1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "machinelicm"
60
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63 cl::desc("MachineLICM should avoid speculation"),
64 cl::init(true), cl::Hidden);
65
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68 cl::desc("MachineLICM should hoist even cheap instructions"),
69 cl::init(false), cl::Hidden);
70
71 static cl::opt<bool>
72 HoistConstStores("hoist-const-stores",
73 cl::desc("Hoist invariant stores"),
74 cl::init(true), cl::Hidden);
75 // The default threshold of 100 (i.e. if target block is 100 times hotter)
76 // is based on empirical data on a single target and is subject to tuning.
77 static cl::opt<unsigned>
78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
79 cl::desc("Do not hoist instructions if target"
80 "block is N times hotter than the source."),
81 cl::init(100), cl::Hidden);
82
83 enum class UseBFI { None, PGO, All };
84
85 static cl::opt<UseBFI>
86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
87 cl::desc("Disable hoisting instructions to"
88 " hotter blocks"),
89 cl::init(UseBFI::PGO), cl::Hidden,
90 cl::values(clEnumValN(UseBFI::None, "none",
91 "disable the feature"),
92 clEnumValN(UseBFI::PGO, "pgo",
93 "enable the feature when using profile data"),
94 clEnumValN(UseBFI::All, "all",
95 "enable the feature with/wo profile data")));
96
97 STATISTIC(NumHoisted,
98 "Number of machine instructions hoisted out of loops");
99 STATISTIC(NumLowRP,
100 "Number of instructions hoisted in low reg pressure situation");
101 STATISTIC(NumHighLatency,
102 "Number of high latency instructions hoisted");
103 STATISTIC(NumCSEed,
104 "Number of hoisted machine instructions CSEed");
105 STATISTIC(NumPostRAHoisted,
106 "Number of machine instructions hoisted out of loops post regalloc");
107 STATISTIC(NumStoreConst,
108 "Number of stores of const phys reg hoisted out of loops");
109 STATISTIC(NumNotHoistedDueToHotness,
110 "Number of instructions not hoisted due to block frequency");
111
112 namespace {
113
114 class MachineLICMBase : public MachineFunctionPass {
115 const TargetInstrInfo *TII;
116 const TargetLoweringBase *TLI;
117 const TargetRegisterInfo *TRI;
118 const MachineFrameInfo *MFI;
119 MachineRegisterInfo *MRI;
120 TargetSchedModel SchedModel;
121 bool PreRegAlloc;
122 bool HasProfileData;
123
124 // Various analyses that we use...
125 AliasAnalysis *AA; // Alias analysis info.
126 MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
127 MachineLoopInfo *MLI; // Current MachineLoopInfo
128 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
129
130 // State that is updated as we process loops
131 bool Changed; // True if a loop is changed.
132 bool FirstInLoop; // True if it's the first LICM in the loop.
133 MachineLoop *CurLoop; // The current loop we are working on.
134 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
135
136 // Exit blocks for CurLoop.
137 SmallVector<MachineBasicBlock *, 8> ExitBlocks;
138
isExitBlock(const MachineBasicBlock * MBB) const139 bool isExitBlock(const MachineBasicBlock *MBB) const {
140 return is_contained(ExitBlocks, MBB);
141 }
142
143 // Track 'estimated' register pressure.
144 SmallSet<Register, 32> RegSeen;
145 SmallVector<unsigned, 8> RegPressure;
146
147 // Register pressure "limit" per register pressure set. If the pressure
148 // is higher than the limit, then it's considered high.
149 SmallVector<unsigned, 8> RegLimit;
150
151 // Register pressure on path leading from loop preheader to current BB.
152 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
153
154 // For each opcode, keep a list of potential CSE instructions.
155 DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap;
156
157 enum {
158 SpeculateFalse = 0,
159 SpeculateTrue = 1,
160 SpeculateUnknown = 2
161 };
162
163 // If a MBB does not dominate loop exiting blocks then it may not safe
164 // to hoist loads from this block.
165 // Tri-state: 0 - false, 1 - true, 2 - unknown
166 unsigned SpeculationState;
167
168 public:
MachineLICMBase(char & PassID,bool PreRegAlloc)169 MachineLICMBase(char &PassID, bool PreRegAlloc)
170 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
171
172 bool runOnMachineFunction(MachineFunction &MF) override;
173
getAnalysisUsage(AnalysisUsage & AU) const174 void getAnalysisUsage(AnalysisUsage &AU) const override {
175 AU.addRequired<MachineLoopInfo>();
176 if (DisableHoistingToHotterBlocks != UseBFI::None)
177 AU.addRequired<MachineBlockFrequencyInfo>();
178 AU.addRequired<MachineDominatorTree>();
179 AU.addRequired<AAResultsWrapperPass>();
180 AU.addPreserved<MachineLoopInfo>();
181 MachineFunctionPass::getAnalysisUsage(AU);
182 }
183
releaseMemory()184 void releaseMemory() override {
185 RegSeen.clear();
186 RegPressure.clear();
187 RegLimit.clear();
188 BackTrace.clear();
189 CSEMap.clear();
190 }
191
192 private:
193 /// Keep track of information about hoisting candidates.
194 struct CandidateInfo {
195 MachineInstr *MI;
196 unsigned Def;
197 int FI;
198
CandidateInfo__anonfbf8dede0111::MachineLICMBase::CandidateInfo199 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
200 : MI(mi), Def(def), FI(fi) {}
201 };
202
203 void HoistRegionPostRA();
204
205 void HoistPostRA(MachineInstr *MI, unsigned Def);
206
207 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
208 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
209 SmallVectorImpl<CandidateInfo> &Candidates);
210
211 void AddToLiveIns(MCRegister Reg);
212
213 bool IsLICMCandidate(MachineInstr &I);
214
215 bool IsLoopInvariantInst(MachineInstr &I);
216
217 bool HasLoopPHIUse(const MachineInstr *MI) const;
218
219 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
220 Register Reg) const;
221
222 bool IsCheapInstruction(MachineInstr &MI) const;
223
224 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
225 bool Cheap);
226
227 void UpdateBackTraceRegPressure(const MachineInstr *MI);
228
229 bool IsProfitableToHoist(MachineInstr &MI);
230
231 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
232
233 bool isTriviallyReMaterializable(const MachineInstr &MI) const;
234
235 void EnterScope(MachineBasicBlock *MBB);
236
237 void ExitScope(MachineBasicBlock *MBB);
238
239 void ExitScopeIfDone(
240 MachineDomTreeNode *Node,
241 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
242 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
243
244 void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
245
246 void InitRegPressure(MachineBasicBlock *BB);
247
248 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
249 bool ConsiderSeen,
250 bool ConsiderUnseenAsDef);
251
252 void UpdateRegPressure(const MachineInstr *MI,
253 bool ConsiderUnseenAsDef = false);
254
255 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
256
257 MachineInstr *LookForDuplicate(const MachineInstr *MI,
258 std::vector<MachineInstr *> &PrevMIs);
259
260 bool
261 EliminateCSE(MachineInstr *MI,
262 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI);
263
264 bool MayCSE(MachineInstr *MI);
265
266 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
267
268 void InitCSEMap(MachineBasicBlock *BB);
269
270 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
271 MachineBasicBlock *TgtBlock);
272 MachineBasicBlock *getCurPreheader();
273 };
274
275 class MachineLICM : public MachineLICMBase {
276 public:
277 static char ID;
MachineLICM()278 MachineLICM() : MachineLICMBase(ID, false) {
279 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
280 }
281 };
282
283 class EarlyMachineLICM : public MachineLICMBase {
284 public:
285 static char ID;
EarlyMachineLICM()286 EarlyMachineLICM() : MachineLICMBase(ID, true) {
287 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
288 }
289 };
290
291 } // end anonymous namespace
292
293 char MachineLICM::ID;
294 char EarlyMachineLICM::ID;
295
296 char &llvm::MachineLICMID = MachineLICM::ID;
297 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
298
299 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
300 "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
302 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
305 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
306 "Machine Loop Invariant Code Motion", false, false)
307
308 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
309 "Early Machine Loop Invariant Code Motion", false, false)
310 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
311 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
312 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
313 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
314 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
315 "Early Machine Loop Invariant Code Motion", false, false)
316
317 /// Test if the given loop is the outer-most loop that has a unique predecessor.
318 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
319 // Check whether this loop even has a unique predecessor.
320 if (!CurLoop->getLoopPredecessor())
321 return false;
322 // Ok, now check to see if any of its outer loops do.
323 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
324 if (L->getLoopPredecessor())
325 return false;
326 // None of them did, so this is the outermost with a unique predecessor.
327 return true;
328 }
329
runOnMachineFunction(MachineFunction & MF)330 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
331 if (skipFunction(MF.getFunction()))
332 return false;
333
334 Changed = FirstInLoop = false;
335 const TargetSubtargetInfo &ST = MF.getSubtarget();
336 TII = ST.getInstrInfo();
337 TLI = ST.getTargetLowering();
338 TRI = ST.getRegisterInfo();
339 MFI = &MF.getFrameInfo();
340 MRI = &MF.getRegInfo();
341 SchedModel.init(&ST);
342
343 PreRegAlloc = MRI->isSSA();
344 HasProfileData = MF.getFunction().hasProfileData();
345
346 if (PreRegAlloc)
347 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
348 else
349 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
350 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
351
352 if (PreRegAlloc) {
353 // Estimate register pressure during pre-regalloc pass.
354 unsigned NumRPS = TRI->getNumRegPressureSets();
355 RegPressure.resize(NumRPS);
356 std::fill(RegPressure.begin(), RegPressure.end(), 0);
357 RegLimit.resize(NumRPS);
358 for (unsigned i = 0, e = NumRPS; i != e; ++i)
359 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
360 }
361
362 // Get our Loop information...
363 if (DisableHoistingToHotterBlocks != UseBFI::None)
364 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
365 MLI = &getAnalysis<MachineLoopInfo>();
366 DT = &getAnalysis<MachineDominatorTree>();
367 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
368
369 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
370 while (!Worklist.empty()) {
371 CurLoop = Worklist.pop_back_val();
372 CurPreheader = nullptr;
373 ExitBlocks.clear();
374
375 // If this is done before regalloc, only visit outer-most preheader-sporting
376 // loops.
377 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
378 Worklist.append(CurLoop->begin(), CurLoop->end());
379 continue;
380 }
381
382 CurLoop->getExitBlocks(ExitBlocks);
383
384 if (!PreRegAlloc)
385 HoistRegionPostRA();
386 else {
387 // CSEMap is initialized for loop header when the first instruction is
388 // being hoisted.
389 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
390 FirstInLoop = true;
391 HoistOutOfLoop(N);
392 CSEMap.clear();
393 }
394 }
395
396 return Changed;
397 }
398
399 /// Return true if instruction stores to the specified frame.
InstructionStoresToFI(const MachineInstr * MI,int FI)400 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
401 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
402 // true since they have no memory operands.
403 if (!MI->mayStore())
404 return false;
405 // If we lost memory operands, conservatively assume that the instruction
406 // writes to all slots.
407 if (MI->memoperands_empty())
408 return true;
409 for (const MachineMemOperand *MemOp : MI->memoperands()) {
410 if (!MemOp->isStore() || !MemOp->getPseudoValue())
411 continue;
412 if (const FixedStackPseudoSourceValue *Value =
413 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
414 if (Value->getFrameIndex() == FI)
415 return true;
416 }
417 }
418 return false;
419 }
420
421 /// Examine the instruction for potentai LICM candidate. Also
422 /// gather register def and frame object update information.
ProcessMI(MachineInstr * MI,BitVector & PhysRegDefs,BitVector & PhysRegClobbers,SmallSet<int,32> & StoredFIs,SmallVectorImpl<CandidateInfo> & Candidates)423 void MachineLICMBase::ProcessMI(MachineInstr *MI,
424 BitVector &PhysRegDefs,
425 BitVector &PhysRegClobbers,
426 SmallSet<int, 32> &StoredFIs,
427 SmallVectorImpl<CandidateInfo> &Candidates) {
428 bool RuledOut = false;
429 bool HasNonInvariantUse = false;
430 unsigned Def = 0;
431 for (const MachineOperand &MO : MI->operands()) {
432 if (MO.isFI()) {
433 // Remember if the instruction stores to the frame index.
434 int FI = MO.getIndex();
435 if (!StoredFIs.count(FI) &&
436 MFI->isSpillSlotObjectIndex(FI) &&
437 InstructionStoresToFI(MI, FI))
438 StoredFIs.insert(FI);
439 HasNonInvariantUse = true;
440 continue;
441 }
442
443 // We can't hoist an instruction defining a physreg that is clobbered in
444 // the loop.
445 if (MO.isRegMask()) {
446 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
447 continue;
448 }
449
450 if (!MO.isReg())
451 continue;
452 Register Reg = MO.getReg();
453 if (!Reg)
454 continue;
455 assert(Register::isPhysicalRegister(Reg) &&
456 "Not expecting virtual register!");
457
458 if (!MO.isDef()) {
459 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
460 // If it's using a non-loop-invariant register, then it's obviously not
461 // safe to hoist.
462 HasNonInvariantUse = true;
463 continue;
464 }
465
466 if (MO.isImplicit()) {
467 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
468 PhysRegClobbers.set(*AI);
469 if (!MO.isDead())
470 // Non-dead implicit def? This cannot be hoisted.
471 RuledOut = true;
472 // No need to check if a dead implicit def is also defined by
473 // another instruction.
474 continue;
475 }
476
477 // FIXME: For now, avoid instructions with multiple defs, unless
478 // it's a dead implicit def.
479 if (Def)
480 RuledOut = true;
481 else
482 Def = Reg;
483
484 // If we have already seen another instruction that defines the same
485 // register, then this is not safe. Two defs is indicated by setting a
486 // PhysRegClobbers bit.
487 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
488 if (PhysRegDefs.test(*AS))
489 PhysRegClobbers.set(*AS);
490 }
491 // Need a second loop because MCRegAliasIterator can visit the same
492 // register twice.
493 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
494 PhysRegDefs.set(*AS);
495
496 if (PhysRegClobbers.test(Reg))
497 // MI defined register is seen defined by another instruction in
498 // the loop, it cannot be a LICM candidate.
499 RuledOut = true;
500 }
501
502 // Only consider reloads for now and remats which do not have register
503 // operands. FIXME: Consider unfold load folding instructions.
504 if (Def && !RuledOut) {
505 int FI = std::numeric_limits<int>::min();
506 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
507 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
508 Candidates.push_back(CandidateInfo(MI, Def, FI));
509 }
510 }
511
512 /// Walk the specified region of the CFG and hoist loop invariants out to the
513 /// preheader.
HoistRegionPostRA()514 void MachineLICMBase::HoistRegionPostRA() {
515 MachineBasicBlock *Preheader = getCurPreheader();
516 if (!Preheader)
517 return;
518
519 unsigned NumRegs = TRI->getNumRegs();
520 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
521 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
522
523 SmallVector<CandidateInfo, 32> Candidates;
524 SmallSet<int, 32> StoredFIs;
525
526 // Walk the entire region, count number of defs for each register, and
527 // collect potential LICM candidates.
528 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
529 // If the header of the loop containing this basic block is a landing pad,
530 // then don't try to hoist instructions out of this loop.
531 const MachineLoop *ML = MLI->getLoopFor(BB);
532 if (ML && ML->getHeader()->isEHPad()) continue;
533
534 // Conservatively treat live-in's as an external def.
535 // FIXME: That means a reload that're reused in successor block(s) will not
536 // be LICM'ed.
537 for (const auto &LI : BB->liveins()) {
538 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
539 PhysRegDefs.set(*AI);
540 }
541
542 SpeculationState = SpeculateUnknown;
543 for (MachineInstr &MI : *BB)
544 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
545 }
546
547 // Gather the registers read / clobbered by the terminator.
548 BitVector TermRegs(NumRegs);
549 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
550 if (TI != Preheader->end()) {
551 for (const MachineOperand &MO : TI->operands()) {
552 if (!MO.isReg())
553 continue;
554 Register Reg = MO.getReg();
555 if (!Reg)
556 continue;
557 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
558 TermRegs.set(*AI);
559 }
560 }
561
562 // Now evaluate whether the potential candidates qualify.
563 // 1. Check if the candidate defined register is defined by another
564 // instruction in the loop.
565 // 2. If the candidate is a load from stack slot (always true for now),
566 // check if the slot is stored anywhere in the loop.
567 // 3. Make sure candidate def should not clobber
568 // registers read by the terminator. Similarly its def should not be
569 // clobbered by the terminator.
570 for (CandidateInfo &Candidate : Candidates) {
571 if (Candidate.FI != std::numeric_limits<int>::min() &&
572 StoredFIs.count(Candidate.FI))
573 continue;
574
575 unsigned Def = Candidate.Def;
576 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
577 bool Safe = true;
578 MachineInstr *MI = Candidate.MI;
579 for (const MachineOperand &MO : MI->operands()) {
580 if (!MO.isReg() || MO.isDef() || !MO.getReg())
581 continue;
582 Register Reg = MO.getReg();
583 if (PhysRegDefs.test(Reg) ||
584 PhysRegClobbers.test(Reg)) {
585 // If it's using a non-loop-invariant register, then it's obviously
586 // not safe to hoist.
587 Safe = false;
588 break;
589 }
590 }
591 if (Safe)
592 HoistPostRA(MI, Candidate.Def);
593 }
594 }
595 }
596
597 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
598 /// sure it is not killed by any instructions in the loop.
AddToLiveIns(MCRegister Reg)599 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
600 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
601 if (!BB->isLiveIn(Reg))
602 BB->addLiveIn(Reg);
603 for (MachineInstr &MI : *BB) {
604 for (MachineOperand &MO : MI.operands()) {
605 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
606 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
607 MO.setIsKill(false);
608 }
609 }
610 }
611 }
612
613 /// When an instruction is found to only use loop invariant operands that is
614 /// safe to hoist, this instruction is called to do the dirty work.
HoistPostRA(MachineInstr * MI,unsigned Def)615 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
616 MachineBasicBlock *Preheader = getCurPreheader();
617
618 // Now move the instructions to the predecessor, inserting it before any
619 // terminator instructions.
620 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
621 << " from " << printMBBReference(*MI->getParent()) << ": "
622 << *MI);
623
624 // Splice the instruction to the preheader.
625 MachineBasicBlock *MBB = MI->getParent();
626 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
627
628 // Since we are moving the instruction out of its basic block, we do not
629 // retain its debug location. Doing so would degrade the debugging
630 // experience and adversely affect the accuracy of profiling information.
631 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
632 MI->setDebugLoc(DebugLoc());
633
634 // Add register to livein list to all the BBs in the current loop since a
635 // loop invariant must be kept live throughout the whole loop. This is
636 // important to ensure later passes do not scavenge the def register.
637 AddToLiveIns(Def);
638
639 ++NumPostRAHoisted;
640 Changed = true;
641 }
642
643 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
644 /// may not be safe to hoist.
IsGuaranteedToExecute(MachineBasicBlock * BB)645 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
646 if (SpeculationState != SpeculateUnknown)
647 return SpeculationState == SpeculateFalse;
648
649 if (BB != CurLoop->getHeader()) {
650 // Check loop exiting blocks.
651 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
652 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
653 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
654 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
655 SpeculationState = SpeculateTrue;
656 return false;
657 }
658 }
659
660 SpeculationState = SpeculateFalse;
661 return true;
662 }
663
664 /// Check if \p MI is trivially remateralizable and if it does not have any
665 /// virtual register uses. Even though rematerializable RA might not actually
666 /// rematerialize it in this scenario. In that case we do not want to hoist such
667 /// instruction out of the loop in a belief RA will sink it back if needed.
isTriviallyReMaterializable(const MachineInstr & MI) const668 bool MachineLICMBase::isTriviallyReMaterializable(
669 const MachineInstr &MI) const {
670 if (!TII->isTriviallyReMaterializable(MI))
671 return false;
672
673 for (const MachineOperand &MO : MI.operands()) {
674 if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
675 return false;
676 }
677
678 return true;
679 }
680
EnterScope(MachineBasicBlock * MBB)681 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
682 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
683
684 // Remember livein register pressure.
685 BackTrace.push_back(RegPressure);
686 }
687
ExitScope(MachineBasicBlock * MBB)688 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
689 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
690 BackTrace.pop_back();
691 }
692
693 /// Destroy scope for the MBB that corresponds to the given dominator tree node
694 /// if its a leaf or all of its children are done. Walk up the dominator tree to
695 /// destroy ancestors which are now done.
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren,const DenseMap<MachineDomTreeNode *,MachineDomTreeNode * > & ParentMap)696 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
697 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
698 const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
699 if (OpenChildren[Node])
700 return;
701
702 for(;;) {
703 ExitScope(Node->getBlock());
704 // Now traverse upwards to pop ancestors whose offsprings are all done.
705 MachineDomTreeNode *Parent = ParentMap.lookup(Node);
706 if (!Parent || --OpenChildren[Parent] != 0)
707 break;
708 Node = Parent;
709 }
710 }
711
712 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
713 /// specified header block, and that are in the current loop) in depth first
714 /// order w.r.t the DominatorTree. This allows us to visit definitions before
715 /// uses, allowing us to hoist a loop body in one pass without iteration.
HoistOutOfLoop(MachineDomTreeNode * HeaderN)716 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
717 MachineBasicBlock *Preheader = getCurPreheader();
718 if (!Preheader)
719 return;
720
721 SmallVector<MachineDomTreeNode*, 32> Scopes;
722 SmallVector<MachineDomTreeNode*, 8> WorkList;
723 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
724 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
725
726 // Perform a DFS walk to determine the order of visit.
727 WorkList.push_back(HeaderN);
728 while (!WorkList.empty()) {
729 MachineDomTreeNode *Node = WorkList.pop_back_val();
730 assert(Node && "Null dominator tree node?");
731 MachineBasicBlock *BB = Node->getBlock();
732
733 // If the header of the loop containing this basic block is a landing pad,
734 // then don't try to hoist instructions out of this loop.
735 const MachineLoop *ML = MLI->getLoopFor(BB);
736 if (ML && ML->getHeader()->isEHPad())
737 continue;
738
739 // If this subregion is not in the top level loop at all, exit.
740 if (!CurLoop->contains(BB))
741 continue;
742
743 Scopes.push_back(Node);
744 unsigned NumChildren = Node->getNumChildren();
745
746 // Don't hoist things out of a large switch statement. This often causes
747 // code to be hoisted that wasn't going to be executed, and increases
748 // register pressure in a situation where it's likely to matter.
749 if (BB->succ_size() >= 25)
750 NumChildren = 0;
751
752 OpenChildren[Node] = NumChildren;
753 if (NumChildren) {
754 // Add children in reverse order as then the next popped worklist node is
755 // the first child of this node. This means we ultimately traverse the
756 // DOM tree in exactly the same order as if we'd recursed.
757 for (MachineDomTreeNode *Child : reverse(Node->children())) {
758 ParentMap[Child] = Node;
759 WorkList.push_back(Child);
760 }
761 }
762 }
763
764 if (Scopes.size() == 0)
765 return;
766
767 // Compute registers which are livein into the loop headers.
768 RegSeen.clear();
769 BackTrace.clear();
770 InitRegPressure(Preheader);
771
772 // Now perform LICM.
773 for (MachineDomTreeNode *Node : Scopes) {
774 MachineBasicBlock *MBB = Node->getBlock();
775
776 EnterScope(MBB);
777
778 // Process the block
779 SpeculationState = SpeculateUnknown;
780 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
781 if (!Hoist(&MI, Preheader))
782 UpdateRegPressure(&MI);
783 // If we have hoisted an instruction that may store, it can only be a
784 // constant store.
785 }
786
787 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
788 ExitScopeIfDone(Node, OpenChildren, ParentMap);
789 }
790 }
791
isOperandKill(const MachineOperand & MO,MachineRegisterInfo * MRI)792 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
793 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
794 }
795
796 /// Find all virtual register references that are liveout of the preheader to
797 /// initialize the starting "register pressure". Note this does not count live
798 /// through (livein but not used) registers.
InitRegPressure(MachineBasicBlock * BB)799 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
800 std::fill(RegPressure.begin(), RegPressure.end(), 0);
801
802 // If the preheader has only a single predecessor and it ends with a
803 // fallthrough or an unconditional branch, then scan its predecessor for live
804 // defs as well. This happens whenever the preheader is created by splitting
805 // the critical edge from the loop predecessor to the loop header.
806 if (BB->pred_size() == 1) {
807 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
808 SmallVector<MachineOperand, 4> Cond;
809 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
810 InitRegPressure(*BB->pred_begin());
811 }
812
813 for (const MachineInstr &MI : *BB)
814 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
815 }
816
817 /// Update estimate of register pressure after the specified instruction.
UpdateRegPressure(const MachineInstr * MI,bool ConsiderUnseenAsDef)818 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
819 bool ConsiderUnseenAsDef) {
820 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
821 for (const auto &RPIdAndCost : Cost) {
822 unsigned Class = RPIdAndCost.first;
823 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
824 RegPressure[Class] = 0;
825 else
826 RegPressure[Class] += RPIdAndCost.second;
827 }
828 }
829
830 /// Calculate the additional register pressure that the registers used in MI
831 /// cause.
832 ///
833 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
834 /// figure out which usages are live-ins.
835 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
836 DenseMap<unsigned, int>
calcRegisterCost(const MachineInstr * MI,bool ConsiderSeen,bool ConsiderUnseenAsDef)837 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
838 bool ConsiderUnseenAsDef) {
839 DenseMap<unsigned, int> Cost;
840 if (MI->isImplicitDef())
841 return Cost;
842 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
843 const MachineOperand &MO = MI->getOperand(i);
844 if (!MO.isReg() || MO.isImplicit())
845 continue;
846 Register Reg = MO.getReg();
847 if (!Register::isVirtualRegister(Reg))
848 continue;
849
850 // FIXME: It seems bad to use RegSeen only for some of these calculations.
851 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
852 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
853
854 RegClassWeight W = TRI->getRegClassWeight(RC);
855 int RCCost = 0;
856 if (MO.isDef())
857 RCCost = W.RegWeight;
858 else {
859 bool isKill = isOperandKill(MO, MRI);
860 if (isNew && !isKill && ConsiderUnseenAsDef)
861 // Haven't seen this, it must be a livein.
862 RCCost = W.RegWeight;
863 else if (!isNew && isKill)
864 RCCost = -W.RegWeight;
865 }
866 if (RCCost == 0)
867 continue;
868 const int *PS = TRI->getRegClassPressureSets(RC);
869 for (; *PS != -1; ++PS) {
870 if (Cost.find(*PS) == Cost.end())
871 Cost[*PS] = RCCost;
872 else
873 Cost[*PS] += RCCost;
874 }
875 }
876 return Cost;
877 }
878
879 /// Return true if this machine instruction loads from global offset table or
880 /// constant pool.
mayLoadFromGOTOrConstantPool(MachineInstr & MI)881 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
882 assert(MI.mayLoad() && "Expected MI that loads!");
883
884 // If we lost memory operands, conservatively assume that the instruction
885 // reads from everything..
886 if (MI.memoperands_empty())
887 return true;
888
889 for (MachineMemOperand *MemOp : MI.memoperands())
890 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
891 if (PSV->isGOT() || PSV->isConstantPool())
892 return true;
893
894 return false;
895 }
896
897 // This function iterates through all the operands of the input store MI and
898 // checks that each register operand statisfies isCallerPreservedPhysReg.
899 // This means, the value being stored and the address where it is being stored
900 // is constant throughout the body of the function (not including prologue and
901 // epilogue). When called with an MI that isn't a store, it returns false.
902 // A future improvement can be to check if the store registers are constant
903 // throughout the loop rather than throughout the funtion.
isInvariantStore(const MachineInstr & MI,const TargetRegisterInfo * TRI,const MachineRegisterInfo * MRI)904 static bool isInvariantStore(const MachineInstr &MI,
905 const TargetRegisterInfo *TRI,
906 const MachineRegisterInfo *MRI) {
907
908 bool FoundCallerPresReg = false;
909 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
910 (MI.getNumOperands() == 0))
911 return false;
912
913 // Check that all register operands are caller-preserved physical registers.
914 for (const MachineOperand &MO : MI.operands()) {
915 if (MO.isReg()) {
916 Register Reg = MO.getReg();
917 // If operand is a virtual register, check if it comes from a copy of a
918 // physical register.
919 if (Register::isVirtualRegister(Reg))
920 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
921 if (Register::isVirtualRegister(Reg))
922 return false;
923 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
924 return false;
925 else
926 FoundCallerPresReg = true;
927 } else if (!MO.isImm()) {
928 return false;
929 }
930 }
931 return FoundCallerPresReg;
932 }
933
934 // Return true if the input MI is a copy instruction that feeds an invariant
935 // store instruction. This means that the src of the copy has to satisfy
936 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
937 // isInvariantStore.
isCopyFeedingInvariantStore(const MachineInstr & MI,const MachineRegisterInfo * MRI,const TargetRegisterInfo * TRI)938 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
939 const MachineRegisterInfo *MRI,
940 const TargetRegisterInfo *TRI) {
941
942 // FIXME: If targets would like to look through instructions that aren't
943 // pure copies, this can be updated to a query.
944 if (!MI.isCopy())
945 return false;
946
947 const MachineFunction *MF = MI.getMF();
948 // Check that we are copying a constant physical register.
949 Register CopySrcReg = MI.getOperand(1).getReg();
950 if (Register::isVirtualRegister(CopySrcReg))
951 return false;
952
953 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
954 return false;
955
956 Register CopyDstReg = MI.getOperand(0).getReg();
957 // Check if any of the uses of the copy are invariant stores.
958 assert(Register::isVirtualRegister(CopyDstReg) &&
959 "copy dst is not a virtual reg");
960
961 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
962 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
963 return true;
964 }
965 return false;
966 }
967
968 /// Returns true if the instruction may be a suitable candidate for LICM.
969 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
IsLICMCandidate(MachineInstr & I)970 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
971 // Check if it's safe to move the instruction.
972 bool DontMoveAcrossStore = true;
973 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
974 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
975 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
976 return false;
977 }
978
979 // If it is a load then check if it is guaranteed to execute by making sure
980 // that it dominates all exiting blocks. If it doesn't, then there is a path
981 // out of the loop which does not execute this load, so we can't hoist it.
982 // Loads from constant memory are safe to speculate, for example indexed load
983 // from a jump table.
984 // Stores and side effects are already checked by isSafeToMove.
985 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
986 !IsGuaranteedToExecute(I.getParent())) {
987 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
988 return false;
989 }
990
991 // Convergent attribute has been used on operations that involve inter-thread
992 // communication which results are implicitly affected by the enclosing
993 // control flows. It is not safe to hoist or sink such operations across
994 // control flow.
995 if (I.isConvergent())
996 return false;
997
998 if (!TII->shouldHoist(I, CurLoop))
999 return false;
1000
1001 return true;
1002 }
1003
1004 /// Returns true if the instruction is loop invariant.
IsLoopInvariantInst(MachineInstr & I)1005 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1006 if (!IsLICMCandidate(I)) {
1007 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
1008 return false;
1009 }
1010 return CurLoop->isLoopInvariant(I);
1011 }
1012
1013 /// Return true if the specified instruction is used by a phi node and hoisting
1014 /// it could cause a copy to be inserted.
HasLoopPHIUse(const MachineInstr * MI) const1015 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1016 SmallVector<const MachineInstr*, 8> Work(1, MI);
1017 do {
1018 MI = Work.pop_back_val();
1019 for (const MachineOperand &MO : MI->operands()) {
1020 if (!MO.isReg() || !MO.isDef())
1021 continue;
1022 Register Reg = MO.getReg();
1023 if (!Register::isVirtualRegister(Reg))
1024 continue;
1025 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1026 // A PHI may cause a copy to be inserted.
1027 if (UseMI.isPHI()) {
1028 // A PHI inside the loop causes a copy because the live range of Reg is
1029 // extended across the PHI.
1030 if (CurLoop->contains(&UseMI))
1031 return true;
1032 // A PHI in an exit block can cause a copy to be inserted if the PHI
1033 // has multiple predecessors in the loop with different values.
1034 // For now, approximate by rejecting all exit blocks.
1035 if (isExitBlock(UseMI.getParent()))
1036 return true;
1037 continue;
1038 }
1039 // Look past copies as well.
1040 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1041 Work.push_back(&UseMI);
1042 }
1043 }
1044 } while (!Work.empty());
1045 return false;
1046 }
1047
1048 /// Compute operand latency between a def of 'Reg' and an use in the current
1049 /// loop, return true if the target considered it high.
HasHighOperandLatency(MachineInstr & MI,unsigned DefIdx,Register Reg) const1050 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1051 Register Reg) const {
1052 if (MRI->use_nodbg_empty(Reg))
1053 return false;
1054
1055 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1056 if (UseMI.isCopyLike())
1057 continue;
1058 if (!CurLoop->contains(UseMI.getParent()))
1059 continue;
1060 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1061 const MachineOperand &MO = UseMI.getOperand(i);
1062 if (!MO.isReg() || !MO.isUse())
1063 continue;
1064 Register MOReg = MO.getReg();
1065 if (MOReg != Reg)
1066 continue;
1067
1068 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1069 return true;
1070 }
1071
1072 // Only look at the first in loop use.
1073 break;
1074 }
1075
1076 return false;
1077 }
1078
1079 /// Return true if the instruction is marked "cheap" or the operand latency
1080 /// between its def and a use is one or less.
IsCheapInstruction(MachineInstr & MI) const1081 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1082 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1083 return true;
1084
1085 bool isCheap = false;
1086 unsigned NumDefs = MI.getDesc().getNumDefs();
1087 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1088 MachineOperand &DefMO = MI.getOperand(i);
1089 if (!DefMO.isReg() || !DefMO.isDef())
1090 continue;
1091 --NumDefs;
1092 Register Reg = DefMO.getReg();
1093 if (Register::isPhysicalRegister(Reg))
1094 continue;
1095
1096 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1097 return false;
1098 isCheap = true;
1099 }
1100
1101 return isCheap;
1102 }
1103
1104 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1105 /// given cost matrix can cause high register pressure.
1106 bool
CanCauseHighRegPressure(const DenseMap<unsigned,int> & Cost,bool CheapInstr)1107 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1108 bool CheapInstr) {
1109 for (const auto &RPIdAndCost : Cost) {
1110 if (RPIdAndCost.second <= 0)
1111 continue;
1112
1113 unsigned Class = RPIdAndCost.first;
1114 int Limit = RegLimit[Class];
1115
1116 // Don't hoist cheap instructions if they would increase register pressure,
1117 // even if we're under the limit.
1118 if (CheapInstr && !HoistCheapInsts)
1119 return true;
1120
1121 for (const auto &RP : BackTrace)
1122 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1123 return true;
1124 }
1125
1126 return false;
1127 }
1128
1129 /// Traverse the back trace from header to the current block and update their
1130 /// register pressures to reflect the effect of hoisting MI from the current
1131 /// block to the preheader.
UpdateBackTraceRegPressure(const MachineInstr * MI)1132 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1133 // First compute the 'cost' of the instruction, i.e. its contribution
1134 // to register pressure.
1135 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1136 /*ConsiderUnseenAsDef=*/false);
1137
1138 // Update register pressure of blocks from loop header to current block.
1139 for (auto &RP : BackTrace)
1140 for (const auto &RPIdAndCost : Cost)
1141 RP[RPIdAndCost.first] += RPIdAndCost.second;
1142 }
1143
1144 /// Return true if it is potentially profitable to hoist the given loop
1145 /// invariant.
IsProfitableToHoist(MachineInstr & MI)1146 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1147 if (MI.isImplicitDef())
1148 return true;
1149
1150 // Besides removing computation from the loop, hoisting an instruction has
1151 // these effects:
1152 //
1153 // - The value defined by the instruction becomes live across the entire
1154 // loop. This increases register pressure in the loop.
1155 //
1156 // - If the value is used by a PHI in the loop, a copy will be required for
1157 // lowering the PHI after extending the live range.
1158 //
1159 // - When hoisting the last use of a value in the loop, that value no longer
1160 // needs to be live in the loop. This lowers register pressure in the loop.
1161
1162 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
1163 return true;
1164
1165 bool CheapInstr = IsCheapInstruction(MI);
1166 bool CreatesCopy = HasLoopPHIUse(&MI);
1167
1168 // Don't hoist a cheap instruction if it would create a copy in the loop.
1169 if (CheapInstr && CreatesCopy) {
1170 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1171 return false;
1172 }
1173
1174 // Rematerializable instructions should always be hoisted providing the
1175 // register allocator can just pull them down again when needed.
1176 if (isTriviallyReMaterializable(MI))
1177 return true;
1178
1179 // FIXME: If there are long latency loop-invariant instructions inside the
1180 // loop at this point, why didn't the optimizer's LICM hoist them?
1181 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1182 const MachineOperand &MO = MI.getOperand(i);
1183 if (!MO.isReg() || MO.isImplicit())
1184 continue;
1185 Register Reg = MO.getReg();
1186 if (!Register::isVirtualRegister(Reg))
1187 continue;
1188 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1189 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1190 ++NumHighLatency;
1191 return true;
1192 }
1193 }
1194
1195 // Estimate register pressure to determine whether to LICM the instruction.
1196 // In low register pressure situation, we can be more aggressive about
1197 // hoisting. Also, favors hoisting long latency instructions even in
1198 // moderately high pressure situation.
1199 // Cheap instructions will only be hoisted if they don't increase register
1200 // pressure at all.
1201 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1202 /*ConsiderUnseenAsDef=*/false);
1203
1204 // Visit BBs from header to current BB, if hoisting this doesn't cause
1205 // high register pressure, then it's safe to proceed.
1206 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1207 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1208 ++NumLowRP;
1209 return true;
1210 }
1211
1212 // Don't risk increasing register pressure if it would create copies.
1213 if (CreatesCopy) {
1214 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1215 return false;
1216 }
1217
1218 // Do not "speculate" in high register pressure situation. If an
1219 // instruction is not guaranteed to be executed in the loop, it's best to be
1220 // conservative.
1221 if (AvoidSpeculation &&
1222 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1223 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1224 return false;
1225 }
1226
1227 // High register pressure situation, only hoist if the instruction is going
1228 // to be remat'ed.
1229 if (!isTriviallyReMaterializable(MI) &&
1230 !MI.isDereferenceableInvariantLoad()) {
1231 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1232 return false;
1233 }
1234
1235 return true;
1236 }
1237
1238 /// Unfold a load from the given machineinstr if the load itself could be
1239 /// hoisted. Return the unfolded and hoistable load, or null if the load
1240 /// couldn't be unfolded or if it wouldn't be hoistable.
ExtractHoistableLoad(MachineInstr * MI)1241 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1242 // Don't unfold simple loads.
1243 if (MI->canFoldAsLoad())
1244 return nullptr;
1245
1246 // If not, we may be able to unfold a load and hoist that.
1247 // First test whether the instruction is loading from an amenable
1248 // memory location.
1249 if (!MI->isDereferenceableInvariantLoad())
1250 return nullptr;
1251
1252 // Next determine the register class for a temporary register.
1253 unsigned LoadRegIndex;
1254 unsigned NewOpc =
1255 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1256 /*UnfoldLoad=*/true,
1257 /*UnfoldStore=*/false,
1258 &LoadRegIndex);
1259 if (NewOpc == 0) return nullptr;
1260 const MCInstrDesc &MID = TII->get(NewOpc);
1261 MachineFunction &MF = *MI->getMF();
1262 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1263 // Ok, we're unfolding. Create a temporary register and do the unfold.
1264 Register Reg = MRI->createVirtualRegister(RC);
1265
1266 SmallVector<MachineInstr *, 2> NewMIs;
1267 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1268 /*UnfoldLoad=*/true,
1269 /*UnfoldStore=*/false, NewMIs);
1270 (void)Success;
1271 assert(Success &&
1272 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1273 "succeeded!");
1274 assert(NewMIs.size() == 2 &&
1275 "Unfolded a load into multiple instructions!");
1276 MachineBasicBlock *MBB = MI->getParent();
1277 MachineBasicBlock::iterator Pos = MI;
1278 MBB->insert(Pos, NewMIs[0]);
1279 MBB->insert(Pos, NewMIs[1]);
1280 // If unfolding produced a load that wasn't loop-invariant or profitable to
1281 // hoist, discard the new instructions and bail.
1282 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1283 NewMIs[0]->eraseFromParent();
1284 NewMIs[1]->eraseFromParent();
1285 return nullptr;
1286 }
1287
1288 // Update register pressure for the unfolded instruction.
1289 UpdateRegPressure(NewMIs[1]);
1290
1291 // Otherwise we successfully unfolded a load that we can hoist.
1292
1293 // Update the call site info.
1294 if (MI->shouldUpdateCallSiteInfo())
1295 MF.eraseCallSiteInfo(MI);
1296
1297 MI->eraseFromParent();
1298 return NewMIs[0];
1299 }
1300
1301 /// Initialize the CSE map with instructions that are in the current loop
1302 /// preheader that may become duplicates of instructions that are hoisted
1303 /// out of the loop.
InitCSEMap(MachineBasicBlock * BB)1304 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1305 for (MachineInstr &MI : *BB)
1306 CSEMap[MI.getOpcode()].push_back(&MI);
1307 }
1308
1309 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1310 /// Return this instruction if it's found.
1311 MachineInstr *
LookForDuplicate(const MachineInstr * MI,std::vector<MachineInstr * > & PrevMIs)1312 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1313 std::vector<MachineInstr *> &PrevMIs) {
1314 for (MachineInstr *PrevMI : PrevMIs)
1315 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1316 return PrevMI;
1317
1318 return nullptr;
1319 }
1320
1321 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1322 /// computes the same value. If it's found, do a RAU on with the definition of
1323 /// the existing instruction rather than hoisting the instruction to the
1324 /// preheader.
EliminateCSE(MachineInstr * MI,DenseMap<unsigned,std::vector<MachineInstr * >>::iterator & CI)1325 bool MachineLICMBase::EliminateCSE(
1326 MachineInstr *MI,
1327 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) {
1328 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1329 // the undef property onto uses.
1330 if (CI == CSEMap.end() || MI->isImplicitDef())
1331 return false;
1332
1333 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1334 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1335
1336 // Replace virtual registers defined by MI by their counterparts defined
1337 // by Dup.
1338 SmallVector<unsigned, 2> Defs;
1339 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1340 const MachineOperand &MO = MI->getOperand(i);
1341
1342 // Physical registers may not differ here.
1343 assert((!MO.isReg() || MO.getReg() == 0 ||
1344 !Register::isPhysicalRegister(MO.getReg()) ||
1345 MO.getReg() == Dup->getOperand(i).getReg()) &&
1346 "Instructions with different phys regs are not identical!");
1347
1348 if (MO.isReg() && MO.isDef() &&
1349 !Register::isPhysicalRegister(MO.getReg()))
1350 Defs.push_back(i);
1351 }
1352
1353 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1354 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1355 unsigned Idx = Defs[i];
1356 Register Reg = MI->getOperand(Idx).getReg();
1357 Register DupReg = Dup->getOperand(Idx).getReg();
1358 OrigRCs.push_back(MRI->getRegClass(DupReg));
1359
1360 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1361 // Restore old RCs if more than one defs.
1362 for (unsigned j = 0; j != i; ++j)
1363 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1364 return false;
1365 }
1366 }
1367
1368 for (unsigned Idx : Defs) {
1369 Register Reg = MI->getOperand(Idx).getReg();
1370 Register DupReg = Dup->getOperand(Idx).getReg();
1371 MRI->replaceRegWith(Reg, DupReg);
1372 MRI->clearKillFlags(DupReg);
1373 // Clear Dup dead flag if any, we reuse it for Reg.
1374 if (!MRI->use_nodbg_empty(DupReg))
1375 Dup->getOperand(Idx).setIsDead(false);
1376 }
1377
1378 MI->eraseFromParent();
1379 ++NumCSEed;
1380 return true;
1381 }
1382 return false;
1383 }
1384
1385 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1386 /// the loop.
MayCSE(MachineInstr * MI)1387 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1388 unsigned Opcode = MI->getOpcode();
1389 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1390 CSEMap.find(Opcode);
1391 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1392 // the undef property onto uses.
1393 if (CI == CSEMap.end() || MI->isImplicitDef())
1394 return false;
1395
1396 return LookForDuplicate(MI, CI->second) != nullptr;
1397 }
1398
1399 /// When an instruction is found to use only loop invariant operands
1400 /// that are safe to hoist, this instruction is called to do the dirty work.
1401 /// It returns true if the instruction is hoisted.
Hoist(MachineInstr * MI,MachineBasicBlock * Preheader)1402 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1403 MachineBasicBlock *SrcBlock = MI->getParent();
1404
1405 // Disable the instruction hoisting due to block hotness
1406 if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1407 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1408 isTgtHotterThanSrc(SrcBlock, Preheader)) {
1409 ++NumNotHoistedDueToHotness;
1410 return false;
1411 }
1412 // First check whether we should hoist this instruction.
1413 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1414 // If not, try unfolding a hoistable load.
1415 MI = ExtractHoistableLoad(MI);
1416 if (!MI) return false;
1417 }
1418
1419 // If we have hoisted an instruction that may store, it can only be a constant
1420 // store.
1421 if (MI->mayStore())
1422 NumStoreConst++;
1423
1424 // Now move the instructions to the predecessor, inserting it before any
1425 // terminator instructions.
1426 LLVM_DEBUG({
1427 dbgs() << "Hoisting " << *MI;
1428 if (MI->getParent()->getBasicBlock())
1429 dbgs() << " from " << printMBBReference(*MI->getParent());
1430 if (Preheader->getBasicBlock())
1431 dbgs() << " to " << printMBBReference(*Preheader);
1432 dbgs() << "\n";
1433 });
1434
1435 // If this is the first instruction being hoisted to the preheader,
1436 // initialize the CSE map with potential common expressions.
1437 if (FirstInLoop) {
1438 InitCSEMap(Preheader);
1439 FirstInLoop = false;
1440 }
1441
1442 // Look for opportunity to CSE the hoisted instruction.
1443 unsigned Opcode = MI->getOpcode();
1444 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1445 CSEMap.find(Opcode);
1446 if (!EliminateCSE(MI, CI)) {
1447 // Otherwise, splice the instruction to the preheader.
1448 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1449
1450 // Since we are moving the instruction out of its basic block, we do not
1451 // retain its debug location. Doing so would degrade the debugging
1452 // experience and adversely affect the accuracy of profiling information.
1453 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1454 MI->setDebugLoc(DebugLoc());
1455
1456 // Update register pressure for BBs from header to this block.
1457 UpdateBackTraceRegPressure(MI);
1458
1459 // Clear the kill flags of any register this instruction defines,
1460 // since they may need to be live throughout the entire loop
1461 // rather than just live for part of it.
1462 for (MachineOperand &MO : MI->operands())
1463 if (MO.isReg() && MO.isDef() && !MO.isDead())
1464 MRI->clearKillFlags(MO.getReg());
1465
1466 // Add to the CSE map.
1467 if (CI != CSEMap.end())
1468 CI->second.push_back(MI);
1469 else
1470 CSEMap[Opcode].push_back(MI);
1471 }
1472
1473 ++NumHoisted;
1474 Changed = true;
1475
1476 return true;
1477 }
1478
1479 /// Get the preheader for the current loop, splitting a critical edge if needed.
getCurPreheader()1480 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1481 // Determine the block to which to hoist instructions. If we can't find a
1482 // suitable loop predecessor, we can't do any hoisting.
1483
1484 // If we've tried to get a preheader and failed, don't try again.
1485 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1486 return nullptr;
1487
1488 if (!CurPreheader) {
1489 CurPreheader = CurLoop->getLoopPreheader();
1490 if (!CurPreheader) {
1491 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1492 if (!Pred) {
1493 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1494 return nullptr;
1495 }
1496
1497 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1498 if (!CurPreheader) {
1499 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1500 return nullptr;
1501 }
1502 }
1503 }
1504 return CurPreheader;
1505 }
1506
1507 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1508 /// times hotter than the source basic block.
isTgtHotterThanSrc(MachineBasicBlock * SrcBlock,MachineBasicBlock * TgtBlock)1509 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1510 MachineBasicBlock *TgtBlock) {
1511 // Parse source and target basic block frequency from MBFI
1512 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1513 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1514
1515 // Disable the hoisting if source block frequency is zero
1516 if (!SrcBF)
1517 return true;
1518
1519 double Ratio = (double)DstBF / SrcBF;
1520
1521 // Compare the block frequency ratio with the threshold
1522 return Ratio > BlockFrequencyRatioThreshold;
1523 }
1524