEnd, int *MaxStart, int II, 2486 SwingSchedulerDAG *DAG) { 2487 // Iterate over each instruction that has been scheduled already. The start 2488 // slot computation depends on whether the previously scheduled instruction 2489 // is a predecessor or successor of the specified instruction. 2490 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2491 2492 // Iterate over each instruction in the current cycle. 2493 for (SUnit *I : getInstructions(cycle)) { 2494 // Because we're processing a DAG for the dependences, we recognize 2495 // the back-edge in recurrences by anti dependences. 2496 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2497 const SDep &Dep = SU->Preds[i]; 2498 if (Dep.getSUnit() == I) { 2499 if (!DAG->isBackedge(SU, Dep)) { 2500 int EarlyStart = cycle + Dep.getLatency() - 2501 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2502 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2503 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2504 int End = earliestCycleInChain(Dep) + (II - 1); 2505 *MinEnd = std::min(*MinEnd, End); 2506 } 2507 } else { 2508 int LateStart = cycle - Dep.getLatency() + 2509 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2510 *MinLateStart = std::min(*MinLateStart, LateStart); 2511 } 2512 } 2513 // For instruction that requires multiple iterations, make sure that 2514 // the dependent instruction is not scheduled past the definition. 2515 SUnit *BE = multipleIterations(I, DAG); 2516 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2517 !SU->isPred(I)) 2518 *MinLateStart = std::min(*MinLateStart, cycle); 2519 } 2520 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2521 if (SU->Succs[i].getSUnit() == I) { 2522 const SDep &Dep = SU->Succs[i]; 2523 if (!DAG->isBackedge(SU, Dep)) { 2524 int LateStart = cycle - Dep.getLatency() + 2525 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2526 *MinLateStart = std::min(*MinLateStart, LateStart); 2527 if (DAG->isLoopCarriedDep(SU, Dep)) { 2528 int Start = latestCycleInChain(Dep) + 1 - II; 2529 *MaxStart = std::max(*MaxStart, Start); 2530 } 2531 } else { 2532 int EarlyStart = cycle + Dep.getLatency() - 2533 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2534 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2535 } 2536 } 2537 } 2538 } 2539 } 2540 } 2541 2542 /// Order the instructions within a cycle so that the definitions occur 2543 /// before the uses. Returns true if the instruction is added to the start 2544 /// of the list, or false if added to the end. 2545 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2546 std::deque<SUnit *> &Insts) { 2547 MachineInstr *MI = SU->getInstr(); 2548 bool OrderBeforeUse = false; 2549 bool OrderAfterDef = false; 2550 bool OrderBeforeDef = false; 2551 unsigned MoveDef = 0; 2552 unsigned MoveUse = 0; 2553 int StageInst1 = stageScheduled(SU); 2554 2555 unsigned Pos = 0; 2556 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2557 ++I, ++Pos) { 2558 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2559 MachineOperand &MO = MI->getOperand(i); 2560 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2561 continue; 2562 2563 Register Reg = MO.getReg(); 2564 unsigned BasePos, OffsetPos; 2565 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2566 if (MI->getOperand(BasePos).getReg() == Reg) 2567 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2568 Reg = NewReg; 2569 bool Reads, Writes; 2570 std::tie(Reads, Writes) = 2571 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2572 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2573 OrderBeforeUse = true; 2574 if (MoveUse == 0) 2575 MoveUse = Pos; 2576 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2577 // Add the instruction after the scheduled instruction. 2578 OrderAfterDef = true; 2579 MoveDef = Pos; 2580 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2581 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2582 OrderBeforeUse = true; 2583 if (MoveUse == 0) 2584 MoveUse = Pos; 2585 } else { 2586 OrderAfterDef = true; 2587 MoveDef = Pos; 2588 } 2589 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2590 OrderBeforeUse = true; 2591 if (MoveUse == 0) 2592 MoveUse = Pos; 2593 if (MoveUse != 0) { 2594 OrderAfterDef = true; 2595 MoveDef = Pos - 1; 2596 } 2597 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2598 // Add the instruction before the scheduled instruction. 2599 OrderBeforeUse = true; 2600 if (MoveUse == 0) 2601 MoveUse = Pos; 2602 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2603 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2604 if (MoveUse == 0) { 2605 OrderBeforeDef = true; 2606 MoveUse = Pos; 2607 } 2608 } 2609 } 2610 // Check for order dependences between instructions. Make sure the source 2611 // is ordered before the destination. 2612 for (auto &S : SU->Succs) { 2613 if (S.getSUnit() != *I) 2614 continue; 2615 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2616 OrderBeforeUse = true; 2617 if (Pos < MoveUse) 2618 MoveUse = Pos; 2619 } 2620 // We did not handle HW dependences in previous for loop, 2621 // and we normally set Latency = 0 for Anti deps, 2622 // so may have nodes in same cycle with Anti denpendent on HW regs. 2623 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2624 OrderBeforeUse = true; 2625 if ((MoveUse == 0) || (Pos < MoveUse)) 2626 MoveUse = Pos; 2627 } 2628 } 2629 for (auto &P : SU->Preds) { 2630 if (P.getSUnit() != *I) 2631 continue; 2632 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2633 OrderAfterDef = true; 2634 MoveDef = Pos; 2635 } 2636 } 2637 } 2638 2639 // A circular dependence. 2640 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2641 OrderBeforeUse = false; 2642 2643 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2644 // to a loop-carried dependence. 2645 if (OrderBeforeDef) 2646 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2647 2648 // The uncommon case when the instruction order needs to be updated because 2649 // there is both a use and def. 2650 if (OrderBeforeUse && OrderAfterDef) { 2651 SUnit *UseSU = Insts.at(MoveUse); 2652 SUnit *DefSU = Insts.at(MoveDef); 2653 if (MoveUse > MoveDef) { 2654 Insts.erase(Insts.begin() + MoveUse); 2655 Insts.erase(Insts.begin() + MoveDef); 2656 } else { 2657 Insts.erase(Insts.begin() + MoveDef); 2658 Insts.erase(Insts.begin() + MoveUse); 2659 } 2660 orderDependence(SSD, UseSU, Insts); 2661 orderDependence(SSD, SU, Insts); 2662 orderDependence(SSD, DefSU, Insts); 2663 return; 2664 } 2665 // Put the new instruction first if there is a use in the list. Otherwise, 2666 // put it at the end of the list. 2667 if (OrderBeforeUse) 2668 Insts.push_front(SU); 2669 else 2670 Insts.push_back(SU); 2671 } 2672 2673 /// Return true if the scheduled Phi has a loop carried operand. 2674 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2675 if (!Phi.isPHI()) 2676 return false; 2677 assert(Phi.isPHI() && "Expecting a Phi."); 2678 SUnit *DefSU = SSD->getSUnit(&Phi); 2679 unsigned DefCycle = cycleScheduled(DefSU); 2680 int DefStage = stageScheduled(DefSU); 2681 2682 unsigned InitVal = 0; 2683 unsigned LoopVal = 0; 2684 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2685 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2686 if (!UseSU) 2687 return true; 2688 if (UseSU->getInstr()->isPHI()) 2689 return true; 2690 unsigned LoopCycle = cycleScheduled(UseSU); 2691 int LoopStage = stageScheduled(UseSU); 2692 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2693 } 2694 2695 /// Return true if the instruction is a definition that is loop carried 2696 /// and defines the use on the next iteration. 2697 /// v1 = phi(v2, v3) 2698 /// (Def) v3 = op v1 2699 /// (MO) = v1 2700 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2701 /// register. 2702 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2703 MachineInstr *Def, MachineOperand &MO) { 2704 if (!MO.isReg()) 2705 return false; 2706 if (Def->isPHI()) 2707 return false; 2708 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2709 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2710 return false; 2711 if (!isLoopCarried(SSD, *Phi)) 2712 return false; 2713 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2714 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2715 MachineOperand &DMO = Def->getOperand(i); 2716 if (!DMO.isReg() || !DMO.isDef()) 2717 continue; 2718 if (DMO.getReg() == LoopReg) 2719 return true; 2720 } 2721 return false; 2722 } 2723 2724 // Check if the generated schedule is valid. This function checks if 2725 // an instruction that uses a physical register is scheduled in a 2726 // different stage than the definition. The pipeliner does not handle 2727 // physical register values that may cross a basic block boundary. 2728 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2729 for (SUnit &SU : SSD->SUnits) { 2730 if (!SU.hasPhysRegDefs) 2731 continue; 2732 int StageDef = stageScheduled(&SU); 2733 assert(StageDef != -1 && "Instruction should have been scheduled."); 2734 for (auto &SI : SU.Succs) 2735 if (SI.isAssignedRegDep()) 2736 if (Register::isPhysicalRegister(SI.getReg())) 2737 if (stageScheduled(SI.getSUnit()) != StageDef) 2738 return false; 2739 } 2740 return true; 2741 } 2742 2743 /// A property of the node order in swing-modulo-scheduling is 2744 /// that for nodes outside circuits the following holds: 2745 /// none of them is scheduled after both a successor and a 2746 /// predecessor. 2747 /// The method below checks whether the property is met. 2748 /// If not, debug information is printed and statistics information updated. 2749 /// Note that we do not use an assert statement. 2750 /// The reason is that although an invalid node oder may prevent 2751 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2752 /// it does not lead to the generation of incorrect code. 2753 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2754 2755 // a sorted vector that maps each SUnit to its index in the NodeOrder 2756 typedef std::pair<SUnit *, unsigned> UnitIndex; 2757 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2758 2759 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2760 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2761 2762 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2763 return std::get<0>(i1) < std::get<0>(i2); 2764 }; 2765 2766 // sort, so that we can perform a binary search 2767 llvm::sort(Indices, CompareKey); 2768 2769 bool Valid = true; 2770 (void)Valid; 2771 // for each SUnit in the NodeOrder, check whether 2772 // it appears after both a successor and a predecessor 2773 // of the SUnit. If this is the case, and the SUnit 2774 // is not part of circuit, then the NodeOrder is not 2775 // valid. 2776 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2777 SUnit *SU = NodeOrder[i]; 2778 unsigned Index = i; 2779 2780 bool PredBefore = false; 2781 bool SuccBefore = false; 2782 2783 SUnit *Succ; 2784 SUnit *Pred; 2785 (void)Succ; 2786 (void)Pred; 2787 2788 for (SDep &PredEdge : SU->Preds) { 2789 SUnit *PredSU = PredEdge.getSUnit(); 2790 unsigned PredIndex = std::get<1>( 2791 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2792 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2793 PredBefore = true; 2794 Pred = PredSU; 2795 break; 2796 } 2797 } 2798 2799 for (SDep &SuccEdge : SU->Succs) { 2800 SUnit *SuccSU = SuccEdge.getSUnit(); 2801 // Do not process a boundary node, it was not included in NodeOrder, 2802 // hence not in Indices either, call to std::lower_bound() below will 2803 // return Indices.end(). 2804 if (SuccSU->isBoundaryNode()) 2805 continue; 2806 unsigned SuccIndex = std::get<1>( 2807 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2808 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2809 SuccBefore = true; 2810 Succ = SuccSU; 2811 break; 2812 } 2813 } 2814 2815 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2816 // instructions in circuits are allowed to be scheduled 2817 // after both a successor and predecessor. 2818 bool InCircuit = llvm::any_of( 2819 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2820 if (InCircuit) 2821 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2822 else { 2823 Valid = false; 2824 NumNodeOrderIssues++; 2825 LLVM_DEBUG(dbgs() << "Predecessor ";); 2826 } 2827 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2828 << " are scheduled before node " << SU->NodeNum 2829 << "\n";); 2830 } 2831 } 2832 2833 LLVM_DEBUG({ 2834 if (!Valid) 2835 dbgs() << "Invalid node order found!\n"; 2836 }); 2837 } 2838 2839 /// Attempt to fix the degenerate cases when the instruction serialization 2840 /// causes the register lifetimes to overlap. For example, 2841 /// p' = store_pi(p, b) 2842 /// = load p, offset 2843 /// In this case p and p' overlap, which means that two registers are needed. 2844 /// Instead, this function changes the load to use p' and updates the offset. 2845 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2846 unsigned OverlapReg = 0; 2847 unsigned NewBaseReg = 0; 2848 for (SUnit *SU : Instrs) { 2849 MachineInstr *MI = SU->getInstr(); 2850 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2851 const MachineOperand &MO = MI->getOperand(i); 2852 // Look for an instruction that uses p. The instruction occurs in the 2853 // same cycle but occurs later in the serialized order. 2854 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2855 // Check that the instruction appears in the InstrChanges structure, 2856 // which contains instructions that can have the offset updated. 2857 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2858 InstrChanges.find(SU); 2859 if (It != InstrChanges.end()) { 2860 unsigned BasePos, OffsetPos; 2861 // Update the base register and adjust the offset. 2862 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2863 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2864 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2865 int64_t NewOffset = 2866 MI->getOperand(OffsetPos).getImm() - It->second.second; 2867 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2868 SU->setInstr(NewMI); 2869 MISUnitMap[NewMI] = SU; 2870 NewMIs[MI] = NewMI; 2871 } 2872 } 2873 OverlapReg = 0; 2874 NewBaseReg = 0; 2875 break; 2876 } 2877 // Look for an instruction of the form p' = op(p), which uses and defines 2878 // two virtual registers that get allocated to the same physical register. 2879 unsigned TiedUseIdx = 0; 2880 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2881 // OverlapReg is p in the example above. 2882 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2883 // NewBaseReg is p' in the example above. 2884 NewBaseReg = MI->getOperand(i).getReg(); 2885 break; 2886 } 2887 } 2888 } 2889 } 2890 2891 /// After the schedule has been formed, call this function to combine 2892 /// the instructions from the different stages/cycles. That is, this 2893 /// function creates a schedule that represents a single iteration. 2894 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2895 // Move all instructions to the first stage from later stages. 2896 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2897 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2898 ++stage) { 2899 std::deque<SUnit *> &cycleInstrs = 2900 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2901 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 2902 E = cycleInstrs.rend(); 2903 I != E; ++I) 2904 ScheduledInstrs[cycle].push_front(*I); 2905 } 2906 } 2907 2908 // Erase all the elements in the later stages. Only one iteration should 2909 // remain in the scheduled list, and it contains all the instructions. 2910 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2911 ScheduledInstrs.erase(cycle); 2912 2913 // Change the registers in instruction as specified in the InstrChanges 2914 // map. We need to use the new registers to create the correct order. 2915 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 2916 SUnit *SU = &SSD->SUnits[i]; 2917 SSD->applyInstrChange(SU->getInstr(), *this); 2918 } 2919 2920 // Reorder the instructions in each cycle to fix and improve the 2921 // generated code. 2922 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2923 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2924 std::deque<SUnit *> newOrderPhi; 2925 for (SUnit *SU : cycleInstrs) { 2926 if (SU->getInstr()->isPHI()) 2927 newOrderPhi.push_back(SU); 2928 } 2929 std::deque<SUnit *> newOrderI; 2930 for (SUnit *SU : cycleInstrs) { 2931 if (!SU->getInstr()->isPHI()) 2932 orderDependence(SSD, SU, newOrderI); 2933 } 2934 // Replace the old order with the new order. 2935 cycleInstrs.swap(newOrderPhi); 2936 llvm::append_range(cycleInstrs, newOrderI); 2937 SSD->fixupRegisterOverlaps(cycleInstrs); 2938 } 2939 2940 LLVM_DEBUG(dump();); 2941 } 2942 2943 void NodeSet::print(raw_ostream &os) const { 2944 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2945 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2946 for (const auto &I : Nodes) 2947 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2948 os << "\n"; 2949 } 2950 2951 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2952 /// Print the schedule information to the given output. 2953 void SMSchedule::print(raw_ostream &os) const { 2954 // Iterate over each cycle. 2955 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2956 // Iterate over each instruction in the cycle. 2957 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2958 for (SUnit *CI : cycleInstrs->second) { 2959 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2960 os << "(" << CI->NodeNum << ") "; 2961 CI->getInstr()->print(os); 2962 os << "\n"; 2963 } 2964 } 2965 } 2966 2967 /// Utility function used for debugging to print the schedule. 2968 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2969 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2970 2971 #endif 2972 2973 void ResourceManager::initProcResourceVectors( 2974 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2975 unsigned ProcResourceID = 0; 2976 2977 // We currently limit the resource kinds to 64 and below so that we can use 2978 // uint64_t for Masks 2979 assert(SM.getNumProcResourceKinds() < 64 && 2980 "Too many kinds of resources, unsupported"); 2981 // Create a unique bitmask for every processor resource unit. 2982 // Skip resource at index 0, since it always references 'InvalidUnit'. 2983 Masks.resize(SM.getNumProcResourceKinds()); 2984 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2985 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2986 if (Desc.SubUnitsIdxBegin) 2987 continue; 2988 Masks[I] = 1ULL << ProcResourceID; 2989 ProcResourceID++; 2990 } 2991 // Create a unique bitmask for every processor resource group. 2992 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2993 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2994 if (!Desc.SubUnitsIdxBegin) 2995 continue; 2996 Masks[I] = 1ULL << ProcResourceID; 2997 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2998 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2999 ProcResourceID++; 3000 } 3001 LLVM_DEBUG({ 3002 if (SwpShowResMask) { 3003 dbgs() << "ProcResourceDesc:\n"; 3004 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3005 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3006 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3007 ProcResource->Name, I, Masks[I], 3008 ProcResource->NumUnits); 3009 } 3010 dbgs() << " -----------------\n"; 3011 } 3012 }); 3013 } 3014 3015 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3016 3017 LLVM_DEBUG({ 3018 if (SwpDebugResource) 3019 dbgs() << "canReserveResources:\n"; 3020 }); 3021 if (UseDFA) 3022 return DFAResources->canReserveResources(MID); 3023 3024 unsigned InsnClass = MID->getSchedClass(); 3025 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3026 if (!SCDesc->isValid()) { 3027 LLVM_DEBUG({ 3028 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3029 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3030 }); 3031 return true; 3032 } 3033 3034 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3035 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3036 for (; I != E; ++I) { 3037 if (!I->Cycles) 3038 continue; 3039 const MCProcResourceDesc *ProcResource = 3040 SM.getProcResource(I->ProcResourceIdx); 3041 unsigned NumUnits = ProcResource->NumUnits; 3042 LLVM_DEBUG({ 3043 if (SwpDebugResource) 3044 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3045 ProcResource->Name, I->ProcResourceIdx, 3046 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3047 I->Cycles); 3048 }); 3049 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3050 return false; 3051 } 3052 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3053 return true; 3054 } 3055 3056 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3057 LLVM_DEBUG({ 3058 if (SwpDebugResource) 3059 dbgs() << "reserveResources:\n"; 3060 }); 3061 if (UseDFA) 3062 return DFAResources->reserveResources(MID); 3063 3064 unsigned InsnClass = MID->getSchedClass(); 3065 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3066 if (!SCDesc->isValid()) { 3067 LLVM_DEBUG({ 3068 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3069 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3070 }); 3071 return; 3072 } 3073 for (const MCWriteProcResEntry &PRE : 3074 make_range(STI->getWriteProcResBegin(SCDesc), 3075 STI->getWriteProcResEnd(SCDesc))) { 3076 if (!PRE.Cycles) 3077 continue; 3078 ++ProcResourceCount[PRE.ProcResourceIdx]; 3079 LLVM_DEBUG({ 3080 if (SwpDebugResource) { 3081 const MCProcResourceDesc *ProcResource = 3082 SM.getProcResource(PRE.ProcResourceIdx); 3083 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3084 ProcResource->Name, PRE.ProcResourceIdx, 3085 ProcResourceCount[PRE.ProcResourceIdx], 3086 ProcResource->NumUnits, PRE.Cycles); 3087 } 3088 }); 3089 } 3090 LLVM_DEBUG({ 3091 if (SwpDebugResource) 3092 dbgs() << "reserveResources: done!\n\n"; 3093 }); 3094 } 3095 3096 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3097 return canReserveResources(&MI.getDesc()); 3098 } 3099 3100 void ResourceManager::reserveResources(const MachineInstr &MI) { 3101 return reserveResources(&MI.getDesc()); 3102 } 3103 3104 void ResourceManager::clearResources() { 3105 if (UseDFA) 3106 return DFAResources->clearResources(); 3107 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3108 } 3109