1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <limits> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "machinelicm" 58 59 static cl::opt<bool> 60 AvoidSpeculation("avoid-speculation", 61 cl::desc("MachineLICM should avoid speculation"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 HoistCheapInsts("hoist-cheap-insts", 66 cl::desc("MachineLICM should hoist even cheap instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 71 cl::desc("MachineLICM should sink instructions into " 72 "loops to avoid register spills"), 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> 75 HoistConstStores("hoist-const-stores", 76 cl::desc("Hoist invariant stores"), 77 cl::init(true), cl::Hidden); 78 79 STATISTIC(NumHoisted, 80 "Number of machine instructions hoisted out of loops"); 81 STATISTIC(NumLowRP, 82 "Number of instructions hoisted in low reg pressure situation"); 83 STATISTIC(NumHighLatency, 84 "Number of high latency instructions hoisted"); 85 STATISTIC(NumCSEed, 86 "Number of hoisted machine instructions CSEed"); 87 STATISTIC(NumPostRAHoisted, 88 "Number of machine instructions hoisted out of loops post regalloc"); 89 STATISTIC(NumStoreConst, 90 "Number of stores of const phys reg hoisted out of loops"); 91 92 namespace { 93 94 class MachineLICMBase : public MachineFunctionPass { 95 const TargetInstrInfo *TII; 96 const TargetLoweringBase *TLI; 97 const TargetRegisterInfo *TRI; 98 const MachineFrameInfo *MFI; 99 MachineRegisterInfo *MRI; 100 TargetSchedModel SchedModel; 101 bool PreRegAlloc; 102 103 // Various analyses that we use... 104 AliasAnalysis *AA; // Alias analysis info. 105 MachineLoopInfo *MLI; // Current MachineLoopInfo 106 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 107 108 // State that is updated as we process loops 109 bool Changed; // True if a loop is changed. 110 bool FirstInLoop; // True if it's the first LICM in the loop. 111 MachineLoop *CurLoop; // The current loop we are working on. 112 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 113 114 // Exit blocks for CurLoop. 115 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 116 117 bool isExitBlock(const MachineBasicBlock *MBB) const { 118 return is_contained(ExitBlocks, MBB); 119 } 120 121 // Track 'estimated' register pressure. 122 SmallSet<unsigned, 32> RegSeen; 123 SmallVector<unsigned, 8> RegPressure; 124 125 // Register pressure "limit" per register pressure set. If the pressure 126 // is higher than the limit, then it's considered high. 127 SmallVector<unsigned, 8> RegLimit; 128 129 // Register pressure on path leading from loop preheader to current BB. 130 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 131 132 // For each opcode, keep a list of potential CSE instructions. 133 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 134 135 enum { 136 SpeculateFalse = 0, 137 SpeculateTrue = 1, 138 SpeculateUnknown = 2 139 }; 140 141 // If a MBB does not dominate loop exiting blocks then it may not safe 142 // to hoist loads from this block. 143 // Tri-state: 0 - false, 1 - true, 2 - unknown 144 unsigned SpeculationState; 145 146 public: 147 MachineLICMBase(char &PassID, bool PreRegAlloc) 148 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override; 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<MachineLoopInfo>(); 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addRequired<AAResultsWrapperPass>(); 156 AU.addPreserved<MachineLoopInfo>(); 157 AU.addPreserved<MachineDominatorTree>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 void releaseMemory() override { 162 RegSeen.clear(); 163 RegPressure.clear(); 164 RegLimit.clear(); 165 BackTrace.clear(); 166 CSEMap.clear(); 167 } 168 169 private: 170 /// Keep track of information about hoisting candidates. 171 struct CandidateInfo { 172 MachineInstr *MI; 173 unsigned Def; 174 int FI; 175 176 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 177 : MI(mi), Def(def), FI(fi) {} 178 }; 179 180 void HoistRegionPostRA(); 181 182 void HoistPostRA(MachineInstr *MI, unsigned Def); 183 184 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 185 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 186 SmallVectorImpl<CandidateInfo> &Candidates); 187 188 void AddToLiveIns(unsigned Reg); 189 190 bool IsLICMCandidate(MachineInstr &I); 191 192 bool IsLoopInvariantInst(MachineInstr &I); 193 194 bool HasLoopPHIUse(const MachineInstr *MI) const; 195 196 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 197 unsigned Reg) const; 198 199 bool IsCheapInstruction(MachineInstr &MI) const; 200 201 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 202 bool Cheap); 203 204 void UpdateBackTraceRegPressure(const MachineInstr *MI); 205 206 bool IsProfitableToHoist(MachineInstr &MI); 207 208 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 209 210 void EnterScope(MachineBasicBlock *MBB); 211 212 void ExitScope(MachineBasicBlock *MBB); 213 214 void ExitScopeIfDone( 215 MachineDomTreeNode *Node, 216 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 217 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 218 219 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 220 221 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 222 223 void SinkIntoLoop(); 224 225 void InitRegPressure(MachineBasicBlock *BB); 226 227 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 228 bool ConsiderSeen, 229 bool ConsiderUnseenAsDef); 230 231 void UpdateRegPressure(const MachineInstr *MI, 232 bool ConsiderUnseenAsDef = false); 233 234 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 235 236 const MachineInstr * 237 LookForDuplicate(const MachineInstr *MI, 238 std::vector<const MachineInstr *> &PrevMIs); 239 240 bool EliminateCSE( 241 MachineInstr *MI, 242 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 243 244 bool MayCSE(MachineInstr *MI); 245 246 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 247 248 void InitCSEMap(MachineBasicBlock *BB); 249 250 MachineBasicBlock *getCurPreheader(); 251 }; 252 253 class MachineLICM : public MachineLICMBase { 254 public: 255 static char ID; 256 MachineLICM() : MachineLICMBase(ID, false) { 257 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 258 } 259 }; 260 261 class EarlyMachineLICM : public MachineLICMBase { 262 public: 263 static char ID; 264 EarlyMachineLICM() : MachineLICMBase(ID, true) { 265 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 266 } 267 }; 268 269 } // end anonymous namespace 270 271 char MachineLICM::ID; 272 char EarlyMachineLICM::ID; 273 274 char &llvm::MachineLICMID = MachineLICM::ID; 275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 276 277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 278 "Machine Loop Invariant Code Motion", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 283 "Machine Loop Invariant Code Motion", false, false) 284 285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 286 "Early Machine Loop Invariant Code Motion", false, false) 287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 291 "Early Machine Loop Invariant Code Motion", false, false) 292 293 /// Test if the given loop is the outer-most loop that has a unique predecessor. 294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 295 // Check whether this loop even has a unique predecessor. 296 if (!CurLoop->getLoopPredecessor()) 297 return false; 298 // Ok, now check to see if any of its outer loops do. 299 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 300 if (L->getLoopPredecessor()) 301 return false; 302 // None of them did, so this is the outermost with a unique predecessor. 303 return true; 304 } 305 306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 307 if (skipFunction(MF.getFunction())) 308 return false; 309 310 Changed = FirstInLoop = false; 311 const TargetSubtargetInfo &ST = MF.getSubtarget(); 312 TII = ST.getInstrInfo(); 313 TLI = ST.getTargetLowering(); 314 TRI = ST.getRegisterInfo(); 315 MFI = &MF.getFrameInfo(); 316 MRI = &MF.getRegInfo(); 317 SchedModel.init(&ST); 318 319 PreRegAlloc = MRI->isSSA(); 320 321 if (PreRegAlloc) 322 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 323 else 324 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 325 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 326 327 if (PreRegAlloc) { 328 // Estimate register pressure during pre-regalloc pass. 329 unsigned NumRPS = TRI->getNumRegPressureSets(); 330 RegPressure.resize(NumRPS); 331 std::fill(RegPressure.begin(), RegPressure.end(), 0); 332 RegLimit.resize(NumRPS); 333 for (unsigned i = 0, e = NumRPS; i != e; ++i) 334 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 335 } 336 337 // Get our Loop information... 338 MLI = &getAnalysis<MachineLoopInfo>(); 339 DT = &getAnalysis<MachineDominatorTree>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 343 while (!Worklist.empty()) { 344 CurLoop = Worklist.pop_back_val(); 345 CurPreheader = nullptr; 346 ExitBlocks.clear(); 347 348 // If this is done before regalloc, only visit outer-most preheader-sporting 349 // loops. 350 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 351 Worklist.append(CurLoop->begin(), CurLoop->end()); 352 continue; 353 } 354 355 CurLoop->getExitBlocks(ExitBlocks); 356 357 if (!PreRegAlloc) 358 HoistRegionPostRA(); 359 else { 360 // CSEMap is initialized for loop header when the first instruction is 361 // being hoisted. 362 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 363 FirstInLoop = true; 364 HoistOutOfLoop(N); 365 CSEMap.clear(); 366 367 if (SinkInstsToAvoidSpills) 368 SinkIntoLoop(); 369 } 370 } 371 372 return Changed; 373 } 374 375 /// Return true if instruction stores to the specified frame. 376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 377 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 378 // true since they have no memory operands. 379 if (!MI->mayStore()) 380 return false; 381 // If we lost memory operands, conservatively assume that the instruction 382 // writes to all slots. 383 if (MI->memoperands_empty()) 384 return true; 385 for (const MachineMemOperand *MemOp : MI->memoperands()) { 386 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 387 continue; 388 if (const FixedStackPseudoSourceValue *Value = 389 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 390 if (Value->getFrameIndex() == FI) 391 return true; 392 } 393 } 394 return false; 395 } 396 397 /// Examine the instruction for potentai LICM candidate. Also 398 /// gather register def and frame object update information. 399 void MachineLICMBase::ProcessMI(MachineInstr *MI, 400 BitVector &PhysRegDefs, 401 BitVector &PhysRegClobbers, 402 SmallSet<int, 32> &StoredFIs, 403 SmallVectorImpl<CandidateInfo> &Candidates) { 404 bool RuledOut = false; 405 bool HasNonInvariantUse = false; 406 unsigned Def = 0; 407 for (const MachineOperand &MO : MI->operands()) { 408 if (MO.isFI()) { 409 // Remember if the instruction stores to the frame index. 410 int FI = MO.getIndex(); 411 if (!StoredFIs.count(FI) && 412 MFI->isSpillSlotObjectIndex(FI) && 413 InstructionStoresToFI(MI, FI)) 414 StoredFIs.insert(FI); 415 HasNonInvariantUse = true; 416 continue; 417 } 418 419 // We can't hoist an instruction defining a physreg that is clobbered in 420 // the loop. 421 if (MO.isRegMask()) { 422 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 423 continue; 424 } 425 426 if (!MO.isReg()) 427 continue; 428 unsigned Reg = MO.getReg(); 429 if (!Reg) 430 continue; 431 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 432 "Not expecting virtual register!"); 433 434 if (!MO.isDef()) { 435 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 436 // If it's using a non-loop-invariant register, then it's obviously not 437 // safe to hoist. 438 HasNonInvariantUse = true; 439 continue; 440 } 441 442 if (MO.isImplicit()) { 443 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 444 PhysRegClobbers.set(*AI); 445 if (!MO.isDead()) 446 // Non-dead implicit def? This cannot be hoisted. 447 RuledOut = true; 448 // No need to check if a dead implicit def is also defined by 449 // another instruction. 450 continue; 451 } 452 453 // FIXME: For now, avoid instructions with multiple defs, unless 454 // it's a dead implicit def. 455 if (Def) 456 RuledOut = true; 457 else 458 Def = Reg; 459 460 // If we have already seen another instruction that defines the same 461 // register, then this is not safe. Two defs is indicated by setting a 462 // PhysRegClobbers bit. 463 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 464 if (PhysRegDefs.test(*AS)) 465 PhysRegClobbers.set(*AS); 466 PhysRegDefs.set(*AS); 467 } 468 if (PhysRegClobbers.test(Reg)) 469 // MI defined register is seen defined by another instruction in 470 // the loop, it cannot be a LICM candidate. 471 RuledOut = true; 472 } 473 474 // Only consider reloads for now and remats which do not have register 475 // operands. FIXME: Consider unfold load folding instructions. 476 if (Def && !RuledOut) { 477 int FI = std::numeric_limits<int>::min(); 478 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 479 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 480 Candidates.push_back(CandidateInfo(MI, Def, FI)); 481 } 482 } 483 484 /// Walk the specified region of the CFG and hoist loop invariants out to the 485 /// preheader. 486 void MachineLICMBase::HoistRegionPostRA() { 487 MachineBasicBlock *Preheader = getCurPreheader(); 488 if (!Preheader) 489 return; 490 491 unsigned NumRegs = TRI->getNumRegs(); 492 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 493 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 494 495 SmallVector<CandidateInfo, 32> Candidates; 496 SmallSet<int, 32> StoredFIs; 497 498 // Walk the entire region, count number of defs for each register, and 499 // collect potential LICM candidates. 500 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 501 for (MachineBasicBlock *BB : Blocks) { 502 // If the header of the loop containing this basic block is a landing pad, 503 // then don't try to hoist instructions out of this loop. 504 const MachineLoop *ML = MLI->getLoopFor(BB); 505 if (ML && ML->getHeader()->isEHPad()) continue; 506 507 // Conservatively treat live-in's as an external def. 508 // FIXME: That means a reload that're reused in successor block(s) will not 509 // be LICM'ed. 510 for (const auto &LI : BB->liveins()) { 511 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 512 PhysRegDefs.set(*AI); 513 } 514 515 SpeculationState = SpeculateUnknown; 516 for (MachineInstr &MI : *BB) 517 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 518 } 519 520 // Gather the registers read / clobbered by the terminator. 521 BitVector TermRegs(NumRegs); 522 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 523 if (TI != Preheader->end()) { 524 for (const MachineOperand &MO : TI->operands()) { 525 if (!MO.isReg()) 526 continue; 527 unsigned Reg = MO.getReg(); 528 if (!Reg) 529 continue; 530 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 531 TermRegs.set(*AI); 532 } 533 } 534 535 // Now evaluate whether the potential candidates qualify. 536 // 1. Check if the candidate defined register is defined by another 537 // instruction in the loop. 538 // 2. If the candidate is a load from stack slot (always true for now), 539 // check if the slot is stored anywhere in the loop. 540 // 3. Make sure candidate def should not clobber 541 // registers read by the terminator. Similarly its def should not be 542 // clobbered by the terminator. 543 for (CandidateInfo &Candidate : Candidates) { 544 if (Candidate.FI != std::numeric_limits<int>::min() && 545 StoredFIs.count(Candidate.FI)) 546 continue; 547 548 unsigned Def = Candidate.Def; 549 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 550 bool Safe = true; 551 MachineInstr *MI = Candidate.MI; 552 for (const MachineOperand &MO : MI->operands()) { 553 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 554 continue; 555 unsigned Reg = MO.getReg(); 556 if (PhysRegDefs.test(Reg) || 557 PhysRegClobbers.test(Reg)) { 558 // If it's using a non-loop-invariant register, then it's obviously 559 // not safe to hoist. 560 Safe = false; 561 break; 562 } 563 } 564 if (Safe) 565 HoistPostRA(MI, Candidate.Def); 566 } 567 } 568 } 569 570 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 571 /// sure it is not killed by any instructions in the loop. 572 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 573 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 574 for (MachineBasicBlock *BB : Blocks) { 575 if (!BB->isLiveIn(Reg)) 576 BB->addLiveIn(Reg); 577 for (MachineInstr &MI : *BB) { 578 for (MachineOperand &MO : MI.operands()) { 579 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 580 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 581 MO.setIsKill(false); 582 } 583 } 584 } 585 } 586 587 /// When an instruction is found to only use loop invariant operands that is 588 /// safe to hoist, this instruction is called to do the dirty work. 589 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 590 MachineBasicBlock *Preheader = getCurPreheader(); 591 592 // Now move the instructions to the predecessor, inserting it before any 593 // terminator instructions. 594 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 595 << " from " << printMBBReference(*MI->getParent()) << ": " 596 << *MI); 597 598 // Splice the instruction to the preheader. 599 MachineBasicBlock *MBB = MI->getParent(); 600 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 601 602 // Add register to livein list to all the BBs in the current loop since a 603 // loop invariant must be kept live throughout the whole loop. This is 604 // important to ensure later passes do not scavenge the def register. 605 AddToLiveIns(Def); 606 607 ++NumPostRAHoisted; 608 Changed = true; 609 } 610 611 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 612 /// may not be safe to hoist. 613 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 614 if (SpeculationState != SpeculateUnknown) 615 return SpeculationState == SpeculateFalse; 616 617 if (BB != CurLoop->getHeader()) { 618 // Check loop exiting blocks. 619 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 620 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 621 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 622 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 623 SpeculationState = SpeculateTrue; 624 return false; 625 } 626 } 627 628 SpeculationState = SpeculateFalse; 629 return true; 630 } 631 632 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 633 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 634 635 // Remember livein register pressure. 636 BackTrace.push_back(RegPressure); 637 } 638 639 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 640 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 641 BackTrace.pop_back(); 642 } 643 644 /// Destroy scope for the MBB that corresponds to the given dominator tree node 645 /// if its a leaf or all of its children are done. Walk up the dominator tree to 646 /// destroy ancestors which are now done. 647 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 648 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 649 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 650 if (OpenChildren[Node]) 651 return; 652 653 // Pop scope. 654 ExitScope(Node->getBlock()); 655 656 // Now traverse upwards to pop ancestors whose offsprings are all done. 657 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 658 unsigned Left = --OpenChildren[Parent]; 659 if (Left != 0) 660 break; 661 ExitScope(Parent->getBlock()); 662 Node = Parent; 663 } 664 } 665 666 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 667 /// specified header block, and that are in the current loop) in depth first 668 /// order w.r.t the DominatorTree. This allows us to visit definitions before 669 /// uses, allowing us to hoist a loop body in one pass without iteration. 670 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 671 MachineBasicBlock *Preheader = getCurPreheader(); 672 if (!Preheader) 673 return; 674 675 SmallVector<MachineDomTreeNode*, 32> Scopes; 676 SmallVector<MachineDomTreeNode*, 8> WorkList; 677 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 678 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 679 680 // Perform a DFS walk to determine the order of visit. 681 WorkList.push_back(HeaderN); 682 while (!WorkList.empty()) { 683 MachineDomTreeNode *Node = WorkList.pop_back_val(); 684 assert(Node && "Null dominator tree node?"); 685 MachineBasicBlock *BB = Node->getBlock(); 686 687 // If the header of the loop containing this basic block is a landing pad, 688 // then don't try to hoist instructions out of this loop. 689 const MachineLoop *ML = MLI->getLoopFor(BB); 690 if (ML && ML->getHeader()->isEHPad()) 691 continue; 692 693 // If this subregion is not in the top level loop at all, exit. 694 if (!CurLoop->contains(BB)) 695 continue; 696 697 Scopes.push_back(Node); 698 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 699 unsigned NumChildren = Children.size(); 700 701 // Don't hoist things out of a large switch statement. This often causes 702 // code to be hoisted that wasn't going to be executed, and increases 703 // register pressure in a situation where it's likely to matter. 704 if (BB->succ_size() >= 25) 705 NumChildren = 0; 706 707 OpenChildren[Node] = NumChildren; 708 // Add children in reverse order as then the next popped worklist node is 709 // the first child of this node. This means we ultimately traverse the 710 // DOM tree in exactly the same order as if we'd recursed. 711 for (int i = (int)NumChildren-1; i >= 0; --i) { 712 MachineDomTreeNode *Child = Children[i]; 713 ParentMap[Child] = Node; 714 WorkList.push_back(Child); 715 } 716 } 717 718 if (Scopes.size() == 0) 719 return; 720 721 // Compute registers which are livein into the loop headers. 722 RegSeen.clear(); 723 BackTrace.clear(); 724 InitRegPressure(Preheader); 725 726 // Now perform LICM. 727 for (MachineDomTreeNode *Node : Scopes) { 728 MachineBasicBlock *MBB = Node->getBlock(); 729 730 EnterScope(MBB); 731 732 // Process the block 733 SpeculationState = SpeculateUnknown; 734 for (MachineBasicBlock::iterator 735 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 736 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 737 MachineInstr *MI = &*MII; 738 if (!Hoist(MI, Preheader)) 739 UpdateRegPressure(MI); 740 // If we have hoisted an instruction that may store, it can only be a 741 // constant store. 742 MII = NextMII; 743 } 744 745 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 746 ExitScopeIfDone(Node, OpenChildren, ParentMap); 747 } 748 } 749 750 /// Sink instructions into loops if profitable. This especially tries to prevent 751 /// register spills caused by register pressure if there is little to no 752 /// overhead moving instructions into loops. 753 void MachineLICMBase::SinkIntoLoop() { 754 MachineBasicBlock *Preheader = getCurPreheader(); 755 if (!Preheader) 756 return; 757 758 SmallVector<MachineInstr *, 8> Candidates; 759 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 760 I != Preheader->instr_end(); ++I) { 761 // We need to ensure that we can safely move this instruction into the loop. 762 // As such, it must not have side-effects, e.g. such as a call has. 763 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 764 Candidates.push_back(&*I); 765 } 766 767 for (MachineInstr *I : Candidates) { 768 const MachineOperand &MO = I->getOperand(0); 769 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 770 continue; 771 if (!MRI->hasOneDef(MO.getReg())) 772 continue; 773 bool CanSink = true; 774 MachineBasicBlock *B = nullptr; 775 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 776 // FIXME: Come up with a proper cost model that estimates whether sinking 777 // the instruction (and thus possibly executing it on every loop 778 // iteration) is more expensive than a register. 779 // For now assumes that copies are cheap and thus almost always worth it. 780 if (!MI.isCopy()) { 781 CanSink = false; 782 break; 783 } 784 if (!B) { 785 B = MI.getParent(); 786 continue; 787 } 788 B = DT->findNearestCommonDominator(B, MI.getParent()); 789 if (!B) { 790 CanSink = false; 791 break; 792 } 793 } 794 if (!CanSink || !B || B == Preheader) 795 continue; 796 B->splice(B->getFirstNonPHI(), Preheader, I); 797 } 798 } 799 800 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 801 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 802 } 803 804 /// Find all virtual register references that are liveout of the preheader to 805 /// initialize the starting "register pressure". Note this does not count live 806 /// through (livein but not used) registers. 807 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 808 std::fill(RegPressure.begin(), RegPressure.end(), 0); 809 810 // If the preheader has only a single predecessor and it ends with a 811 // fallthrough or an unconditional branch, then scan its predecessor for live 812 // defs as well. This happens whenever the preheader is created by splitting 813 // the critical edge from the loop predecessor to the loop header. 814 if (BB->pred_size() == 1) { 815 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 816 SmallVector<MachineOperand, 4> Cond; 817 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 818 InitRegPressure(*BB->pred_begin()); 819 } 820 821 for (const MachineInstr &MI : *BB) 822 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 823 } 824 825 /// Update estimate of register pressure after the specified instruction. 826 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 827 bool ConsiderUnseenAsDef) { 828 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 829 for (const auto &RPIdAndCost : Cost) { 830 unsigned Class = RPIdAndCost.first; 831 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 832 RegPressure[Class] = 0; 833 else 834 RegPressure[Class] += RPIdAndCost.second; 835 } 836 } 837 838 /// Calculate the additional register pressure that the registers used in MI 839 /// cause. 840 /// 841 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 842 /// figure out which usages are live-ins. 843 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 844 DenseMap<unsigned, int> 845 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 846 bool ConsiderUnseenAsDef) { 847 DenseMap<unsigned, int> Cost; 848 if (MI->isImplicitDef()) 849 return Cost; 850 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 851 const MachineOperand &MO = MI->getOperand(i); 852 if (!MO.isReg() || MO.isImplicit()) 853 continue; 854 unsigned Reg = MO.getReg(); 855 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 856 continue; 857 858 // FIXME: It seems bad to use RegSeen only for some of these calculations. 859 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 860 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 861 862 RegClassWeight W = TRI->getRegClassWeight(RC); 863 int RCCost = 0; 864 if (MO.isDef()) 865 RCCost = W.RegWeight; 866 else { 867 bool isKill = isOperandKill(MO, MRI); 868 if (isNew && !isKill && ConsiderUnseenAsDef) 869 // Haven't seen this, it must be a livein. 870 RCCost = W.RegWeight; 871 else if (!isNew && isKill) 872 RCCost = -W.RegWeight; 873 } 874 if (RCCost == 0) 875 continue; 876 const int *PS = TRI->getRegClassPressureSets(RC); 877 for (; *PS != -1; ++PS) { 878 if (Cost.find(*PS) == Cost.end()) 879 Cost[*PS] = RCCost; 880 else 881 Cost[*PS] += RCCost; 882 } 883 } 884 return Cost; 885 } 886 887 /// Return true if this machine instruction loads from global offset table or 888 /// constant pool. 889 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 890 assert(MI.mayLoad() && "Expected MI that loads!"); 891 892 // If we lost memory operands, conservatively assume that the instruction 893 // reads from everything.. 894 if (MI.memoperands_empty()) 895 return true; 896 897 for (MachineMemOperand *MemOp : MI.memoperands()) 898 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 899 if (PSV->isGOT() || PSV->isConstantPool()) 900 return true; 901 902 return false; 903 } 904 905 // This function iterates through all the operands of the input store MI and 906 // checks that each register operand statisfies isCallerPreservedPhysReg. 907 // This means, the value being stored and the address where it is being stored 908 // is constant throughout the body of the function (not including prologue and 909 // epilogue). When called with an MI that isn't a store, it returns false. 910 // A future improvement can be to check if the store registers are constant 911 // throughout the loop rather than throughout the funtion. 912 static bool isInvariantStore(const MachineInstr &MI, 913 const TargetRegisterInfo *TRI, 914 const MachineRegisterInfo *MRI) { 915 916 bool FoundCallerPresReg = false; 917 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 918 (MI.getNumOperands() == 0)) 919 return false; 920 921 // Check that all register operands are caller-preserved physical registers. 922 for (const MachineOperand &MO : MI.operands()) { 923 if (MO.isReg()) { 924 unsigned Reg = MO.getReg(); 925 // If operand is a virtual register, check if it comes from a copy of a 926 // physical register. 927 if (TargetRegisterInfo::isVirtualRegister(Reg)) 928 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 929 if (TargetRegisterInfo::isVirtualRegister(Reg)) 930 return false; 931 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 932 return false; 933 else 934 FoundCallerPresReg = true; 935 } else if (!MO.isImm()) { 936 return false; 937 } 938 } 939 return FoundCallerPresReg; 940 } 941 942 // Return true if the input MI is a copy instruction that feeds an invariant 943 // store instruction. This means that the src of the copy has to satisfy 944 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 945 // isInvariantStore. 946 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 947 const MachineRegisterInfo *MRI, 948 const TargetRegisterInfo *TRI) { 949 950 // FIXME: If targets would like to look through instructions that aren't 951 // pure copies, this can be updated to a query. 952 if (!MI.isCopy()) 953 return false; 954 955 const MachineFunction *MF = MI.getMF(); 956 // Check that we are copying a constant physical register. 957 unsigned CopySrcReg = MI.getOperand(1).getReg(); 958 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) 959 return false; 960 961 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 962 return false; 963 964 unsigned CopyDstReg = MI.getOperand(0).getReg(); 965 // Check if any of the uses of the copy are invariant stores. 966 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && 967 "copy dst is not a virtual reg"); 968 969 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 970 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 971 return true; 972 } 973 return false; 974 } 975 976 /// Returns true if the instruction may be a suitable candidate for LICM. 977 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 978 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 979 // Check if it's safe to move the instruction. 980 bool DontMoveAcrossStore = true; 981 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 982 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 983 return false; 984 } 985 986 // If it is load then check if it is guaranteed to execute by making sure that 987 // it dominates all exiting blocks. If it doesn't, then there is a path out of 988 // the loop which does not execute this load, so we can't hoist it. Loads 989 // from constant memory are not safe to speculate all the time, for example 990 // indexed load from a jump table. 991 // Stores and side effects are already checked by isSafeToMove. 992 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 993 !IsGuaranteedToExecute(I.getParent())) 994 return false; 995 996 return true; 997 } 998 999 /// Returns true if the instruction is loop invariant. 1000 /// I.e., all virtual register operands are defined outside of the loop, 1001 /// physical registers aren't accessed explicitly, and there are no side 1002 /// effects that aren't captured by the operands or other flags. 1003 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1004 if (!IsLICMCandidate(I)) 1005 return false; 1006 1007 // The instruction is loop invariant if all of its operands are. 1008 for (const MachineOperand &MO : I.operands()) { 1009 if (!MO.isReg()) 1010 continue; 1011 1012 unsigned Reg = MO.getReg(); 1013 if (Reg == 0) continue; 1014 1015 // Don't hoist an instruction that uses or defines a physical register. 1016 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1017 if (MO.isUse()) { 1018 // If the physreg has no defs anywhere, it's just an ambient register 1019 // and we can freely move its uses. Alternatively, if it's allocatable, 1020 // it could get allocated to something with a def during allocation. 1021 // However, if the physreg is known to always be caller saved/restored 1022 // then this use is safe to hoist. 1023 if (!MRI->isConstantPhysReg(Reg) && 1024 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1025 return false; 1026 // Otherwise it's safe to move. 1027 continue; 1028 } else if (!MO.isDead()) { 1029 // A def that isn't dead. We can't move it. 1030 return false; 1031 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1032 // If the reg is live into the loop, we can't hoist an instruction 1033 // which would clobber it. 1034 return false; 1035 } 1036 } 1037 1038 if (!MO.isUse()) 1039 continue; 1040 1041 assert(MRI->getVRegDef(Reg) && 1042 "Machine instr not mapped for this vreg?!"); 1043 1044 // If the loop contains the definition of an operand, then the instruction 1045 // isn't loop invariant. 1046 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1047 return false; 1048 } 1049 1050 // If we got this far, the instruction is loop invariant! 1051 return true; 1052 } 1053 1054 /// Return true if the specified instruction is used by a phi node and hoisting 1055 /// it could cause a copy to be inserted. 1056 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1057 SmallVector<const MachineInstr*, 8> Work(1, MI); 1058 do { 1059 MI = Work.pop_back_val(); 1060 for (const MachineOperand &MO : MI->operands()) { 1061 if (!MO.isReg() || !MO.isDef()) 1062 continue; 1063 unsigned Reg = MO.getReg(); 1064 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1065 continue; 1066 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1067 // A PHI may cause a copy to be inserted. 1068 if (UseMI.isPHI()) { 1069 // A PHI inside the loop causes a copy because the live range of Reg is 1070 // extended across the PHI. 1071 if (CurLoop->contains(&UseMI)) 1072 return true; 1073 // A PHI in an exit block can cause a copy to be inserted if the PHI 1074 // has multiple predecessors in the loop with different values. 1075 // For now, approximate by rejecting all exit blocks. 1076 if (isExitBlock(UseMI.getParent())) 1077 return true; 1078 continue; 1079 } 1080 // Look past copies as well. 1081 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1082 Work.push_back(&UseMI); 1083 } 1084 } 1085 } while (!Work.empty()); 1086 return false; 1087 } 1088 1089 /// Compute operand latency between a def of 'Reg' and an use in the current 1090 /// loop, return true if the target considered it high. 1091 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1092 unsigned DefIdx, 1093 unsigned Reg) const { 1094 if (MRI->use_nodbg_empty(Reg)) 1095 return false; 1096 1097 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1098 if (UseMI.isCopyLike()) 1099 continue; 1100 if (!CurLoop->contains(UseMI.getParent())) 1101 continue; 1102 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1103 const MachineOperand &MO = UseMI.getOperand(i); 1104 if (!MO.isReg() || !MO.isUse()) 1105 continue; 1106 unsigned MOReg = MO.getReg(); 1107 if (MOReg != Reg) 1108 continue; 1109 1110 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1111 return true; 1112 } 1113 1114 // Only look at the first in loop use. 1115 break; 1116 } 1117 1118 return false; 1119 } 1120 1121 /// Return true if the instruction is marked "cheap" or the operand latency 1122 /// between its def and a use is one or less. 1123 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1124 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1125 return true; 1126 1127 bool isCheap = false; 1128 unsigned NumDefs = MI.getDesc().getNumDefs(); 1129 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1130 MachineOperand &DefMO = MI.getOperand(i); 1131 if (!DefMO.isReg() || !DefMO.isDef()) 1132 continue; 1133 --NumDefs; 1134 unsigned Reg = DefMO.getReg(); 1135 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1136 continue; 1137 1138 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1139 return false; 1140 isCheap = true; 1141 } 1142 1143 return isCheap; 1144 } 1145 1146 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1147 /// given cost matrix can cause high register pressure. 1148 bool 1149 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1150 bool CheapInstr) { 1151 for (const auto &RPIdAndCost : Cost) { 1152 if (RPIdAndCost.second <= 0) 1153 continue; 1154 1155 unsigned Class = RPIdAndCost.first; 1156 int Limit = RegLimit[Class]; 1157 1158 // Don't hoist cheap instructions if they would increase register pressure, 1159 // even if we're under the limit. 1160 if (CheapInstr && !HoistCheapInsts) 1161 return true; 1162 1163 for (const auto &RP : BackTrace) 1164 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1165 return true; 1166 } 1167 1168 return false; 1169 } 1170 1171 /// Traverse the back trace from header to the current block and update their 1172 /// register pressures to reflect the effect of hoisting MI from the current 1173 /// block to the preheader. 1174 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1175 // First compute the 'cost' of the instruction, i.e. its contribution 1176 // to register pressure. 1177 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1178 /*ConsiderUnseenAsDef=*/false); 1179 1180 // Update register pressure of blocks from loop header to current block. 1181 for (auto &RP : BackTrace) 1182 for (const auto &RPIdAndCost : Cost) 1183 RP[RPIdAndCost.first] += RPIdAndCost.second; 1184 } 1185 1186 /// Return true if it is potentially profitable to hoist the given loop 1187 /// invariant. 1188 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1189 if (MI.isImplicitDef()) 1190 return true; 1191 1192 // Besides removing computation from the loop, hoisting an instruction has 1193 // these effects: 1194 // 1195 // - The value defined by the instruction becomes live across the entire 1196 // loop. This increases register pressure in the loop. 1197 // 1198 // - If the value is used by a PHI in the loop, a copy will be required for 1199 // lowering the PHI after extending the live range. 1200 // 1201 // - When hoisting the last use of a value in the loop, that value no longer 1202 // needs to be live in the loop. This lowers register pressure in the loop. 1203 1204 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1205 return true; 1206 1207 bool CheapInstr = IsCheapInstruction(MI); 1208 bool CreatesCopy = HasLoopPHIUse(&MI); 1209 1210 // Don't hoist a cheap instruction if it would create a copy in the loop. 1211 if (CheapInstr && CreatesCopy) { 1212 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1213 return false; 1214 } 1215 1216 // Rematerializable instructions should always be hoisted since the register 1217 // allocator can just pull them down again when needed. 1218 if (TII->isTriviallyReMaterializable(MI, AA)) 1219 return true; 1220 1221 // FIXME: If there are long latency loop-invariant instructions inside the 1222 // loop at this point, why didn't the optimizer's LICM hoist them? 1223 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1224 const MachineOperand &MO = MI.getOperand(i); 1225 if (!MO.isReg() || MO.isImplicit()) 1226 continue; 1227 unsigned Reg = MO.getReg(); 1228 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1229 continue; 1230 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1231 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1232 ++NumHighLatency; 1233 return true; 1234 } 1235 } 1236 1237 // Estimate register pressure to determine whether to LICM the instruction. 1238 // In low register pressure situation, we can be more aggressive about 1239 // hoisting. Also, favors hoisting long latency instructions even in 1240 // moderately high pressure situation. 1241 // Cheap instructions will only be hoisted if they don't increase register 1242 // pressure at all. 1243 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1244 /*ConsiderUnseenAsDef=*/false); 1245 1246 // Visit BBs from header to current BB, if hoisting this doesn't cause 1247 // high register pressure, then it's safe to proceed. 1248 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1249 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1250 ++NumLowRP; 1251 return true; 1252 } 1253 1254 // Don't risk increasing register pressure if it would create copies. 1255 if (CreatesCopy) { 1256 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1257 return false; 1258 } 1259 1260 // Do not "speculate" in high register pressure situation. If an 1261 // instruction is not guaranteed to be executed in the loop, it's best to be 1262 // conservative. 1263 if (AvoidSpeculation && 1264 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1265 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1266 return false; 1267 } 1268 1269 // High register pressure situation, only hoist if the instruction is going 1270 // to be remat'ed. 1271 if (!TII->isTriviallyReMaterializable(MI, AA) && 1272 !MI.isDereferenceableInvariantLoad(AA)) { 1273 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1274 return false; 1275 } 1276 1277 return true; 1278 } 1279 1280 /// Unfold a load from the given machineinstr if the load itself could be 1281 /// hoisted. Return the unfolded and hoistable load, or null if the load 1282 /// couldn't be unfolded or if it wouldn't be hoistable. 1283 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1284 // Don't unfold simple loads. 1285 if (MI->canFoldAsLoad()) 1286 return nullptr; 1287 1288 // If not, we may be able to unfold a load and hoist that. 1289 // First test whether the instruction is loading from an amenable 1290 // memory location. 1291 if (!MI->isDereferenceableInvariantLoad(AA)) 1292 return nullptr; 1293 1294 // Next determine the register class for a temporary register. 1295 unsigned LoadRegIndex; 1296 unsigned NewOpc = 1297 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1298 /*UnfoldLoad=*/true, 1299 /*UnfoldStore=*/false, 1300 &LoadRegIndex); 1301 if (NewOpc == 0) return nullptr; 1302 const MCInstrDesc &MID = TII->get(NewOpc); 1303 MachineFunction &MF = *MI->getMF(); 1304 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1305 // Ok, we're unfolding. Create a temporary register and do the unfold. 1306 unsigned Reg = MRI->createVirtualRegister(RC); 1307 1308 SmallVector<MachineInstr *, 2> NewMIs; 1309 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1310 /*UnfoldLoad=*/true, 1311 /*UnfoldStore=*/false, NewMIs); 1312 (void)Success; 1313 assert(Success && 1314 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1315 "succeeded!"); 1316 assert(NewMIs.size() == 2 && 1317 "Unfolded a load into multiple instructions!"); 1318 MachineBasicBlock *MBB = MI->getParent(); 1319 MachineBasicBlock::iterator Pos = MI; 1320 MBB->insert(Pos, NewMIs[0]); 1321 MBB->insert(Pos, NewMIs[1]); 1322 // If unfolding produced a load that wasn't loop-invariant or profitable to 1323 // hoist, discard the new instructions and bail. 1324 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1325 NewMIs[0]->eraseFromParent(); 1326 NewMIs[1]->eraseFromParent(); 1327 return nullptr; 1328 } 1329 1330 // Update register pressure for the unfolded instruction. 1331 UpdateRegPressure(NewMIs[1]); 1332 1333 // Otherwise we successfully unfolded a load that we can hoist. 1334 MI->eraseFromParent(); 1335 return NewMIs[0]; 1336 } 1337 1338 /// Initialize the CSE map with instructions that are in the current loop 1339 /// preheader that may become duplicates of instructions that are hoisted 1340 /// out of the loop. 1341 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1342 for (MachineInstr &MI : *BB) 1343 CSEMap[MI.getOpcode()].push_back(&MI); 1344 } 1345 1346 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1347 /// Return this instruction if it's found. 1348 const MachineInstr* 1349 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1350 std::vector<const MachineInstr*> &PrevMIs) { 1351 for (const MachineInstr *PrevMI : PrevMIs) 1352 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1353 return PrevMI; 1354 1355 return nullptr; 1356 } 1357 1358 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1359 /// computes the same value. If it's found, do a RAU on with the definition of 1360 /// the existing instruction rather than hoisting the instruction to the 1361 /// preheader. 1362 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1363 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1364 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1365 // the undef property onto uses. 1366 if (CI == CSEMap.end() || MI->isImplicitDef()) 1367 return false; 1368 1369 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1370 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1371 1372 // Replace virtual registers defined by MI by their counterparts defined 1373 // by Dup. 1374 SmallVector<unsigned, 2> Defs; 1375 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1376 const MachineOperand &MO = MI->getOperand(i); 1377 1378 // Physical registers may not differ here. 1379 assert((!MO.isReg() || MO.getReg() == 0 || 1380 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1381 MO.getReg() == Dup->getOperand(i).getReg()) && 1382 "Instructions with different phys regs are not identical!"); 1383 1384 if (MO.isReg() && MO.isDef() && 1385 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1386 Defs.push_back(i); 1387 } 1388 1389 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1390 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1391 unsigned Idx = Defs[i]; 1392 unsigned Reg = MI->getOperand(Idx).getReg(); 1393 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1394 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1395 1396 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1397 // Restore old RCs if more than one defs. 1398 for (unsigned j = 0; j != i; ++j) 1399 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1400 return false; 1401 } 1402 } 1403 1404 for (unsigned Idx : Defs) { 1405 unsigned Reg = MI->getOperand(Idx).getReg(); 1406 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1407 MRI->replaceRegWith(Reg, DupReg); 1408 MRI->clearKillFlags(DupReg); 1409 } 1410 1411 MI->eraseFromParent(); 1412 ++NumCSEed; 1413 return true; 1414 } 1415 return false; 1416 } 1417 1418 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1419 /// the loop. 1420 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1421 unsigned Opcode = MI->getOpcode(); 1422 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1423 CI = CSEMap.find(Opcode); 1424 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1425 // the undef property onto uses. 1426 if (CI == CSEMap.end() || MI->isImplicitDef()) 1427 return false; 1428 1429 return LookForDuplicate(MI, CI->second) != nullptr; 1430 } 1431 1432 /// When an instruction is found to use only loop invariant operands 1433 /// that are safe to hoist, this instruction is called to do the dirty work. 1434 /// It returns true if the instruction is hoisted. 1435 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1436 // First check whether we should hoist this instruction. 1437 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1438 // If not, try unfolding a hoistable load. 1439 MI = ExtractHoistableLoad(MI); 1440 if (!MI) return false; 1441 } 1442 1443 // If we have hoisted an instruction that may store, it can only be a constant 1444 // store. 1445 if (MI->mayStore()) 1446 NumStoreConst++; 1447 1448 // Now move the instructions to the predecessor, inserting it before any 1449 // terminator instructions. 1450 LLVM_DEBUG({ 1451 dbgs() << "Hoisting " << *MI; 1452 if (MI->getParent()->getBasicBlock()) 1453 dbgs() << " from " << printMBBReference(*MI->getParent()); 1454 if (Preheader->getBasicBlock()) 1455 dbgs() << " to " << printMBBReference(*Preheader); 1456 dbgs() << "\n"; 1457 }); 1458 1459 // If this is the first instruction being hoisted to the preheader, 1460 // initialize the CSE map with potential common expressions. 1461 if (FirstInLoop) { 1462 InitCSEMap(Preheader); 1463 FirstInLoop = false; 1464 } 1465 1466 // Look for opportunity to CSE the hoisted instruction. 1467 unsigned Opcode = MI->getOpcode(); 1468 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1469 CI = CSEMap.find(Opcode); 1470 if (!EliminateCSE(MI, CI)) { 1471 // Otherwise, splice the instruction to the preheader. 1472 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1473 1474 // Since we are moving the instruction out of its basic block, we do not 1475 // retain its debug location. Doing so would degrade the debugging 1476 // experience and adversely affect the accuracy of profiling information. 1477 MI->setDebugLoc(DebugLoc()); 1478 1479 // Update register pressure for BBs from header to this block. 1480 UpdateBackTraceRegPressure(MI); 1481 1482 // Clear the kill flags of any register this instruction defines, 1483 // since they may need to be live throughout the entire loop 1484 // rather than just live for part of it. 1485 for (MachineOperand &MO : MI->operands()) 1486 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1487 MRI->clearKillFlags(MO.getReg()); 1488 1489 // Add to the CSE map. 1490 if (CI != CSEMap.end()) 1491 CI->second.push_back(MI); 1492 else 1493 CSEMap[Opcode].push_back(MI); 1494 } 1495 1496 ++NumHoisted; 1497 Changed = true; 1498 1499 return true; 1500 } 1501 1502 /// Get the preheader for the current loop, splitting a critical edge if needed. 1503 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1504 // Determine the block to which to hoist instructions. If we can't find a 1505 // suitable loop predecessor, we can't do any hoisting. 1506 1507 // If we've tried to get a preheader and failed, don't try again. 1508 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1509 return nullptr; 1510 1511 if (!CurPreheader) { 1512 CurPreheader = CurLoop->getLoopPreheader(); 1513 if (!CurPreheader) { 1514 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1515 if (!Pred) { 1516 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1517 return nullptr; 1518 } 1519 1520 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1521 if (!CurPreheader) { 1522 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1523 return nullptr; 1524 } 1525 } 1526 } 1527 return CurPreheader; 1528 } 1529