1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass does not attempt to throttle itself to limit register pressure. 14 // The register allocation phases are expected to perform rematerialization 15 // to recover when register pressure is high. 16 // 17 // This pass is not intended to be a replacement or a complete alternative 18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 19 // constructs that are not exposed before lowering and instruction selection. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #define DEBUG_TYPE "machine-licm" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/MC/MCInstrItineraries.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 static cl::opt<bool> 46 AvoidSpeculation("avoid-speculation", 47 cl::desc("MachineLICM should avoid speculation"), 48 cl::init(true), cl::Hidden); 49 50 STATISTIC(NumHoisted, 51 "Number of machine instructions hoisted out of loops"); 52 STATISTIC(NumLowRP, 53 "Number of instructions hoisted in low reg pressure situation"); 54 STATISTIC(NumHighLatency, 55 "Number of high latency instructions hoisted"); 56 STATISTIC(NumCSEed, 57 "Number of hoisted machine instructions CSEed"); 58 STATISTIC(NumPostRAHoisted, 59 "Number of machine instructions hoisted out of loops post regalloc"); 60 61 namespace { 62 class MachineLICM : public MachineFunctionPass { 63 const TargetMachine *TM; 64 const TargetInstrInfo *TII; 65 const TargetLoweringBase *TLI; 66 const TargetRegisterInfo *TRI; 67 const MachineFrameInfo *MFI; 68 MachineRegisterInfo *MRI; 69 const InstrItineraryData *InstrItins; 70 bool PreRegAlloc; 71 72 // Various analyses that we use... 73 AliasAnalysis *AA; // Alias analysis info. 74 MachineLoopInfo *MLI; // Current MachineLoopInfo 75 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 76 77 // State that is updated as we process loops 78 bool Changed; // True if a loop is changed. 79 bool FirstInLoop; // True if it's the first LICM in the loop. 80 MachineLoop *CurLoop; // The current loop we are working on. 81 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 82 83 // Exit blocks for CurLoop. 84 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 85 86 bool isExitBlock(const MachineBasicBlock *MBB) const { 87 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 88 ExitBlocks.end(); 89 } 90 91 // Track 'estimated' register pressure. 92 SmallSet<unsigned, 32> RegSeen; 93 SmallVector<unsigned, 8> RegPressure; 94 95 // Register pressure "limit" per register class. If the pressure 96 // is higher than the limit, then it's considered high. 97 SmallVector<unsigned, 8> RegLimit; 98 99 // Register pressure on path leading from loop preheader to current BB. 100 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 101 102 // For each opcode, keep a list of potential CSE instructions. 103 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 104 105 enum { 106 SpeculateFalse = 0, 107 SpeculateTrue = 1, 108 SpeculateUnknown = 2 109 }; 110 111 // If a MBB does not dominate loop exiting blocks then it may not safe 112 // to hoist loads from this block. 113 // Tri-state: 0 - false, 1 - true, 2 - unknown 114 unsigned SpeculationState; 115 116 public: 117 static char ID; // Pass identification, replacement for typeid 118 MachineLICM() : 119 MachineFunctionPass(ID), PreRegAlloc(true) { 120 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 121 } 122 123 explicit MachineLICM(bool PreRA) : 124 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 125 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 126 } 127 128 bool runOnMachineFunction(MachineFunction &MF) override; 129 130 void getAnalysisUsage(AnalysisUsage &AU) const override { 131 AU.addRequired<MachineLoopInfo>(); 132 AU.addRequired<MachineDominatorTree>(); 133 AU.addRequired<AliasAnalysis>(); 134 AU.addPreserved<MachineLoopInfo>(); 135 AU.addPreserved<MachineDominatorTree>(); 136 MachineFunctionPass::getAnalysisUsage(AU); 137 } 138 139 void releaseMemory() override { 140 RegSeen.clear(); 141 RegPressure.clear(); 142 RegLimit.clear(); 143 BackTrace.clear(); 144 for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator 145 CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI) 146 CI->second.clear(); 147 CSEMap.clear(); 148 } 149 150 private: 151 /// CandidateInfo - Keep track of information about hoisting candidates. 152 struct CandidateInfo { 153 MachineInstr *MI; 154 unsigned Def; 155 int FI; 156 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 157 : MI(mi), Def(def), FI(fi) {} 158 }; 159 160 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 161 /// invariants out to the preheader. 162 void HoistRegionPostRA(); 163 164 /// HoistPostRA - When an instruction is found to only use loop invariant 165 /// operands that is safe to hoist, this instruction is called to do the 166 /// dirty work. 167 void HoistPostRA(MachineInstr *MI, unsigned Def); 168 169 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 170 /// gather register def and frame object update information. 171 void ProcessMI(MachineInstr *MI, 172 BitVector &PhysRegDefs, 173 BitVector &PhysRegClobbers, 174 SmallSet<int, 32> &StoredFIs, 175 SmallVectorImpl<CandidateInfo> &Candidates); 176 177 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 178 /// current loop. 179 void AddToLiveIns(unsigned Reg); 180 181 /// IsLICMCandidate - Returns true if the instruction may be a suitable 182 /// candidate for LICM. e.g. If the instruction is a call, then it's 183 /// obviously not safe to hoist it. 184 bool IsLICMCandidate(MachineInstr &I); 185 186 /// IsLoopInvariantInst - Returns true if the instruction is loop 187 /// invariant. I.e., all virtual register operands are defined outside of 188 /// the loop, physical registers aren't accessed (explicitly or implicitly), 189 /// and the instruction is hoistable. 190 /// 191 bool IsLoopInvariantInst(MachineInstr &I); 192 193 /// HasLoopPHIUse - Return true if the specified instruction is used by any 194 /// phi node in the current loop. 195 bool HasLoopPHIUse(const MachineInstr *MI) const; 196 197 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 198 /// and an use in the current loop, return true if the target considered 199 /// it 'high'. 200 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 201 unsigned Reg) const; 202 203 bool IsCheapInstruction(MachineInstr &MI) const; 204 205 /// CanCauseHighRegPressure - Visit BBs from header to current BB, 206 /// check if hoisting an instruction of the given cost matrix can cause high 207 /// register pressure. 208 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); 209 210 /// UpdateBackTraceRegPressure - Traverse the back trace from header to 211 /// the current block and update their register pressures to reflect the 212 /// effect of hoisting MI from the current block to the preheader. 213 void UpdateBackTraceRegPressure(const MachineInstr *MI); 214 215 /// IsProfitableToHoist - Return true if it is potentially profitable to 216 /// hoist the given loop invariant. 217 bool IsProfitableToHoist(MachineInstr &MI); 218 219 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 220 /// If not then a load from this mbb may not be safe to hoist. 221 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 222 223 void EnterScope(MachineBasicBlock *MBB); 224 225 void ExitScope(MachineBasicBlock *MBB); 226 227 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given 228 /// dominator tree node if its a leaf or all of its children are done. Walk 229 /// up the dominator tree to destroy ancestors which are now done. 230 void ExitScopeIfDone(MachineDomTreeNode *Node, 231 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 232 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 233 234 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 235 /// blocks dominated by the specified header block, and that are in the 236 /// current loop) in depth first order w.r.t the DominatorTree. This allows 237 /// us to visit definitions before uses, allowing us to hoist a loop body in 238 /// one pass without iteration. 239 /// 240 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 241 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 242 243 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 244 /// index, return the ID and cost of its representative register class by 245 /// reference. 246 void getRegisterClassIDAndCost(const MachineInstr *MI, 247 unsigned Reg, unsigned OpIdx, 248 unsigned &RCId, unsigned &RCCost) const; 249 250 /// InitRegPressure - Find all virtual register references that are liveout 251 /// of the preheader to initialize the starting "register pressure". Note 252 /// this does not count live through (livein but not used) registers. 253 void InitRegPressure(MachineBasicBlock *BB); 254 255 /// UpdateRegPressure - Update estimate of register pressure after the 256 /// specified instruction. 257 void UpdateRegPressure(const MachineInstr *MI); 258 259 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 260 /// the load itself could be hoisted. Return the unfolded and hoistable 261 /// load, or null if the load couldn't be unfolded or if it wouldn't 262 /// be hoistable. 263 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 264 265 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 266 /// duplicate of MI. Return this instruction if it's found. 267 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 268 std::vector<const MachineInstr*> &PrevMIs); 269 270 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 271 /// the preheader that compute the same value. If it's found, do a RAU on 272 /// with the definition of the existing instruction rather than hoisting 273 /// the instruction to the preheader. 274 bool EliminateCSE(MachineInstr *MI, 275 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 276 277 /// MayCSE - Return true if the given instruction will be CSE'd if it's 278 /// hoisted out of the loop. 279 bool MayCSE(MachineInstr *MI); 280 281 /// Hoist - When an instruction is found to only use loop invariant operands 282 /// that is safe to hoist, this instruction is called to do the dirty work. 283 /// It returns true if the instruction is hoisted. 284 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 285 286 /// InitCSEMap - Initialize the CSE map with instructions that are in the 287 /// current loop preheader that may become duplicates of instructions that 288 /// are hoisted out of the loop. 289 void InitCSEMap(MachineBasicBlock *BB); 290 291 /// getCurPreheader - Get the preheader for the current loop, splitting 292 /// a critical edge if needed. 293 MachineBasicBlock *getCurPreheader(); 294 }; 295 } // end anonymous namespace 296 297 char MachineLICM::ID = 0; 298 char &llvm::MachineLICMID = MachineLICM::ID; 299 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 300 "Machine Loop Invariant Code Motion", false, false) 301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 302 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 303 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 304 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 305 "Machine Loop Invariant Code Motion", false, false) 306 307 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 308 /// loop that has a unique predecessor. 309 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 310 // Check whether this loop even has a unique predecessor. 311 if (!CurLoop->getLoopPredecessor()) 312 return false; 313 // Ok, now check to see if any of its outer loops do. 314 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 315 if (L->getLoopPredecessor()) 316 return false; 317 // None of them did, so this is the outermost with a unique predecessor. 318 return true; 319 } 320 321 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 322 Changed = FirstInLoop = false; 323 TM = &MF.getTarget(); 324 TII = TM->getInstrInfo(); 325 TLI = TM->getTargetLowering(); 326 TRI = TM->getRegisterInfo(); 327 MFI = MF.getFrameInfo(); 328 MRI = &MF.getRegInfo(); 329 InstrItins = TM->getInstrItineraryData(); 330 331 PreRegAlloc = MRI->isSSA(); 332 333 if (PreRegAlloc) 334 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 335 else 336 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 337 DEBUG(dbgs() << MF.getName() << " ********\n"); 338 339 if (PreRegAlloc) { 340 // Estimate register pressure during pre-regalloc pass. 341 unsigned NumRC = TRI->getNumRegClasses(); 342 RegPressure.resize(NumRC); 343 std::fill(RegPressure.begin(), RegPressure.end(), 0); 344 RegLimit.resize(NumRC); 345 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), 346 E = TRI->regclass_end(); I != E; ++I) 347 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); 348 } 349 350 // Get our Loop information... 351 MLI = &getAnalysis<MachineLoopInfo>(); 352 DT = &getAnalysis<MachineDominatorTree>(); 353 AA = &getAnalysis<AliasAnalysis>(); 354 355 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 356 while (!Worklist.empty()) { 357 CurLoop = Worklist.pop_back_val(); 358 CurPreheader = 0; 359 ExitBlocks.clear(); 360 361 // If this is done before regalloc, only visit outer-most preheader-sporting 362 // loops. 363 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 364 Worklist.append(CurLoop->begin(), CurLoop->end()); 365 continue; 366 } 367 368 CurLoop->getExitBlocks(ExitBlocks); 369 370 if (!PreRegAlloc) 371 HoistRegionPostRA(); 372 else { 373 // CSEMap is initialized for loop header when the first instruction is 374 // being hoisted. 375 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 376 FirstInLoop = true; 377 HoistOutOfLoop(N); 378 CSEMap.clear(); 379 } 380 } 381 382 return Changed; 383 } 384 385 /// InstructionStoresToFI - Return true if instruction stores to the 386 /// specified frame. 387 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 388 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 389 oe = MI->memoperands_end(); o != oe; ++o) { 390 if (!(*o)->isStore() || !(*o)->getValue()) 391 continue; 392 if (const FixedStackPseudoSourceValue *Value = 393 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 394 if (Value->getFrameIndex() == FI) 395 return true; 396 } 397 } 398 return false; 399 } 400 401 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 402 /// gather register def and frame object update information. 403 void MachineLICM::ProcessMI(MachineInstr *MI, 404 BitVector &PhysRegDefs, 405 BitVector &PhysRegClobbers, 406 SmallSet<int, 32> &StoredFIs, 407 SmallVectorImpl<CandidateInfo> &Candidates) { 408 bool RuledOut = false; 409 bool HasNonInvariantUse = false; 410 unsigned Def = 0; 411 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 412 const MachineOperand &MO = MI->getOperand(i); 413 if (MO.isFI()) { 414 // Remember if the instruction stores to the frame index. 415 int FI = MO.getIndex(); 416 if (!StoredFIs.count(FI) && 417 MFI->isSpillSlotObjectIndex(FI) && 418 InstructionStoresToFI(MI, FI)) 419 StoredFIs.insert(FI); 420 HasNonInvariantUse = true; 421 continue; 422 } 423 424 // We can't hoist an instruction defining a physreg that is clobbered in 425 // the loop. 426 if (MO.isRegMask()) { 427 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 428 continue; 429 } 430 431 if (!MO.isReg()) 432 continue; 433 unsigned Reg = MO.getReg(); 434 if (!Reg) 435 continue; 436 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 437 "Not expecting virtual register!"); 438 439 if (!MO.isDef()) { 440 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 441 // If it's using a non-loop-invariant register, then it's obviously not 442 // safe to hoist. 443 HasNonInvariantUse = true; 444 continue; 445 } 446 447 if (MO.isImplicit()) { 448 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 449 PhysRegClobbers.set(*AI); 450 if (!MO.isDead()) 451 // Non-dead implicit def? This cannot be hoisted. 452 RuledOut = true; 453 // No need to check if a dead implicit def is also defined by 454 // another instruction. 455 continue; 456 } 457 458 // FIXME: For now, avoid instructions with multiple defs, unless 459 // it's a dead implicit def. 460 if (Def) 461 RuledOut = true; 462 else 463 Def = Reg; 464 465 // If we have already seen another instruction that defines the same 466 // register, then this is not safe. Two defs is indicated by setting a 467 // PhysRegClobbers bit. 468 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 469 if (PhysRegDefs.test(*AS)) 470 PhysRegClobbers.set(*AS); 471 PhysRegDefs.set(*AS); 472 } 473 if (PhysRegClobbers.test(Reg)) 474 // MI defined register is seen defined by another instruction in 475 // the loop, it cannot be a LICM candidate. 476 RuledOut = true; 477 } 478 479 // Only consider reloads for now and remats which do not have register 480 // operands. FIXME: Consider unfold load folding instructions. 481 if (Def && !RuledOut) { 482 int FI = INT_MIN; 483 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 484 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 485 Candidates.push_back(CandidateInfo(MI, Def, FI)); 486 } 487 } 488 489 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 490 /// invariants out to the preheader. 491 void MachineLICM::HoistRegionPostRA() { 492 MachineBasicBlock *Preheader = getCurPreheader(); 493 if (!Preheader) 494 return; 495 496 unsigned NumRegs = TRI->getNumRegs(); 497 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 498 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 499 500 SmallVector<CandidateInfo, 32> Candidates; 501 SmallSet<int, 32> StoredFIs; 502 503 // Walk the entire region, count number of defs for each register, and 504 // collect potential LICM candidates. 505 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 506 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 507 MachineBasicBlock *BB = Blocks[i]; 508 509 // If the header of the loop containing this basic block is a landing pad, 510 // then don't try to hoist instructions out of this loop. 511 const MachineLoop *ML = MLI->getLoopFor(BB); 512 if (ML && ML->getHeader()->isLandingPad()) continue; 513 514 // Conservatively treat live-in's as an external def. 515 // FIXME: That means a reload that're reused in successor block(s) will not 516 // be LICM'ed. 517 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 518 E = BB->livein_end(); I != E; ++I) { 519 unsigned Reg = *I; 520 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 521 PhysRegDefs.set(*AI); 522 } 523 524 SpeculationState = SpeculateUnknown; 525 for (MachineBasicBlock::iterator 526 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 527 MachineInstr *MI = &*MII; 528 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 529 } 530 } 531 532 // Gather the registers read / clobbered by the terminator. 533 BitVector TermRegs(NumRegs); 534 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 535 if (TI != Preheader->end()) { 536 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { 537 const MachineOperand &MO = TI->getOperand(i); 538 if (!MO.isReg()) 539 continue; 540 unsigned Reg = MO.getReg(); 541 if (!Reg) 542 continue; 543 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 544 TermRegs.set(*AI); 545 } 546 } 547 548 // Now evaluate whether the potential candidates qualify. 549 // 1. Check if the candidate defined register is defined by another 550 // instruction in the loop. 551 // 2. If the candidate is a load from stack slot (always true for now), 552 // check if the slot is stored anywhere in the loop. 553 // 3. Make sure candidate def should not clobber 554 // registers read by the terminator. Similarly its def should not be 555 // clobbered by the terminator. 556 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 557 if (Candidates[i].FI != INT_MIN && 558 StoredFIs.count(Candidates[i].FI)) 559 continue; 560 561 unsigned Def = Candidates[i].Def; 562 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 563 bool Safe = true; 564 MachineInstr *MI = Candidates[i].MI; 565 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 566 const MachineOperand &MO = MI->getOperand(j); 567 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 568 continue; 569 unsigned Reg = MO.getReg(); 570 if (PhysRegDefs.test(Reg) || 571 PhysRegClobbers.test(Reg)) { 572 // If it's using a non-loop-invariant register, then it's obviously 573 // not safe to hoist. 574 Safe = false; 575 break; 576 } 577 } 578 if (Safe) 579 HoistPostRA(MI, Candidates[i].Def); 580 } 581 } 582 } 583 584 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 585 /// loop, and make sure it is not killed by any instructions in the loop. 586 void MachineLICM::AddToLiveIns(unsigned Reg) { 587 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 588 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 589 MachineBasicBlock *BB = Blocks[i]; 590 if (!BB->isLiveIn(Reg)) 591 BB->addLiveIn(Reg); 592 for (MachineBasicBlock::iterator 593 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 594 MachineInstr *MI = &*MII; 595 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 596 MachineOperand &MO = MI->getOperand(i); 597 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 598 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 599 MO.setIsKill(false); 600 } 601 } 602 } 603 } 604 605 /// HoistPostRA - When an instruction is found to only use loop invariant 606 /// operands that is safe to hoist, this instruction is called to do the 607 /// dirty work. 608 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 609 MachineBasicBlock *Preheader = getCurPreheader(); 610 611 // Now move the instructions to the predecessor, inserting it before any 612 // terminator instructions. 613 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 614 << MI->getParent()->getNumber() << ": " << *MI); 615 616 // Splice the instruction to the preheader. 617 MachineBasicBlock *MBB = MI->getParent(); 618 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 619 620 // Add register to livein list to all the BBs in the current loop since a 621 // loop invariant must be kept live throughout the whole loop. This is 622 // important to ensure later passes do not scavenge the def register. 623 AddToLiveIns(Def); 624 625 ++NumPostRAHoisted; 626 Changed = true; 627 } 628 629 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 630 // If not then a load from this mbb may not be safe to hoist. 631 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 632 if (SpeculationState != SpeculateUnknown) 633 return SpeculationState == SpeculateFalse; 634 635 if (BB != CurLoop->getHeader()) { 636 // Check loop exiting blocks. 637 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 638 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 639 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) 640 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { 641 SpeculationState = SpeculateTrue; 642 return false; 643 } 644 } 645 646 SpeculationState = SpeculateFalse; 647 return true; 648 } 649 650 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 651 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 652 653 // Remember livein register pressure. 654 BackTrace.push_back(RegPressure); 655 } 656 657 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 658 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 659 BackTrace.pop_back(); 660 } 661 662 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 663 /// dominator tree node if its a leaf or all of its children are done. Walk 664 /// up the dominator tree to destroy ancestors which are now done. 665 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 666 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 667 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 668 if (OpenChildren[Node]) 669 return; 670 671 // Pop scope. 672 ExitScope(Node->getBlock()); 673 674 // Now traverse upwards to pop ancestors whose offsprings are all done. 675 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 676 unsigned Left = --OpenChildren[Parent]; 677 if (Left != 0) 678 break; 679 ExitScope(Parent->getBlock()); 680 Node = Parent; 681 } 682 } 683 684 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 685 /// blocks dominated by the specified header block, and that are in the 686 /// current loop) in depth first order w.r.t the DominatorTree. This allows 687 /// us to visit definitions before uses, allowing us to hoist a loop body in 688 /// one pass without iteration. 689 /// 690 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 691 SmallVector<MachineDomTreeNode*, 32> Scopes; 692 SmallVector<MachineDomTreeNode*, 8> WorkList; 693 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 694 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 695 696 // Perform a DFS walk to determine the order of visit. 697 WorkList.push_back(HeaderN); 698 do { 699 MachineDomTreeNode *Node = WorkList.pop_back_val(); 700 assert(Node != 0 && "Null dominator tree node?"); 701 MachineBasicBlock *BB = Node->getBlock(); 702 703 // If the header of the loop containing this basic block is a landing pad, 704 // then don't try to hoist instructions out of this loop. 705 const MachineLoop *ML = MLI->getLoopFor(BB); 706 if (ML && ML->getHeader()->isLandingPad()) 707 continue; 708 709 // If this subregion is not in the top level loop at all, exit. 710 if (!CurLoop->contains(BB)) 711 continue; 712 713 Scopes.push_back(Node); 714 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 715 unsigned NumChildren = Children.size(); 716 717 // Don't hoist things out of a large switch statement. This often causes 718 // code to be hoisted that wasn't going to be executed, and increases 719 // register pressure in a situation where it's likely to matter. 720 if (BB->succ_size() >= 25) 721 NumChildren = 0; 722 723 OpenChildren[Node] = NumChildren; 724 // Add children in reverse order as then the next popped worklist node is 725 // the first child of this node. This means we ultimately traverse the 726 // DOM tree in exactly the same order as if we'd recursed. 727 for (int i = (int)NumChildren-1; i >= 0; --i) { 728 MachineDomTreeNode *Child = Children[i]; 729 ParentMap[Child] = Node; 730 WorkList.push_back(Child); 731 } 732 } while (!WorkList.empty()); 733 734 if (Scopes.size() != 0) { 735 MachineBasicBlock *Preheader = getCurPreheader(); 736 if (!Preheader) 737 return; 738 739 // Compute registers which are livein into the loop headers. 740 RegSeen.clear(); 741 BackTrace.clear(); 742 InitRegPressure(Preheader); 743 } 744 745 // Now perform LICM. 746 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 747 MachineDomTreeNode *Node = Scopes[i]; 748 MachineBasicBlock *MBB = Node->getBlock(); 749 750 MachineBasicBlock *Preheader = getCurPreheader(); 751 if (!Preheader) 752 continue; 753 754 EnterScope(MBB); 755 756 // Process the block 757 SpeculationState = SpeculateUnknown; 758 for (MachineBasicBlock::iterator 759 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 760 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 761 MachineInstr *MI = &*MII; 762 if (!Hoist(MI, Preheader)) 763 UpdateRegPressure(MI); 764 MII = NextMII; 765 } 766 767 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 768 ExitScopeIfDone(Node, OpenChildren, ParentMap); 769 } 770 } 771 772 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 773 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 774 } 775 776 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 777 /// index, return the ID and cost of its representative register class. 778 void 779 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, 780 unsigned Reg, unsigned OpIdx, 781 unsigned &RCId, unsigned &RCCost) const { 782 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 783 MVT VT = *RC->vt_begin(); 784 if (VT == MVT::Untyped) { 785 RCId = RC->getID(); 786 RCCost = 1; 787 } else { 788 RCId = TLI->getRepRegClassFor(VT)->getID(); 789 RCCost = TLI->getRepRegClassCostFor(VT); 790 } 791 } 792 793 /// InitRegPressure - Find all virtual register references that are liveout of 794 /// the preheader to initialize the starting "register pressure". Note this 795 /// does not count live through (livein but not used) registers. 796 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 797 std::fill(RegPressure.begin(), RegPressure.end(), 0); 798 799 // If the preheader has only a single predecessor and it ends with a 800 // fallthrough or an unconditional branch, then scan its predecessor for live 801 // defs as well. This happens whenever the preheader is created by splitting 802 // the critical edge from the loop predecessor to the loop header. 803 if (BB->pred_size() == 1) { 804 MachineBasicBlock *TBB = 0, *FBB = 0; 805 SmallVector<MachineOperand, 4> Cond; 806 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 807 InitRegPressure(*BB->pred_begin()); 808 } 809 810 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); 811 MII != E; ++MII) { 812 MachineInstr *MI = &*MII; 813 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 814 const MachineOperand &MO = MI->getOperand(i); 815 if (!MO.isReg() || MO.isImplicit()) 816 continue; 817 unsigned Reg = MO.getReg(); 818 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 819 continue; 820 821 bool isNew = RegSeen.insert(Reg); 822 unsigned RCId, RCCost; 823 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 824 if (MO.isDef()) 825 RegPressure[RCId] += RCCost; 826 else { 827 bool isKill = isOperandKill(MO, MRI); 828 if (isNew && !isKill) 829 // Haven't seen this, it must be a livein. 830 RegPressure[RCId] += RCCost; 831 else if (!isNew && isKill) 832 RegPressure[RCId] -= RCCost; 833 } 834 } 835 } 836 } 837 838 /// UpdateRegPressure - Update estimate of register pressure after the 839 /// specified instruction. 840 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { 841 if (MI->isImplicitDef()) 842 return; 843 844 SmallVector<unsigned, 4> Defs; 845 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 846 const MachineOperand &MO = MI->getOperand(i); 847 if (!MO.isReg() || MO.isImplicit()) 848 continue; 849 unsigned Reg = MO.getReg(); 850 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 851 continue; 852 853 bool isNew = RegSeen.insert(Reg); 854 if (MO.isDef()) 855 Defs.push_back(Reg); 856 else if (!isNew && isOperandKill(MO, MRI)) { 857 unsigned RCId, RCCost; 858 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 859 if (RCCost > RegPressure[RCId]) 860 RegPressure[RCId] = 0; 861 else 862 RegPressure[RCId] -= RCCost; 863 } 864 } 865 866 unsigned Idx = 0; 867 while (!Defs.empty()) { 868 unsigned Reg = Defs.pop_back_val(); 869 unsigned RCId, RCCost; 870 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); 871 RegPressure[RCId] += RCCost; 872 ++Idx; 873 } 874 } 875 876 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction 877 /// loads from global offset table or constant pool. 878 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { 879 assert (MI.mayLoad() && "Expected MI that loads!"); 880 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 881 E = MI.memoperands_end(); I != E; ++I) { 882 if (const Value *V = (*I)->getValue()) { 883 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 884 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) 885 return true; 886 } 887 } 888 return false; 889 } 890 891 /// IsLICMCandidate - Returns true if the instruction may be a suitable 892 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 893 /// not safe to hoist it. 894 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 895 // Check if it's safe to move the instruction. 896 bool DontMoveAcrossStore = true; 897 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 898 return false; 899 900 // If it is load then check if it is guaranteed to execute by making sure that 901 // it dominates all exiting blocks. If it doesn't, then there is a path out of 902 // the loop which does not execute this load, so we can't hoist it. Loads 903 // from constant memory are not safe to speculate all the time, for example 904 // indexed load from a jump table. 905 // Stores and side effects are already checked by isSafeToMove. 906 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && 907 !IsGuaranteedToExecute(I.getParent())) 908 return false; 909 910 return true; 911 } 912 913 /// IsLoopInvariantInst - Returns true if the instruction is loop 914 /// invariant. I.e., all virtual register operands are defined outside of the 915 /// loop, physical registers aren't accessed explicitly, and there are no side 916 /// effects that aren't captured by the operands or other flags. 917 /// 918 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 919 if (!IsLICMCandidate(I)) 920 return false; 921 922 // The instruction is loop invariant if all of its operands are. 923 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 924 const MachineOperand &MO = I.getOperand(i); 925 926 if (!MO.isReg()) 927 continue; 928 929 unsigned Reg = MO.getReg(); 930 if (Reg == 0) continue; 931 932 // Don't hoist an instruction that uses or defines a physical register. 933 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 934 if (MO.isUse()) { 935 // If the physreg has no defs anywhere, it's just an ambient register 936 // and we can freely move its uses. Alternatively, if it's allocatable, 937 // it could get allocated to something with a def during allocation. 938 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 939 return false; 940 // Otherwise it's safe to move. 941 continue; 942 } else if (!MO.isDead()) { 943 // A def that isn't dead. We can't move it. 944 return false; 945 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 946 // If the reg is live into the loop, we can't hoist an instruction 947 // which would clobber it. 948 return false; 949 } 950 } 951 952 if (!MO.isUse()) 953 continue; 954 955 assert(MRI->getVRegDef(Reg) && 956 "Machine instr not mapped for this vreg?!"); 957 958 // If the loop contains the definition of an operand, then the instruction 959 // isn't loop invariant. 960 if (CurLoop->contains(MRI->getVRegDef(Reg))) 961 return false; 962 } 963 964 // If we got this far, the instruction is loop invariant! 965 return true; 966 } 967 968 969 /// HasLoopPHIUse - Return true if the specified instruction is used by a 970 /// phi node and hoisting it could cause a copy to be inserted. 971 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 972 SmallVector<const MachineInstr*, 8> Work(1, MI); 973 do { 974 MI = Work.pop_back_val(); 975 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 976 if (!MO->isReg() || !MO->isDef()) 977 continue; 978 unsigned Reg = MO->getReg(); 979 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 980 continue; 981 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 982 // A PHI may cause a copy to be inserted. 983 if (UseMI.isPHI()) { 984 // A PHI inside the loop causes a copy because the live range of Reg is 985 // extended across the PHI. 986 if (CurLoop->contains(&UseMI)) 987 return true; 988 // A PHI in an exit block can cause a copy to be inserted if the PHI 989 // has multiple predecessors in the loop with different values. 990 // For now, approximate by rejecting all exit blocks. 991 if (isExitBlock(UseMI.getParent())) 992 return true; 993 continue; 994 } 995 // Look past copies as well. 996 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 997 Work.push_back(&UseMI); 998 } 999 } 1000 } while (!Work.empty()); 1001 return false; 1002 } 1003 1004 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 1005 /// and an use in the current loop, return true if the target considered 1006 /// it 'high'. 1007 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 1008 unsigned DefIdx, unsigned Reg) const { 1009 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) 1010 return false; 1011 1012 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1013 if (UseMI.isCopyLike()) 1014 continue; 1015 if (!CurLoop->contains(UseMI.getParent())) 1016 continue; 1017 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1018 const MachineOperand &MO = UseMI.getOperand(i); 1019 if (!MO.isReg() || !MO.isUse()) 1020 continue; 1021 unsigned MOReg = MO.getReg(); 1022 if (MOReg != Reg) 1023 continue; 1024 1025 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) 1026 return true; 1027 } 1028 1029 // Only look at the first in loop use. 1030 break; 1031 } 1032 1033 return false; 1034 } 1035 1036 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or 1037 /// the operand latency between its def and a use is one or less. 1038 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1039 if (MI.isAsCheapAsAMove() || MI.isCopyLike()) 1040 return true; 1041 if (!InstrItins || InstrItins->isEmpty()) 1042 return false; 1043 1044 bool isCheap = false; 1045 unsigned NumDefs = MI.getDesc().getNumDefs(); 1046 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1047 MachineOperand &DefMO = MI.getOperand(i); 1048 if (!DefMO.isReg() || !DefMO.isDef()) 1049 continue; 1050 --NumDefs; 1051 unsigned Reg = DefMO.getReg(); 1052 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1053 continue; 1054 1055 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) 1056 return false; 1057 isCheap = true; 1058 } 1059 1060 return isCheap; 1061 } 1062 1063 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check 1064 /// if hoisting an instruction of the given cost matrix can cause high 1065 /// register pressure. 1066 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, 1067 bool CheapInstr) { 1068 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1069 CI != CE; ++CI) { 1070 if (CI->second <= 0) 1071 continue; 1072 1073 unsigned RCId = CI->first; 1074 unsigned Limit = RegLimit[RCId]; 1075 int Cost = CI->second; 1076 1077 // Don't hoist cheap instructions if they would increase register pressure, 1078 // even if we're under the limit. 1079 if (CheapInstr) 1080 return true; 1081 1082 for (unsigned i = BackTrace.size(); i != 0; --i) { 1083 SmallVectorImpl<unsigned> &RP = BackTrace[i-1]; 1084 if (RP[RCId] + Cost >= Limit) 1085 return true; 1086 } 1087 } 1088 1089 return false; 1090 } 1091 1092 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the 1093 /// current block and update their register pressures to reflect the effect 1094 /// of hoisting MI from the current block to the preheader. 1095 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1096 if (MI->isImplicitDef()) 1097 return; 1098 1099 // First compute the 'cost' of the instruction, i.e. its contribution 1100 // to register pressure. 1101 DenseMap<unsigned, int> Cost; 1102 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1103 const MachineOperand &MO = MI->getOperand(i); 1104 if (!MO.isReg() || MO.isImplicit()) 1105 continue; 1106 unsigned Reg = MO.getReg(); 1107 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1108 continue; 1109 1110 unsigned RCId, RCCost; 1111 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 1112 if (MO.isDef()) { 1113 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1114 if (CI != Cost.end()) 1115 CI->second += RCCost; 1116 else 1117 Cost.insert(std::make_pair(RCId, RCCost)); 1118 } else if (isOperandKill(MO, MRI)) { 1119 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1120 if (CI != Cost.end()) 1121 CI->second -= RCCost; 1122 else 1123 Cost.insert(std::make_pair(RCId, -RCCost)); 1124 } 1125 } 1126 1127 // Update register pressure of blocks from loop header to current block. 1128 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { 1129 SmallVectorImpl<unsigned> &RP = BackTrace[i]; 1130 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1131 CI != CE; ++CI) { 1132 unsigned RCId = CI->first; 1133 RP[RCId] += CI->second; 1134 } 1135 } 1136 } 1137 1138 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 1139 /// the given loop invariant. 1140 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1141 if (MI.isImplicitDef()) 1142 return true; 1143 1144 // Besides removing computation from the loop, hoisting an instruction has 1145 // these effects: 1146 // 1147 // - The value defined by the instruction becomes live across the entire 1148 // loop. This increases register pressure in the loop. 1149 // 1150 // - If the value is used by a PHI in the loop, a copy will be required for 1151 // lowering the PHI after extending the live range. 1152 // 1153 // - When hoisting the last use of a value in the loop, that value no longer 1154 // needs to be live in the loop. This lowers register pressure in the loop. 1155 1156 bool CheapInstr = IsCheapInstruction(MI); 1157 bool CreatesCopy = HasLoopPHIUse(&MI); 1158 1159 // Don't hoist a cheap instruction if it would create a copy in the loop. 1160 if (CheapInstr && CreatesCopy) { 1161 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1162 return false; 1163 } 1164 1165 // Rematerializable instructions should always be hoisted since the register 1166 // allocator can just pull them down again when needed. 1167 if (TII->isTriviallyReMaterializable(&MI, AA)) 1168 return true; 1169 1170 // Estimate register pressure to determine whether to LICM the instruction. 1171 // In low register pressure situation, we can be more aggressive about 1172 // hoisting. Also, favors hoisting long latency instructions even in 1173 // moderately high pressure situation. 1174 // Cheap instructions will only be hoisted if they don't increase register 1175 // pressure at all. 1176 // FIXME: If there are long latency loop-invariant instructions inside the 1177 // loop at this point, why didn't the optimizer's LICM hoist them? 1178 DenseMap<unsigned, int> Cost; 1179 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1180 const MachineOperand &MO = MI.getOperand(i); 1181 if (!MO.isReg() || MO.isImplicit()) 1182 continue; 1183 unsigned Reg = MO.getReg(); 1184 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1185 continue; 1186 1187 unsigned RCId, RCCost; 1188 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); 1189 if (MO.isDef()) { 1190 if (HasHighOperandLatency(MI, i, Reg)) { 1191 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1192 ++NumHighLatency; 1193 return true; 1194 } 1195 Cost[RCId] += RCCost; 1196 } else if (isOperandKill(MO, MRI)) { 1197 // Is a virtual register use is a kill, hoisting it out of the loop 1198 // may actually reduce register pressure or be register pressure 1199 // neutral. 1200 Cost[RCId] -= RCCost; 1201 } 1202 } 1203 1204 // Visit BBs from header to current BB, if hoisting this doesn't cause 1205 // high register pressure, then it's safe to proceed. 1206 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1207 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1208 ++NumLowRP; 1209 return true; 1210 } 1211 1212 // Don't risk increasing register pressure if it would create copies. 1213 if (CreatesCopy) { 1214 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1215 return false; 1216 } 1217 1218 // Do not "speculate" in high register pressure situation. If an 1219 // instruction is not guaranteed to be executed in the loop, it's best to be 1220 // conservative. 1221 if (AvoidSpeculation && 1222 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1223 DEBUG(dbgs() << "Won't speculate: " << MI); 1224 return false; 1225 } 1226 1227 // High register pressure situation, only hoist if the instruction is going 1228 // to be remat'ed. 1229 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1230 !MI.isInvariantLoad(AA)) { 1231 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1232 return false; 1233 } 1234 1235 return true; 1236 } 1237 1238 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1239 // Don't unfold simple loads. 1240 if (MI->canFoldAsLoad()) 1241 return 0; 1242 1243 // If not, we may be able to unfold a load and hoist that. 1244 // First test whether the instruction is loading from an amenable 1245 // memory location. 1246 if (!MI->isInvariantLoad(AA)) 1247 return 0; 1248 1249 // Next determine the register class for a temporary register. 1250 unsigned LoadRegIndex; 1251 unsigned NewOpc = 1252 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1253 /*UnfoldLoad=*/true, 1254 /*UnfoldStore=*/false, 1255 &LoadRegIndex); 1256 if (NewOpc == 0) return 0; 1257 const MCInstrDesc &MID = TII->get(NewOpc); 1258 if (MID.getNumDefs() != 1) return 0; 1259 MachineFunction &MF = *MI->getParent()->getParent(); 1260 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1261 // Ok, we're unfolding. Create a temporary register and do the unfold. 1262 unsigned Reg = MRI->createVirtualRegister(RC); 1263 1264 SmallVector<MachineInstr *, 2> NewMIs; 1265 bool Success = 1266 TII->unfoldMemoryOperand(MF, MI, Reg, 1267 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1268 NewMIs); 1269 (void)Success; 1270 assert(Success && 1271 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1272 "succeeded!"); 1273 assert(NewMIs.size() == 2 && 1274 "Unfolded a load into multiple instructions!"); 1275 MachineBasicBlock *MBB = MI->getParent(); 1276 MachineBasicBlock::iterator Pos = MI; 1277 MBB->insert(Pos, NewMIs[0]); 1278 MBB->insert(Pos, NewMIs[1]); 1279 // If unfolding produced a load that wasn't loop-invariant or profitable to 1280 // hoist, discard the new instructions and bail. 1281 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1282 NewMIs[0]->eraseFromParent(); 1283 NewMIs[1]->eraseFromParent(); 1284 return 0; 1285 } 1286 1287 // Update register pressure for the unfolded instruction. 1288 UpdateRegPressure(NewMIs[1]); 1289 1290 // Otherwise we successfully unfolded a load that we can hoist. 1291 MI->eraseFromParent(); 1292 return NewMIs[0]; 1293 } 1294 1295 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1296 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 1297 const MachineInstr *MI = &*I; 1298 unsigned Opcode = MI->getOpcode(); 1299 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1300 CI = CSEMap.find(Opcode); 1301 if (CI != CSEMap.end()) 1302 CI->second.push_back(MI); 1303 else { 1304 std::vector<const MachineInstr*> CSEMIs; 1305 CSEMIs.push_back(MI); 1306 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 1307 } 1308 } 1309 } 1310 1311 const MachineInstr* 1312 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1313 std::vector<const MachineInstr*> &PrevMIs) { 1314 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 1315 const MachineInstr *PrevMI = PrevMIs[i]; 1316 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0))) 1317 return PrevMI; 1318 } 1319 return 0; 1320 } 1321 1322 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1323 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1324 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1325 // the undef property onto uses. 1326 if (CI == CSEMap.end() || MI->isImplicitDef()) 1327 return false; 1328 1329 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1330 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1331 1332 // Replace virtual registers defined by MI by their counterparts defined 1333 // by Dup. 1334 SmallVector<unsigned, 2> Defs; 1335 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1336 const MachineOperand &MO = MI->getOperand(i); 1337 1338 // Physical registers may not differ here. 1339 assert((!MO.isReg() || MO.getReg() == 0 || 1340 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1341 MO.getReg() == Dup->getOperand(i).getReg()) && 1342 "Instructions with different phys regs are not identical!"); 1343 1344 if (MO.isReg() && MO.isDef() && 1345 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1346 Defs.push_back(i); 1347 } 1348 1349 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1350 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1351 unsigned Idx = Defs[i]; 1352 unsigned Reg = MI->getOperand(Idx).getReg(); 1353 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1354 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1355 1356 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1357 // Restore old RCs if more than one defs. 1358 for (unsigned j = 0; j != i; ++j) 1359 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1360 return false; 1361 } 1362 } 1363 1364 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1365 unsigned Idx = Defs[i]; 1366 unsigned Reg = MI->getOperand(Idx).getReg(); 1367 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1368 MRI->replaceRegWith(Reg, DupReg); 1369 MRI->clearKillFlags(DupReg); 1370 } 1371 1372 MI->eraseFromParent(); 1373 ++NumCSEed; 1374 return true; 1375 } 1376 return false; 1377 } 1378 1379 /// MayCSE - Return true if the given instruction will be CSE'd if it's 1380 /// hoisted out of the loop. 1381 bool MachineLICM::MayCSE(MachineInstr *MI) { 1382 unsigned Opcode = MI->getOpcode(); 1383 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1384 CI = CSEMap.find(Opcode); 1385 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1386 // the undef property onto uses. 1387 if (CI == CSEMap.end() || MI->isImplicitDef()) 1388 return false; 1389 1390 return LookForDuplicate(MI, CI->second) != 0; 1391 } 1392 1393 /// Hoist - When an instruction is found to use only loop invariant operands 1394 /// that are safe to hoist, this instruction is called to do the dirty work. 1395 /// 1396 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1397 // First check whether we should hoist this instruction. 1398 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1399 // If not, try unfolding a hoistable load. 1400 MI = ExtractHoistableLoad(MI); 1401 if (!MI) return false; 1402 } 1403 1404 // Now move the instructions to the predecessor, inserting it before any 1405 // terminator instructions. 1406 DEBUG({ 1407 dbgs() << "Hoisting " << *MI; 1408 if (Preheader->getBasicBlock()) 1409 dbgs() << " to MachineBasicBlock " 1410 << Preheader->getName(); 1411 if (MI->getParent()->getBasicBlock()) 1412 dbgs() << " from MachineBasicBlock " 1413 << MI->getParent()->getName(); 1414 dbgs() << "\n"; 1415 }); 1416 1417 // If this is the first instruction being hoisted to the preheader, 1418 // initialize the CSE map with potential common expressions. 1419 if (FirstInLoop) { 1420 InitCSEMap(Preheader); 1421 FirstInLoop = false; 1422 } 1423 1424 // Look for opportunity to CSE the hoisted instruction. 1425 unsigned Opcode = MI->getOpcode(); 1426 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1427 CI = CSEMap.find(Opcode); 1428 if (!EliminateCSE(MI, CI)) { 1429 // Otherwise, splice the instruction to the preheader. 1430 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1431 1432 // Update register pressure for BBs from header to this block. 1433 UpdateBackTraceRegPressure(MI); 1434 1435 // Clear the kill flags of any register this instruction defines, 1436 // since they may need to be live throughout the entire loop 1437 // rather than just live for part of it. 1438 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1439 MachineOperand &MO = MI->getOperand(i); 1440 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1441 MRI->clearKillFlags(MO.getReg()); 1442 } 1443 1444 // Add to the CSE map. 1445 if (CI != CSEMap.end()) 1446 CI->second.push_back(MI); 1447 else { 1448 std::vector<const MachineInstr*> CSEMIs; 1449 CSEMIs.push_back(MI); 1450 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 1451 } 1452 } 1453 1454 ++NumHoisted; 1455 Changed = true; 1456 1457 return true; 1458 } 1459 1460 MachineBasicBlock *MachineLICM::getCurPreheader() { 1461 // Determine the block to which to hoist instructions. If we can't find a 1462 // suitable loop predecessor, we can't do any hoisting. 1463 1464 // If we've tried to get a preheader and failed, don't try again. 1465 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1466 return 0; 1467 1468 if (!CurPreheader) { 1469 CurPreheader = CurLoop->getLoopPreheader(); 1470 if (!CurPreheader) { 1471 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1472 if (!Pred) { 1473 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1474 return 0; 1475 } 1476 1477 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1478 if (!CurPreheader) { 1479 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1480 return 0; 1481 } 1482 } 1483 } 1484 return CurPreheader; 1485 } 1486