1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass does not attempt to throttle itself to limit register pressure. 14 // The register allocation phases are expected to perform rematerialization 15 // to recover when register pressure is high. 16 // 17 // This pass is not intended to be a replacement or a complete alternative 18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 19 // constructs that are not exposed before lowering and instruction selection. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/MC/MCInstrItineraries.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "machine-licm" 46 47 static cl::opt<bool> 48 AvoidSpeculation("avoid-speculation", 49 cl::desc("MachineLICM should avoid speculation"), 50 cl::init(true), cl::Hidden); 51 52 STATISTIC(NumHoisted, 53 "Number of machine instructions hoisted out of loops"); 54 STATISTIC(NumLowRP, 55 "Number of instructions hoisted in low reg pressure situation"); 56 STATISTIC(NumHighLatency, 57 "Number of high latency instructions hoisted"); 58 STATISTIC(NumCSEed, 59 "Number of hoisted machine instructions CSEed"); 60 STATISTIC(NumPostRAHoisted, 61 "Number of machine instructions hoisted out of loops post regalloc"); 62 63 namespace { 64 class MachineLICM : public MachineFunctionPass { 65 const TargetInstrInfo *TII; 66 const TargetLoweringBase *TLI; 67 const TargetRegisterInfo *TRI; 68 const MachineFrameInfo *MFI; 69 MachineRegisterInfo *MRI; 70 const InstrItineraryData *InstrItins; 71 bool PreRegAlloc; 72 73 // Various analyses that we use... 74 AliasAnalysis *AA; // Alias analysis info. 75 MachineLoopInfo *MLI; // Current MachineLoopInfo 76 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 77 78 // State that is updated as we process loops 79 bool Changed; // True if a loop is changed. 80 bool FirstInLoop; // True if it's the first LICM in the loop. 81 MachineLoop *CurLoop; // The current loop we are working on. 82 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 83 84 // Exit blocks for CurLoop. 85 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 86 87 bool isExitBlock(const MachineBasicBlock *MBB) const { 88 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 89 ExitBlocks.end(); 90 } 91 92 // Track 'estimated' register pressure. 93 SmallSet<unsigned, 32> RegSeen; 94 SmallVector<unsigned, 8> RegPressure; 95 96 // Register pressure "limit" per register class. If the pressure 97 // is higher than the limit, then it's considered high. 98 SmallVector<unsigned, 8> RegLimit; 99 100 // Register pressure on path leading from loop preheader to current BB. 101 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 102 103 // For each opcode, keep a list of potential CSE instructions. 104 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 105 106 enum { 107 SpeculateFalse = 0, 108 SpeculateTrue = 1, 109 SpeculateUnknown = 2 110 }; 111 112 // If a MBB does not dominate loop exiting blocks then it may not safe 113 // to hoist loads from this block. 114 // Tri-state: 0 - false, 1 - true, 2 - unknown 115 unsigned SpeculationState; 116 117 public: 118 static char ID; // Pass identification, replacement for typeid 119 MachineLICM() : 120 MachineFunctionPass(ID), PreRegAlloc(true) { 121 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 122 } 123 124 explicit MachineLICM(bool PreRA) : 125 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 126 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 127 } 128 129 bool runOnMachineFunction(MachineFunction &MF) override; 130 131 void getAnalysisUsage(AnalysisUsage &AU) const override { 132 AU.addRequired<MachineLoopInfo>(); 133 AU.addRequired<MachineDominatorTree>(); 134 AU.addRequired<AliasAnalysis>(); 135 AU.addPreserved<MachineLoopInfo>(); 136 AU.addPreserved<MachineDominatorTree>(); 137 MachineFunctionPass::getAnalysisUsage(AU); 138 } 139 140 void releaseMemory() override { 141 RegSeen.clear(); 142 RegPressure.clear(); 143 RegLimit.clear(); 144 BackTrace.clear(); 145 CSEMap.clear(); 146 } 147 148 private: 149 /// CandidateInfo - Keep track of information about hoisting candidates. 150 struct CandidateInfo { 151 MachineInstr *MI; 152 unsigned Def; 153 int FI; 154 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 155 : MI(mi), Def(def), FI(fi) {} 156 }; 157 158 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 159 /// invariants out to the preheader. 160 void HoistRegionPostRA(); 161 162 /// HoistPostRA - When an instruction is found to only use loop invariant 163 /// operands that is safe to hoist, this instruction is called to do the 164 /// dirty work. 165 void HoistPostRA(MachineInstr *MI, unsigned Def); 166 167 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 168 /// gather register def and frame object update information. 169 void ProcessMI(MachineInstr *MI, 170 BitVector &PhysRegDefs, 171 BitVector &PhysRegClobbers, 172 SmallSet<int, 32> &StoredFIs, 173 SmallVectorImpl<CandidateInfo> &Candidates); 174 175 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 176 /// current loop. 177 void AddToLiveIns(unsigned Reg); 178 179 /// IsLICMCandidate - Returns true if the instruction may be a suitable 180 /// candidate for LICM. e.g. If the instruction is a call, then it's 181 /// obviously not safe to hoist it. 182 bool IsLICMCandidate(MachineInstr &I); 183 184 /// IsLoopInvariantInst - Returns true if the instruction is loop 185 /// invariant. I.e., all virtual register operands are defined outside of 186 /// the loop, physical registers aren't accessed (explicitly or implicitly), 187 /// and the instruction is hoistable. 188 /// 189 bool IsLoopInvariantInst(MachineInstr &I); 190 191 /// HasLoopPHIUse - Return true if the specified instruction is used by any 192 /// phi node in the current loop. 193 bool HasLoopPHIUse(const MachineInstr *MI) const; 194 195 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 196 /// and an use in the current loop, return true if the target considered 197 /// it 'high'. 198 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 199 unsigned Reg) const; 200 201 bool IsCheapInstruction(MachineInstr &MI) const; 202 203 /// CanCauseHighRegPressure - Visit BBs from header to current BB, 204 /// check if hoisting an instruction of the given cost matrix can cause high 205 /// register pressure. 206 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); 207 208 /// UpdateBackTraceRegPressure - Traverse the back trace from header to 209 /// the current block and update their register pressures to reflect the 210 /// effect of hoisting MI from the current block to the preheader. 211 void UpdateBackTraceRegPressure(const MachineInstr *MI); 212 213 /// IsProfitableToHoist - Return true if it is potentially profitable to 214 /// hoist the given loop invariant. 215 bool IsProfitableToHoist(MachineInstr &MI); 216 217 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 218 /// If not then a load from this mbb may not be safe to hoist. 219 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 220 221 void EnterScope(MachineBasicBlock *MBB); 222 223 void ExitScope(MachineBasicBlock *MBB); 224 225 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given 226 /// dominator tree node if its a leaf or all of its children are done. Walk 227 /// up the dominator tree to destroy ancestors which are now done. 228 void ExitScopeIfDone(MachineDomTreeNode *Node, 229 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 230 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 231 232 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 233 /// blocks dominated by the specified header block, and that are in the 234 /// current loop) in depth first order w.r.t the DominatorTree. This allows 235 /// us to visit definitions before uses, allowing us to hoist a loop body in 236 /// one pass without iteration. 237 /// 238 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 239 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 240 241 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 242 /// index, return the ID and cost of its representative register class by 243 /// reference. 244 void getRegisterClassIDAndCost(const MachineInstr *MI, 245 unsigned Reg, unsigned OpIdx, 246 unsigned &RCId, unsigned &RCCost) const; 247 248 /// InitRegPressure - Find all virtual register references that are liveout 249 /// of the preheader to initialize the starting "register pressure". Note 250 /// this does not count live through (livein but not used) registers. 251 void InitRegPressure(MachineBasicBlock *BB); 252 253 /// UpdateRegPressure - Update estimate of register pressure after the 254 /// specified instruction. 255 void UpdateRegPressure(const MachineInstr *MI); 256 257 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 258 /// the load itself could be hoisted. Return the unfolded and hoistable 259 /// load, or null if the load couldn't be unfolded or if it wouldn't 260 /// be hoistable. 261 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 262 263 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 264 /// duplicate of MI. Return this instruction if it's found. 265 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 266 std::vector<const MachineInstr*> &PrevMIs); 267 268 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 269 /// the preheader that compute the same value. If it's found, do a RAU on 270 /// with the definition of the existing instruction rather than hoisting 271 /// the instruction to the preheader. 272 bool EliminateCSE(MachineInstr *MI, 273 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 274 275 /// MayCSE - Return true if the given instruction will be CSE'd if it's 276 /// hoisted out of the loop. 277 bool MayCSE(MachineInstr *MI); 278 279 /// Hoist - When an instruction is found to only use loop invariant operands 280 /// that is safe to hoist, this instruction is called to do the dirty work. 281 /// It returns true if the instruction is hoisted. 282 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 283 284 /// InitCSEMap - Initialize the CSE map with instructions that are in the 285 /// current loop preheader that may become duplicates of instructions that 286 /// are hoisted out of the loop. 287 void InitCSEMap(MachineBasicBlock *BB); 288 289 /// getCurPreheader - Get the preheader for the current loop, splitting 290 /// a critical edge if needed. 291 MachineBasicBlock *getCurPreheader(); 292 }; 293 } // end anonymous namespace 294 295 char MachineLICM::ID = 0; 296 char &llvm::MachineLICMID = MachineLICM::ID; 297 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 298 "Machine Loop Invariant Code Motion", false, false) 299 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 300 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 301 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 302 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 303 "Machine Loop Invariant Code Motion", false, false) 304 305 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 306 /// loop that has a unique predecessor. 307 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 308 // Check whether this loop even has a unique predecessor. 309 if (!CurLoop->getLoopPredecessor()) 310 return false; 311 // Ok, now check to see if any of its outer loops do. 312 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 313 if (L->getLoopPredecessor()) 314 return false; 315 // None of them did, so this is the outermost with a unique predecessor. 316 return true; 317 } 318 319 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 320 if (skipOptnoneFunction(*MF.getFunction())) 321 return false; 322 323 Changed = FirstInLoop = false; 324 TII = MF.getSubtarget().getInstrInfo(); 325 TLI = MF.getSubtarget().getTargetLowering(); 326 TRI = MF.getSubtarget().getRegisterInfo(); 327 MFI = MF.getFrameInfo(); 328 MRI = &MF.getRegInfo(); 329 InstrItins = MF.getSubtarget().getInstrItineraryData(); 330 331 PreRegAlloc = MRI->isSSA(); 332 333 if (PreRegAlloc) 334 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 335 else 336 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 337 DEBUG(dbgs() << MF.getName() << " ********\n"); 338 339 if (PreRegAlloc) { 340 // Estimate register pressure during pre-regalloc pass. 341 unsigned NumRC = TRI->getNumRegClasses(); 342 RegPressure.resize(NumRC); 343 std::fill(RegPressure.begin(), RegPressure.end(), 0); 344 RegLimit.resize(NumRC); 345 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), 346 E = TRI->regclass_end(); I != E; ++I) 347 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); 348 } 349 350 // Get our Loop information... 351 MLI = &getAnalysis<MachineLoopInfo>(); 352 DT = &getAnalysis<MachineDominatorTree>(); 353 AA = &getAnalysis<AliasAnalysis>(); 354 355 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 356 while (!Worklist.empty()) { 357 CurLoop = Worklist.pop_back_val(); 358 CurPreheader = nullptr; 359 ExitBlocks.clear(); 360 361 // If this is done before regalloc, only visit outer-most preheader-sporting 362 // loops. 363 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 364 Worklist.append(CurLoop->begin(), CurLoop->end()); 365 continue; 366 } 367 368 CurLoop->getExitBlocks(ExitBlocks); 369 370 if (!PreRegAlloc) 371 HoistRegionPostRA(); 372 else { 373 // CSEMap is initialized for loop header when the first instruction is 374 // being hoisted. 375 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 376 FirstInLoop = true; 377 HoistOutOfLoop(N); 378 CSEMap.clear(); 379 } 380 } 381 382 return Changed; 383 } 384 385 /// InstructionStoresToFI - Return true if instruction stores to the 386 /// specified frame. 387 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 388 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 389 oe = MI->memoperands_end(); o != oe; ++o) { 390 if (!(*o)->isStore() || !(*o)->getPseudoValue()) 391 continue; 392 if (const FixedStackPseudoSourceValue *Value = 393 dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) { 394 if (Value->getFrameIndex() == FI) 395 return true; 396 } 397 } 398 return false; 399 } 400 401 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 402 /// gather register def and frame object update information. 403 void MachineLICM::ProcessMI(MachineInstr *MI, 404 BitVector &PhysRegDefs, 405 BitVector &PhysRegClobbers, 406 SmallSet<int, 32> &StoredFIs, 407 SmallVectorImpl<CandidateInfo> &Candidates) { 408 bool RuledOut = false; 409 bool HasNonInvariantUse = false; 410 unsigned Def = 0; 411 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 412 const MachineOperand &MO = MI->getOperand(i); 413 if (MO.isFI()) { 414 // Remember if the instruction stores to the frame index. 415 int FI = MO.getIndex(); 416 if (!StoredFIs.count(FI) && 417 MFI->isSpillSlotObjectIndex(FI) && 418 InstructionStoresToFI(MI, FI)) 419 StoredFIs.insert(FI); 420 HasNonInvariantUse = true; 421 continue; 422 } 423 424 // We can't hoist an instruction defining a physreg that is clobbered in 425 // the loop. 426 if (MO.isRegMask()) { 427 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 428 continue; 429 } 430 431 if (!MO.isReg()) 432 continue; 433 unsigned Reg = MO.getReg(); 434 if (!Reg) 435 continue; 436 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 437 "Not expecting virtual register!"); 438 439 if (!MO.isDef()) { 440 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 441 // If it's using a non-loop-invariant register, then it's obviously not 442 // safe to hoist. 443 HasNonInvariantUse = true; 444 continue; 445 } 446 447 if (MO.isImplicit()) { 448 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 449 PhysRegClobbers.set(*AI); 450 if (!MO.isDead()) 451 // Non-dead implicit def? This cannot be hoisted. 452 RuledOut = true; 453 // No need to check if a dead implicit def is also defined by 454 // another instruction. 455 continue; 456 } 457 458 // FIXME: For now, avoid instructions with multiple defs, unless 459 // it's a dead implicit def. 460 if (Def) 461 RuledOut = true; 462 else 463 Def = Reg; 464 465 // If we have already seen another instruction that defines the same 466 // register, then this is not safe. Two defs is indicated by setting a 467 // PhysRegClobbers bit. 468 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 469 if (PhysRegDefs.test(*AS)) 470 PhysRegClobbers.set(*AS); 471 PhysRegDefs.set(*AS); 472 } 473 if (PhysRegClobbers.test(Reg)) 474 // MI defined register is seen defined by another instruction in 475 // the loop, it cannot be a LICM candidate. 476 RuledOut = true; 477 } 478 479 // Only consider reloads for now and remats which do not have register 480 // operands. FIXME: Consider unfold load folding instructions. 481 if (Def && !RuledOut) { 482 int FI = INT_MIN; 483 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 484 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 485 Candidates.push_back(CandidateInfo(MI, Def, FI)); 486 } 487 } 488 489 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 490 /// invariants out to the preheader. 491 void MachineLICM::HoistRegionPostRA() { 492 MachineBasicBlock *Preheader = getCurPreheader(); 493 if (!Preheader) 494 return; 495 496 unsigned NumRegs = TRI->getNumRegs(); 497 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 498 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 499 500 SmallVector<CandidateInfo, 32> Candidates; 501 SmallSet<int, 32> StoredFIs; 502 503 // Walk the entire region, count number of defs for each register, and 504 // collect potential LICM candidates. 505 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 506 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 507 MachineBasicBlock *BB = Blocks[i]; 508 509 // If the header of the loop containing this basic block is a landing pad, 510 // then don't try to hoist instructions out of this loop. 511 const MachineLoop *ML = MLI->getLoopFor(BB); 512 if (ML && ML->getHeader()->isLandingPad()) continue; 513 514 // Conservatively treat live-in's as an external def. 515 // FIXME: That means a reload that're reused in successor block(s) will not 516 // be LICM'ed. 517 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 518 E = BB->livein_end(); I != E; ++I) { 519 unsigned Reg = *I; 520 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 521 PhysRegDefs.set(*AI); 522 } 523 524 SpeculationState = SpeculateUnknown; 525 for (MachineBasicBlock::iterator 526 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 527 MachineInstr *MI = &*MII; 528 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 529 } 530 } 531 532 // Gather the registers read / clobbered by the terminator. 533 BitVector TermRegs(NumRegs); 534 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 535 if (TI != Preheader->end()) { 536 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { 537 const MachineOperand &MO = TI->getOperand(i); 538 if (!MO.isReg()) 539 continue; 540 unsigned Reg = MO.getReg(); 541 if (!Reg) 542 continue; 543 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 544 TermRegs.set(*AI); 545 } 546 } 547 548 // Now evaluate whether the potential candidates qualify. 549 // 1. Check if the candidate defined register is defined by another 550 // instruction in the loop. 551 // 2. If the candidate is a load from stack slot (always true for now), 552 // check if the slot is stored anywhere in the loop. 553 // 3. Make sure candidate def should not clobber 554 // registers read by the terminator. Similarly its def should not be 555 // clobbered by the terminator. 556 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 557 if (Candidates[i].FI != INT_MIN && 558 StoredFIs.count(Candidates[i].FI)) 559 continue; 560 561 unsigned Def = Candidates[i].Def; 562 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 563 bool Safe = true; 564 MachineInstr *MI = Candidates[i].MI; 565 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 566 const MachineOperand &MO = MI->getOperand(j); 567 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 568 continue; 569 unsigned Reg = MO.getReg(); 570 if (PhysRegDefs.test(Reg) || 571 PhysRegClobbers.test(Reg)) { 572 // If it's using a non-loop-invariant register, then it's obviously 573 // not safe to hoist. 574 Safe = false; 575 break; 576 } 577 } 578 if (Safe) 579 HoistPostRA(MI, Candidates[i].Def); 580 } 581 } 582 } 583 584 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 585 /// loop, and make sure it is not killed by any instructions in the loop. 586 void MachineLICM::AddToLiveIns(unsigned Reg) { 587 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 588 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 589 MachineBasicBlock *BB = Blocks[i]; 590 if (!BB->isLiveIn(Reg)) 591 BB->addLiveIn(Reg); 592 for (MachineBasicBlock::iterator 593 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 594 MachineInstr *MI = &*MII; 595 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 596 MachineOperand &MO = MI->getOperand(i); 597 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 598 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 599 MO.setIsKill(false); 600 } 601 } 602 } 603 } 604 605 /// HoistPostRA - When an instruction is found to only use loop invariant 606 /// operands that is safe to hoist, this instruction is called to do the 607 /// dirty work. 608 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 609 MachineBasicBlock *Preheader = getCurPreheader(); 610 611 // Now move the instructions to the predecessor, inserting it before any 612 // terminator instructions. 613 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 614 << MI->getParent()->getNumber() << ": " << *MI); 615 616 // Splice the instruction to the preheader. 617 MachineBasicBlock *MBB = MI->getParent(); 618 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 619 620 // Add register to livein list to all the BBs in the current loop since a 621 // loop invariant must be kept live throughout the whole loop. This is 622 // important to ensure later passes do not scavenge the def register. 623 AddToLiveIns(Def); 624 625 ++NumPostRAHoisted; 626 Changed = true; 627 } 628 629 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 630 // If not then a load from this mbb may not be safe to hoist. 631 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 632 if (SpeculationState != SpeculateUnknown) 633 return SpeculationState == SpeculateFalse; 634 635 if (BB != CurLoop->getHeader()) { 636 // Check loop exiting blocks. 637 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 638 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 639 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) 640 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { 641 SpeculationState = SpeculateTrue; 642 return false; 643 } 644 } 645 646 SpeculationState = SpeculateFalse; 647 return true; 648 } 649 650 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 651 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 652 653 // Remember livein register pressure. 654 BackTrace.push_back(RegPressure); 655 } 656 657 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 658 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 659 BackTrace.pop_back(); 660 } 661 662 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 663 /// dominator tree node if its a leaf or all of its children are done. Walk 664 /// up the dominator tree to destroy ancestors which are now done. 665 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 666 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 667 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 668 if (OpenChildren[Node]) 669 return; 670 671 // Pop scope. 672 ExitScope(Node->getBlock()); 673 674 // Now traverse upwards to pop ancestors whose offsprings are all done. 675 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 676 unsigned Left = --OpenChildren[Parent]; 677 if (Left != 0) 678 break; 679 ExitScope(Parent->getBlock()); 680 Node = Parent; 681 } 682 } 683 684 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 685 /// blocks dominated by the specified header block, and that are in the 686 /// current loop) in depth first order w.r.t the DominatorTree. This allows 687 /// us to visit definitions before uses, allowing us to hoist a loop body in 688 /// one pass without iteration. 689 /// 690 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 691 SmallVector<MachineDomTreeNode*, 32> Scopes; 692 SmallVector<MachineDomTreeNode*, 8> WorkList; 693 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 694 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 695 696 // Perform a DFS walk to determine the order of visit. 697 WorkList.push_back(HeaderN); 698 do { 699 MachineDomTreeNode *Node = WorkList.pop_back_val(); 700 assert(Node && "Null dominator tree node?"); 701 MachineBasicBlock *BB = Node->getBlock(); 702 703 // If the header of the loop containing this basic block is a landing pad, 704 // then don't try to hoist instructions out of this loop. 705 const MachineLoop *ML = MLI->getLoopFor(BB); 706 if (ML && ML->getHeader()->isLandingPad()) 707 continue; 708 709 // If this subregion is not in the top level loop at all, exit. 710 if (!CurLoop->contains(BB)) 711 continue; 712 713 Scopes.push_back(Node); 714 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 715 unsigned NumChildren = Children.size(); 716 717 // Don't hoist things out of a large switch statement. This often causes 718 // code to be hoisted that wasn't going to be executed, and increases 719 // register pressure in a situation where it's likely to matter. 720 if (BB->succ_size() >= 25) 721 NumChildren = 0; 722 723 OpenChildren[Node] = NumChildren; 724 // Add children in reverse order as then the next popped worklist node is 725 // the first child of this node. This means we ultimately traverse the 726 // DOM tree in exactly the same order as if we'd recursed. 727 for (int i = (int)NumChildren-1; i >= 0; --i) { 728 MachineDomTreeNode *Child = Children[i]; 729 ParentMap[Child] = Node; 730 WorkList.push_back(Child); 731 } 732 } while (!WorkList.empty()); 733 734 if (Scopes.size() != 0) { 735 MachineBasicBlock *Preheader = getCurPreheader(); 736 if (!Preheader) 737 return; 738 739 // Compute registers which are livein into the loop headers. 740 RegSeen.clear(); 741 BackTrace.clear(); 742 InitRegPressure(Preheader); 743 } 744 745 // Now perform LICM. 746 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 747 MachineDomTreeNode *Node = Scopes[i]; 748 MachineBasicBlock *MBB = Node->getBlock(); 749 750 MachineBasicBlock *Preheader = getCurPreheader(); 751 if (!Preheader) 752 continue; 753 754 EnterScope(MBB); 755 756 // Process the block 757 SpeculationState = SpeculateUnknown; 758 for (MachineBasicBlock::iterator 759 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 760 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 761 MachineInstr *MI = &*MII; 762 if (!Hoist(MI, Preheader)) 763 UpdateRegPressure(MI); 764 MII = NextMII; 765 } 766 767 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 768 ExitScopeIfDone(Node, OpenChildren, ParentMap); 769 } 770 } 771 772 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 773 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 774 } 775 776 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 777 /// index, return the ID and cost of its representative register class. 778 void 779 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, 780 unsigned Reg, unsigned OpIdx, 781 unsigned &RCId, unsigned &RCCost) const { 782 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 783 MVT VT = *RC->vt_begin(); 784 if (VT == MVT::Untyped) { 785 RCId = RC->getID(); 786 RCCost = 1; 787 } else { 788 RCId = TLI->getRepRegClassFor(VT)->getID(); 789 RCCost = TLI->getRepRegClassCostFor(VT); 790 } 791 } 792 793 /// InitRegPressure - Find all virtual register references that are liveout of 794 /// the preheader to initialize the starting "register pressure". Note this 795 /// does not count live through (livein but not used) registers. 796 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 797 std::fill(RegPressure.begin(), RegPressure.end(), 0); 798 799 // If the preheader has only a single predecessor and it ends with a 800 // fallthrough or an unconditional branch, then scan its predecessor for live 801 // defs as well. This happens whenever the preheader is created by splitting 802 // the critical edge from the loop predecessor to the loop header. 803 if (BB->pred_size() == 1) { 804 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 805 SmallVector<MachineOperand, 4> Cond; 806 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 807 InitRegPressure(*BB->pred_begin()); 808 } 809 810 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); 811 MII != E; ++MII) { 812 MachineInstr *MI = &*MII; 813 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 814 const MachineOperand &MO = MI->getOperand(i); 815 if (!MO.isReg() || MO.isImplicit()) 816 continue; 817 unsigned Reg = MO.getReg(); 818 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 819 continue; 820 821 bool isNew = RegSeen.insert(Reg); 822 unsigned RCId, RCCost; 823 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 824 if (MO.isDef()) 825 RegPressure[RCId] += RCCost; 826 else { 827 bool isKill = isOperandKill(MO, MRI); 828 if (isNew && !isKill) 829 // Haven't seen this, it must be a livein. 830 RegPressure[RCId] += RCCost; 831 else if (!isNew && isKill) 832 RegPressure[RCId] -= RCCost; 833 } 834 } 835 } 836 } 837 838 /// UpdateRegPressure - Update estimate of register pressure after the 839 /// specified instruction. 840 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { 841 if (MI->isImplicitDef()) 842 return; 843 844 SmallVector<unsigned, 4> Defs; 845 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 846 const MachineOperand &MO = MI->getOperand(i); 847 if (!MO.isReg() || MO.isImplicit()) 848 continue; 849 unsigned Reg = MO.getReg(); 850 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 851 continue; 852 853 bool isNew = RegSeen.insert(Reg); 854 if (MO.isDef()) 855 Defs.push_back(Reg); 856 else if (!isNew && isOperandKill(MO, MRI)) { 857 unsigned RCId, RCCost; 858 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 859 if (RCCost > RegPressure[RCId]) 860 RegPressure[RCId] = 0; 861 else 862 RegPressure[RCId] -= RCCost; 863 } 864 } 865 866 unsigned Idx = 0; 867 while (!Defs.empty()) { 868 unsigned Reg = Defs.pop_back_val(); 869 unsigned RCId, RCCost; 870 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); 871 RegPressure[RCId] += RCCost; 872 ++Idx; 873 } 874 } 875 876 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction 877 /// loads from global offset table or constant pool. 878 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { 879 assert (MI.mayLoad() && "Expected MI that loads!"); 880 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 881 E = MI.memoperands_end(); I != E; ++I) { 882 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) { 883 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) 884 return true; 885 } 886 } 887 return false; 888 } 889 890 /// IsLICMCandidate - Returns true if the instruction may be a suitable 891 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 892 /// not safe to hoist it. 893 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 894 // Check if it's safe to move the instruction. 895 bool DontMoveAcrossStore = true; 896 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 897 return false; 898 899 // If it is load then check if it is guaranteed to execute by making sure that 900 // it dominates all exiting blocks. If it doesn't, then there is a path out of 901 // the loop which does not execute this load, so we can't hoist it. Loads 902 // from constant memory are not safe to speculate all the time, for example 903 // indexed load from a jump table. 904 // Stores and side effects are already checked by isSafeToMove. 905 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && 906 !IsGuaranteedToExecute(I.getParent())) 907 return false; 908 909 return true; 910 } 911 912 /// IsLoopInvariantInst - Returns true if the instruction is loop 913 /// invariant. I.e., all virtual register operands are defined outside of the 914 /// loop, physical registers aren't accessed explicitly, and there are no side 915 /// effects that aren't captured by the operands or other flags. 916 /// 917 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 918 if (!IsLICMCandidate(I)) 919 return false; 920 921 // The instruction is loop invariant if all of its operands are. 922 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 923 const MachineOperand &MO = I.getOperand(i); 924 925 if (!MO.isReg()) 926 continue; 927 928 unsigned Reg = MO.getReg(); 929 if (Reg == 0) continue; 930 931 // Don't hoist an instruction that uses or defines a physical register. 932 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 933 if (MO.isUse()) { 934 // If the physreg has no defs anywhere, it's just an ambient register 935 // and we can freely move its uses. Alternatively, if it's allocatable, 936 // it could get allocated to something with a def during allocation. 937 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 938 return false; 939 // Otherwise it's safe to move. 940 continue; 941 } else if (!MO.isDead()) { 942 // A def that isn't dead. We can't move it. 943 return false; 944 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 945 // If the reg is live into the loop, we can't hoist an instruction 946 // which would clobber it. 947 return false; 948 } 949 } 950 951 if (!MO.isUse()) 952 continue; 953 954 assert(MRI->getVRegDef(Reg) && 955 "Machine instr not mapped for this vreg?!"); 956 957 // If the loop contains the definition of an operand, then the instruction 958 // isn't loop invariant. 959 if (CurLoop->contains(MRI->getVRegDef(Reg))) 960 return false; 961 } 962 963 // If we got this far, the instruction is loop invariant! 964 return true; 965 } 966 967 968 /// HasLoopPHIUse - Return true if the specified instruction is used by a 969 /// phi node and hoisting it could cause a copy to be inserted. 970 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 971 SmallVector<const MachineInstr*, 8> Work(1, MI); 972 do { 973 MI = Work.pop_back_val(); 974 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 975 if (!MO->isReg() || !MO->isDef()) 976 continue; 977 unsigned Reg = MO->getReg(); 978 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 979 continue; 980 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 981 // A PHI may cause a copy to be inserted. 982 if (UseMI.isPHI()) { 983 // A PHI inside the loop causes a copy because the live range of Reg is 984 // extended across the PHI. 985 if (CurLoop->contains(&UseMI)) 986 return true; 987 // A PHI in an exit block can cause a copy to be inserted if the PHI 988 // has multiple predecessors in the loop with different values. 989 // For now, approximate by rejecting all exit blocks. 990 if (isExitBlock(UseMI.getParent())) 991 return true; 992 continue; 993 } 994 // Look past copies as well. 995 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 996 Work.push_back(&UseMI); 997 } 998 } 999 } while (!Work.empty()); 1000 return false; 1001 } 1002 1003 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 1004 /// and an use in the current loop, return true if the target considered 1005 /// it 'high'. 1006 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 1007 unsigned DefIdx, unsigned Reg) const { 1008 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) 1009 return false; 1010 1011 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1012 if (UseMI.isCopyLike()) 1013 continue; 1014 if (!CurLoop->contains(UseMI.getParent())) 1015 continue; 1016 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1017 const MachineOperand &MO = UseMI.getOperand(i); 1018 if (!MO.isReg() || !MO.isUse()) 1019 continue; 1020 unsigned MOReg = MO.getReg(); 1021 if (MOReg != Reg) 1022 continue; 1023 1024 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) 1025 return true; 1026 } 1027 1028 // Only look at the first in loop use. 1029 break; 1030 } 1031 1032 return false; 1033 } 1034 1035 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or 1036 /// the operand latency between its def and a use is one or less. 1037 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1038 if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike()) 1039 return true; 1040 if (!InstrItins || InstrItins->isEmpty()) 1041 return false; 1042 1043 bool isCheap = false; 1044 unsigned NumDefs = MI.getDesc().getNumDefs(); 1045 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1046 MachineOperand &DefMO = MI.getOperand(i); 1047 if (!DefMO.isReg() || !DefMO.isDef()) 1048 continue; 1049 --NumDefs; 1050 unsigned Reg = DefMO.getReg(); 1051 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1052 continue; 1053 1054 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) 1055 return false; 1056 isCheap = true; 1057 } 1058 1059 return isCheap; 1060 } 1061 1062 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check 1063 /// if hoisting an instruction of the given cost matrix can cause high 1064 /// register pressure. 1065 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, 1066 bool CheapInstr) { 1067 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1068 CI != CE; ++CI) { 1069 if (CI->second <= 0) 1070 continue; 1071 1072 unsigned RCId = CI->first; 1073 unsigned Limit = RegLimit[RCId]; 1074 int Cost = CI->second; 1075 1076 // Don't hoist cheap instructions if they would increase register pressure, 1077 // even if we're under the limit. 1078 if (CheapInstr) 1079 return true; 1080 1081 for (unsigned i = BackTrace.size(); i != 0; --i) { 1082 SmallVectorImpl<unsigned> &RP = BackTrace[i-1]; 1083 if (RP[RCId] + Cost >= Limit) 1084 return true; 1085 } 1086 } 1087 1088 return false; 1089 } 1090 1091 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the 1092 /// current block and update their register pressures to reflect the effect 1093 /// of hoisting MI from the current block to the preheader. 1094 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1095 if (MI->isImplicitDef()) 1096 return; 1097 1098 // First compute the 'cost' of the instruction, i.e. its contribution 1099 // to register pressure. 1100 DenseMap<unsigned, int> Cost; 1101 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1102 const MachineOperand &MO = MI->getOperand(i); 1103 if (!MO.isReg() || MO.isImplicit()) 1104 continue; 1105 unsigned Reg = MO.getReg(); 1106 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1107 continue; 1108 1109 unsigned RCId, RCCost; 1110 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 1111 if (MO.isDef()) { 1112 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1113 if (CI != Cost.end()) 1114 CI->second += RCCost; 1115 else 1116 Cost.insert(std::make_pair(RCId, RCCost)); 1117 } else if (isOperandKill(MO, MRI)) { 1118 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1119 if (CI != Cost.end()) 1120 CI->second -= RCCost; 1121 else 1122 Cost.insert(std::make_pair(RCId, -RCCost)); 1123 } 1124 } 1125 1126 // Update register pressure of blocks from loop header to current block. 1127 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { 1128 SmallVectorImpl<unsigned> &RP = BackTrace[i]; 1129 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1130 CI != CE; ++CI) { 1131 unsigned RCId = CI->first; 1132 RP[RCId] += CI->second; 1133 } 1134 } 1135 } 1136 1137 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 1138 /// the given loop invariant. 1139 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1140 if (MI.isImplicitDef()) 1141 return true; 1142 1143 // Besides removing computation from the loop, hoisting an instruction has 1144 // these effects: 1145 // 1146 // - The value defined by the instruction becomes live across the entire 1147 // loop. This increases register pressure in the loop. 1148 // 1149 // - If the value is used by a PHI in the loop, a copy will be required for 1150 // lowering the PHI after extending the live range. 1151 // 1152 // - When hoisting the last use of a value in the loop, that value no longer 1153 // needs to be live in the loop. This lowers register pressure in the loop. 1154 1155 bool CheapInstr = IsCheapInstruction(MI); 1156 bool CreatesCopy = HasLoopPHIUse(&MI); 1157 1158 // Don't hoist a cheap instruction if it would create a copy in the loop. 1159 if (CheapInstr && CreatesCopy) { 1160 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1161 return false; 1162 } 1163 1164 // Rematerializable instructions should always be hoisted since the register 1165 // allocator can just pull them down again when needed. 1166 if (TII->isTriviallyReMaterializable(&MI, AA)) 1167 return true; 1168 1169 // Estimate register pressure to determine whether to LICM the instruction. 1170 // In low register pressure situation, we can be more aggressive about 1171 // hoisting. Also, favors hoisting long latency instructions even in 1172 // moderately high pressure situation. 1173 // Cheap instructions will only be hoisted if they don't increase register 1174 // pressure at all. 1175 // FIXME: If there are long latency loop-invariant instructions inside the 1176 // loop at this point, why didn't the optimizer's LICM hoist them? 1177 DenseMap<unsigned, int> Cost; 1178 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1179 const MachineOperand &MO = MI.getOperand(i); 1180 if (!MO.isReg() || MO.isImplicit()) 1181 continue; 1182 unsigned Reg = MO.getReg(); 1183 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1184 continue; 1185 1186 unsigned RCId, RCCost; 1187 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); 1188 if (MO.isDef()) { 1189 if (HasHighOperandLatency(MI, i, Reg)) { 1190 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1191 ++NumHighLatency; 1192 return true; 1193 } 1194 Cost[RCId] += RCCost; 1195 } else if (isOperandKill(MO, MRI)) { 1196 // Is a virtual register use is a kill, hoisting it out of the loop 1197 // may actually reduce register pressure or be register pressure 1198 // neutral. 1199 Cost[RCId] -= RCCost; 1200 } 1201 } 1202 1203 // Visit BBs from header to current BB, if hoisting this doesn't cause 1204 // high register pressure, then it's safe to proceed. 1205 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1206 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1207 ++NumLowRP; 1208 return true; 1209 } 1210 1211 // Don't risk increasing register pressure if it would create copies. 1212 if (CreatesCopy) { 1213 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1214 return false; 1215 } 1216 1217 // Do not "speculate" in high register pressure situation. If an 1218 // instruction is not guaranteed to be executed in the loop, it's best to be 1219 // conservative. 1220 if (AvoidSpeculation && 1221 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1222 DEBUG(dbgs() << "Won't speculate: " << MI); 1223 return false; 1224 } 1225 1226 // High register pressure situation, only hoist if the instruction is going 1227 // to be remat'ed. 1228 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1229 !MI.isInvariantLoad(AA)) { 1230 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1231 return false; 1232 } 1233 1234 return true; 1235 } 1236 1237 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1238 // Don't unfold simple loads. 1239 if (MI->canFoldAsLoad()) 1240 return nullptr; 1241 1242 // If not, we may be able to unfold a load and hoist that. 1243 // First test whether the instruction is loading from an amenable 1244 // memory location. 1245 if (!MI->isInvariantLoad(AA)) 1246 return nullptr; 1247 1248 // Next determine the register class for a temporary register. 1249 unsigned LoadRegIndex; 1250 unsigned NewOpc = 1251 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1252 /*UnfoldLoad=*/true, 1253 /*UnfoldStore=*/false, 1254 &LoadRegIndex); 1255 if (NewOpc == 0) return nullptr; 1256 const MCInstrDesc &MID = TII->get(NewOpc); 1257 if (MID.getNumDefs() != 1) return nullptr; 1258 MachineFunction &MF = *MI->getParent()->getParent(); 1259 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1260 // Ok, we're unfolding. Create a temporary register and do the unfold. 1261 unsigned Reg = MRI->createVirtualRegister(RC); 1262 1263 SmallVector<MachineInstr *, 2> NewMIs; 1264 bool Success = 1265 TII->unfoldMemoryOperand(MF, MI, Reg, 1266 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1267 NewMIs); 1268 (void)Success; 1269 assert(Success && 1270 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1271 "succeeded!"); 1272 assert(NewMIs.size() == 2 && 1273 "Unfolded a load into multiple instructions!"); 1274 MachineBasicBlock *MBB = MI->getParent(); 1275 MachineBasicBlock::iterator Pos = MI; 1276 MBB->insert(Pos, NewMIs[0]); 1277 MBB->insert(Pos, NewMIs[1]); 1278 // If unfolding produced a load that wasn't loop-invariant or profitable to 1279 // hoist, discard the new instructions and bail. 1280 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1281 NewMIs[0]->eraseFromParent(); 1282 NewMIs[1]->eraseFromParent(); 1283 return nullptr; 1284 } 1285 1286 // Update register pressure for the unfolded instruction. 1287 UpdateRegPressure(NewMIs[1]); 1288 1289 // Otherwise we successfully unfolded a load that we can hoist. 1290 MI->eraseFromParent(); 1291 return NewMIs[0]; 1292 } 1293 1294 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1295 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 1296 const MachineInstr *MI = &*I; 1297 unsigned Opcode = MI->getOpcode(); 1298 CSEMap[Opcode].push_back(MI); 1299 } 1300 } 1301 1302 const MachineInstr* 1303 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1304 std::vector<const MachineInstr*> &PrevMIs) { 1305 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 1306 const MachineInstr *PrevMI = PrevMIs[i]; 1307 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) 1308 return PrevMI; 1309 } 1310 return nullptr; 1311 } 1312 1313 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1314 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1315 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1316 // the undef property onto uses. 1317 if (CI == CSEMap.end() || MI->isImplicitDef()) 1318 return false; 1319 1320 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1321 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1322 1323 // Replace virtual registers defined by MI by their counterparts defined 1324 // by Dup. 1325 SmallVector<unsigned, 2> Defs; 1326 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1327 const MachineOperand &MO = MI->getOperand(i); 1328 1329 // Physical registers may not differ here. 1330 assert((!MO.isReg() || MO.getReg() == 0 || 1331 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1332 MO.getReg() == Dup->getOperand(i).getReg()) && 1333 "Instructions with different phys regs are not identical!"); 1334 1335 if (MO.isReg() && MO.isDef() && 1336 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1337 Defs.push_back(i); 1338 } 1339 1340 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1341 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1342 unsigned Idx = Defs[i]; 1343 unsigned Reg = MI->getOperand(Idx).getReg(); 1344 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1345 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1346 1347 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1348 // Restore old RCs if more than one defs. 1349 for (unsigned j = 0; j != i; ++j) 1350 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1351 return false; 1352 } 1353 } 1354 1355 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1356 unsigned Idx = Defs[i]; 1357 unsigned Reg = MI->getOperand(Idx).getReg(); 1358 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1359 MRI->replaceRegWith(Reg, DupReg); 1360 MRI->clearKillFlags(DupReg); 1361 } 1362 1363 MI->eraseFromParent(); 1364 ++NumCSEed; 1365 return true; 1366 } 1367 return false; 1368 } 1369 1370 /// MayCSE - Return true if the given instruction will be CSE'd if it's 1371 /// hoisted out of the loop. 1372 bool MachineLICM::MayCSE(MachineInstr *MI) { 1373 unsigned Opcode = MI->getOpcode(); 1374 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1375 CI = CSEMap.find(Opcode); 1376 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1377 // the undef property onto uses. 1378 if (CI == CSEMap.end() || MI->isImplicitDef()) 1379 return false; 1380 1381 return LookForDuplicate(MI, CI->second) != nullptr; 1382 } 1383 1384 /// Hoist - When an instruction is found to use only loop invariant operands 1385 /// that are safe to hoist, this instruction is called to do the dirty work. 1386 /// 1387 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1388 // First check whether we should hoist this instruction. 1389 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1390 // If not, try unfolding a hoistable load. 1391 MI = ExtractHoistableLoad(MI); 1392 if (!MI) return false; 1393 } 1394 1395 // Now move the instructions to the predecessor, inserting it before any 1396 // terminator instructions. 1397 DEBUG({ 1398 dbgs() << "Hoisting " << *MI; 1399 if (Preheader->getBasicBlock()) 1400 dbgs() << " to MachineBasicBlock " 1401 << Preheader->getName(); 1402 if (MI->getParent()->getBasicBlock()) 1403 dbgs() << " from MachineBasicBlock " 1404 << MI->getParent()->getName(); 1405 dbgs() << "\n"; 1406 }); 1407 1408 // If this is the first instruction being hoisted to the preheader, 1409 // initialize the CSE map with potential common expressions. 1410 if (FirstInLoop) { 1411 InitCSEMap(Preheader); 1412 FirstInLoop = false; 1413 } 1414 1415 // Look for opportunity to CSE the hoisted instruction. 1416 unsigned Opcode = MI->getOpcode(); 1417 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1418 CI = CSEMap.find(Opcode); 1419 if (!EliminateCSE(MI, CI)) { 1420 // Otherwise, splice the instruction to the preheader. 1421 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1422 1423 // Update register pressure for BBs from header to this block. 1424 UpdateBackTraceRegPressure(MI); 1425 1426 // Clear the kill flags of any register this instruction defines, 1427 // since they may need to be live throughout the entire loop 1428 // rather than just live for part of it. 1429 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1430 MachineOperand &MO = MI->getOperand(i); 1431 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1432 MRI->clearKillFlags(MO.getReg()); 1433 } 1434 1435 // Add to the CSE map. 1436 if (CI != CSEMap.end()) 1437 CI->second.push_back(MI); 1438 else 1439 CSEMap[Opcode].push_back(MI); 1440 } 1441 1442 ++NumHoisted; 1443 Changed = true; 1444 1445 return true; 1446 } 1447 1448 MachineBasicBlock *MachineLICM::getCurPreheader() { 1449 // Determine the block to which to hoist instructions. If we can't find a 1450 // suitable loop predecessor, we can't do any hoisting. 1451 1452 // If we've tried to get a preheader and failed, don't try again. 1453 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1454 return nullptr; 1455 1456 if (!CurPreheader) { 1457 CurPreheader = CurLoop->getLoopPreheader(); 1458 if (!CurPreheader) { 1459 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1460 if (!Pred) { 1461 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1462 return nullptr; 1463 } 1464 1465 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1466 if (!CurPreheader) { 1467 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1468 return nullptr; 1469 } 1470 } 1471 } 1472 return CurPreheader; 1473 } 1474