1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegister.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <limits> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machinelicm" 60 61 static cl::opt<bool> 62 AvoidSpeculation("avoid-speculation", 63 cl::desc("MachineLICM should avoid speculation"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 HoistCheapInsts("hoist-cheap-insts", 68 cl::desc("MachineLICM should hoist even cheap instructions"), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 73 cl::desc("MachineLICM should sink instructions into " 74 "loops to avoid register spills"), 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> 77 HoistConstStores("hoist-const-stores", 78 cl::desc("Hoist invariant stores"), 79 cl::init(true), cl::Hidden); 80 // The default threshold of 100 (i.e. if target block is 100 times hotter) 81 // is based on empirical data on a single target and is subject to tuning. 82 static cl::opt<unsigned> 83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 84 cl::desc("Do not hoist instructions if target" 85 "block is N times hotter than the source."), 86 cl::init(100), cl::Hidden); 87 88 enum class UseBFI { None, PGO, All }; 89 90 static cl::opt<UseBFI> 91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 92 cl::desc("Disable hoisting instructions to" 93 " hotter blocks"), 94 cl::init(UseBFI::PGO), cl::Hidden, 95 cl::values(clEnumValN(UseBFI::None, "none", 96 "disable the feature"), 97 clEnumValN(UseBFI::PGO, "pgo", 98 "enable the feature when using profile data"), 99 clEnumValN(UseBFI::All, "all", 100 "enable the feature with/wo profile data"))); 101 102 STATISTIC(NumHoisted, 103 "Number of machine instructions hoisted out of loops"); 104 STATISTIC(NumLowRP, 105 "Number of instructions hoisted in low reg pressure situation"); 106 STATISTIC(NumHighLatency, 107 "Number of high latency instructions hoisted"); 108 STATISTIC(NumCSEed, 109 "Number of hoisted machine instructions CSEed"); 110 STATISTIC(NumPostRAHoisted, 111 "Number of machine instructions hoisted out of loops post regalloc"); 112 STATISTIC(NumStoreConst, 113 "Number of stores of const phys reg hoisted out of loops"); 114 STATISTIC(NumNotHoistedDueToHotness, 115 "Number of instructions not hoisted due to block frequency"); 116 117 namespace { 118 119 class MachineLICMBase : public MachineFunctionPass { 120 const TargetInstrInfo *TII; 121 const TargetLoweringBase *TLI; 122 const TargetRegisterInfo *TRI; 123 const MachineFrameInfo *MFI; 124 MachineRegisterInfo *MRI; 125 TargetSchedModel SchedModel; 126 bool PreRegAlloc; 127 bool HasProfileData; 128 129 // Various analyses that we use... 130 AliasAnalysis *AA; // Alias analysis info. 131 MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info 132 MachineLoopInfo *MLI; // Current MachineLoopInfo 133 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 134 135 // State that is updated as we process loops 136 bool Changed; // True if a loop is changed. 137 bool FirstInLoop; // True if it's the first LICM in the loop. 138 MachineLoop *CurLoop; // The current loop we are working on. 139 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 140 141 // Exit blocks for CurLoop. 142 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 143 144 bool isExitBlock(const MachineBasicBlock *MBB) const { 145 return is_contained(ExitBlocks, MBB); 146 } 147 148 // Track 'estimated' register pressure. 149 SmallSet<Register, 32> RegSeen; 150 SmallVector<unsigned, 8> RegPressure; 151 152 // Register pressure "limit" per register pressure set. If the pressure 153 // is higher than the limit, then it's considered high. 154 SmallVector<unsigned, 8> RegLimit; 155 156 // Register pressure on path leading from loop preheader to current BB. 157 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 158 159 // For each opcode, keep a list of potential CSE instructions. 160 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 161 162 enum { 163 SpeculateFalse = 0, 164 SpeculateTrue = 1, 165 SpeculateUnknown = 2 166 }; 167 168 // If a MBB does not dominate loop exiting blocks then it may not safe 169 // to hoist loads from this block. 170 // Tri-state: 0 - false, 1 - true, 2 - unknown 171 unsigned SpeculationState; 172 173 public: 174 MachineLICMBase(char &PassID, bool PreRegAlloc) 175 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 176 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 AU.addRequired<MachineLoopInfo>(); 181 if (DisableHoistingToHotterBlocks != UseBFI::None) 182 AU.addRequired<MachineBlockFrequencyInfo>(); 183 AU.addRequired<MachineDominatorTree>(); 184 AU.addRequired<AAResultsWrapperPass>(); 185 AU.addPreserved<MachineLoopInfo>(); 186 MachineFunctionPass::getAnalysisUsage(AU); 187 } 188 189 void releaseMemory() override { 190 RegSeen.clear(); 191 RegPressure.clear(); 192 RegLimit.clear(); 193 BackTrace.clear(); 194 CSEMap.clear(); 195 } 196 197 private: 198 /// Keep track of information about hoisting candidates. 199 struct CandidateInfo { 200 MachineInstr *MI; 201 unsigned Def; 202 int FI; 203 204 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 205 : MI(mi), Def(def), FI(fi) {} 206 }; 207 208 void HoistRegionPostRA(); 209 210 void HoistPostRA(MachineInstr *MI, unsigned Def); 211 212 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 213 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 214 SmallVectorImpl<CandidateInfo> &Candidates); 215 216 void AddToLiveIns(MCRegister Reg); 217 218 bool IsLICMCandidate(MachineInstr &I); 219 220 bool IsLoopInvariantInst(MachineInstr &I); 221 222 bool HasLoopPHIUse(const MachineInstr *MI) const; 223 224 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 225 Register Reg) const; 226 227 bool IsCheapInstruction(MachineInstr &MI) const; 228 229 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 230 bool Cheap); 231 232 void UpdateBackTraceRegPressure(const MachineInstr *MI); 233 234 bool IsProfitableToHoist(MachineInstr &MI); 235 236 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 237 238 void EnterScope(MachineBasicBlock *MBB); 239 240 void ExitScope(MachineBasicBlock *MBB); 241 242 void ExitScopeIfDone( 243 MachineDomTreeNode *Node, 244 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 245 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 246 247 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 248 249 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 250 251 void SinkIntoLoop(); 252 253 void InitRegPressure(MachineBasicBlock *BB); 254 255 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 256 bool ConsiderSeen, 257 bool ConsiderUnseenAsDef); 258 259 void UpdateRegPressure(const MachineInstr *MI, 260 bool ConsiderUnseenAsDef = false); 261 262 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 263 264 const MachineInstr * 265 LookForDuplicate(const MachineInstr *MI, 266 std::vector<const MachineInstr *> &PrevMIs); 267 268 bool EliminateCSE( 269 MachineInstr *MI, 270 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 271 272 bool MayCSE(MachineInstr *MI); 273 274 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 275 276 void InitCSEMap(MachineBasicBlock *BB); 277 278 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 279 MachineBasicBlock *TgtBlock); 280 MachineBasicBlock *getCurPreheader(); 281 }; 282 283 class MachineLICM : public MachineLICMBase { 284 public: 285 static char ID; 286 MachineLICM() : MachineLICMBase(ID, false) { 287 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 288 } 289 }; 290 291 class EarlyMachineLICM : public MachineLICMBase { 292 public: 293 static char ID; 294 EarlyMachineLICM() : MachineLICMBase(ID, true) { 295 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 296 } 297 }; 298 299 } // end anonymous namespace 300 301 char MachineLICM::ID; 302 char EarlyMachineLICM::ID; 303 304 char &llvm::MachineLICMID = MachineLICM::ID; 305 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 306 307 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 308 "Machine Loop Invariant Code Motion", false, false) 309 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 310 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 311 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 312 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 313 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 314 "Machine Loop Invariant Code Motion", false, false) 315 316 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 317 "Early Machine Loop Invariant Code Motion", false, false) 318 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 319 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 320 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 321 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 322 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 323 "Early Machine Loop Invariant Code Motion", false, false) 324 325 /// Test if the given loop is the outer-most loop that has a unique predecessor. 326 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 327 // Check whether this loop even has a unique predecessor. 328 if (!CurLoop->getLoopPredecessor()) 329 return false; 330 // Ok, now check to see if any of its outer loops do. 331 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 332 if (L->getLoopPredecessor()) 333 return false; 334 // None of them did, so this is the outermost with a unique predecessor. 335 return true; 336 } 337 338 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 339 if (skipFunction(MF.getFunction())) 340 return false; 341 342 Changed = FirstInLoop = false; 343 const TargetSubtargetInfo &ST = MF.getSubtarget(); 344 TII = ST.getInstrInfo(); 345 TLI = ST.getTargetLowering(); 346 TRI = ST.getRegisterInfo(); 347 MFI = &MF.getFrameInfo(); 348 MRI = &MF.getRegInfo(); 349 SchedModel.init(&ST); 350 351 PreRegAlloc = MRI->isSSA(); 352 HasProfileData = MF.getFunction().hasProfileData(); 353 354 if (PreRegAlloc) 355 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 356 else 357 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 358 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 359 360 if (PreRegAlloc) { 361 // Estimate register pressure during pre-regalloc pass. 362 unsigned NumRPS = TRI->getNumRegPressureSets(); 363 RegPressure.resize(NumRPS); 364 std::fill(RegPressure.begin(), RegPressure.end(), 0); 365 RegLimit.resize(NumRPS); 366 for (unsigned i = 0, e = NumRPS; i != e; ++i) 367 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 368 } 369 370 // Get our Loop information... 371 if (DisableHoistingToHotterBlocks != UseBFI::None) 372 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 373 MLI = &getAnalysis<MachineLoopInfo>(); 374 DT = &getAnalysis<MachineDominatorTree>(); 375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 376 377 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 378 while (!Worklist.empty()) { 379 CurLoop = Worklist.pop_back_val(); 380 CurPreheader = nullptr; 381 ExitBlocks.clear(); 382 383 // If this is done before regalloc, only visit outer-most preheader-sporting 384 // loops. 385 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 386 Worklist.append(CurLoop->begin(), CurLoop->end()); 387 continue; 388 } 389 390 CurLoop->getExitBlocks(ExitBlocks); 391 392 if (!PreRegAlloc) 393 HoistRegionPostRA(); 394 else { 395 // CSEMap is initialized for loop header when the first instruction is 396 // being hoisted. 397 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 398 FirstInLoop = true; 399 HoistOutOfLoop(N); 400 CSEMap.clear(); 401 402 if (SinkInstsToAvoidSpills) 403 SinkIntoLoop(); 404 } 405 } 406 407 return Changed; 408 } 409 410 /// Return true if instruction stores to the specified frame. 411 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 412 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 413 // true since they have no memory operands. 414 if (!MI->mayStore()) 415 return false; 416 // If we lost memory operands, conservatively assume that the instruction 417 // writes to all slots. 418 if (MI->memoperands_empty()) 419 return true; 420 for (const MachineMemOperand *MemOp : MI->memoperands()) { 421 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 422 continue; 423 if (const FixedStackPseudoSourceValue *Value = 424 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 425 if (Value->getFrameIndex() == FI) 426 return true; 427 } 428 } 429 return false; 430 } 431 432 /// Examine the instruction for potentai LICM candidate. Also 433 /// gather register def and frame object update information. 434 void MachineLICMBase::ProcessMI(MachineInstr *MI, 435 BitVector &PhysRegDefs, 436 BitVector &PhysRegClobbers, 437 SmallSet<int, 32> &StoredFIs, 438 SmallVectorImpl<CandidateInfo> &Candidates) { 439 bool RuledOut = false; 440 bool HasNonInvariantUse = false; 441 unsigned Def = 0; 442 for (const MachineOperand &MO : MI->operands()) { 443 if (MO.isFI()) { 444 // Remember if the instruction stores to the frame index. 445 int FI = MO.getIndex(); 446 if (!StoredFIs.count(FI) && 447 MFI->isSpillSlotObjectIndex(FI) && 448 InstructionStoresToFI(MI, FI)) 449 StoredFIs.insert(FI); 450 HasNonInvariantUse = true; 451 continue; 452 } 453 454 // We can't hoist an instruction defining a physreg that is clobbered in 455 // the loop. 456 if (MO.isRegMask()) { 457 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 458 continue; 459 } 460 461 if (!MO.isReg()) 462 continue; 463 Register Reg = MO.getReg(); 464 if (!Reg) 465 continue; 466 assert(Register::isPhysicalRegister(Reg) && 467 "Not expecting virtual register!"); 468 469 if (!MO.isDef()) { 470 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 471 // If it's using a non-loop-invariant register, then it's obviously not 472 // safe to hoist. 473 HasNonInvariantUse = true; 474 continue; 475 } 476 477 if (MO.isImplicit()) { 478 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 479 PhysRegClobbers.set(*AI); 480 if (!MO.isDead()) 481 // Non-dead implicit def? This cannot be hoisted. 482 RuledOut = true; 483 // No need to check if a dead implicit def is also defined by 484 // another instruction. 485 continue; 486 } 487 488 // FIXME: For now, avoid instructions with multiple defs, unless 489 // it's a dead implicit def. 490 if (Def) 491 RuledOut = true; 492 else 493 Def = Reg; 494 495 // If we have already seen another instruction that defines the same 496 // register, then this is not safe. Two defs is indicated by setting a 497 // PhysRegClobbers bit. 498 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 499 if (PhysRegDefs.test(*AS)) 500 PhysRegClobbers.set(*AS); 501 } 502 // Need a second loop because MCRegAliasIterator can visit the same 503 // register twice. 504 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 505 PhysRegDefs.set(*AS); 506 507 if (PhysRegClobbers.test(Reg)) 508 // MI defined register is seen defined by another instruction in 509 // the loop, it cannot be a LICM candidate. 510 RuledOut = true; 511 } 512 513 // Only consider reloads for now and remats which do not have register 514 // operands. FIXME: Consider unfold load folding instructions. 515 if (Def && !RuledOut) { 516 int FI = std::numeric_limits<int>::min(); 517 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 518 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 519 Candidates.push_back(CandidateInfo(MI, Def, FI)); 520 } 521 } 522 523 /// Walk the specified region of the CFG and hoist loop invariants out to the 524 /// preheader. 525 void MachineLICMBase::HoistRegionPostRA() { 526 MachineBasicBlock *Preheader = getCurPreheader(); 527 if (!Preheader) 528 return; 529 530 unsigned NumRegs = TRI->getNumRegs(); 531 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 532 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 533 534 SmallVector<CandidateInfo, 32> Candidates; 535 SmallSet<int, 32> StoredFIs; 536 537 // Walk the entire region, count number of defs for each register, and 538 // collect potential LICM candidates. 539 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 540 // If the header of the loop containing this basic block is a landing pad, 541 // then don't try to hoist instructions out of this loop. 542 const MachineLoop *ML = MLI->getLoopFor(BB); 543 if (ML && ML->getHeader()->isEHPad()) continue; 544 545 // Conservatively treat live-in's as an external def. 546 // FIXME: That means a reload that're reused in successor block(s) will not 547 // be LICM'ed. 548 for (const auto &LI : BB->liveins()) { 549 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 550 PhysRegDefs.set(*AI); 551 } 552 553 SpeculationState = SpeculateUnknown; 554 for (MachineInstr &MI : *BB) 555 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 556 } 557 558 // Gather the registers read / clobbered by the terminator. 559 BitVector TermRegs(NumRegs); 560 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 561 if (TI != Preheader->end()) { 562 for (const MachineOperand &MO : TI->operands()) { 563 if (!MO.isReg()) 564 continue; 565 Register Reg = MO.getReg(); 566 if (!Reg) 567 continue; 568 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 569 TermRegs.set(*AI); 570 } 571 } 572 573 // Now evaluate whether the potential candidates qualify. 574 // 1. Check if the candidate defined register is defined by another 575 // instruction in the loop. 576 // 2. If the candidate is a load from stack slot (always true for now), 577 // check if the slot is stored anywhere in the loop. 578 // 3. Make sure candidate def should not clobber 579 // registers read by the terminator. Similarly its def should not be 580 // clobbered by the terminator. 581 for (CandidateInfo &Candidate : Candidates) { 582 if (Candidate.FI != std::numeric_limits<int>::min() && 583 StoredFIs.count(Candidate.FI)) 584 continue; 585 586 unsigned Def = Candidate.Def; 587 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 588 bool Safe = true; 589 MachineInstr *MI = Candidate.MI; 590 for (const MachineOperand &MO : MI->operands()) { 591 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 592 continue; 593 Register Reg = MO.getReg(); 594 if (PhysRegDefs.test(Reg) || 595 PhysRegClobbers.test(Reg)) { 596 // If it's using a non-loop-invariant register, then it's obviously 597 // not safe to hoist. 598 Safe = false; 599 break; 600 } 601 } 602 if (Safe) 603 HoistPostRA(MI, Candidate.Def); 604 } 605 } 606 } 607 608 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 609 /// sure it is not killed by any instructions in the loop. 610 void MachineLICMBase::AddToLiveIns(MCRegister Reg) { 611 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 612 if (!BB->isLiveIn(Reg)) 613 BB->addLiveIn(Reg); 614 for (MachineInstr &MI : *BB) { 615 for (MachineOperand &MO : MI.operands()) { 616 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 617 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 618 MO.setIsKill(false); 619 } 620 } 621 } 622 } 623 624 /// When an instruction is found to only use loop invariant operands that is 625 /// safe to hoist, this instruction is called to do the dirty work. 626 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 627 MachineBasicBlock *Preheader = getCurPreheader(); 628 629 // Now move the instructions to the predecessor, inserting it before any 630 // terminator instructions. 631 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 632 << " from " << printMBBReference(*MI->getParent()) << ": " 633 << *MI); 634 635 // Splice the instruction to the preheader. 636 MachineBasicBlock *MBB = MI->getParent(); 637 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 638 639 // Since we are moving the instruction out of its basic block, we do not 640 // retain its debug location. Doing so would degrade the debugging 641 // experience and adversely affect the accuracy of profiling information. 642 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 643 MI->setDebugLoc(DebugLoc()); 644 645 // Add register to livein list to all the BBs in the current loop since a 646 // loop invariant must be kept live throughout the whole loop. This is 647 // important to ensure later passes do not scavenge the def register. 648 AddToLiveIns(Def); 649 650 ++NumPostRAHoisted; 651 Changed = true; 652 } 653 654 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 655 /// may not be safe to hoist. 656 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 657 if (SpeculationState != SpeculateUnknown) 658 return SpeculationState == SpeculateFalse; 659 660 if (BB != CurLoop->getHeader()) { 661 // Check loop exiting blocks. 662 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 663 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 664 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 665 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 666 SpeculationState = SpeculateTrue; 667 return false; 668 } 669 } 670 671 SpeculationState = SpeculateFalse; 672 return true; 673 } 674 675 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 676 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 677 678 // Remember livein register pressure. 679 BackTrace.push_back(RegPressure); 680 } 681 682 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 683 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 684 BackTrace.pop_back(); 685 } 686 687 /// Destroy scope for the MBB that corresponds to the given dominator tree node 688 /// if its a leaf or all of its children are done. Walk up the dominator tree to 689 /// destroy ancestors which are now done. 690 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 691 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 692 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 693 if (OpenChildren[Node]) 694 return; 695 696 // Pop scope. 697 ExitScope(Node->getBlock()); 698 699 // Now traverse upwards to pop ancestors whose offsprings are all done. 700 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 701 unsigned Left = --OpenChildren[Parent]; 702 if (Left != 0) 703 break; 704 ExitScope(Parent->getBlock()); 705 Node = Parent; 706 } 707 } 708 709 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 710 /// specified header block, and that are in the current loop) in depth first 711 /// order w.r.t the DominatorTree. This allows us to visit definitions before 712 /// uses, allowing us to hoist a loop body in one pass without iteration. 713 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 714 MachineBasicBlock *Preheader = getCurPreheader(); 715 if (!Preheader) 716 return; 717 718 SmallVector<MachineDomTreeNode*, 32> Scopes; 719 SmallVector<MachineDomTreeNode*, 8> WorkList; 720 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 721 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 722 723 // Perform a DFS walk to determine the order of visit. 724 WorkList.push_back(HeaderN); 725 while (!WorkList.empty()) { 726 MachineDomTreeNode *Node = WorkList.pop_back_val(); 727 assert(Node && "Null dominator tree node?"); 728 MachineBasicBlock *BB = Node->getBlock(); 729 730 // If the header of the loop containing this basic block is a landing pad, 731 // then don't try to hoist instructions out of this loop. 732 const MachineLoop *ML = MLI->getLoopFor(BB); 733 if (ML && ML->getHeader()->isEHPad()) 734 continue; 735 736 // If this subregion is not in the top level loop at all, exit. 737 if (!CurLoop->contains(BB)) 738 continue; 739 740 Scopes.push_back(Node); 741 unsigned NumChildren = Node->getNumChildren(); 742 743 // Don't hoist things out of a large switch statement. This often causes 744 // code to be hoisted that wasn't going to be executed, and increases 745 // register pressure in a situation where it's likely to matter. 746 if (BB->succ_size() >= 25) 747 NumChildren = 0; 748 749 OpenChildren[Node] = NumChildren; 750 if (NumChildren) { 751 // Add children in reverse order as then the next popped worklist node is 752 // the first child of this node. This means we ultimately traverse the 753 // DOM tree in exactly the same order as if we'd recursed. 754 for (MachineDomTreeNode *Child : reverse(Node->children())) { 755 ParentMap[Child] = Node; 756 WorkList.push_back(Child); 757 } 758 } 759 } 760 761 if (Scopes.size() == 0) 762 return; 763 764 // Compute registers which are livein into the loop headers. 765 RegSeen.clear(); 766 BackTrace.clear(); 767 InitRegPressure(Preheader); 768 769 // Now perform LICM. 770 for (MachineDomTreeNode *Node : Scopes) { 771 MachineBasicBlock *MBB = Node->getBlock(); 772 773 EnterScope(MBB); 774 775 // Process the block 776 SpeculationState = SpeculateUnknown; 777 for (MachineBasicBlock::iterator 778 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 779 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 780 MachineInstr *MI = &*MII; 781 if (!Hoist(MI, Preheader)) 782 UpdateRegPressure(MI); 783 // If we have hoisted an instruction that may store, it can only be a 784 // constant store. 785 MII = NextMII; 786 } 787 788 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 789 ExitScopeIfDone(Node, OpenChildren, ParentMap); 790 } 791 } 792 793 /// Sink instructions into loops if profitable. This especially tries to prevent 794 /// register spills caused by register pressure if there is little to no 795 /// overhead moving instructions into loops. 796 void MachineLICMBase::SinkIntoLoop() { 797 MachineBasicBlock *Preheader = getCurPreheader(); 798 if (!Preheader) 799 return; 800 801 SmallVector<MachineInstr *, 8> Candidates; 802 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 803 I != Preheader->instr_end(); ++I) { 804 // We need to ensure that we can safely move this instruction into the loop. 805 // As such, it must not have side-effects, e.g. such as a call has. 806 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 807 Candidates.push_back(&*I); 808 } 809 810 for (MachineInstr *I : Candidates) { 811 const MachineOperand &MO = I->getOperand(0); 812 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 813 continue; 814 if (!MRI->hasOneDef(MO.getReg())) 815 continue; 816 bool CanSink = true; 817 MachineBasicBlock *B = nullptr; 818 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 819 // FIXME: Come up with a proper cost model that estimates whether sinking 820 // the instruction (and thus possibly executing it on every loop 821 // iteration) is more expensive than a register. 822 // For now assumes that copies are cheap and thus almost always worth it. 823 if (!MI.isCopy()) { 824 CanSink = false; 825 break; 826 } 827 if (!B) { 828 B = MI.getParent(); 829 continue; 830 } 831 B = DT->findNearestCommonDominator(B, MI.getParent()); 832 if (!B) { 833 CanSink = false; 834 break; 835 } 836 } 837 if (!CanSink || !B || B == Preheader) 838 continue; 839 840 LLVM_DEBUG(dbgs() << "Sinking to " << printMBBReference(*B) << " from " 841 << printMBBReference(*I->getParent()) << ": " << *I); 842 B->splice(B->getFirstNonPHI(), Preheader, I); 843 844 // The instruction is is moved from its basic block, so do not retain the 845 // debug information. 846 assert(!I->isDebugInstr() && "Should not sink debug inst"); 847 I->setDebugLoc(DebugLoc()); 848 } 849 } 850 851 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 852 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 853 } 854 855 /// Find all virtual register references that are liveout of the preheader to 856 /// initialize the starting "register pressure". Note this does not count live 857 /// through (livein but not used) registers. 858 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 859 std::fill(RegPressure.begin(), RegPressure.end(), 0); 860 861 // If the preheader has only a single predecessor and it ends with a 862 // fallthrough or an unconditional branch, then scan its predecessor for live 863 // defs as well. This happens whenever the preheader is created by splitting 864 // the critical edge from the loop predecessor to the loop header. 865 if (BB->pred_size() == 1) { 866 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 867 SmallVector<MachineOperand, 4> Cond; 868 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 869 InitRegPressure(*BB->pred_begin()); 870 } 871 872 for (const MachineInstr &MI : *BB) 873 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 874 } 875 876 /// Update estimate of register pressure after the specified instruction. 877 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 878 bool ConsiderUnseenAsDef) { 879 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 880 for (const auto &RPIdAndCost : Cost) { 881 unsigned Class = RPIdAndCost.first; 882 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 883 RegPressure[Class] = 0; 884 else 885 RegPressure[Class] += RPIdAndCost.second; 886 } 887 } 888 889 /// Calculate the additional register pressure that the registers used in MI 890 /// cause. 891 /// 892 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 893 /// figure out which usages are live-ins. 894 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 895 DenseMap<unsigned, int> 896 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 897 bool ConsiderUnseenAsDef) { 898 DenseMap<unsigned, int> Cost; 899 if (MI->isImplicitDef()) 900 return Cost; 901 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 902 const MachineOperand &MO = MI->getOperand(i); 903 if (!MO.isReg() || MO.isImplicit()) 904 continue; 905 Register Reg = MO.getReg(); 906 if (!Register::isVirtualRegister(Reg)) 907 continue; 908 909 // FIXME: It seems bad to use RegSeen only for some of these calculations. 910 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 911 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 912 913 RegClassWeight W = TRI->getRegClassWeight(RC); 914 int RCCost = 0; 915 if (MO.isDef()) 916 RCCost = W.RegWeight; 917 else { 918 bool isKill = isOperandKill(MO, MRI); 919 if (isNew && !isKill && ConsiderUnseenAsDef) 920 // Haven't seen this, it must be a livein. 921 RCCost = W.RegWeight; 922 else if (!isNew && isKill) 923 RCCost = -W.RegWeight; 924 } 925 if (RCCost == 0) 926 continue; 927 const int *PS = TRI->getRegClassPressureSets(RC); 928 for (; *PS != -1; ++PS) { 929 if (Cost.find(*PS) == Cost.end()) 930 Cost[*PS] = RCCost; 931 else 932 Cost[*PS] += RCCost; 933 } 934 } 935 return Cost; 936 } 937 938 /// Return true if this machine instruction loads from global offset table or 939 /// constant pool. 940 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 941 assert(MI.mayLoad() && "Expected MI that loads!"); 942 943 // If we lost memory operands, conservatively assume that the instruction 944 // reads from everything.. 945 if (MI.memoperands_empty()) 946 return true; 947 948 for (MachineMemOperand *MemOp : MI.memoperands()) 949 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 950 if (PSV->isGOT() || PSV->isConstantPool()) 951 return true; 952 953 return false; 954 } 955 956 // This function iterates through all the operands of the input store MI and 957 // checks that each register operand statisfies isCallerPreservedPhysReg. 958 // This means, the value being stored and the address where it is being stored 959 // is constant throughout the body of the function (not including prologue and 960 // epilogue). When called with an MI that isn't a store, it returns false. 961 // A future improvement can be to check if the store registers are constant 962 // throughout the loop rather than throughout the funtion. 963 static bool isInvariantStore(const MachineInstr &MI, 964 const TargetRegisterInfo *TRI, 965 const MachineRegisterInfo *MRI) { 966 967 bool FoundCallerPresReg = false; 968 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 969 (MI.getNumOperands() == 0)) 970 return false; 971 972 // Check that all register operands are caller-preserved physical registers. 973 for (const MachineOperand &MO : MI.operands()) { 974 if (MO.isReg()) { 975 Register Reg = MO.getReg(); 976 // If operand is a virtual register, check if it comes from a copy of a 977 // physical register. 978 if (Register::isVirtualRegister(Reg)) 979 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 980 if (Register::isVirtualRegister(Reg)) 981 return false; 982 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 983 return false; 984 else 985 FoundCallerPresReg = true; 986 } else if (!MO.isImm()) { 987 return false; 988 } 989 } 990 return FoundCallerPresReg; 991 } 992 993 // Return true if the input MI is a copy instruction that feeds an invariant 994 // store instruction. This means that the src of the copy has to satisfy 995 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 996 // isInvariantStore. 997 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 998 const MachineRegisterInfo *MRI, 999 const TargetRegisterInfo *TRI) { 1000 1001 // FIXME: If targets would like to look through instructions that aren't 1002 // pure copies, this can be updated to a query. 1003 if (!MI.isCopy()) 1004 return false; 1005 1006 const MachineFunction *MF = MI.getMF(); 1007 // Check that we are copying a constant physical register. 1008 Register CopySrcReg = MI.getOperand(1).getReg(); 1009 if (Register::isVirtualRegister(CopySrcReg)) 1010 return false; 1011 1012 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 1013 return false; 1014 1015 Register CopyDstReg = MI.getOperand(0).getReg(); 1016 // Check if any of the uses of the copy are invariant stores. 1017 assert(Register::isVirtualRegister(CopyDstReg) && 1018 "copy dst is not a virtual reg"); 1019 1020 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 1021 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 1022 return true; 1023 } 1024 return false; 1025 } 1026 1027 /// Returns true if the instruction may be a suitable candidate for LICM. 1028 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 1029 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 1030 // Check if it's safe to move the instruction. 1031 bool DontMoveAcrossStore = true; 1032 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 1033 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 1034 return false; 1035 } 1036 1037 // If it is load then check if it is guaranteed to execute by making sure that 1038 // it dominates all exiting blocks. If it doesn't, then there is a path out of 1039 // the loop which does not execute this load, so we can't hoist it. Loads 1040 // from constant memory are not safe to speculate all the time, for example 1041 // indexed load from a jump table. 1042 // Stores and side effects are already checked by isSafeToMove. 1043 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 1044 !IsGuaranteedToExecute(I.getParent())) 1045 return false; 1046 1047 // Convergent attribute has been used on operations that involve inter-thread 1048 // communication which results are implicitly affected by the enclosing 1049 // control flows. It is not safe to hoist or sink such operations across 1050 // control flow. 1051 if (I.isConvergent()) 1052 return false; 1053 1054 return true; 1055 } 1056 1057 /// Returns true if the instruction is loop invariant. 1058 /// I.e., all virtual register operands are defined outside of the loop, 1059 /// physical registers aren't accessed explicitly, and there are no side 1060 /// effects that aren't captured by the operands or other flags. 1061 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1062 if (!IsLICMCandidate(I)) 1063 return false; 1064 1065 // The instruction is loop invariant if all of its operands are. 1066 for (const MachineOperand &MO : I.operands()) { 1067 if (!MO.isReg()) 1068 continue; 1069 1070 Register Reg = MO.getReg(); 1071 if (Reg == 0) continue; 1072 1073 // Don't hoist an instruction that uses or defines a physical register. 1074 if (Register::isPhysicalRegister(Reg)) { 1075 if (MO.isUse()) { 1076 // If the physreg has no defs anywhere, it's just an ambient register 1077 // and we can freely move its uses. Alternatively, if it's allocatable, 1078 // it could get allocated to something with a def during allocation. 1079 // However, if the physreg is known to always be caller saved/restored 1080 // then this use is safe to hoist. 1081 if (!MRI->isConstantPhysReg(Reg) && 1082 !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF()))) 1083 return false; 1084 // Otherwise it's safe to move. 1085 continue; 1086 } else if (!MO.isDead()) { 1087 // A def that isn't dead. We can't move it. 1088 return false; 1089 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1090 // If the reg is live into the loop, we can't hoist an instruction 1091 // which would clobber it. 1092 return false; 1093 } 1094 } 1095 1096 if (!MO.isUse()) 1097 continue; 1098 1099 assert(MRI->getVRegDef(Reg) && 1100 "Machine instr not mapped for this vreg?!"); 1101 1102 // If the loop contains the definition of an operand, then the instruction 1103 // isn't loop invariant. 1104 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1105 return false; 1106 } 1107 1108 // If we got this far, the instruction is loop invariant! 1109 return true; 1110 } 1111 1112 /// Return true if the specified instruction is used by a phi node and hoisting 1113 /// it could cause a copy to be inserted. 1114 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1115 SmallVector<const MachineInstr*, 8> Work(1, MI); 1116 do { 1117 MI = Work.pop_back_val(); 1118 for (const MachineOperand &MO : MI->operands()) { 1119 if (!MO.isReg() || !MO.isDef()) 1120 continue; 1121 Register Reg = MO.getReg(); 1122 if (!Register::isVirtualRegister(Reg)) 1123 continue; 1124 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1125 // A PHI may cause a copy to be inserted. 1126 if (UseMI.isPHI()) { 1127 // A PHI inside the loop causes a copy because the live range of Reg is 1128 // extended across the PHI. 1129 if (CurLoop->contains(&UseMI)) 1130 return true; 1131 // A PHI in an exit block can cause a copy to be inserted if the PHI 1132 // has multiple predecessors in the loop with different values. 1133 // For now, approximate by rejecting all exit blocks. 1134 if (isExitBlock(UseMI.getParent())) 1135 return true; 1136 continue; 1137 } 1138 // Look past copies as well. 1139 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1140 Work.push_back(&UseMI); 1141 } 1142 } 1143 } while (!Work.empty()); 1144 return false; 1145 } 1146 1147 /// Compute operand latency between a def of 'Reg' and an use in the current 1148 /// loop, return true if the target considered it high. 1149 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1150 Register Reg) const { 1151 if (MRI->use_nodbg_empty(Reg)) 1152 return false; 1153 1154 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1155 if (UseMI.isCopyLike()) 1156 continue; 1157 if (!CurLoop->contains(UseMI.getParent())) 1158 continue; 1159 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1160 const MachineOperand &MO = UseMI.getOperand(i); 1161 if (!MO.isReg() || !MO.isUse()) 1162 continue; 1163 Register MOReg = MO.getReg(); 1164 if (MOReg != Reg) 1165 continue; 1166 1167 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1168 return true; 1169 } 1170 1171 // Only look at the first in loop use. 1172 break; 1173 } 1174 1175 return false; 1176 } 1177 1178 /// Return true if the instruction is marked "cheap" or the operand latency 1179 /// between its def and a use is one or less. 1180 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1181 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1182 return true; 1183 1184 bool isCheap = false; 1185 unsigned NumDefs = MI.getDesc().getNumDefs(); 1186 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1187 MachineOperand &DefMO = MI.getOperand(i); 1188 if (!DefMO.isReg() || !DefMO.isDef()) 1189 continue; 1190 --NumDefs; 1191 Register Reg = DefMO.getReg(); 1192 if (Register::isPhysicalRegister(Reg)) 1193 continue; 1194 1195 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1196 return false; 1197 isCheap = true; 1198 } 1199 1200 return isCheap; 1201 } 1202 1203 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1204 /// given cost matrix can cause high register pressure. 1205 bool 1206 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1207 bool CheapInstr) { 1208 for (const auto &RPIdAndCost : Cost) { 1209 if (RPIdAndCost.second <= 0) 1210 continue; 1211 1212 unsigned Class = RPIdAndCost.first; 1213 int Limit = RegLimit[Class]; 1214 1215 // Don't hoist cheap instructions if they would increase register pressure, 1216 // even if we're under the limit. 1217 if (CheapInstr && !HoistCheapInsts) 1218 return true; 1219 1220 for (const auto &RP : BackTrace) 1221 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1222 return true; 1223 } 1224 1225 return false; 1226 } 1227 1228 /// Traverse the back trace from header to the current block and update their 1229 /// register pressures to reflect the effect of hoisting MI from the current 1230 /// block to the preheader. 1231 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1232 // First compute the 'cost' of the instruction, i.e. its contribution 1233 // to register pressure. 1234 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1235 /*ConsiderUnseenAsDef=*/false); 1236 1237 // Update register pressure of blocks from loop header to current block. 1238 for (auto &RP : BackTrace) 1239 for (const auto &RPIdAndCost : Cost) 1240 RP[RPIdAndCost.first] += RPIdAndCost.second; 1241 } 1242 1243 /// Return true if it is potentially profitable to hoist the given loop 1244 /// invariant. 1245 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1246 if (MI.isImplicitDef()) 1247 return true; 1248 1249 // Besides removing computation from the loop, hoisting an instruction has 1250 // these effects: 1251 // 1252 // - The value defined by the instruction becomes live across the entire 1253 // loop. This increases register pressure in the loop. 1254 // 1255 // - If the value is used by a PHI in the loop, a copy will be required for 1256 // lowering the PHI after extending the live range. 1257 // 1258 // - When hoisting the last use of a value in the loop, that value no longer 1259 // needs to be live in the loop. This lowers register pressure in the loop. 1260 1261 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1262 return true; 1263 1264 bool CheapInstr = IsCheapInstruction(MI); 1265 bool CreatesCopy = HasLoopPHIUse(&MI); 1266 1267 // Don't hoist a cheap instruction if it would create a copy in the loop. 1268 if (CheapInstr && CreatesCopy) { 1269 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1270 return false; 1271 } 1272 1273 // Rematerializable instructions should always be hoisted since the register 1274 // allocator can just pull them down again when needed. 1275 if (TII->isTriviallyReMaterializable(MI, AA)) 1276 return true; 1277 1278 // FIXME: If there are long latency loop-invariant instructions inside the 1279 // loop at this point, why didn't the optimizer's LICM hoist them? 1280 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1281 const MachineOperand &MO = MI.getOperand(i); 1282 if (!MO.isReg() || MO.isImplicit()) 1283 continue; 1284 Register Reg = MO.getReg(); 1285 if (!Register::isVirtualRegister(Reg)) 1286 continue; 1287 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1288 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1289 ++NumHighLatency; 1290 return true; 1291 } 1292 } 1293 1294 // Estimate register pressure to determine whether to LICM the instruction. 1295 // In low register pressure situation, we can be more aggressive about 1296 // hoisting. Also, favors hoisting long latency instructions even in 1297 // moderately high pressure situation. 1298 // Cheap instructions will only be hoisted if they don't increase register 1299 // pressure at all. 1300 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1301 /*ConsiderUnseenAsDef=*/false); 1302 1303 // Visit BBs from header to current BB, if hoisting this doesn't cause 1304 // high register pressure, then it's safe to proceed. 1305 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1306 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1307 ++NumLowRP; 1308 return true; 1309 } 1310 1311 // Don't risk increasing register pressure if it would create copies. 1312 if (CreatesCopy) { 1313 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1314 return false; 1315 } 1316 1317 // Do not "speculate" in high register pressure situation. If an 1318 // instruction is not guaranteed to be executed in the loop, it's best to be 1319 // conservative. 1320 if (AvoidSpeculation && 1321 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1322 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1323 return false; 1324 } 1325 1326 // High register pressure situation, only hoist if the instruction is going 1327 // to be remat'ed. 1328 if (!TII->isTriviallyReMaterializable(MI, AA) && 1329 !MI.isDereferenceableInvariantLoad(AA)) { 1330 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1331 return false; 1332 } 1333 1334 return true; 1335 } 1336 1337 /// Unfold a load from the given machineinstr if the load itself could be 1338 /// hoisted. Return the unfolded and hoistable load, or null if the load 1339 /// couldn't be unfolded or if it wouldn't be hoistable. 1340 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1341 // Don't unfold simple loads. 1342 if (MI->canFoldAsLoad()) 1343 return nullptr; 1344 1345 // If not, we may be able to unfold a load and hoist that. 1346 // First test whether the instruction is loading from an amenable 1347 // memory location. 1348 if (!MI->isDereferenceableInvariantLoad(AA)) 1349 return nullptr; 1350 1351 // Next determine the register class for a temporary register. 1352 unsigned LoadRegIndex; 1353 unsigned NewOpc = 1354 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1355 /*UnfoldLoad=*/true, 1356 /*UnfoldStore=*/false, 1357 &LoadRegIndex); 1358 if (NewOpc == 0) return nullptr; 1359 const MCInstrDesc &MID = TII->get(NewOpc); 1360 MachineFunction &MF = *MI->getMF(); 1361 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1362 // Ok, we're unfolding. Create a temporary register and do the unfold. 1363 Register Reg = MRI->createVirtualRegister(RC); 1364 1365 SmallVector<MachineInstr *, 2> NewMIs; 1366 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1367 /*UnfoldLoad=*/true, 1368 /*UnfoldStore=*/false, NewMIs); 1369 (void)Success; 1370 assert(Success && 1371 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1372 "succeeded!"); 1373 assert(NewMIs.size() == 2 && 1374 "Unfolded a load into multiple instructions!"); 1375 MachineBasicBlock *MBB = MI->getParent(); 1376 MachineBasicBlock::iterator Pos = MI; 1377 MBB->insert(Pos, NewMIs[0]); 1378 MBB->insert(Pos, NewMIs[1]); 1379 // If unfolding produced a load that wasn't loop-invariant or profitable to 1380 // hoist, discard the new instructions and bail. 1381 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1382 NewMIs[0]->eraseFromParent(); 1383 NewMIs[1]->eraseFromParent(); 1384 return nullptr; 1385 } 1386 1387 // Update register pressure for the unfolded instruction. 1388 UpdateRegPressure(NewMIs[1]); 1389 1390 // Otherwise we successfully unfolded a load that we can hoist. 1391 1392 // Update the call site info. 1393 if (MI->shouldUpdateCallSiteInfo()) 1394 MF.eraseCallSiteInfo(MI); 1395 1396 MI->eraseFromParent(); 1397 return NewMIs[0]; 1398 } 1399 1400 /// Initialize the CSE map with instructions that are in the current loop 1401 /// preheader that may become duplicates of instructions that are hoisted 1402 /// out of the loop. 1403 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1404 for (MachineInstr &MI : *BB) 1405 CSEMap[MI.getOpcode()].push_back(&MI); 1406 } 1407 1408 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1409 /// Return this instruction if it's found. 1410 const MachineInstr* 1411 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1412 std::vector<const MachineInstr*> &PrevMIs) { 1413 for (const MachineInstr *PrevMI : PrevMIs) 1414 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1415 return PrevMI; 1416 1417 return nullptr; 1418 } 1419 1420 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1421 /// computes the same value. If it's found, do a RAU on with the definition of 1422 /// the existing instruction rather than hoisting the instruction to the 1423 /// preheader. 1424 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1425 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1426 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1427 // the undef property onto uses. 1428 if (CI == CSEMap.end() || MI->isImplicitDef()) 1429 return false; 1430 1431 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1432 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1433 1434 // Replace virtual registers defined by MI by their counterparts defined 1435 // by Dup. 1436 SmallVector<unsigned, 2> Defs; 1437 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1438 const MachineOperand &MO = MI->getOperand(i); 1439 1440 // Physical registers may not differ here. 1441 assert((!MO.isReg() || MO.getReg() == 0 || 1442 !Register::isPhysicalRegister(MO.getReg()) || 1443 MO.getReg() == Dup->getOperand(i).getReg()) && 1444 "Instructions with different phys regs are not identical!"); 1445 1446 if (MO.isReg() && MO.isDef() && 1447 !Register::isPhysicalRegister(MO.getReg())) 1448 Defs.push_back(i); 1449 } 1450 1451 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1452 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1453 unsigned Idx = Defs[i]; 1454 Register Reg = MI->getOperand(Idx).getReg(); 1455 Register DupReg = Dup->getOperand(Idx).getReg(); 1456 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1457 1458 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1459 // Restore old RCs if more than one defs. 1460 for (unsigned j = 0; j != i; ++j) 1461 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1462 return false; 1463 } 1464 } 1465 1466 for (unsigned Idx : Defs) { 1467 Register Reg = MI->getOperand(Idx).getReg(); 1468 Register DupReg = Dup->getOperand(Idx).getReg(); 1469 MRI->replaceRegWith(Reg, DupReg); 1470 MRI->clearKillFlags(DupReg); 1471 } 1472 1473 MI->eraseFromParent(); 1474 ++NumCSEed; 1475 return true; 1476 } 1477 return false; 1478 } 1479 1480 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1481 /// the loop. 1482 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1483 unsigned Opcode = MI->getOpcode(); 1484 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1485 CI = CSEMap.find(Opcode); 1486 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1487 // the undef property onto uses. 1488 if (CI == CSEMap.end() || MI->isImplicitDef()) 1489 return false; 1490 1491 return LookForDuplicate(MI, CI->second) != nullptr; 1492 } 1493 1494 /// When an instruction is found to use only loop invariant operands 1495 /// that are safe to hoist, this instruction is called to do the dirty work. 1496 /// It returns true if the instruction is hoisted. 1497 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1498 MachineBasicBlock *SrcBlock = MI->getParent(); 1499 1500 // Disable the instruction hoisting due to block hotness 1501 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1502 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1503 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1504 ++NumNotHoistedDueToHotness; 1505 return false; 1506 } 1507 // First check whether we should hoist this instruction. 1508 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1509 // If not, try unfolding a hoistable load. 1510 MI = ExtractHoistableLoad(MI); 1511 if (!MI) return false; 1512 } 1513 1514 // If we have hoisted an instruction that may store, it can only be a constant 1515 // store. 1516 if (MI->mayStore()) 1517 NumStoreConst++; 1518 1519 // Now move the instructions to the predecessor, inserting it before any 1520 // terminator instructions. 1521 LLVM_DEBUG({ 1522 dbgs() << "Hoisting " << *MI; 1523 if (MI->getParent()->getBasicBlock()) 1524 dbgs() << " from " << printMBBReference(*MI->getParent()); 1525 if (Preheader->getBasicBlock()) 1526 dbgs() << " to " << printMBBReference(*Preheader); 1527 dbgs() << "\n"; 1528 }); 1529 1530 // If this is the first instruction being hoisted to the preheader, 1531 // initialize the CSE map with potential common expressions. 1532 if (FirstInLoop) { 1533 InitCSEMap(Preheader); 1534 FirstInLoop = false; 1535 } 1536 1537 // Look for opportunity to CSE the hoisted instruction. 1538 unsigned Opcode = MI->getOpcode(); 1539 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1540 CI = CSEMap.find(Opcode); 1541 if (!EliminateCSE(MI, CI)) { 1542 // Otherwise, splice the instruction to the preheader. 1543 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1544 1545 // Since we are moving the instruction out of its basic block, we do not 1546 // retain its debug location. Doing so would degrade the debugging 1547 // experience and adversely affect the accuracy of profiling information. 1548 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1549 MI->setDebugLoc(DebugLoc()); 1550 1551 // Update register pressure for BBs from header to this block. 1552 UpdateBackTraceRegPressure(MI); 1553 1554 // Clear the kill flags of any register this instruction defines, 1555 // since they may need to be live throughout the entire loop 1556 // rather than just live for part of it. 1557 for (MachineOperand &MO : MI->operands()) 1558 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1559 MRI->clearKillFlags(MO.getReg()); 1560 1561 // Add to the CSE map. 1562 if (CI != CSEMap.end()) 1563 CI->second.push_back(MI); 1564 else 1565 CSEMap[Opcode].push_back(MI); 1566 } 1567 1568 ++NumHoisted; 1569 Changed = true; 1570 1571 return true; 1572 } 1573 1574 /// Get the preheader for the current loop, splitting a critical edge if needed. 1575 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1576 // Determine the block to which to hoist instructions. If we can't find a 1577 // suitable loop predecessor, we can't do any hoisting. 1578 1579 // If we've tried to get a preheader and failed, don't try again. 1580 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1581 return nullptr; 1582 1583 if (!CurPreheader) { 1584 CurPreheader = CurLoop->getLoopPreheader(); 1585 if (!CurPreheader) { 1586 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1587 if (!Pred) { 1588 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1589 return nullptr; 1590 } 1591 1592 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1593 if (!CurPreheader) { 1594 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1595 return nullptr; 1596 } 1597 } 1598 } 1599 return CurPreheader; 1600 } 1601 1602 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1603 /// times hotter than the source basic block. 1604 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1605 MachineBasicBlock *TgtBlock) { 1606 // Parse source and target basic block frequency from MBFI 1607 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1608 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1609 1610 // Disable the hoisting if source block frequency is zero 1611 if (!SrcBF) 1612 return true; 1613 1614 double Ratio = (double)DstBF / SrcBF; 1615 1616 // Compare the block frequency ratio with the threshold 1617 return Ratio > BlockFrequencyRatioThreshold; 1618 } 1619