1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegister.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <limits> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machinelicm" 60 61 static cl::opt<bool> 62 AvoidSpeculation("avoid-speculation", 63 cl::desc("MachineLICM should avoid speculation"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 HoistCheapInsts("hoist-cheap-insts", 68 cl::desc("MachineLICM should hoist even cheap instructions"), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 HoistConstStores("hoist-const-stores", 73 cl::desc("Hoist invariant stores"), 74 cl::init(true), cl::Hidden); 75 // The default threshold of 100 (i.e. if target block is 100 times hotter) 76 // is based on empirical data on a single target and is subject to tuning. 77 static cl::opt<unsigned> 78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 79 cl::desc("Do not hoist instructions if target" 80 "block is N times hotter than the source."), 81 cl::init(100), cl::Hidden); 82 83 enum class UseBFI { None, PGO, All }; 84 85 static cl::opt<UseBFI> 86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 87 cl::desc("Disable hoisting instructions to" 88 " hotter blocks"), 89 cl::init(UseBFI::PGO), cl::Hidden, 90 cl::values(clEnumValN(UseBFI::None, "none", 91 "disable the feature"), 92 clEnumValN(UseBFI::PGO, "pgo", 93 "enable the feature when using profile data"), 94 clEnumValN(UseBFI::All, "all", 95 "enable the feature with/wo profile data"))); 96 97 STATISTIC(NumHoisted, 98 "Number of machine instructions hoisted out of loops"); 99 STATISTIC(NumLowRP, 100 "Number of instructions hoisted in low reg pressure situation"); 101 STATISTIC(NumHighLatency, 102 "Number of high latency instructions hoisted"); 103 STATISTIC(NumCSEed, 104 "Number of hoisted machine instructions CSEed"); 105 STATISTIC(NumPostRAHoisted, 106 "Number of machine instructions hoisted out of loops post regalloc"); 107 STATISTIC(NumStoreConst, 108 "Number of stores of const phys reg hoisted out of loops"); 109 STATISTIC(NumNotHoistedDueToHotness, 110 "Number of instructions not hoisted due to block frequency"); 111 112 namespace { 113 114 class MachineLICMBase : public MachineFunctionPass { 115 const TargetInstrInfo *TII; 116 const TargetLoweringBase *TLI; 117 const TargetRegisterInfo *TRI; 118 const MachineFrameInfo *MFI; 119 MachineRegisterInfo *MRI; 120 TargetSchedModel SchedModel; 121 bool PreRegAlloc; 122 bool HasProfileData; 123 124 // Various analyses that we use... 125 AliasAnalysis *AA; // Alias analysis info. 126 MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info 127 MachineLoopInfo *MLI; // Current MachineLoopInfo 128 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 129 130 // State that is updated as we process loops 131 bool Changed; // True if a loop is changed. 132 bool FirstInLoop; // True if it's the first LICM in the loop. 133 MachineLoop *CurLoop; // The current loop we are working on. 134 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 135 136 // Exit blocks for CurLoop. 137 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 138 139 bool isExitBlock(const MachineBasicBlock *MBB) const { 140 return is_contained(ExitBlocks, MBB); 141 } 142 143 // Track 'estimated' register pressure. 144 SmallSet<Register, 32> RegSeen; 145 SmallVector<unsigned, 8> RegPressure; 146 147 // Register pressure "limit" per register pressure set. If the pressure 148 // is higher than the limit, then it's considered high. 149 SmallVector<unsigned, 8> RegLimit; 150 151 // Register pressure on path leading from loop preheader to current BB. 152 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 153 154 // For each opcode, keep a list of potential CSE instructions. 155 DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap; 156 157 enum { 158 SpeculateFalse = 0, 159 SpeculateTrue = 1, 160 SpeculateUnknown = 2 161 }; 162 163 // If a MBB does not dominate loop exiting blocks then it may not safe 164 // to hoist loads from this block. 165 // Tri-state: 0 - false, 1 - true, 2 - unknown 166 unsigned SpeculationState; 167 168 public: 169 MachineLICMBase(char &PassID, bool PreRegAlloc) 170 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 171 172 bool runOnMachineFunction(MachineFunction &MF) override; 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.addRequired<MachineLoopInfo>(); 176 if (DisableHoistingToHotterBlocks != UseBFI::None) 177 AU.addRequired<MachineBlockFrequencyInfo>(); 178 AU.addRequired<MachineDominatorTree>(); 179 AU.addRequired<AAResultsWrapperPass>(); 180 AU.addPreserved<MachineLoopInfo>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 void releaseMemory() override { 185 RegSeen.clear(); 186 RegPressure.clear(); 187 RegLimit.clear(); 188 BackTrace.clear(); 189 CSEMap.clear(); 190 } 191 192 private: 193 /// Keep track of information about hoisting candidates. 194 struct CandidateInfo { 195 MachineInstr *MI; 196 unsigned Def; 197 int FI; 198 199 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 200 : MI(mi), Def(def), FI(fi) {} 201 }; 202 203 void HoistRegionPostRA(); 204 205 void HoistPostRA(MachineInstr *MI, unsigned Def); 206 207 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 208 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 209 SmallVectorImpl<CandidateInfo> &Candidates); 210 211 void AddToLiveIns(MCRegister Reg); 212 213 bool IsLICMCandidate(MachineInstr &I); 214 215 bool IsLoopInvariantInst(MachineInstr &I); 216 217 bool HasLoopPHIUse(const MachineInstr *MI) const; 218 219 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 220 Register Reg) const; 221 222 bool IsCheapInstruction(MachineInstr &MI) const; 223 224 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 225 bool Cheap); 226 227 void UpdateBackTraceRegPressure(const MachineInstr *MI); 228 229 bool IsProfitableToHoist(MachineInstr &MI); 230 231 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 232 233 bool isTriviallyReMaterializable(const MachineInstr &MI, 234 AAResults *AA) const; 235 236 void EnterScope(MachineBasicBlock *MBB); 237 238 void ExitScope(MachineBasicBlock *MBB); 239 240 void ExitScopeIfDone( 241 MachineDomTreeNode *Node, 242 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 243 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 244 245 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 246 247 void InitRegPressure(MachineBasicBlock *BB); 248 249 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 250 bool ConsiderSeen, 251 bool ConsiderUnseenAsDef); 252 253 void UpdateRegPressure(const MachineInstr *MI, 254 bool ConsiderUnseenAsDef = false); 255 256 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 257 258 MachineInstr *LookForDuplicate(const MachineInstr *MI, 259 std::vector<MachineInstr *> &PrevMIs); 260 261 bool 262 EliminateCSE(MachineInstr *MI, 263 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); 264 265 bool MayCSE(MachineInstr *MI); 266 267 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 268 269 void InitCSEMap(MachineBasicBlock *BB); 270 271 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 272 MachineBasicBlock *TgtBlock); 273 MachineBasicBlock *getCurPreheader(); 274 }; 275 276 class MachineLICM : public MachineLICMBase { 277 public: 278 static char ID; 279 MachineLICM() : MachineLICMBase(ID, false) { 280 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 281 } 282 }; 283 284 class EarlyMachineLICM : public MachineLICMBase { 285 public: 286 static char ID; 287 EarlyMachineLICM() : MachineLICMBase(ID, true) { 288 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char MachineLICM::ID; 295 char EarlyMachineLICM::ID; 296 297 char &llvm::MachineLICMID = MachineLICM::ID; 298 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 299 300 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 301 "Machine Loop Invariant Code Motion", false, false) 302 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 306 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 307 "Machine Loop Invariant Code Motion", false, false) 308 309 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 310 "Early Machine Loop Invariant Code Motion", false, false) 311 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 312 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 313 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 314 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 315 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 316 "Early Machine Loop Invariant Code Motion", false, false) 317 318 /// Test if the given loop is the outer-most loop that has a unique predecessor. 319 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 320 // Check whether this loop even has a unique predecessor. 321 if (!CurLoop->getLoopPredecessor()) 322 return false; 323 // Ok, now check to see if any of its outer loops do. 324 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 325 if (L->getLoopPredecessor()) 326 return false; 327 // None of them did, so this is the outermost with a unique predecessor. 328 return true; 329 } 330 331 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 332 if (skipFunction(MF.getFunction())) 333 return false; 334 335 Changed = FirstInLoop = false; 336 const TargetSubtargetInfo &ST = MF.getSubtarget(); 337 TII = ST.getInstrInfo(); 338 TLI = ST.getTargetLowering(); 339 TRI = ST.getRegisterInfo(); 340 MFI = &MF.getFrameInfo(); 341 MRI = &MF.getRegInfo(); 342 SchedModel.init(&ST); 343 344 PreRegAlloc = MRI->isSSA(); 345 HasProfileData = MF.getFunction().hasProfileData(); 346 347 if (PreRegAlloc) 348 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 349 else 350 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 351 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 352 353 if (PreRegAlloc) { 354 // Estimate register pressure during pre-regalloc pass. 355 unsigned NumRPS = TRI->getNumRegPressureSets(); 356 RegPressure.resize(NumRPS); 357 std::fill(RegPressure.begin(), RegPressure.end(), 0); 358 RegLimit.resize(NumRPS); 359 for (unsigned i = 0, e = NumRPS; i != e; ++i) 360 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 361 } 362 363 // Get our Loop information... 364 if (DisableHoistingToHotterBlocks != UseBFI::None) 365 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 366 MLI = &getAnalysis<MachineLoopInfo>(); 367 DT = &getAnalysis<MachineDominatorTree>(); 368 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 369 370 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 371 while (!Worklist.empty()) { 372 CurLoop = Worklist.pop_back_val(); 373 CurPreheader = nullptr; 374 ExitBlocks.clear(); 375 376 // If this is done before regalloc, only visit outer-most preheader-sporting 377 // loops. 378 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 379 Worklist.append(CurLoop->begin(), CurLoop->end()); 380 continue; 381 } 382 383 CurLoop->getExitBlocks(ExitBlocks); 384 385 if (!PreRegAlloc) 386 HoistRegionPostRA(); 387 else { 388 // CSEMap is initialized for loop header when the first instruction is 389 // being hoisted. 390 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 391 FirstInLoop = true; 392 HoistOutOfLoop(N); 393 CSEMap.clear(); 394 } 395 } 396 397 return Changed; 398 } 399 400 /// Return true if instruction stores to the specified frame. 401 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 402 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 403 // true since they have no memory operands. 404 if (!MI->mayStore()) 405 return false; 406 // If we lost memory operands, conservatively assume that the instruction 407 // writes to all slots. 408 if (MI->memoperands_empty()) 409 return true; 410 for (const MachineMemOperand *MemOp : MI->memoperands()) { 411 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 412 continue; 413 if (const FixedStackPseudoSourceValue *Value = 414 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 415 if (Value->getFrameIndex() == FI) 416 return true; 417 } 418 } 419 return false; 420 } 421 422 /// Examine the instruction for potentai LICM candidate. Also 423 /// gather register def and frame object update information. 424 void MachineLICMBase::ProcessMI(MachineInstr *MI, 425 BitVector &PhysRegDefs, 426 BitVector &PhysRegClobbers, 427 SmallSet<int, 32> &StoredFIs, 428 SmallVectorImpl<CandidateInfo> &Candidates) { 429 bool RuledOut = false; 430 bool HasNonInvariantUse = false; 431 unsigned Def = 0; 432 for (const MachineOperand &MO : MI->operands()) { 433 if (MO.isFI()) { 434 // Remember if the instruction stores to the frame index. 435 int FI = MO.getIndex(); 436 if (!StoredFIs.count(FI) && 437 MFI->isSpillSlotObjectIndex(FI) && 438 InstructionStoresToFI(MI, FI)) 439 StoredFIs.insert(FI); 440 HasNonInvariantUse = true; 441 continue; 442 } 443 444 // We can't hoist an instruction defining a physreg that is clobbered in 445 // the loop. 446 if (MO.isRegMask()) { 447 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 448 continue; 449 } 450 451 if (!MO.isReg()) 452 continue; 453 Register Reg = MO.getReg(); 454 if (!Reg) 455 continue; 456 assert(Register::isPhysicalRegister(Reg) && 457 "Not expecting virtual register!"); 458 459 if (!MO.isDef()) { 460 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 461 // If it's using a non-loop-invariant register, then it's obviously not 462 // safe to hoist. 463 HasNonInvariantUse = true; 464 continue; 465 } 466 467 if (MO.isImplicit()) { 468 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 469 PhysRegClobbers.set(*AI); 470 if (!MO.isDead()) 471 // Non-dead implicit def? This cannot be hoisted. 472 RuledOut = true; 473 // No need to check if a dead implicit def is also defined by 474 // another instruction. 475 continue; 476 } 477 478 // FIXME: For now, avoid instructions with multiple defs, unless 479 // it's a dead implicit def. 480 if (Def) 481 RuledOut = true; 482 else 483 Def = Reg; 484 485 // If we have already seen another instruction that defines the same 486 // register, then this is not safe. Two defs is indicated by setting a 487 // PhysRegClobbers bit. 488 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 489 if (PhysRegDefs.test(*AS)) 490 PhysRegClobbers.set(*AS); 491 } 492 // Need a second loop because MCRegAliasIterator can visit the same 493 // register twice. 494 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 495 PhysRegDefs.set(*AS); 496 497 if (PhysRegClobbers.test(Reg)) 498 // MI defined register is seen defined by another instruction in 499 // the loop, it cannot be a LICM candidate. 500 RuledOut = true; 501 } 502 503 // Only consider reloads for now and remats which do not have register 504 // operands. FIXME: Consider unfold load folding instructions. 505 if (Def && !RuledOut) { 506 int FI = std::numeric_limits<int>::min(); 507 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 508 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 509 Candidates.push_back(CandidateInfo(MI, Def, FI)); 510 } 511 } 512 513 /// Walk the specified region of the CFG and hoist loop invariants out to the 514 /// preheader. 515 void MachineLICMBase::HoistRegionPostRA() { 516 MachineBasicBlock *Preheader = getCurPreheader(); 517 if (!Preheader) 518 return; 519 520 unsigned NumRegs = TRI->getNumRegs(); 521 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 522 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 523 524 SmallVector<CandidateInfo, 32> Candidates; 525 SmallSet<int, 32> StoredFIs; 526 527 // Walk the entire region, count number of defs for each register, and 528 // collect potential LICM candidates. 529 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 530 // If the header of the loop containing this basic block is a landing pad, 531 // then don't try to hoist instructions out of this loop. 532 const MachineLoop *ML = MLI->getLoopFor(BB); 533 if (ML && ML->getHeader()->isEHPad()) continue; 534 535 // Conservatively treat live-in's as an external def. 536 // FIXME: That means a reload that're reused in successor block(s) will not 537 // be LICM'ed. 538 for (const auto &LI : BB->liveins()) { 539 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 540 PhysRegDefs.set(*AI); 541 } 542 543 SpeculationState = SpeculateUnknown; 544 for (MachineInstr &MI : *BB) 545 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 546 } 547 548 // Gather the registers read / clobbered by the terminator. 549 BitVector TermRegs(NumRegs); 550 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 551 if (TI != Preheader->end()) { 552 for (const MachineOperand &MO : TI->operands()) { 553 if (!MO.isReg()) 554 continue; 555 Register Reg = MO.getReg(); 556 if (!Reg) 557 continue; 558 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 559 TermRegs.set(*AI); 560 } 561 } 562 563 // Now evaluate whether the potential candidates qualify. 564 // 1. Check if the candidate defined register is defined by another 565 // instruction in the loop. 566 // 2. If the candidate is a load from stack slot (always true for now), 567 // check if the slot is stored anywhere in the loop. 568 // 3. Make sure candidate def should not clobber 569 // registers read by the terminator. Similarly its def should not be 570 // clobbered by the terminator. 571 for (CandidateInfo &Candidate : Candidates) { 572 if (Candidate.FI != std::numeric_limits<int>::min() && 573 StoredFIs.count(Candidate.FI)) 574 continue; 575 576 unsigned Def = Candidate.Def; 577 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 578 bool Safe = true; 579 MachineInstr *MI = Candidate.MI; 580 for (const MachineOperand &MO : MI->operands()) { 581 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 582 continue; 583 Register Reg = MO.getReg(); 584 if (PhysRegDefs.test(Reg) || 585 PhysRegClobbers.test(Reg)) { 586 // If it's using a non-loop-invariant register, then it's obviously 587 // not safe to hoist. 588 Safe = false; 589 break; 590 } 591 } 592 if (Safe) 593 HoistPostRA(MI, Candidate.Def); 594 } 595 } 596 } 597 598 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 599 /// sure it is not killed by any instructions in the loop. 600 void MachineLICMBase::AddToLiveIns(MCRegister Reg) { 601 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 602 if (!BB->isLiveIn(Reg)) 603 BB->addLiveIn(Reg); 604 for (MachineInstr &MI : *BB) { 605 for (MachineOperand &MO : MI.operands()) { 606 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 607 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 608 MO.setIsKill(false); 609 } 610 } 611 } 612 } 613 614 /// When an instruction is found to only use loop invariant operands that is 615 /// safe to hoist, this instruction is called to do the dirty work. 616 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 617 MachineBasicBlock *Preheader = getCurPreheader(); 618 619 // Now move the instructions to the predecessor, inserting it before any 620 // terminator instructions. 621 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 622 << " from " << printMBBReference(*MI->getParent()) << ": " 623 << *MI); 624 625 // Splice the instruction to the preheader. 626 MachineBasicBlock *MBB = MI->getParent(); 627 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 628 629 // Since we are moving the instruction out of its basic block, we do not 630 // retain its debug location. Doing so would degrade the debugging 631 // experience and adversely affect the accuracy of profiling information. 632 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 633 MI->setDebugLoc(DebugLoc()); 634 635 // Add register to livein list to all the BBs in the current loop since a 636 // loop invariant must be kept live throughout the whole loop. This is 637 // important to ensure later passes do not scavenge the def register. 638 AddToLiveIns(Def); 639 640 ++NumPostRAHoisted; 641 Changed = true; 642 } 643 644 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 645 /// may not be safe to hoist. 646 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 647 if (SpeculationState != SpeculateUnknown) 648 return SpeculationState == SpeculateFalse; 649 650 if (BB != CurLoop->getHeader()) { 651 // Check loop exiting blocks. 652 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 653 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 654 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 655 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 656 SpeculationState = SpeculateTrue; 657 return false; 658 } 659 } 660 661 SpeculationState = SpeculateFalse; 662 return true; 663 } 664 665 /// Check if \p MI is trivially remateralizable and if it does not have any 666 /// virtual register uses. Even though rematerializable RA might not actually 667 /// rematerialize it in this scenario. In that case we do not want to hoist such 668 /// instruction out of the loop in a belief RA will sink it back if needed. 669 bool MachineLICMBase::isTriviallyReMaterializable(const MachineInstr &MI, 670 AAResults *AA) const { 671 if (!TII->isTriviallyReMaterializable(MI, AA)) 672 return false; 673 674 for (const MachineOperand &MO : MI.operands()) { 675 if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual()) 676 return false; 677 } 678 679 return true; 680 } 681 682 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 683 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 684 685 // Remember livein register pressure. 686 BackTrace.push_back(RegPressure); 687 } 688 689 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 690 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 691 BackTrace.pop_back(); 692 } 693 694 /// Destroy scope for the MBB that corresponds to the given dominator tree node 695 /// if its a leaf or all of its children are done. Walk up the dominator tree to 696 /// destroy ancestors which are now done. 697 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 698 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 699 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 700 if (OpenChildren[Node]) 701 return; 702 703 // Pop scope. 704 ExitScope(Node->getBlock()); 705 706 // Now traverse upwards to pop ancestors whose offsprings are all done. 707 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 708 unsigned Left = --OpenChildren[Parent]; 709 if (Left != 0) 710 break; 711 ExitScope(Parent->getBlock()); 712 Node = Parent; 713 } 714 } 715 716 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 717 /// specified header block, and that are in the current loop) in depth first 718 /// order w.r.t the DominatorTree. This allows us to visit definitions before 719 /// uses, allowing us to hoist a loop body in one pass without iteration. 720 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 721 MachineBasicBlock *Preheader = getCurPreheader(); 722 if (!Preheader) 723 return; 724 725 SmallVector<MachineDomTreeNode*, 32> Scopes; 726 SmallVector<MachineDomTreeNode*, 8> WorkList; 727 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 728 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 729 730 // Perform a DFS walk to determine the order of visit. 731 WorkList.push_back(HeaderN); 732 while (!WorkList.empty()) { 733 MachineDomTreeNode *Node = WorkList.pop_back_val(); 734 assert(Node && "Null dominator tree node?"); 735 MachineBasicBlock *BB = Node->getBlock(); 736 737 // If the header of the loop containing this basic block is a landing pad, 738 // then don't try to hoist instructions out of this loop. 739 const MachineLoop *ML = MLI->getLoopFor(BB); 740 if (ML && ML->getHeader()->isEHPad()) 741 continue; 742 743 // If this subregion is not in the top level loop at all, exit. 744 if (!CurLoop->contains(BB)) 745 continue; 746 747 Scopes.push_back(Node); 748 unsigned NumChildren = Node->getNumChildren(); 749 750 // Don't hoist things out of a large switch statement. This often causes 751 // code to be hoisted that wasn't going to be executed, and increases 752 // register pressure in a situation where it's likely to matter. 753 if (BB->succ_size() >= 25) 754 NumChildren = 0; 755 756 OpenChildren[Node] = NumChildren; 757 if (NumChildren) { 758 // Add children in reverse order as then the next popped worklist node is 759 // the first child of this node. This means we ultimately traverse the 760 // DOM tree in exactly the same order as if we'd recursed. 761 for (MachineDomTreeNode *Child : reverse(Node->children())) { 762 ParentMap[Child] = Node; 763 WorkList.push_back(Child); 764 } 765 } 766 } 767 768 if (Scopes.size() == 0) 769 return; 770 771 // Compute registers which are livein into the loop headers. 772 RegSeen.clear(); 773 BackTrace.clear(); 774 InitRegPressure(Preheader); 775 776 // Now perform LICM. 777 for (MachineDomTreeNode *Node : Scopes) { 778 MachineBasicBlock *MBB = Node->getBlock(); 779 780 EnterScope(MBB); 781 782 // Process the block 783 SpeculationState = SpeculateUnknown; 784 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 785 if (!Hoist(&MI, Preheader)) 786 UpdateRegPressure(&MI); 787 // If we have hoisted an instruction that may store, it can only be a 788 // constant store. 789 } 790 791 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 792 ExitScopeIfDone(Node, OpenChildren, ParentMap); 793 } 794 } 795 796 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 797 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 798 } 799 800 /// Find all virtual register references that are liveout of the preheader to 801 /// initialize the starting "register pressure". Note this does not count live 802 /// through (livein but not used) registers. 803 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 804 std::fill(RegPressure.begin(), RegPressure.end(), 0); 805 806 // If the preheader has only a single predecessor and it ends with a 807 // fallthrough or an unconditional branch, then scan its predecessor for live 808 // defs as well. This happens whenever the preheader is created by splitting 809 // the critical edge from the loop predecessor to the loop header. 810 if (BB->pred_size() == 1) { 811 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 812 SmallVector<MachineOperand, 4> Cond; 813 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 814 InitRegPressure(*BB->pred_begin()); 815 } 816 817 for (const MachineInstr &MI : *BB) 818 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 819 } 820 821 /// Update estimate of register pressure after the specified instruction. 822 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 823 bool ConsiderUnseenAsDef) { 824 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 825 for (const auto &RPIdAndCost : Cost) { 826 unsigned Class = RPIdAndCost.first; 827 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 828 RegPressure[Class] = 0; 829 else 830 RegPressure[Class] += RPIdAndCost.second; 831 } 832 } 833 834 /// Calculate the additional register pressure that the registers used in MI 835 /// cause. 836 /// 837 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 838 /// figure out which usages are live-ins. 839 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 840 DenseMap<unsigned, int> 841 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 842 bool ConsiderUnseenAsDef) { 843 DenseMap<unsigned, int> Cost; 844 if (MI->isImplicitDef()) 845 return Cost; 846 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 847 const MachineOperand &MO = MI->getOperand(i); 848 if (!MO.isReg() || MO.isImplicit()) 849 continue; 850 Register Reg = MO.getReg(); 851 if (!Register::isVirtualRegister(Reg)) 852 continue; 853 854 // FIXME: It seems bad to use RegSeen only for some of these calculations. 855 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 856 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 857 858 RegClassWeight W = TRI->getRegClassWeight(RC); 859 int RCCost = 0; 860 if (MO.isDef()) 861 RCCost = W.RegWeight; 862 else { 863 bool isKill = isOperandKill(MO, MRI); 864 if (isNew && !isKill && ConsiderUnseenAsDef) 865 // Haven't seen this, it must be a livein. 866 RCCost = W.RegWeight; 867 else if (!isNew && isKill) 868 RCCost = -W.RegWeight; 869 } 870 if (RCCost == 0) 871 continue; 872 const int *PS = TRI->getRegClassPressureSets(RC); 873 for (; *PS != -1; ++PS) { 874 if (Cost.find(*PS) == Cost.end()) 875 Cost[*PS] = RCCost; 876 else 877 Cost[*PS] += RCCost; 878 } 879 } 880 return Cost; 881 } 882 883 /// Return true if this machine instruction loads from global offset table or 884 /// constant pool. 885 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 886 assert(MI.mayLoad() && "Expected MI that loads!"); 887 888 // If we lost memory operands, conservatively assume that the instruction 889 // reads from everything.. 890 if (MI.memoperands_empty()) 891 return true; 892 893 for (MachineMemOperand *MemOp : MI.memoperands()) 894 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 895 if (PSV->isGOT() || PSV->isConstantPool()) 896 return true; 897 898 return false; 899 } 900 901 // This function iterates through all the operands of the input store MI and 902 // checks that each register operand statisfies isCallerPreservedPhysReg. 903 // This means, the value being stored and the address where it is being stored 904 // is constant throughout the body of the function (not including prologue and 905 // epilogue). When called with an MI that isn't a store, it returns false. 906 // A future improvement can be to check if the store registers are constant 907 // throughout the loop rather than throughout the funtion. 908 static bool isInvariantStore(const MachineInstr &MI, 909 const TargetRegisterInfo *TRI, 910 const MachineRegisterInfo *MRI) { 911 912 bool FoundCallerPresReg = false; 913 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 914 (MI.getNumOperands() == 0)) 915 return false; 916 917 // Check that all register operands are caller-preserved physical registers. 918 for (const MachineOperand &MO : MI.operands()) { 919 if (MO.isReg()) { 920 Register Reg = MO.getReg(); 921 // If operand is a virtual register, check if it comes from a copy of a 922 // physical register. 923 if (Register::isVirtualRegister(Reg)) 924 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 925 if (Register::isVirtualRegister(Reg)) 926 return false; 927 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 928 return false; 929 else 930 FoundCallerPresReg = true; 931 } else if (!MO.isImm()) { 932 return false; 933 } 934 } 935 return FoundCallerPresReg; 936 } 937 938 // Return true if the input MI is a copy instruction that feeds an invariant 939 // store instruction. This means that the src of the copy has to satisfy 940 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 941 // isInvariantStore. 942 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 943 const MachineRegisterInfo *MRI, 944 const TargetRegisterInfo *TRI) { 945 946 // FIXME: If targets would like to look through instructions that aren't 947 // pure copies, this can be updated to a query. 948 if (!MI.isCopy()) 949 return false; 950 951 const MachineFunction *MF = MI.getMF(); 952 // Check that we are copying a constant physical register. 953 Register CopySrcReg = MI.getOperand(1).getReg(); 954 if (Register::isVirtualRegister(CopySrcReg)) 955 return false; 956 957 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 958 return false; 959 960 Register CopyDstReg = MI.getOperand(0).getReg(); 961 // Check if any of the uses of the copy are invariant stores. 962 assert(Register::isVirtualRegister(CopyDstReg) && 963 "copy dst is not a virtual reg"); 964 965 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 966 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 967 return true; 968 } 969 return false; 970 } 971 972 /// Returns true if the instruction may be a suitable candidate for LICM. 973 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 974 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 975 // Check if it's safe to move the instruction. 976 bool DontMoveAcrossStore = true; 977 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 978 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 979 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n"); 980 return false; 981 } 982 983 // If it is a load then check if it is guaranteed to execute by making sure 984 // that it dominates all exiting blocks. If it doesn't, then there is a path 985 // out of the loop which does not execute this load, so we can't hoist it. 986 // Loads from constant memory are safe to speculate, for example indexed load 987 // from a jump table. 988 // Stores and side effects are already checked by isSafeToMove. 989 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 990 !IsGuaranteedToExecute(I.getParent())) { 991 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n"); 992 return false; 993 } 994 995 // Convergent attribute has been used on operations that involve inter-thread 996 // communication which results are implicitly affected by the enclosing 997 // control flows. It is not safe to hoist or sink such operations across 998 // control flow. 999 if (I.isConvergent()) 1000 return false; 1001 1002 if (!TII->shouldHoist(I, CurLoop)) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 /// Returns true if the instruction is loop invariant. 1009 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1010 if (!IsLICMCandidate(I)) { 1011 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n"); 1012 return false; 1013 } 1014 return CurLoop->isLoopInvariant(I); 1015 } 1016 1017 /// Return true if the specified instruction is used by a phi node and hoisting 1018 /// it could cause a copy to be inserted. 1019 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1020 SmallVector<const MachineInstr*, 8> Work(1, MI); 1021 do { 1022 MI = Work.pop_back_val(); 1023 for (const MachineOperand &MO : MI->operands()) { 1024 if (!MO.isReg() || !MO.isDef()) 1025 continue; 1026 Register Reg = MO.getReg(); 1027 if (!Register::isVirtualRegister(Reg)) 1028 continue; 1029 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1030 // A PHI may cause a copy to be inserted. 1031 if (UseMI.isPHI()) { 1032 // A PHI inside the loop causes a copy because the live range of Reg is 1033 // extended across the PHI. 1034 if (CurLoop->contains(&UseMI)) 1035 return true; 1036 // A PHI in an exit block can cause a copy to be inserted if the PHI 1037 // has multiple predecessors in the loop with different values. 1038 // For now, approximate by rejecting all exit blocks. 1039 if (isExitBlock(UseMI.getParent())) 1040 return true; 1041 continue; 1042 } 1043 // Look past copies as well. 1044 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1045 Work.push_back(&UseMI); 1046 } 1047 } 1048 } while (!Work.empty()); 1049 return false; 1050 } 1051 1052 /// Compute operand latency between a def of 'Reg' and an use in the current 1053 /// loop, return true if the target considered it high. 1054 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1055 Register Reg) const { 1056 if (MRI->use_nodbg_empty(Reg)) 1057 return false; 1058 1059 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1060 if (UseMI.isCopyLike()) 1061 continue; 1062 if (!CurLoop->contains(UseMI.getParent())) 1063 continue; 1064 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1065 const MachineOperand &MO = UseMI.getOperand(i); 1066 if (!MO.isReg() || !MO.isUse()) 1067 continue; 1068 Register MOReg = MO.getReg(); 1069 if (MOReg != Reg) 1070 continue; 1071 1072 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1073 return true; 1074 } 1075 1076 // Only look at the first in loop use. 1077 break; 1078 } 1079 1080 return false; 1081 } 1082 1083 /// Return true if the instruction is marked "cheap" or the operand latency 1084 /// between its def and a use is one or less. 1085 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1086 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1087 return true; 1088 1089 bool isCheap = false; 1090 unsigned NumDefs = MI.getDesc().getNumDefs(); 1091 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1092 MachineOperand &DefMO = MI.getOperand(i); 1093 if (!DefMO.isReg() || !DefMO.isDef()) 1094 continue; 1095 --NumDefs; 1096 Register Reg = DefMO.getReg(); 1097 if (Register::isPhysicalRegister(Reg)) 1098 continue; 1099 1100 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1101 return false; 1102 isCheap = true; 1103 } 1104 1105 return isCheap; 1106 } 1107 1108 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1109 /// given cost matrix can cause high register pressure. 1110 bool 1111 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1112 bool CheapInstr) { 1113 for (const auto &RPIdAndCost : Cost) { 1114 if (RPIdAndCost.second <= 0) 1115 continue; 1116 1117 unsigned Class = RPIdAndCost.first; 1118 int Limit = RegLimit[Class]; 1119 1120 // Don't hoist cheap instructions if they would increase register pressure, 1121 // even if we're under the limit. 1122 if (CheapInstr && !HoistCheapInsts) 1123 return true; 1124 1125 for (const auto &RP : BackTrace) 1126 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1127 return true; 1128 } 1129 1130 return false; 1131 } 1132 1133 /// Traverse the back trace from header to the current block and update their 1134 /// register pressures to reflect the effect of hoisting MI from the current 1135 /// block to the preheader. 1136 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1137 // First compute the 'cost' of the instruction, i.e. its contribution 1138 // to register pressure. 1139 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1140 /*ConsiderUnseenAsDef=*/false); 1141 1142 // Update register pressure of blocks from loop header to current block. 1143 for (auto &RP : BackTrace) 1144 for (const auto &RPIdAndCost : Cost) 1145 RP[RPIdAndCost.first] += RPIdAndCost.second; 1146 } 1147 1148 /// Return true if it is potentially profitable to hoist the given loop 1149 /// invariant. 1150 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1151 if (MI.isImplicitDef()) 1152 return true; 1153 1154 // Besides removing computation from the loop, hoisting an instruction has 1155 // these effects: 1156 // 1157 // - The value defined by the instruction becomes live across the entire 1158 // loop. This increases register pressure in the loop. 1159 // 1160 // - If the value is used by a PHI in the loop, a copy will be required for 1161 // lowering the PHI after extending the live range. 1162 // 1163 // - When hoisting the last use of a value in the loop, that value no longer 1164 // needs to be live in the loop. This lowers register pressure in the loop. 1165 1166 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1167 return true; 1168 1169 bool CheapInstr = IsCheapInstruction(MI); 1170 bool CreatesCopy = HasLoopPHIUse(&MI); 1171 1172 // Don't hoist a cheap instruction if it would create a copy in the loop. 1173 if (CheapInstr && CreatesCopy) { 1174 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1175 return false; 1176 } 1177 1178 // Rematerializable instructions should always be hoisted providing the 1179 // register allocator can just pull them down again when needed. 1180 if (isTriviallyReMaterializable(MI, AA)) 1181 return true; 1182 1183 // FIXME: If there are long latency loop-invariant instructions inside the 1184 // loop at this point, why didn't the optimizer's LICM hoist them? 1185 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1186 const MachineOperand &MO = MI.getOperand(i); 1187 if (!MO.isReg() || MO.isImplicit()) 1188 continue; 1189 Register Reg = MO.getReg(); 1190 if (!Register::isVirtualRegister(Reg)) 1191 continue; 1192 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1193 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1194 ++NumHighLatency; 1195 return true; 1196 } 1197 } 1198 1199 // Estimate register pressure to determine whether to LICM the instruction. 1200 // In low register pressure situation, we can be more aggressive about 1201 // hoisting. Also, favors hoisting long latency instructions even in 1202 // moderately high pressure situation. 1203 // Cheap instructions will only be hoisted if they don't increase register 1204 // pressure at all. 1205 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1206 /*ConsiderUnseenAsDef=*/false); 1207 1208 // Visit BBs from header to current BB, if hoisting this doesn't cause 1209 // high register pressure, then it's safe to proceed. 1210 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1211 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1212 ++NumLowRP; 1213 return true; 1214 } 1215 1216 // Don't risk increasing register pressure if it would create copies. 1217 if (CreatesCopy) { 1218 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1219 return false; 1220 } 1221 1222 // Do not "speculate" in high register pressure situation. If an 1223 // instruction is not guaranteed to be executed in the loop, it's best to be 1224 // conservative. 1225 if (AvoidSpeculation && 1226 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1227 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1228 return false; 1229 } 1230 1231 // High register pressure situation, only hoist if the instruction is going 1232 // to be remat'ed. 1233 if (!isTriviallyReMaterializable(MI, AA) && 1234 !MI.isDereferenceableInvariantLoad(AA)) { 1235 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1236 return false; 1237 } 1238 1239 return true; 1240 } 1241 1242 /// Unfold a load from the given machineinstr if the load itself could be 1243 /// hoisted. Return the unfolded and hoistable load, or null if the load 1244 /// couldn't be unfolded or if it wouldn't be hoistable. 1245 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1246 // Don't unfold simple loads. 1247 if (MI->canFoldAsLoad()) 1248 return nullptr; 1249 1250 // If not, we may be able to unfold a load and hoist that. 1251 // First test whether the instruction is loading from an amenable 1252 // memory location. 1253 if (!MI->isDereferenceableInvariantLoad(AA)) 1254 return nullptr; 1255 1256 // Next determine the register class for a temporary register. 1257 unsigned LoadRegIndex; 1258 unsigned NewOpc = 1259 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1260 /*UnfoldLoad=*/true, 1261 /*UnfoldStore=*/false, 1262 &LoadRegIndex); 1263 if (NewOpc == 0) return nullptr; 1264 const MCInstrDesc &MID = TII->get(NewOpc); 1265 MachineFunction &MF = *MI->getMF(); 1266 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1267 // Ok, we're unfolding. Create a temporary register and do the unfold. 1268 Register Reg = MRI->createVirtualRegister(RC); 1269 1270 SmallVector<MachineInstr *, 2> NewMIs; 1271 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1272 /*UnfoldLoad=*/true, 1273 /*UnfoldStore=*/false, NewMIs); 1274 (void)Success; 1275 assert(Success && 1276 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1277 "succeeded!"); 1278 assert(NewMIs.size() == 2 && 1279 "Unfolded a load into multiple instructions!"); 1280 MachineBasicBlock *MBB = MI->getParent(); 1281 MachineBasicBlock::iterator Pos = MI; 1282 MBB->insert(Pos, NewMIs[0]); 1283 MBB->insert(Pos, NewMIs[1]); 1284 // If unfolding produced a load that wasn't loop-invariant or profitable to 1285 // hoist, discard the new instructions and bail. 1286 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1287 NewMIs[0]->eraseFromParent(); 1288 NewMIs[1]->eraseFromParent(); 1289 return nullptr; 1290 } 1291 1292 // Update register pressure for the unfolded instruction. 1293 UpdateRegPressure(NewMIs[1]); 1294 1295 // Otherwise we successfully unfolded a load that we can hoist. 1296 1297 // Update the call site info. 1298 if (MI->shouldUpdateCallSiteInfo()) 1299 MF.eraseCallSiteInfo(MI); 1300 1301 MI->eraseFromParent(); 1302 return NewMIs[0]; 1303 } 1304 1305 /// Initialize the CSE map with instructions that are in the current loop 1306 /// preheader that may become duplicates of instructions that are hoisted 1307 /// out of the loop. 1308 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1309 for (MachineInstr &MI : *BB) 1310 CSEMap[MI.getOpcode()].push_back(&MI); 1311 } 1312 1313 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1314 /// Return this instruction if it's found. 1315 MachineInstr * 1316 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1317 std::vector<MachineInstr *> &PrevMIs) { 1318 for (MachineInstr *PrevMI : PrevMIs) 1319 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1320 return PrevMI; 1321 1322 return nullptr; 1323 } 1324 1325 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1326 /// computes the same value. If it's found, do a RAU on with the definition of 1327 /// the existing instruction rather than hoisting the instruction to the 1328 /// preheader. 1329 bool MachineLICMBase::EliminateCSE( 1330 MachineInstr *MI, 1331 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { 1332 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1333 // the undef property onto uses. 1334 if (CI == CSEMap.end() || MI->isImplicitDef()) 1335 return false; 1336 1337 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1338 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1339 1340 // Replace virtual registers defined by MI by their counterparts defined 1341 // by Dup. 1342 SmallVector<unsigned, 2> Defs; 1343 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1344 const MachineOperand &MO = MI->getOperand(i); 1345 1346 // Physical registers may not differ here. 1347 assert((!MO.isReg() || MO.getReg() == 0 || 1348 !Register::isPhysicalRegister(MO.getReg()) || 1349 MO.getReg() == Dup->getOperand(i).getReg()) && 1350 "Instructions with different phys regs are not identical!"); 1351 1352 if (MO.isReg() && MO.isDef() && 1353 !Register::isPhysicalRegister(MO.getReg())) 1354 Defs.push_back(i); 1355 } 1356 1357 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1358 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1359 unsigned Idx = Defs[i]; 1360 Register Reg = MI->getOperand(Idx).getReg(); 1361 Register DupReg = Dup->getOperand(Idx).getReg(); 1362 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1363 1364 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1365 // Restore old RCs if more than one defs. 1366 for (unsigned j = 0; j != i; ++j) 1367 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1368 return false; 1369 } 1370 } 1371 1372 for (unsigned Idx : Defs) { 1373 Register Reg = MI->getOperand(Idx).getReg(); 1374 Register DupReg = Dup->getOperand(Idx).getReg(); 1375 MRI->replaceRegWith(Reg, DupReg); 1376 MRI->clearKillFlags(DupReg); 1377 // Clear Dup dead flag if any, we reuse it for Reg. 1378 if (!MRI->use_nodbg_empty(DupReg)) 1379 Dup->getOperand(Idx).setIsDead(false); 1380 } 1381 1382 MI->eraseFromParent(); 1383 ++NumCSEed; 1384 return true; 1385 } 1386 return false; 1387 } 1388 1389 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1390 /// the loop. 1391 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1392 unsigned Opcode = MI->getOpcode(); 1393 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1394 CSEMap.find(Opcode); 1395 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1396 // the undef property onto uses. 1397 if (CI == CSEMap.end() || MI->isImplicitDef()) 1398 return false; 1399 1400 return LookForDuplicate(MI, CI->second) != nullptr; 1401 } 1402 1403 /// When an instruction is found to use only loop invariant operands 1404 /// that are safe to hoist, this instruction is called to do the dirty work. 1405 /// It returns true if the instruction is hoisted. 1406 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1407 MachineBasicBlock *SrcBlock = MI->getParent(); 1408 1409 // Disable the instruction hoisting due to block hotness 1410 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1411 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1412 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1413 ++NumNotHoistedDueToHotness; 1414 return false; 1415 } 1416 // First check whether we should hoist this instruction. 1417 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1418 // If not, try unfolding a hoistable load. 1419 MI = ExtractHoistableLoad(MI); 1420 if (!MI) return false; 1421 } 1422 1423 // If we have hoisted an instruction that may store, it can only be a constant 1424 // store. 1425 if (MI->mayStore()) 1426 NumStoreConst++; 1427 1428 // Now move the instructions to the predecessor, inserting it before any 1429 // terminator instructions. 1430 LLVM_DEBUG({ 1431 dbgs() << "Hoisting " << *MI; 1432 if (MI->getParent()->getBasicBlock()) 1433 dbgs() << " from " << printMBBReference(*MI->getParent()); 1434 if (Preheader->getBasicBlock()) 1435 dbgs() << " to " << printMBBReference(*Preheader); 1436 dbgs() << "\n"; 1437 }); 1438 1439 // If this is the first instruction being hoisted to the preheader, 1440 // initialize the CSE map with potential common expressions. 1441 if (FirstInLoop) { 1442 InitCSEMap(Preheader); 1443 FirstInLoop = false; 1444 } 1445 1446 // Look for opportunity to CSE the hoisted instruction. 1447 unsigned Opcode = MI->getOpcode(); 1448 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1449 CSEMap.find(Opcode); 1450 if (!EliminateCSE(MI, CI)) { 1451 // Otherwise, splice the instruction to the preheader. 1452 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1453 1454 // Since we are moving the instruction out of its basic block, we do not 1455 // retain its debug location. Doing so would degrade the debugging 1456 // experience and adversely affect the accuracy of profiling information. 1457 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1458 MI->setDebugLoc(DebugLoc()); 1459 1460 // Update register pressure for BBs from header to this block. 1461 UpdateBackTraceRegPressure(MI); 1462 1463 // Clear the kill flags of any register this instruction defines, 1464 // since they may need to be live throughout the entire loop 1465 // rather than just live for part of it. 1466 for (MachineOperand &MO : MI->operands()) 1467 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1468 MRI->clearKillFlags(MO.getReg()); 1469 1470 // Add to the CSE map. 1471 if (CI != CSEMap.end()) 1472 CI->second.push_back(MI); 1473 else 1474 CSEMap[Opcode].push_back(MI); 1475 } 1476 1477 ++NumHoisted; 1478 Changed = true; 1479 1480 return true; 1481 } 1482 1483 /// Get the preheader for the current loop, splitting a critical edge if needed. 1484 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1485 // Determine the block to which to hoist instructions. If we can't find a 1486 // suitable loop predecessor, we can't do any hoisting. 1487 1488 // If we've tried to get a preheader and failed, don't try again. 1489 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1490 return nullptr; 1491 1492 if (!CurPreheader) { 1493 CurPreheader = CurLoop->getLoopPreheader(); 1494 if (!CurPreheader) { 1495 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1496 if (!Pred) { 1497 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1498 return nullptr; 1499 } 1500 1501 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1502 if (!CurPreheader) { 1503 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1504 return nullptr; 1505 } 1506 } 1507 } 1508 return CurPreheader; 1509 } 1510 1511 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1512 /// times hotter than the source basic block. 1513 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1514 MachineBasicBlock *TgtBlock) { 1515 // Parse source and target basic block frequency from MBFI 1516 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1517 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1518 1519 // Disable the hoisting if source block frequency is zero 1520 if (!SrcBF) 1521 return true; 1522 1523 double Ratio = (double)DstBF / SrcBF; 1524 1525 // Compare the block frequency ratio with the threshold 1526 return Ratio > BlockFrequencyRatioThreshold; 1527 } 1528