1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass does not attempt to throttle itself to limit register pressure. 14 // The register allocation phases are expected to perform rematerialization 15 // to recover when register pressure is high. 16 // 17 // This pass is not intended to be a replacement or a complete alternative 18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 19 // constructs that are not exposed before lowering and instruction selection. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/MC/MCInstrItineraries.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "machine-licm" 46 47 static cl::opt<bool> 48 AvoidSpeculation("avoid-speculation", 49 cl::desc("MachineLICM should avoid speculation"), 50 cl::init(true), cl::Hidden); 51 52 static cl::opt<bool> 53 HoistCheapInsts("hoist-cheap-insts", 54 cl::desc("MachineLICM should hoist even cheap instructions"), 55 cl::init(false), cl::Hidden); 56 57 static cl::opt<bool> 58 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 59 cl::desc("MachineLICM should sink instructions into " 60 "loops to avoid register spills"), 61 cl::init(false), cl::Hidden); 62 63 STATISTIC(NumHoisted, 64 "Number of machine instructions hoisted out of loops"); 65 STATISTIC(NumLowRP, 66 "Number of instructions hoisted in low reg pressure situation"); 67 STATISTIC(NumHighLatency, 68 "Number of high latency instructions hoisted"); 69 STATISTIC(NumCSEed, 70 "Number of hoisted machine instructions CSEed"); 71 STATISTIC(NumPostRAHoisted, 72 "Number of machine instructions hoisted out of loops post regalloc"); 73 74 namespace { 75 class MachineLICM : public MachineFunctionPass { 76 const TargetInstrInfo *TII; 77 const TargetLoweringBase *TLI; 78 const TargetRegisterInfo *TRI; 79 const MachineFrameInfo *MFI; 80 MachineRegisterInfo *MRI; 81 const InstrItineraryData *InstrItins; 82 bool PreRegAlloc; 83 84 // Various analyses that we use... 85 AliasAnalysis *AA; // Alias analysis info. 86 MachineLoopInfo *MLI; // Current MachineLoopInfo 87 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 88 89 // State that is updated as we process loops 90 bool Changed; // True if a loop is changed. 91 bool FirstInLoop; // True if it's the first LICM in the loop. 92 MachineLoop *CurLoop; // The current loop we are working on. 93 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 94 95 // Exit blocks for CurLoop. 96 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 97 98 bool isExitBlock(const MachineBasicBlock *MBB) const { 99 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 100 ExitBlocks.end(); 101 } 102 103 // Track 'estimated' register pressure. 104 SmallSet<unsigned, 32> RegSeen; 105 SmallVector<unsigned, 8> RegPressure; 106 107 // Register pressure "limit" per register class. If the pressure 108 // is higher than the limit, then it's considered high. 109 SmallVector<unsigned, 8> RegLimit; 110 111 // Register pressure on path leading from loop preheader to current BB. 112 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 113 114 // For each opcode, keep a list of potential CSE instructions. 115 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 116 117 enum { 118 SpeculateFalse = 0, 119 SpeculateTrue = 1, 120 SpeculateUnknown = 2 121 }; 122 123 // If a MBB does not dominate loop exiting blocks then it may not safe 124 // to hoist loads from this block. 125 // Tri-state: 0 - false, 1 - true, 2 - unknown 126 unsigned SpeculationState; 127 128 public: 129 static char ID; // Pass identification, replacement for typeid 130 MachineLICM() : 131 MachineFunctionPass(ID), PreRegAlloc(true) { 132 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 133 } 134 135 explicit MachineLICM(bool PreRA) : 136 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 137 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 138 } 139 140 bool runOnMachineFunction(MachineFunction &MF) override; 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 AU.addRequired<MachineLoopInfo>(); 144 AU.addRequired<MachineDominatorTree>(); 145 AU.addRequired<AliasAnalysis>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 AU.addPreserved<MachineDominatorTree>(); 148 MachineFunctionPass::getAnalysisUsage(AU); 149 } 150 151 void releaseMemory() override { 152 RegSeen.clear(); 153 RegPressure.clear(); 154 RegLimit.clear(); 155 BackTrace.clear(); 156 CSEMap.clear(); 157 } 158 159 private: 160 /// CandidateInfo - Keep track of information about hoisting candidates. 161 struct CandidateInfo { 162 MachineInstr *MI; 163 unsigned Def; 164 int FI; 165 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 166 : MI(mi), Def(def), FI(fi) {} 167 }; 168 169 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 170 /// invariants out to the preheader. 171 void HoistRegionPostRA(); 172 173 /// HoistPostRA - When an instruction is found to only use loop invariant 174 /// operands that is safe to hoist, this instruction is called to do the 175 /// dirty work. 176 void HoistPostRA(MachineInstr *MI, unsigned Def); 177 178 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 179 /// gather register def and frame object update information. 180 void ProcessMI(MachineInstr *MI, 181 BitVector &PhysRegDefs, 182 BitVector &PhysRegClobbers, 183 SmallSet<int, 32> &StoredFIs, 184 SmallVectorImpl<CandidateInfo> &Candidates); 185 186 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 187 /// current loop. 188 void AddToLiveIns(unsigned Reg); 189 190 /// IsLICMCandidate - Returns true if the instruction may be a suitable 191 /// candidate for LICM. e.g. If the instruction is a call, then it's 192 /// obviously not safe to hoist it. 193 bool IsLICMCandidate(MachineInstr &I); 194 195 /// IsLoopInvariantInst - Returns true if the instruction is loop 196 /// invariant. I.e., all virtual register operands are defined outside of 197 /// the loop, physical registers aren't accessed (explicitly or implicitly), 198 /// and the instruction is hoistable. 199 /// 200 bool IsLoopInvariantInst(MachineInstr &I); 201 202 /// HasLoopPHIUse - Return true if the specified instruction is used by any 203 /// phi node in the current loop. 204 bool HasLoopPHIUse(const MachineInstr *MI) const; 205 206 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 207 /// and an use in the current loop, return true if the target considered 208 /// it 'high'. 209 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 210 unsigned Reg) const; 211 212 bool IsCheapInstruction(MachineInstr &MI) const; 213 214 /// CanCauseHighRegPressure - Visit BBs from header to current BB, 215 /// check if hoisting an instruction of the given cost matrix can cause high 216 /// register pressure. 217 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); 218 219 /// UpdateBackTraceRegPressure - Traverse the back trace from header to 220 /// the current block and update their register pressures to reflect the 221 /// effect of hoisting MI from the current block to the preheader. 222 void UpdateBackTraceRegPressure(const MachineInstr *MI); 223 224 /// IsProfitableToHoist - Return true if it is potentially profitable to 225 /// hoist the given loop invariant. 226 bool IsProfitableToHoist(MachineInstr &MI); 227 228 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 229 /// If not then a load from this mbb may not be safe to hoist. 230 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 231 232 void EnterScope(MachineBasicBlock *MBB); 233 234 void ExitScope(MachineBasicBlock *MBB); 235 236 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given 237 /// dominator tree node if its a leaf or all of its children are done. Walk 238 /// up the dominator tree to destroy ancestors which are now done. 239 void ExitScopeIfDone(MachineDomTreeNode *Node, 240 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 241 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 242 243 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 244 /// blocks dominated by the specified header block, and that are in the 245 /// current loop) in depth first order w.r.t the DominatorTree. This allows 246 /// us to visit definitions before uses, allowing us to hoist a loop body in 247 /// one pass without iteration. 248 /// 249 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 250 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 251 252 /// SinkIntoLoop - Sink instructions into loops if profitable. This 253 /// especially tries to prevent register spills caused by register pressure 254 /// if there is little to no overhead moving instructions into loops. 255 void SinkIntoLoop(); 256 257 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 258 /// index, return the ID and cost of its representative register class by 259 /// reference. 260 void getRegisterClassIDAndCost(const MachineInstr *MI, 261 unsigned Reg, unsigned OpIdx, 262 unsigned &RCId, unsigned &RCCost) const; 263 264 /// InitRegPressure - Find all virtual register references that are liveout 265 /// of the preheader to initialize the starting "register pressure". Note 266 /// this does not count live through (livein but not used) registers. 267 void InitRegPressure(MachineBasicBlock *BB); 268 269 /// UpdateRegPressure - Update estimate of register pressure after the 270 /// specified instruction. 271 void UpdateRegPressure(const MachineInstr *MI); 272 273 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 274 /// the load itself could be hoisted. Return the unfolded and hoistable 275 /// load, or null if the load couldn't be unfolded or if it wouldn't 276 /// be hoistable. 277 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 278 279 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 280 /// duplicate of MI. Return this instruction if it's found. 281 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 282 std::vector<const MachineInstr*> &PrevMIs); 283 284 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 285 /// the preheader that compute the same value. If it's found, do a RAU on 286 /// with the definition of the existing instruction rather than hoisting 287 /// the instruction to the preheader. 288 bool EliminateCSE(MachineInstr *MI, 289 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 290 291 /// MayCSE - Return true if the given instruction will be CSE'd if it's 292 /// hoisted out of the loop. 293 bool MayCSE(MachineInstr *MI); 294 295 /// Hoist - When an instruction is found to only use loop invariant operands 296 /// that is safe to hoist, this instruction is called to do the dirty work. 297 /// It returns true if the instruction is hoisted. 298 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 299 300 /// InitCSEMap - Initialize the CSE map with instructions that are in the 301 /// current loop preheader that may become duplicates of instructions that 302 /// are hoisted out of the loop. 303 void InitCSEMap(MachineBasicBlock *BB); 304 305 /// getCurPreheader - Get the preheader for the current loop, splitting 306 /// a critical edge if needed. 307 MachineBasicBlock *getCurPreheader(); 308 }; 309 } // end anonymous namespace 310 311 char MachineLICM::ID = 0; 312 char &llvm::MachineLICMID = MachineLICM::ID; 313 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 314 "Machine Loop Invariant Code Motion", false, false) 315 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 316 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 317 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 318 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 319 "Machine Loop Invariant Code Motion", false, false) 320 321 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 322 /// loop that has a unique predecessor. 323 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 324 // Check whether this loop even has a unique predecessor. 325 if (!CurLoop->getLoopPredecessor()) 326 return false; 327 // Ok, now check to see if any of its outer loops do. 328 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 329 if (L->getLoopPredecessor()) 330 return false; 331 // None of them did, so this is the outermost with a unique predecessor. 332 return true; 333 } 334 335 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 336 if (skipOptnoneFunction(*MF.getFunction())) 337 return false; 338 339 Changed = FirstInLoop = false; 340 TII = MF.getSubtarget().getInstrInfo(); 341 TLI = MF.getSubtarget().getTargetLowering(); 342 TRI = MF.getSubtarget().getRegisterInfo(); 343 MFI = MF.getFrameInfo(); 344 MRI = &MF.getRegInfo(); 345 InstrItins = MF.getSubtarget().getInstrItineraryData(); 346 347 PreRegAlloc = MRI->isSSA(); 348 349 if (PreRegAlloc) 350 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 351 else 352 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 353 DEBUG(dbgs() << MF.getName() << " ********\n"); 354 355 if (PreRegAlloc) { 356 // Estimate register pressure during pre-regalloc pass. 357 unsigned NumRC = TRI->getNumRegClasses(); 358 RegPressure.resize(NumRC); 359 std::fill(RegPressure.begin(), RegPressure.end(), 0); 360 RegLimit.resize(NumRC); 361 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), 362 E = TRI->regclass_end(); I != E; ++I) 363 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); 364 } 365 366 // Get our Loop information... 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 DT = &getAnalysis<MachineDominatorTree>(); 369 AA = &getAnalysis<AliasAnalysis>(); 370 371 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 372 while (!Worklist.empty()) { 373 CurLoop = Worklist.pop_back_val(); 374 CurPreheader = nullptr; 375 ExitBlocks.clear(); 376 377 // If this is done before regalloc, only visit outer-most preheader-sporting 378 // loops. 379 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 380 Worklist.append(CurLoop->begin(), CurLoop->end()); 381 continue; 382 } 383 384 CurLoop->getExitBlocks(ExitBlocks); 385 386 if (!PreRegAlloc) 387 HoistRegionPostRA(); 388 else { 389 // CSEMap is initialized for loop header when the first instruction is 390 // being hoisted. 391 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 392 FirstInLoop = true; 393 HoistOutOfLoop(N); 394 CSEMap.clear(); 395 396 if (SinkInstsToAvoidSpills) 397 SinkIntoLoop(); 398 } 399 } 400 401 return Changed; 402 } 403 404 /// InstructionStoresToFI - Return true if instruction stores to the 405 /// specified frame. 406 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 407 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 408 oe = MI->memoperands_end(); o != oe; ++o) { 409 if (!(*o)->isStore() || !(*o)->getPseudoValue()) 410 continue; 411 if (const FixedStackPseudoSourceValue *Value = 412 dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) { 413 if (Value->getFrameIndex() == FI) 414 return true; 415 } 416 } 417 return false; 418 } 419 420 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 421 /// gather register def and frame object update information. 422 void MachineLICM::ProcessMI(MachineInstr *MI, 423 BitVector &PhysRegDefs, 424 BitVector &PhysRegClobbers, 425 SmallSet<int, 32> &StoredFIs, 426 SmallVectorImpl<CandidateInfo> &Candidates) { 427 bool RuledOut = false; 428 bool HasNonInvariantUse = false; 429 unsigned Def = 0; 430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 431 const MachineOperand &MO = MI->getOperand(i); 432 if (MO.isFI()) { 433 // Remember if the instruction stores to the frame index. 434 int FI = MO.getIndex(); 435 if (!StoredFIs.count(FI) && 436 MFI->isSpillSlotObjectIndex(FI) && 437 InstructionStoresToFI(MI, FI)) 438 StoredFIs.insert(FI); 439 HasNonInvariantUse = true; 440 continue; 441 } 442 443 // We can't hoist an instruction defining a physreg that is clobbered in 444 // the loop. 445 if (MO.isRegMask()) { 446 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 447 continue; 448 } 449 450 if (!MO.isReg()) 451 continue; 452 unsigned Reg = MO.getReg(); 453 if (!Reg) 454 continue; 455 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 456 "Not expecting virtual register!"); 457 458 if (!MO.isDef()) { 459 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 460 // If it's using a non-loop-invariant register, then it's obviously not 461 // safe to hoist. 462 HasNonInvariantUse = true; 463 continue; 464 } 465 466 if (MO.isImplicit()) { 467 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 468 PhysRegClobbers.set(*AI); 469 if (!MO.isDead()) 470 // Non-dead implicit def? This cannot be hoisted. 471 RuledOut = true; 472 // No need to check if a dead implicit def is also defined by 473 // another instruction. 474 continue; 475 } 476 477 // FIXME: For now, avoid instructions with multiple defs, unless 478 // it's a dead implicit def. 479 if (Def) 480 RuledOut = true; 481 else 482 Def = Reg; 483 484 // If we have already seen another instruction that defines the same 485 // register, then this is not safe. Two defs is indicated by setting a 486 // PhysRegClobbers bit. 487 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 488 if (PhysRegDefs.test(*AS)) 489 PhysRegClobbers.set(*AS); 490 PhysRegDefs.set(*AS); 491 } 492 if (PhysRegClobbers.test(Reg)) 493 // MI defined register is seen defined by another instruction in 494 // the loop, it cannot be a LICM candidate. 495 RuledOut = true; 496 } 497 498 // Only consider reloads for now and remats which do not have register 499 // operands. FIXME: Consider unfold load folding instructions. 500 if (Def && !RuledOut) { 501 int FI = INT_MIN; 502 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 503 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 504 Candidates.push_back(CandidateInfo(MI, Def, FI)); 505 } 506 } 507 508 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 509 /// invariants out to the preheader. 510 void MachineLICM::HoistRegionPostRA() { 511 MachineBasicBlock *Preheader = getCurPreheader(); 512 if (!Preheader) 513 return; 514 515 unsigned NumRegs = TRI->getNumRegs(); 516 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 517 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 518 519 SmallVector<CandidateInfo, 32> Candidates; 520 SmallSet<int, 32> StoredFIs; 521 522 // Walk the entire region, count number of defs for each register, and 523 // collect potential LICM candidates. 524 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 525 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 526 MachineBasicBlock *BB = Blocks[i]; 527 528 // If the header of the loop containing this basic block is a landing pad, 529 // then don't try to hoist instructions out of this loop. 530 const MachineLoop *ML = MLI->getLoopFor(BB); 531 if (ML && ML->getHeader()->isLandingPad()) continue; 532 533 // Conservatively treat live-in's as an external def. 534 // FIXME: That means a reload that're reused in successor block(s) will not 535 // be LICM'ed. 536 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 537 E = BB->livein_end(); I != E; ++I) { 538 unsigned Reg = *I; 539 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 540 PhysRegDefs.set(*AI); 541 } 542 543 SpeculationState = SpeculateUnknown; 544 for (MachineBasicBlock::iterator 545 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 546 MachineInstr *MI = &*MII; 547 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 548 } 549 } 550 551 // Gather the registers read / clobbered by the terminator. 552 BitVector TermRegs(NumRegs); 553 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 554 if (TI != Preheader->end()) { 555 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { 556 const MachineOperand &MO = TI->getOperand(i); 557 if (!MO.isReg()) 558 continue; 559 unsigned Reg = MO.getReg(); 560 if (!Reg) 561 continue; 562 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 563 TermRegs.set(*AI); 564 } 565 } 566 567 // Now evaluate whether the potential candidates qualify. 568 // 1. Check if the candidate defined register is defined by another 569 // instruction in the loop. 570 // 2. If the candidate is a load from stack slot (always true for now), 571 // check if the slot is stored anywhere in the loop. 572 // 3. Make sure candidate def should not clobber 573 // registers read by the terminator. Similarly its def should not be 574 // clobbered by the terminator. 575 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 576 if (Candidates[i].FI != INT_MIN && 577 StoredFIs.count(Candidates[i].FI)) 578 continue; 579 580 unsigned Def = Candidates[i].Def; 581 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 582 bool Safe = true; 583 MachineInstr *MI = Candidates[i].MI; 584 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 585 const MachineOperand &MO = MI->getOperand(j); 586 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 587 continue; 588 unsigned Reg = MO.getReg(); 589 if (PhysRegDefs.test(Reg) || 590 PhysRegClobbers.test(Reg)) { 591 // If it's using a non-loop-invariant register, then it's obviously 592 // not safe to hoist. 593 Safe = false; 594 break; 595 } 596 } 597 if (Safe) 598 HoistPostRA(MI, Candidates[i].Def); 599 } 600 } 601 } 602 603 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 604 /// loop, and make sure it is not killed by any instructions in the loop. 605 void MachineLICM::AddToLiveIns(unsigned Reg) { 606 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 607 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 608 MachineBasicBlock *BB = Blocks[i]; 609 if (!BB->isLiveIn(Reg)) 610 BB->addLiveIn(Reg); 611 for (MachineBasicBlock::iterator 612 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 613 MachineInstr *MI = &*MII; 614 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 615 MachineOperand &MO = MI->getOperand(i); 616 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 617 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 618 MO.setIsKill(false); 619 } 620 } 621 } 622 } 623 624 /// HoistPostRA - When an instruction is found to only use loop invariant 625 /// operands that is safe to hoist, this instruction is called to do the 626 /// dirty work. 627 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 628 MachineBasicBlock *Preheader = getCurPreheader(); 629 630 // Now move the instructions to the predecessor, inserting it before any 631 // terminator instructions. 632 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 633 << MI->getParent()->getNumber() << ": " << *MI); 634 635 // Splice the instruction to the preheader. 636 MachineBasicBlock *MBB = MI->getParent(); 637 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 638 639 // Add register to livein list to all the BBs in the current loop since a 640 // loop invariant must be kept live throughout the whole loop. This is 641 // important to ensure later passes do not scavenge the def register. 642 AddToLiveIns(Def); 643 644 ++NumPostRAHoisted; 645 Changed = true; 646 } 647 648 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 649 // If not then a load from this mbb may not be safe to hoist. 650 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 651 if (SpeculationState != SpeculateUnknown) 652 return SpeculationState == SpeculateFalse; 653 654 if (BB != CurLoop->getHeader()) { 655 // Check loop exiting blocks. 656 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 657 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 658 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) 659 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { 660 SpeculationState = SpeculateTrue; 661 return false; 662 } 663 } 664 665 SpeculationState = SpeculateFalse; 666 return true; 667 } 668 669 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 670 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 671 672 // Remember livein register pressure. 673 BackTrace.push_back(RegPressure); 674 } 675 676 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 677 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 678 BackTrace.pop_back(); 679 } 680 681 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 682 /// dominator tree node if its a leaf or all of its children are done. Walk 683 /// up the dominator tree to destroy ancestors which are now done. 684 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 685 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 686 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 687 if (OpenChildren[Node]) 688 return; 689 690 // Pop scope. 691 ExitScope(Node->getBlock()); 692 693 // Now traverse upwards to pop ancestors whose offsprings are all done. 694 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 695 unsigned Left = --OpenChildren[Parent]; 696 if (Left != 0) 697 break; 698 ExitScope(Parent->getBlock()); 699 Node = Parent; 700 } 701 } 702 703 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 704 /// blocks dominated by the specified header block, and that are in the 705 /// current loop) in depth first order w.r.t the DominatorTree. This allows 706 /// us to visit definitions before uses, allowing us to hoist a loop body in 707 /// one pass without iteration. 708 /// 709 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 710 MachineBasicBlock *Preheader = getCurPreheader(); 711 if (!Preheader) 712 return; 713 714 SmallVector<MachineDomTreeNode*, 32> Scopes; 715 SmallVector<MachineDomTreeNode*, 8> WorkList; 716 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 717 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 718 719 // Perform a DFS walk to determine the order of visit. 720 WorkList.push_back(HeaderN); 721 while (!WorkList.empty()) { 722 MachineDomTreeNode *Node = WorkList.pop_back_val(); 723 assert(Node && "Null dominator tree node?"); 724 MachineBasicBlock *BB = Node->getBlock(); 725 726 // If the header of the loop containing this basic block is a landing pad, 727 // then don't try to hoist instructions out of this loop. 728 const MachineLoop *ML = MLI->getLoopFor(BB); 729 if (ML && ML->getHeader()->isLandingPad()) 730 continue; 731 732 // If this subregion is not in the top level loop at all, exit. 733 if (!CurLoop->contains(BB)) 734 continue; 735 736 Scopes.push_back(Node); 737 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 738 unsigned NumChildren = Children.size(); 739 740 // Don't hoist things out of a large switch statement. This often causes 741 // code to be hoisted that wasn't going to be executed, and increases 742 // register pressure in a situation where it's likely to matter. 743 if (BB->succ_size() >= 25) 744 NumChildren = 0; 745 746 OpenChildren[Node] = NumChildren; 747 // Add children in reverse order as then the next popped worklist node is 748 // the first child of this node. This means we ultimately traverse the 749 // DOM tree in exactly the same order as if we'd recursed. 750 for (int i = (int)NumChildren-1; i >= 0; --i) { 751 MachineDomTreeNode *Child = Children[i]; 752 ParentMap[Child] = Node; 753 WorkList.push_back(Child); 754 } 755 } 756 757 if (Scopes.size() == 0) 758 return; 759 760 // Compute registers which are livein into the loop headers. 761 RegSeen.clear(); 762 BackTrace.clear(); 763 InitRegPressure(Preheader); 764 765 // Now perform LICM. 766 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 767 MachineDomTreeNode *Node = Scopes[i]; 768 MachineBasicBlock *MBB = Node->getBlock(); 769 770 EnterScope(MBB); 771 772 // Process the block 773 SpeculationState = SpeculateUnknown; 774 for (MachineBasicBlock::iterator 775 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 776 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 777 MachineInstr *MI = &*MII; 778 if (!Hoist(MI, Preheader)) 779 UpdateRegPressure(MI); 780 MII = NextMII; 781 } 782 783 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 784 ExitScopeIfDone(Node, OpenChildren, ParentMap); 785 } 786 } 787 788 void MachineLICM::SinkIntoLoop() { 789 MachineBasicBlock *Preheader = getCurPreheader(); 790 if (!Preheader) 791 return; 792 793 SmallVector<MachineInstr *, 8> Candidates; 794 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 795 I != Preheader->instr_end(); ++I) { 796 // We need to ensure that we can safely move this instruction into the loop. 797 // As such, it must not have side-effects, e.g. such as a call has. 798 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(I)) 799 Candidates.push_back(I); 800 } 801 802 for (MachineInstr *I : Candidates) { 803 const MachineOperand &MO = I->getOperand(0); 804 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 805 continue; 806 if (!MRI->hasOneDef(MO.getReg())) 807 continue; 808 bool CanSink = true; 809 MachineBasicBlock *B = nullptr; 810 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 811 // FIXME: Come up with a proper cost model that estimates whether sinking 812 // the instruction (and thus possibly executing it on every loop 813 // iteration) is more expensive than a register. 814 // For now assumes that copies are cheap and thus almost always worth it. 815 if (!MI.isCopy()) { 816 CanSink = false; 817 break; 818 } 819 if (!B) { 820 B = MI.getParent(); 821 continue; 822 } 823 B = DT->findNearestCommonDominator(B, MI.getParent()); 824 if (!B) { 825 CanSink = false; 826 break; 827 } 828 } 829 if (!CanSink || !B || B == Preheader) 830 continue; 831 B->splice(B->getFirstNonPHI(), Preheader, I); 832 } 833 } 834 835 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 836 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 837 } 838 839 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 840 /// index, return the ID and cost of its representative register class. 841 void 842 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, 843 unsigned Reg, unsigned OpIdx, 844 unsigned &RCId, unsigned &RCCost) const { 845 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 846 MVT VT = *RC->vt_begin(); 847 if (VT == MVT::Untyped) { 848 RCId = RC->getID(); 849 RCCost = 1; 850 } else { 851 RCId = TLI->getRepRegClassFor(VT)->getID(); 852 RCCost = TLI->getRepRegClassCostFor(VT); 853 } 854 } 855 856 /// InitRegPressure - Find all virtual register references that are liveout of 857 /// the preheader to initialize the starting "register pressure". Note this 858 /// does not count live through (livein but not used) registers. 859 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 860 std::fill(RegPressure.begin(), RegPressure.end(), 0); 861 862 // If the preheader has only a single predecessor and it ends with a 863 // fallthrough or an unconditional branch, then scan its predecessor for live 864 // defs as well. This happens whenever the preheader is created by splitting 865 // the critical edge from the loop predecessor to the loop header. 866 if (BB->pred_size() == 1) { 867 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 868 SmallVector<MachineOperand, 4> Cond; 869 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 870 InitRegPressure(*BB->pred_begin()); 871 } 872 873 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); 874 MII != E; ++MII) { 875 MachineInstr *MI = &*MII; 876 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 877 const MachineOperand &MO = MI->getOperand(i); 878 if (!MO.isReg() || MO.isImplicit()) 879 continue; 880 unsigned Reg = MO.getReg(); 881 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 882 continue; 883 884 bool isNew = RegSeen.insert(Reg).second; 885 unsigned RCId, RCCost; 886 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 887 if (MO.isDef()) 888 RegPressure[RCId] += RCCost; 889 else { 890 bool isKill = isOperandKill(MO, MRI); 891 if (isNew && !isKill) 892 // Haven't seen this, it must be a livein. 893 RegPressure[RCId] += RCCost; 894 else if (!isNew && isKill) 895 RegPressure[RCId] -= RCCost; 896 } 897 } 898 } 899 } 900 901 /// UpdateRegPressure - Update estimate of register pressure after the 902 /// specified instruction. 903 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { 904 if (MI->isImplicitDef()) 905 return; 906 907 SmallVector<unsigned, 4> Defs; 908 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 909 const MachineOperand &MO = MI->getOperand(i); 910 if (!MO.isReg() || MO.isImplicit()) 911 continue; 912 unsigned Reg = MO.getReg(); 913 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 914 continue; 915 916 bool isNew = RegSeen.insert(Reg).second; 917 if (MO.isDef()) 918 Defs.push_back(Reg); 919 else if (!isNew && isOperandKill(MO, MRI)) { 920 unsigned RCId, RCCost; 921 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 922 if (RCCost > RegPressure[RCId]) 923 RegPressure[RCId] = 0; 924 else 925 RegPressure[RCId] -= RCCost; 926 } 927 } 928 929 unsigned Idx = 0; 930 while (!Defs.empty()) { 931 unsigned Reg = Defs.pop_back_val(); 932 unsigned RCId, RCCost; 933 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); 934 RegPressure[RCId] += RCCost; 935 ++Idx; 936 } 937 } 938 939 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction 940 /// loads from global offset table or constant pool. 941 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { 942 assert (MI.mayLoad() && "Expected MI that loads!"); 943 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 944 E = MI.memoperands_end(); I != E; ++I) { 945 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) { 946 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) 947 return true; 948 } 949 } 950 return false; 951 } 952 953 /// IsLICMCandidate - Returns true if the instruction may be a suitable 954 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 955 /// not safe to hoist it. 956 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 957 // Check if it's safe to move the instruction. 958 bool DontMoveAcrossStore = true; 959 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 960 return false; 961 962 // If it is load then check if it is guaranteed to execute by making sure that 963 // it dominates all exiting blocks. If it doesn't, then there is a path out of 964 // the loop which does not execute this load, so we can't hoist it. Loads 965 // from constant memory are not safe to speculate all the time, for example 966 // indexed load from a jump table. 967 // Stores and side effects are already checked by isSafeToMove. 968 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && 969 !IsGuaranteedToExecute(I.getParent())) 970 return false; 971 972 return true; 973 } 974 975 /// IsLoopInvariantInst - Returns true if the instruction is loop 976 /// invariant. I.e., all virtual register operands are defined outside of the 977 /// loop, physical registers aren't accessed explicitly, and there are no side 978 /// effects that aren't captured by the operands or other flags. 979 /// 980 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 981 if (!IsLICMCandidate(I)) 982 return false; 983 984 // The instruction is loop invariant if all of its operands are. 985 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 986 const MachineOperand &MO = I.getOperand(i); 987 988 if (!MO.isReg()) 989 continue; 990 991 unsigned Reg = MO.getReg(); 992 if (Reg == 0) continue; 993 994 // Don't hoist an instruction that uses or defines a physical register. 995 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 996 if (MO.isUse()) { 997 // If the physreg has no defs anywhere, it's just an ambient register 998 // and we can freely move its uses. Alternatively, if it's allocatable, 999 // it could get allocated to something with a def during allocation. 1000 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 1001 return false; 1002 // Otherwise it's safe to move. 1003 continue; 1004 } else if (!MO.isDead()) { 1005 // A def that isn't dead. We can't move it. 1006 return false; 1007 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1008 // If the reg is live into the loop, we can't hoist an instruction 1009 // which would clobber it. 1010 return false; 1011 } 1012 } 1013 1014 if (!MO.isUse()) 1015 continue; 1016 1017 assert(MRI->getVRegDef(Reg) && 1018 "Machine instr not mapped for this vreg?!"); 1019 1020 // If the loop contains the definition of an operand, then the instruction 1021 // isn't loop invariant. 1022 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1023 return false; 1024 } 1025 1026 // If we got this far, the instruction is loop invariant! 1027 return true; 1028 } 1029 1030 1031 /// HasLoopPHIUse - Return true if the specified instruction is used by a 1032 /// phi node and hoisting it could cause a copy to be inserted. 1033 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 1034 SmallVector<const MachineInstr*, 8> Work(1, MI); 1035 do { 1036 MI = Work.pop_back_val(); 1037 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 1038 if (!MO->isReg() || !MO->isDef()) 1039 continue; 1040 unsigned Reg = MO->getReg(); 1041 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1042 continue; 1043 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1044 // A PHI may cause a copy to be inserted. 1045 if (UseMI.isPHI()) { 1046 // A PHI inside the loop causes a copy because the live range of Reg is 1047 // extended across the PHI. 1048 if (CurLoop->contains(&UseMI)) 1049 return true; 1050 // A PHI in an exit block can cause a copy to be inserted if the PHI 1051 // has multiple predecessors in the loop with different values. 1052 // For now, approximate by rejecting all exit blocks. 1053 if (isExitBlock(UseMI.getParent())) 1054 return true; 1055 continue; 1056 } 1057 // Look past copies as well. 1058 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1059 Work.push_back(&UseMI); 1060 } 1061 } 1062 } while (!Work.empty()); 1063 return false; 1064 } 1065 1066 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 1067 /// and an use in the current loop, return true if the target considered 1068 /// it 'high'. 1069 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 1070 unsigned DefIdx, unsigned Reg) const { 1071 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) 1072 return false; 1073 1074 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1075 if (UseMI.isCopyLike()) 1076 continue; 1077 if (!CurLoop->contains(UseMI.getParent())) 1078 continue; 1079 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1080 const MachineOperand &MO = UseMI.getOperand(i); 1081 if (!MO.isReg() || !MO.isUse()) 1082 continue; 1083 unsigned MOReg = MO.getReg(); 1084 if (MOReg != Reg) 1085 continue; 1086 1087 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) 1088 return true; 1089 } 1090 1091 // Only look at the first in loop use. 1092 break; 1093 } 1094 1095 return false; 1096 } 1097 1098 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or 1099 /// the operand latency between its def and a use is one or less. 1100 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1101 if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike()) 1102 return true; 1103 if (!InstrItins || InstrItins->isEmpty()) 1104 return false; 1105 1106 bool isCheap = false; 1107 unsigned NumDefs = MI.getDesc().getNumDefs(); 1108 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1109 MachineOperand &DefMO = MI.getOperand(i); 1110 if (!DefMO.isReg() || !DefMO.isDef()) 1111 continue; 1112 --NumDefs; 1113 unsigned Reg = DefMO.getReg(); 1114 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1115 continue; 1116 1117 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) 1118 return false; 1119 isCheap = true; 1120 } 1121 1122 return isCheap; 1123 } 1124 1125 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check 1126 /// if hoisting an instruction of the given cost matrix can cause high 1127 /// register pressure. 1128 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, 1129 bool CheapInstr) { 1130 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1131 CI != CE; ++CI) { 1132 if (CI->second <= 0) 1133 continue; 1134 1135 unsigned RCId = CI->first; 1136 unsigned Limit = RegLimit[RCId]; 1137 int Cost = CI->second; 1138 1139 // Don't hoist cheap instructions if they would increase register pressure, 1140 // even if we're under the limit. 1141 if (CheapInstr && !HoistCheapInsts) 1142 return true; 1143 1144 for (unsigned i = BackTrace.size(); i != 0; --i) { 1145 SmallVectorImpl<unsigned> &RP = BackTrace[i-1]; 1146 if (RP[RCId] + Cost >= Limit) 1147 return true; 1148 } 1149 } 1150 1151 return false; 1152 } 1153 1154 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the 1155 /// current block and update their register pressures to reflect the effect 1156 /// of hoisting MI from the current block to the preheader. 1157 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1158 if (MI->isImplicitDef()) 1159 return; 1160 1161 // First compute the 'cost' of the instruction, i.e. its contribution 1162 // to register pressure. 1163 DenseMap<unsigned, int> Cost; 1164 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1165 const MachineOperand &MO = MI->getOperand(i); 1166 if (!MO.isReg() || MO.isImplicit()) 1167 continue; 1168 unsigned Reg = MO.getReg(); 1169 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1170 continue; 1171 1172 unsigned RCId, RCCost; 1173 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 1174 if (MO.isDef()) { 1175 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1176 if (CI != Cost.end()) 1177 CI->second += RCCost; 1178 else 1179 Cost.insert(std::make_pair(RCId, RCCost)); 1180 } else if (isOperandKill(MO, MRI)) { 1181 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1182 if (CI != Cost.end()) 1183 CI->second -= RCCost; 1184 else 1185 Cost.insert(std::make_pair(RCId, -RCCost)); 1186 } 1187 } 1188 1189 // Update register pressure of blocks from loop header to current block. 1190 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { 1191 SmallVectorImpl<unsigned> &RP = BackTrace[i]; 1192 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1193 CI != CE; ++CI) { 1194 unsigned RCId = CI->first; 1195 RP[RCId] += CI->second; 1196 } 1197 } 1198 } 1199 1200 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 1201 /// the given loop invariant. 1202 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1203 if (MI.isImplicitDef()) 1204 return true; 1205 1206 // Besides removing computation from the loop, hoisting an instruction has 1207 // these effects: 1208 // 1209 // - The value defined by the instruction becomes live across the entire 1210 // loop. This increases register pressure in the loop. 1211 // 1212 // - If the value is used by a PHI in the loop, a copy will be required for 1213 // lowering the PHI after extending the live range. 1214 // 1215 // - When hoisting the last use of a value in the loop, that value no longer 1216 // needs to be live in the loop. This lowers register pressure in the loop. 1217 1218 bool CheapInstr = IsCheapInstruction(MI); 1219 bool CreatesCopy = HasLoopPHIUse(&MI); 1220 1221 // Don't hoist a cheap instruction if it would create a copy in the loop. 1222 if (CheapInstr && CreatesCopy) { 1223 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1224 return false; 1225 } 1226 1227 // Rematerializable instructions should always be hoisted since the register 1228 // allocator can just pull them down again when needed. 1229 if (TII->isTriviallyReMaterializable(&MI, AA)) 1230 return true; 1231 1232 // Estimate register pressure to determine whether to LICM the instruction. 1233 // In low register pressure situation, we can be more aggressive about 1234 // hoisting. Also, favors hoisting long latency instructions even in 1235 // moderately high pressure situation. 1236 // Cheap instructions will only be hoisted if they don't increase register 1237 // pressure at all. 1238 // FIXME: If there are long latency loop-invariant instructions inside the 1239 // loop at this point, why didn't the optimizer's LICM hoist them? 1240 DenseMap<unsigned, int> Cost; 1241 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1242 const MachineOperand &MO = MI.getOperand(i); 1243 if (!MO.isReg() || MO.isImplicit()) 1244 continue; 1245 unsigned Reg = MO.getReg(); 1246 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1247 continue; 1248 1249 unsigned RCId, RCCost; 1250 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); 1251 if (MO.isDef()) { 1252 if (HasHighOperandLatency(MI, i, Reg)) { 1253 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1254 ++NumHighLatency; 1255 return true; 1256 } 1257 Cost[RCId] += RCCost; 1258 } else if (isOperandKill(MO, MRI)) { 1259 // Is a virtual register use is a kill, hoisting it out of the loop 1260 // may actually reduce register pressure or be register pressure 1261 // neutral. 1262 Cost[RCId] -= RCCost; 1263 } 1264 } 1265 1266 // Visit BBs from header to current BB, if hoisting this doesn't cause 1267 // high register pressure, then it's safe to proceed. 1268 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1269 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1270 ++NumLowRP; 1271 return true; 1272 } 1273 1274 // Don't risk increasing register pressure if it would create copies. 1275 if (CreatesCopy) { 1276 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1277 return false; 1278 } 1279 1280 // Do not "speculate" in high register pressure situation. If an 1281 // instruction is not guaranteed to be executed in the loop, it's best to be 1282 // conservative. 1283 if (AvoidSpeculation && 1284 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1285 DEBUG(dbgs() << "Won't speculate: " << MI); 1286 return false; 1287 } 1288 1289 // High register pressure situation, only hoist if the instruction is going 1290 // to be remat'ed. 1291 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1292 !MI.isInvariantLoad(AA)) { 1293 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1301 // Don't unfold simple loads. 1302 if (MI->canFoldAsLoad()) 1303 return nullptr; 1304 1305 // If not, we may be able to unfold a load and hoist that. 1306 // First test whether the instruction is loading from an amenable 1307 // memory location. 1308 if (!MI->isInvariantLoad(AA)) 1309 return nullptr; 1310 1311 // Next determine the register class for a temporary register. 1312 unsigned LoadRegIndex; 1313 unsigned NewOpc = 1314 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1315 /*UnfoldLoad=*/true, 1316 /*UnfoldStore=*/false, 1317 &LoadRegIndex); 1318 if (NewOpc == 0) return nullptr; 1319 const MCInstrDesc &MID = TII->get(NewOpc); 1320 if (MID.getNumDefs() != 1) return nullptr; 1321 MachineFunction &MF = *MI->getParent()->getParent(); 1322 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1323 // Ok, we're unfolding. Create a temporary register and do the unfold. 1324 unsigned Reg = MRI->createVirtualRegister(RC); 1325 1326 SmallVector<MachineInstr *, 2> NewMIs; 1327 bool Success = 1328 TII->unfoldMemoryOperand(MF, MI, Reg, 1329 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1330 NewMIs); 1331 (void)Success; 1332 assert(Success && 1333 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1334 "succeeded!"); 1335 assert(NewMIs.size() == 2 && 1336 "Unfolded a load into multiple instructions!"); 1337 MachineBasicBlock *MBB = MI->getParent(); 1338 MachineBasicBlock::iterator Pos = MI; 1339 MBB->insert(Pos, NewMIs[0]); 1340 MBB->insert(Pos, NewMIs[1]); 1341 // If unfolding produced a load that wasn't loop-invariant or profitable to 1342 // hoist, discard the new instructions and bail. 1343 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1344 NewMIs[0]->eraseFromParent(); 1345 NewMIs[1]->eraseFromParent(); 1346 return nullptr; 1347 } 1348 1349 // Update register pressure for the unfolded instruction. 1350 UpdateRegPressure(NewMIs[1]); 1351 1352 // Otherwise we successfully unfolded a load that we can hoist. 1353 MI->eraseFromParent(); 1354 return NewMIs[0]; 1355 } 1356 1357 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1358 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 1359 const MachineInstr *MI = &*I; 1360 unsigned Opcode = MI->getOpcode(); 1361 CSEMap[Opcode].push_back(MI); 1362 } 1363 } 1364 1365 const MachineInstr* 1366 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1367 std::vector<const MachineInstr*> &PrevMIs) { 1368 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 1369 const MachineInstr *PrevMI = PrevMIs[i]; 1370 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) 1371 return PrevMI; 1372 } 1373 return nullptr; 1374 } 1375 1376 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1377 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1378 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1379 // the undef property onto uses. 1380 if (CI == CSEMap.end() || MI->isImplicitDef()) 1381 return false; 1382 1383 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1384 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1385 1386 // Replace virtual registers defined by MI by their counterparts defined 1387 // by Dup. 1388 SmallVector<unsigned, 2> Defs; 1389 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1390 const MachineOperand &MO = MI->getOperand(i); 1391 1392 // Physical registers may not differ here. 1393 assert((!MO.isReg() || MO.getReg() == 0 || 1394 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1395 MO.getReg() == Dup->getOperand(i).getReg()) && 1396 "Instructions with different phys regs are not identical!"); 1397 1398 if (MO.isReg() && MO.isDef() && 1399 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1400 Defs.push_back(i); 1401 } 1402 1403 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1404 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1405 unsigned Idx = Defs[i]; 1406 unsigned Reg = MI->getOperand(Idx).getReg(); 1407 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1408 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1409 1410 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1411 // Restore old RCs if more than one defs. 1412 for (unsigned j = 0; j != i; ++j) 1413 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1414 return false; 1415 } 1416 } 1417 1418 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1419 unsigned Idx = Defs[i]; 1420 unsigned Reg = MI->getOperand(Idx).getReg(); 1421 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1422 MRI->replaceRegWith(Reg, DupReg); 1423 MRI->clearKillFlags(DupReg); 1424 } 1425 1426 MI->eraseFromParent(); 1427 ++NumCSEed; 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 /// MayCSE - Return true if the given instruction will be CSE'd if it's 1434 /// hoisted out of the loop. 1435 bool MachineLICM::MayCSE(MachineInstr *MI) { 1436 unsigned Opcode = MI->getOpcode(); 1437 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1438 CI = CSEMap.find(Opcode); 1439 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1440 // the undef property onto uses. 1441 if (CI == CSEMap.end() || MI->isImplicitDef()) 1442 return false; 1443 1444 return LookForDuplicate(MI, CI->second) != nullptr; 1445 } 1446 1447 /// Hoist - When an instruction is found to use only loop invariant operands 1448 /// that are safe to hoist, this instruction is called to do the dirty work. 1449 /// 1450 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1451 // First check whether we should hoist this instruction. 1452 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1453 // If not, try unfolding a hoistable load. 1454 MI = ExtractHoistableLoad(MI); 1455 if (!MI) return false; 1456 } 1457 1458 // Now move the instructions to the predecessor, inserting it before any 1459 // terminator instructions. 1460 DEBUG({ 1461 dbgs() << "Hoisting " << *MI; 1462 if (Preheader->getBasicBlock()) 1463 dbgs() << " to MachineBasicBlock " 1464 << Preheader->getName(); 1465 if (MI->getParent()->getBasicBlock()) 1466 dbgs() << " from MachineBasicBlock " 1467 << MI->getParent()->getName(); 1468 dbgs() << "\n"; 1469 }); 1470 1471 // If this is the first instruction being hoisted to the preheader, 1472 // initialize the CSE map with potential common expressions. 1473 if (FirstInLoop) { 1474 InitCSEMap(Preheader); 1475 FirstInLoop = false; 1476 } 1477 1478 // Look for opportunity to CSE the hoisted instruction. 1479 unsigned Opcode = MI->getOpcode(); 1480 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1481 CI = CSEMap.find(Opcode); 1482 if (!EliminateCSE(MI, CI)) { 1483 // Otherwise, splice the instruction to the preheader. 1484 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1485 1486 // Update register pressure for BBs from header to this block. 1487 UpdateBackTraceRegPressure(MI); 1488 1489 // Clear the kill flags of any register this instruction defines, 1490 // since they may need to be live throughout the entire loop 1491 // rather than just live for part of it. 1492 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1493 MachineOperand &MO = MI->getOperand(i); 1494 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1495 MRI->clearKillFlags(MO.getReg()); 1496 } 1497 1498 // Add to the CSE map. 1499 if (CI != CSEMap.end()) 1500 CI->second.push_back(MI); 1501 else 1502 CSEMap[Opcode].push_back(MI); 1503 } 1504 1505 ++NumHoisted; 1506 Changed = true; 1507 1508 return true; 1509 } 1510 1511 MachineBasicBlock *MachineLICM::getCurPreheader() { 1512 // Determine the block to which to hoist instructions. If we can't find a 1513 // suitable loop predecessor, we can't do any hoisting. 1514 1515 // If we've tried to get a preheader and failed, don't try again. 1516 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1517 return nullptr; 1518 1519 if (!CurPreheader) { 1520 CurPreheader = CurLoop->getLoopPreheader(); 1521 if (!CurPreheader) { 1522 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1523 if (!Pred) { 1524 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1525 return nullptr; 1526 } 1527 1528 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1529 if (!CurPreheader) { 1530 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1531 return nullptr; 1532 } 1533 } 1534 } 1535 return CurPreheader; 1536 } 1537