1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-licm" 42 43 static cl::opt<bool> 44 AvoidSpeculation("avoid-speculation", 45 cl::desc("MachineLICM should avoid speculation"), 46 cl::init(true), cl::Hidden); 47 48 static cl::opt<bool> 49 HoistCheapInsts("hoist-cheap-insts", 50 cl::desc("MachineLICM should hoist even cheap instructions"), 51 cl::init(false), cl::Hidden); 52 53 static cl::opt<bool> 54 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 55 cl::desc("MachineLICM should sink instructions into " 56 "loops to avoid register spills"), 57 cl::init(false), cl::Hidden); 58 59 STATISTIC(NumHoisted, 60 "Number of machine instructions hoisted out of loops"); 61 STATISTIC(NumLowRP, 62 "Number of instructions hoisted in low reg pressure situation"); 63 STATISTIC(NumHighLatency, 64 "Number of high latency instructions hoisted"); 65 STATISTIC(NumCSEed, 66 "Number of hoisted machine instructions CSEed"); 67 STATISTIC(NumPostRAHoisted, 68 "Number of machine instructions hoisted out of loops post regalloc"); 69 70 namespace { 71 class MachineLICM : public MachineFunctionPass { 72 const TargetInstrInfo *TII; 73 const TargetLoweringBase *TLI; 74 const TargetRegisterInfo *TRI; 75 const MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 const InstrItineraryData *InstrItins; 78 bool PreRegAlloc; 79 80 // Various analyses that we use... 81 AliasAnalysis *AA; // Alias analysis info. 82 MachineLoopInfo *MLI; // Current MachineLoopInfo 83 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 84 85 // State that is updated as we process loops 86 bool Changed; // True if a loop is changed. 87 bool FirstInLoop; // True if it's the first LICM in the loop. 88 MachineLoop *CurLoop; // The current loop we are working on. 89 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 90 91 // Exit blocks for CurLoop. 92 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 93 94 bool isExitBlock(const MachineBasicBlock *MBB) const { 95 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 96 ExitBlocks.end(); 97 } 98 99 // Track 'estimated' register pressure. 100 SmallSet<unsigned, 32> RegSeen; 101 SmallVector<unsigned, 8> RegPressure; 102 103 // Register pressure "limit" per register pressure set. If the pressure 104 // is higher than the limit, then it's considered high. 105 SmallVector<unsigned, 8> RegLimit; 106 107 // Register pressure on path leading from loop preheader to current BB. 108 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 109 110 // For each opcode, keep a list of potential CSE instructions. 111 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 112 113 enum { 114 SpeculateFalse = 0, 115 SpeculateTrue = 1, 116 SpeculateUnknown = 2 117 }; 118 119 // If a MBB does not dominate loop exiting blocks then it may not safe 120 // to hoist loads from this block. 121 // Tri-state: 0 - false, 1 - true, 2 - unknown 122 unsigned SpeculationState; 123 124 public: 125 static char ID; // Pass identification, replacement for typeid 126 MachineLICM() : 127 MachineFunctionPass(ID), PreRegAlloc(true) { 128 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 129 } 130 131 explicit MachineLICM(bool PreRA) : 132 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 133 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 void getAnalysisUsage(AnalysisUsage &AU) const override { 139 AU.addRequired<MachineLoopInfo>(); 140 AU.addRequired<MachineDominatorTree>(); 141 AU.addRequired<AliasAnalysis>(); 142 AU.addPreserved<MachineLoopInfo>(); 143 AU.addPreserved<MachineDominatorTree>(); 144 MachineFunctionPass::getAnalysisUsage(AU); 145 } 146 147 void releaseMemory() override { 148 RegSeen.clear(); 149 RegPressure.clear(); 150 RegLimit.clear(); 151 BackTrace.clear(); 152 CSEMap.clear(); 153 } 154 155 private: 156 /// CandidateInfo - Keep track of information about hoisting candidates. 157 struct CandidateInfo { 158 MachineInstr *MI; 159 unsigned Def; 160 int FI; 161 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 162 : MI(mi), Def(def), FI(fi) {} 163 }; 164 165 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 166 /// invariants out to the preheader. 167 void HoistRegionPostRA(); 168 169 /// HoistPostRA - When an instruction is found to only use loop invariant 170 /// operands that is safe to hoist, this instruction is called to do the 171 /// dirty work. 172 void HoistPostRA(MachineInstr *MI, unsigned Def); 173 174 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 175 /// gather register def and frame object update information. 176 void ProcessMI(MachineInstr *MI, 177 BitVector &PhysRegDefs, 178 BitVector &PhysRegClobbers, 179 SmallSet<int, 32> &StoredFIs, 180 SmallVectorImpl<CandidateInfo> &Candidates); 181 182 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 183 /// current loop. 184 void AddToLiveIns(unsigned Reg); 185 186 /// IsLICMCandidate - Returns true if the instruction may be a suitable 187 /// candidate for LICM. e.g. If the instruction is a call, then it's 188 /// obviously not safe to hoist it. 189 bool IsLICMCandidate(MachineInstr &I); 190 191 /// IsLoopInvariantInst - Returns true if the instruction is loop 192 /// invariant. I.e., all virtual register operands are defined outside of 193 /// the loop, physical registers aren't accessed (explicitly or implicitly), 194 /// and the instruction is hoistable. 195 /// 196 bool IsLoopInvariantInst(MachineInstr &I); 197 198 /// HasLoopPHIUse - Return true if the specified instruction is used by any 199 /// phi node in the current loop. 200 bool HasLoopPHIUse(const MachineInstr *MI) const; 201 202 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 203 /// and an use in the current loop, return true if the target considered 204 /// it 'high'. 205 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 206 unsigned Reg) const; 207 208 bool IsCheapInstruction(MachineInstr &MI) const; 209 210 /// CanCauseHighRegPressure - Visit BBs from header to current BB, 211 /// check if hoisting an instruction of the given cost matrix can cause high 212 /// register pressure. 213 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 214 bool Cheap); 215 216 /// UpdateBackTraceRegPressure - Traverse the back trace from header to 217 /// the current block and update their register pressures to reflect the 218 /// effect of hoisting MI from the current block to the preheader. 219 void UpdateBackTraceRegPressure(const MachineInstr *MI); 220 221 /// IsProfitableToHoist - Return true if it is potentially profitable to 222 /// hoist the given loop invariant. 223 bool IsProfitableToHoist(MachineInstr &MI); 224 225 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 226 /// If not then a load from this mbb may not be safe to hoist. 227 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 228 229 void EnterScope(MachineBasicBlock *MBB); 230 231 void ExitScope(MachineBasicBlock *MBB); 232 233 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given 234 /// dominator tree node if its a leaf or all of its children are done. Walk 235 /// up the dominator tree to destroy ancestors which are now done. 236 void ExitScopeIfDone(MachineDomTreeNode *Node, 237 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 238 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 239 240 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 241 /// blocks dominated by the specified header block, and that are in the 242 /// current loop) in depth first order w.r.t the DominatorTree. This allows 243 /// us to visit definitions before uses, allowing us to hoist a loop body in 244 /// one pass without iteration. 245 /// 246 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 247 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 248 249 /// SinkIntoLoop - Sink instructions into loops if profitable. This 250 /// especially tries to prevent register spills caused by register pressure 251 /// if there is little to no overhead moving instructions into loops. 252 void SinkIntoLoop(); 253 254 /// InitRegPressure - Find all virtual register references that are liveout 255 /// of the preheader to initialize the starting "register pressure". Note 256 /// this does not count live through (livein but not used) registers. 257 void InitRegPressure(MachineBasicBlock *BB); 258 259 /// calcRegisterCost - Calculate the additional register pressure that the 260 /// registers used in MI cause. 261 /// 262 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 263 /// figure out which usages are live-ins. 264 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 265 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 266 bool ConsiderSeen, 267 bool ConsiderUnseenAsDef); 268 269 /// UpdateRegPressure - Update estimate of register pressure after the 270 /// specified instruction. 271 void UpdateRegPressure(const MachineInstr *MI, 272 bool ConsiderUnseenAsDef = false); 273 274 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 275 /// the load itself could be hoisted. Return the unfolded and hoistable 276 /// load, or null if the load couldn't be unfolded or if it wouldn't 277 /// be hoistable. 278 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 279 280 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 281 /// duplicate of MI. Return this instruction if it's found. 282 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 283 std::vector<const MachineInstr*> &PrevMIs); 284 285 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 286 /// the preheader that compute the same value. If it's found, do a RAU on 287 /// with the definition of the existing instruction rather than hoisting 288 /// the instruction to the preheader. 289 bool EliminateCSE(MachineInstr *MI, 290 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 291 292 /// MayCSE - Return true if the given instruction will be CSE'd if it's 293 /// hoisted out of the loop. 294 bool MayCSE(MachineInstr *MI); 295 296 /// Hoist - When an instruction is found to only use loop invariant operands 297 /// that is safe to hoist, this instruction is called to do the dirty work. 298 /// It returns true if the instruction is hoisted. 299 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 300 301 /// InitCSEMap - Initialize the CSE map with instructions that are in the 302 /// current loop preheader that may become duplicates of instructions that 303 /// are hoisted out of the loop. 304 void InitCSEMap(MachineBasicBlock *BB); 305 306 /// getCurPreheader - Get the preheader for the current loop, splitting 307 /// a critical edge if needed. 308 MachineBasicBlock *getCurPreheader(); 309 }; 310 } // end anonymous namespace 311 312 char MachineLICM::ID = 0; 313 char &llvm::MachineLICMID = MachineLICM::ID; 314 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 315 "Machine Loop Invariant Code Motion", false, false) 316 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 317 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 318 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 319 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 320 "Machine Loop Invariant Code Motion", false, false) 321 322 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 323 /// loop that has a unique predecessor. 324 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 325 // Check whether this loop even has a unique predecessor. 326 if (!CurLoop->getLoopPredecessor()) 327 return false; 328 // Ok, now check to see if any of its outer loops do. 329 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 330 if (L->getLoopPredecessor()) 331 return false; 332 // None of them did, so this is the outermost with a unique predecessor. 333 return true; 334 } 335 336 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 337 if (skipOptnoneFunction(*MF.getFunction())) 338 return false; 339 340 Changed = FirstInLoop = false; 341 TII = MF.getSubtarget().getInstrInfo(); 342 TLI = MF.getSubtarget().getTargetLowering(); 343 TRI = MF.getSubtarget().getRegisterInfo(); 344 MFI = MF.getFrameInfo(); 345 MRI = &MF.getRegInfo(); 346 InstrItins = MF.getSubtarget().getInstrItineraryData(); 347 348 PreRegAlloc = MRI->isSSA(); 349 350 if (PreRegAlloc) 351 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 352 else 353 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 354 DEBUG(dbgs() << MF.getName() << " ********\n"); 355 356 if (PreRegAlloc) { 357 // Estimate register pressure during pre-regalloc pass. 358 unsigned NumRPS = TRI->getNumRegPressureSets(); 359 RegPressure.resize(NumRPS); 360 std::fill(RegPressure.begin(), RegPressure.end(), 0); 361 RegLimit.resize(NumRPS); 362 for (unsigned i = 0, e = NumRPS; i != e; ++i) 363 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 364 } 365 366 // Get our Loop information... 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 DT = &getAnalysis<MachineDominatorTree>(); 369 AA = &getAnalysis<AliasAnalysis>(); 370 371 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 372 while (!Worklist.empty()) { 373 CurLoop = Worklist.pop_back_val(); 374 CurPreheader = nullptr; 375 ExitBlocks.clear(); 376 377 // If this is done before regalloc, only visit outer-most preheader-sporting 378 // loops. 379 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 380 Worklist.append(CurLoop->begin(), CurLoop->end()); 381 continue; 382 } 383 384 CurLoop->getExitBlocks(ExitBlocks); 385 386 if (!PreRegAlloc) 387 HoistRegionPostRA(); 388 else { 389 // CSEMap is initialized for loop header when the first instruction is 390 // being hoisted. 391 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 392 FirstInLoop = true; 393 HoistOutOfLoop(N); 394 CSEMap.clear(); 395 396 if (SinkInstsToAvoidSpills) 397 SinkIntoLoop(); 398 } 399 } 400 401 return Changed; 402 } 403 404 /// InstructionStoresToFI - Return true if instruction stores to the 405 /// specified frame. 406 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 407 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 408 oe = MI->memoperands_end(); o != oe; ++o) { 409 if (!(*o)->isStore() || !(*o)->getPseudoValue()) 410 continue; 411 if (const FixedStackPseudoSourceValue *Value = 412 dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) { 413 if (Value->getFrameIndex() == FI) 414 return true; 415 } 416 } 417 return false; 418 } 419 420 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 421 /// gather register def and frame object update information. 422 void MachineLICM::ProcessMI(MachineInstr *MI, 423 BitVector &PhysRegDefs, 424 BitVector &PhysRegClobbers, 425 SmallSet<int, 32> &StoredFIs, 426 SmallVectorImpl<CandidateInfo> &Candidates) { 427 bool RuledOut = false; 428 bool HasNonInvariantUse = false; 429 unsigned Def = 0; 430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 431 const MachineOperand &MO = MI->getOperand(i); 432 if (MO.isFI()) { 433 // Remember if the instruction stores to the frame index. 434 int FI = MO.getIndex(); 435 if (!StoredFIs.count(FI) && 436 MFI->isSpillSlotObjectIndex(FI) && 437 InstructionStoresToFI(MI, FI)) 438 StoredFIs.insert(FI); 439 HasNonInvariantUse = true; 440 continue; 441 } 442 443 // We can't hoist an instruction defining a physreg that is clobbered in 444 // the loop. 445 if (MO.isRegMask()) { 446 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 447 continue; 448 } 449 450 if (!MO.isReg()) 451 continue; 452 unsigned Reg = MO.getReg(); 453 if (!Reg) 454 continue; 455 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 456 "Not expecting virtual register!"); 457 458 if (!MO.isDef()) { 459 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 460 // If it's using a non-loop-invariant register, then it's obviously not 461 // safe to hoist. 462 HasNonInvariantUse = true; 463 continue; 464 } 465 466 if (MO.isImplicit()) { 467 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 468 PhysRegClobbers.set(*AI); 469 if (!MO.isDead()) 470 // Non-dead implicit def? This cannot be hoisted. 471 RuledOut = true; 472 // No need to check if a dead implicit def is also defined by 473 // another instruction. 474 continue; 475 } 476 477 // FIXME: For now, avoid instructions with multiple defs, unless 478 // it's a dead implicit def. 479 if (Def) 480 RuledOut = true; 481 else 482 Def = Reg; 483 484 // If we have already seen another instruction that defines the same 485 // register, then this is not safe. Two defs is indicated by setting a 486 // PhysRegClobbers bit. 487 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 488 if (PhysRegDefs.test(*AS)) 489 PhysRegClobbers.set(*AS); 490 PhysRegDefs.set(*AS); 491 } 492 if (PhysRegClobbers.test(Reg)) 493 // MI defined register is seen defined by another instruction in 494 // the loop, it cannot be a LICM candidate. 495 RuledOut = true; 496 } 497 498 // Only consider reloads for now and remats which do not have register 499 // operands. FIXME: Consider unfold load folding instructions. 500 if (Def && !RuledOut) { 501 int FI = INT_MIN; 502 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 503 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 504 Candidates.push_back(CandidateInfo(MI, Def, FI)); 505 } 506 } 507 508 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 509 /// invariants out to the preheader. 510 void MachineLICM::HoistRegionPostRA() { 511 MachineBasicBlock *Preheader = getCurPreheader(); 512 if (!Preheader) 513 return; 514 515 unsigned NumRegs = TRI->getNumRegs(); 516 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 517 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 518 519 SmallVector<CandidateInfo, 32> Candidates; 520 SmallSet<int, 32> StoredFIs; 521 522 // Walk the entire region, count number of defs for each register, and 523 // collect potential LICM candidates. 524 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 525 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 526 MachineBasicBlock *BB = Blocks[i]; 527 528 // If the header of the loop containing this basic block is a landing pad, 529 // then don't try to hoist instructions out of this loop. 530 const MachineLoop *ML = MLI->getLoopFor(BB); 531 if (ML && ML->getHeader()->isLandingPad()) continue; 532 533 // Conservatively treat live-in's as an external def. 534 // FIXME: That means a reload that're reused in successor block(s) will not 535 // be LICM'ed. 536 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 537 E = BB->livein_end(); I != E; ++I) { 538 unsigned Reg = *I; 539 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 540 PhysRegDefs.set(*AI); 541 } 542 543 SpeculationState = SpeculateUnknown; 544 for (MachineBasicBlock::iterator 545 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 546 MachineInstr *MI = &*MII; 547 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 548 } 549 } 550 551 // Gather the registers read / clobbered by the terminator. 552 BitVector TermRegs(NumRegs); 553 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 554 if (TI != Preheader->end()) { 555 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { 556 const MachineOperand &MO = TI->getOperand(i); 557 if (!MO.isReg()) 558 continue; 559 unsigned Reg = MO.getReg(); 560 if (!Reg) 561 continue; 562 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 563 TermRegs.set(*AI); 564 } 565 } 566 567 // Now evaluate whether the potential candidates qualify. 568 // 1. Check if the candidate defined register is defined by another 569 // instruction in the loop. 570 // 2. If the candidate is a load from stack slot (always true for now), 571 // check if the slot is stored anywhere in the loop. 572 // 3. Make sure candidate def should not clobber 573 // registers read by the terminator. Similarly its def should not be 574 // clobbered by the terminator. 575 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 576 if (Candidates[i].FI != INT_MIN && 577 StoredFIs.count(Candidates[i].FI)) 578 continue; 579 580 unsigned Def = Candidates[i].Def; 581 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 582 bool Safe = true; 583 MachineInstr *MI = Candidates[i].MI; 584 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 585 const MachineOperand &MO = MI->getOperand(j); 586 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 587 continue; 588 unsigned Reg = MO.getReg(); 589 if (PhysRegDefs.test(Reg) || 590 PhysRegClobbers.test(Reg)) { 591 // If it's using a non-loop-invariant register, then it's obviously 592 // not safe to hoist. 593 Safe = false; 594 break; 595 } 596 } 597 if (Safe) 598 HoistPostRA(MI, Candidates[i].Def); 599 } 600 } 601 } 602 603 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 604 /// loop, and make sure it is not killed by any instructions in the loop. 605 void MachineLICM::AddToLiveIns(unsigned Reg) { 606 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 607 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 608 MachineBasicBlock *BB = Blocks[i]; 609 if (!BB->isLiveIn(Reg)) 610 BB->addLiveIn(Reg); 611 for (MachineBasicBlock::iterator 612 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 613 MachineInstr *MI = &*MII; 614 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 615 MachineOperand &MO = MI->getOperand(i); 616 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 617 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 618 MO.setIsKill(false); 619 } 620 } 621 } 622 } 623 624 /// HoistPostRA - When an instruction is found to only use loop invariant 625 /// operands that is safe to hoist, this instruction is called to do the 626 /// dirty work. 627 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 628 MachineBasicBlock *Preheader = getCurPreheader(); 629 630 // Now move the instructions to the predecessor, inserting it before any 631 // terminator instructions. 632 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 633 << MI->getParent()->getNumber() << ": " << *MI); 634 635 // Splice the instruction to the preheader. 636 MachineBasicBlock *MBB = MI->getParent(); 637 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 638 639 // Add register to livein list to all the BBs in the current loop since a 640 // loop invariant must be kept live throughout the whole loop. This is 641 // important to ensure later passes do not scavenge the def register. 642 AddToLiveIns(Def); 643 644 ++NumPostRAHoisted; 645 Changed = true; 646 } 647 648 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 649 // If not then a load from this mbb may not be safe to hoist. 650 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 651 if (SpeculationState != SpeculateUnknown) 652 return SpeculationState == SpeculateFalse; 653 654 if (BB != CurLoop->getHeader()) { 655 // Check loop exiting blocks. 656 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 657 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 658 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) 659 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { 660 SpeculationState = SpeculateTrue; 661 return false; 662 } 663 } 664 665 SpeculationState = SpeculateFalse; 666 return true; 667 } 668 669 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 670 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 671 672 // Remember livein register pressure. 673 BackTrace.push_back(RegPressure); 674 } 675 676 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 677 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 678 BackTrace.pop_back(); 679 } 680 681 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 682 /// dominator tree node if its a leaf or all of its children are done. Walk 683 /// up the dominator tree to destroy ancestors which are now done. 684 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 685 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 686 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 687 if (OpenChildren[Node]) 688 return; 689 690 // Pop scope. 691 ExitScope(Node->getBlock()); 692 693 // Now traverse upwards to pop ancestors whose offsprings are all done. 694 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 695 unsigned Left = --OpenChildren[Parent]; 696 if (Left != 0) 697 break; 698 ExitScope(Parent->getBlock()); 699 Node = Parent; 700 } 701 } 702 703 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 704 /// blocks dominated by the specified header block, and that are in the 705 /// current loop) in depth first order w.r.t the DominatorTree. This allows 706 /// us to visit definitions before uses, allowing us to hoist a loop body in 707 /// one pass without iteration. 708 /// 709 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 710 MachineBasicBlock *Preheader = getCurPreheader(); 711 if (!Preheader) 712 return; 713 714 SmallVector<MachineDomTreeNode*, 32> Scopes; 715 SmallVector<MachineDomTreeNode*, 8> WorkList; 716 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 717 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 718 719 // Perform a DFS walk to determine the order of visit. 720 WorkList.push_back(HeaderN); 721 while (!WorkList.empty()) { 722 MachineDomTreeNode *Node = WorkList.pop_back_val(); 723 assert(Node && "Null dominator tree node?"); 724 MachineBasicBlock *BB = Node->getBlock(); 725 726 // If the header of the loop containing this basic block is a landing pad, 727 // then don't try to hoist instructions out of this loop. 728 const MachineLoop *ML = MLI->getLoopFor(BB); 729 if (ML && ML->getHeader()->isLandingPad()) 730 continue; 731 732 // If this subregion is not in the top level loop at all, exit. 733 if (!CurLoop->contains(BB)) 734 continue; 735 736 Scopes.push_back(Node); 737 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 738 unsigned NumChildren = Children.size(); 739 740 // Don't hoist things out of a large switch statement. This often causes 741 // code to be hoisted that wasn't going to be executed, and increases 742 // register pressure in a situation where it's likely to matter. 743 if (BB->succ_size() >= 25) 744 NumChildren = 0; 745 746 OpenChildren[Node] = NumChildren; 747 // Add children in reverse order as then the next popped worklist node is 748 // the first child of this node. This means we ultimately traverse the 749 // DOM tree in exactly the same order as if we'd recursed. 750 for (int i = (int)NumChildren-1; i >= 0; --i) { 751 MachineDomTreeNode *Child = Children[i]; 752 ParentMap[Child] = Node; 753 WorkList.push_back(Child); 754 } 755 } 756 757 if (Scopes.size() == 0) 758 return; 759 760 // Compute registers which are livein into the loop headers. 761 RegSeen.clear(); 762 BackTrace.clear(); 763 InitRegPressure(Preheader); 764 765 // Now perform LICM. 766 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 767 MachineDomTreeNode *Node = Scopes[i]; 768 MachineBasicBlock *MBB = Node->getBlock(); 769 770 EnterScope(MBB); 771 772 // Process the block 773 SpeculationState = SpeculateUnknown; 774 for (MachineBasicBlock::iterator 775 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 776 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 777 MachineInstr *MI = &*MII; 778 if (!Hoist(MI, Preheader)) 779 UpdateRegPressure(MI); 780 MII = NextMII; 781 } 782 783 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 784 ExitScopeIfDone(Node, OpenChildren, ParentMap); 785 } 786 } 787 788 void MachineLICM::SinkIntoLoop() { 789 MachineBasicBlock *Preheader = getCurPreheader(); 790 if (!Preheader) 791 return; 792 793 SmallVector<MachineInstr *, 8> Candidates; 794 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 795 I != Preheader->instr_end(); ++I) { 796 // We need to ensure that we can safely move this instruction into the loop. 797 // As such, it must not have side-effects, e.g. such as a call has. 798 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(I)) 799 Candidates.push_back(I); 800 } 801 802 for (MachineInstr *I : Candidates) { 803 const MachineOperand &MO = I->getOperand(0); 804 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 805 continue; 806 if (!MRI->hasOneDef(MO.getReg())) 807 continue; 808 bool CanSink = true; 809 MachineBasicBlock *B = nullptr; 810 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 811 // FIXME: Come up with a proper cost model that estimates whether sinking 812 // the instruction (and thus possibly executing it on every loop 813 // iteration) is more expensive than a register. 814 // For now assumes that copies are cheap and thus almost always worth it. 815 if (!MI.isCopy()) { 816 CanSink = false; 817 break; 818 } 819 if (!B) { 820 B = MI.getParent(); 821 continue; 822 } 823 B = DT->findNearestCommonDominator(B, MI.getParent()); 824 if (!B) { 825 CanSink = false; 826 break; 827 } 828 } 829 if (!CanSink || !B || B == Preheader) 830 continue; 831 B->splice(B->getFirstNonPHI(), Preheader, I); 832 } 833 } 834 835 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 836 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 837 } 838 839 /// InitRegPressure - Find all virtual register references that are liveout of 840 /// the preheader to initialize the starting "register pressure". Note this 841 /// does not count live through (livein but not used) registers. 842 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 843 std::fill(RegPressure.begin(), RegPressure.end(), 0); 844 845 // If the preheader has only a single predecessor and it ends with a 846 // fallthrough or an unconditional branch, then scan its predecessor for live 847 // defs as well. This happens whenever the preheader is created by splitting 848 // the critical edge from the loop predecessor to the loop header. 849 if (BB->pred_size() == 1) { 850 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 851 SmallVector<MachineOperand, 4> Cond; 852 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 853 InitRegPressure(*BB->pred_begin()); 854 } 855 856 for (const MachineInstr &MI : *BB) 857 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 858 } 859 860 /// UpdateRegPressure - Update estimate of register pressure after the 861 /// specified instruction. 862 void MachineLICM::UpdateRegPressure(const MachineInstr *MI, 863 bool ConsiderUnseenAsDef) { 864 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 865 for (const auto &RPIdAndCost : Cost) { 866 unsigned Class = RPIdAndCost.first; 867 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 868 RegPressure[Class] = 0; 869 else 870 RegPressure[Class] += RPIdAndCost.second; 871 } 872 } 873 874 DenseMap<unsigned, int> 875 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 876 bool ConsiderUnseenAsDef) { 877 DenseMap<unsigned, int> Cost; 878 if (MI->isImplicitDef()) 879 return Cost; 880 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 881 const MachineOperand &MO = MI->getOperand(i); 882 if (!MO.isReg() || MO.isImplicit()) 883 continue; 884 unsigned Reg = MO.getReg(); 885 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 886 continue; 887 888 // FIXME: It seems bad to use RegSeen only for some of these calculations. 889 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 890 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 891 892 RegClassWeight W = TRI->getRegClassWeight(RC); 893 int RCCost = 0; 894 if (MO.isDef()) 895 RCCost = W.RegWeight; 896 else { 897 bool isKill = isOperandKill(MO, MRI); 898 if (isNew && !isKill && ConsiderUnseenAsDef) 899 // Haven't seen this, it must be a livein. 900 RCCost = W.RegWeight; 901 else if (!isNew && isKill) 902 RCCost = -W.RegWeight; 903 } 904 if (RCCost == 0) 905 continue; 906 const int *PS = TRI->getRegClassPressureSets(RC); 907 for (; *PS != -1; ++PS) { 908 if (Cost.find(*PS) == Cost.end()) 909 Cost[*PS] = RCCost; 910 else 911 Cost[*PS] += RCCost; 912 } 913 } 914 return Cost; 915 } 916 917 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction 918 /// loads from global offset table or constant pool. 919 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { 920 assert (MI.mayLoad() && "Expected MI that loads!"); 921 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 922 E = MI.memoperands_end(); I != E; ++I) { 923 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) { 924 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) 925 return true; 926 } 927 } 928 return false; 929 } 930 931 /// IsLICMCandidate - Returns true if the instruction may be a suitable 932 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 933 /// not safe to hoist it. 934 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 935 // Check if it's safe to move the instruction. 936 bool DontMoveAcrossStore = true; 937 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 938 return false; 939 940 // If it is load then check if it is guaranteed to execute by making sure that 941 // it dominates all exiting blocks. If it doesn't, then there is a path out of 942 // the loop which does not execute this load, so we can't hoist it. Loads 943 // from constant memory are not safe to speculate all the time, for example 944 // indexed load from a jump table. 945 // Stores and side effects are already checked by isSafeToMove. 946 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && 947 !IsGuaranteedToExecute(I.getParent())) 948 return false; 949 950 return true; 951 } 952 953 /// IsLoopInvariantInst - Returns true if the instruction is loop 954 /// invariant. I.e., all virtual register operands are defined outside of the 955 /// loop, physical registers aren't accessed explicitly, and there are no side 956 /// effects that aren't captured by the operands or other flags. 957 /// 958 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 959 if (!IsLICMCandidate(I)) 960 return false; 961 962 // The instruction is loop invariant if all of its operands are. 963 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 964 const MachineOperand &MO = I.getOperand(i); 965 966 if (!MO.isReg()) 967 continue; 968 969 unsigned Reg = MO.getReg(); 970 if (Reg == 0) continue; 971 972 // Don't hoist an instruction that uses or defines a physical register. 973 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 974 if (MO.isUse()) { 975 // If the physreg has no defs anywhere, it's just an ambient register 976 // and we can freely move its uses. Alternatively, if it's allocatable, 977 // it could get allocated to something with a def during allocation. 978 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 979 return false; 980 // Otherwise it's safe to move. 981 continue; 982 } else if (!MO.isDead()) { 983 // A def that isn't dead. We can't move it. 984 return false; 985 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 986 // If the reg is live into the loop, we can't hoist an instruction 987 // which would clobber it. 988 return false; 989 } 990 } 991 992 if (!MO.isUse()) 993 continue; 994 995 assert(MRI->getVRegDef(Reg) && 996 "Machine instr not mapped for this vreg?!"); 997 998 // If the loop contains the definition of an operand, then the instruction 999 // isn't loop invariant. 1000 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1001 return false; 1002 } 1003 1004 // If we got this far, the instruction is loop invariant! 1005 return true; 1006 } 1007 1008 1009 /// HasLoopPHIUse - Return true if the specified instruction is used by a 1010 /// phi node and hoisting it could cause a copy to be inserted. 1011 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 1012 SmallVector<const MachineInstr*, 8> Work(1, MI); 1013 do { 1014 MI = Work.pop_back_val(); 1015 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 1016 if (!MO->isReg() || !MO->isDef()) 1017 continue; 1018 unsigned Reg = MO->getReg(); 1019 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1020 continue; 1021 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1022 // A PHI may cause a copy to be inserted. 1023 if (UseMI.isPHI()) { 1024 // A PHI inside the loop causes a copy because the live range of Reg is 1025 // extended across the PHI. 1026 if (CurLoop->contains(&UseMI)) 1027 return true; 1028 // A PHI in an exit block can cause a copy to be inserted if the PHI 1029 // has multiple predecessors in the loop with different values. 1030 // For now, approximate by rejecting all exit blocks. 1031 if (isExitBlock(UseMI.getParent())) 1032 return true; 1033 continue; 1034 } 1035 // Look past copies as well. 1036 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1037 Work.push_back(&UseMI); 1038 } 1039 } 1040 } while (!Work.empty()); 1041 return false; 1042 } 1043 1044 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 1045 /// and an use in the current loop, return true if the target considered 1046 /// it 'high'. 1047 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 1048 unsigned DefIdx, unsigned Reg) const { 1049 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) 1050 return false; 1051 1052 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1053 if (UseMI.isCopyLike()) 1054 continue; 1055 if (!CurLoop->contains(UseMI.getParent())) 1056 continue; 1057 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1058 const MachineOperand &MO = UseMI.getOperand(i); 1059 if (!MO.isReg() || !MO.isUse()) 1060 continue; 1061 unsigned MOReg = MO.getReg(); 1062 if (MOReg != Reg) 1063 continue; 1064 1065 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) 1066 return true; 1067 } 1068 1069 // Only look at the first in loop use. 1070 break; 1071 } 1072 1073 return false; 1074 } 1075 1076 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or 1077 /// the operand latency between its def and a use is one or less. 1078 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1079 if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike()) 1080 return true; 1081 if (!InstrItins || InstrItins->isEmpty()) 1082 return false; 1083 1084 bool isCheap = false; 1085 unsigned NumDefs = MI.getDesc().getNumDefs(); 1086 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1087 MachineOperand &DefMO = MI.getOperand(i); 1088 if (!DefMO.isReg() || !DefMO.isDef()) 1089 continue; 1090 --NumDefs; 1091 unsigned Reg = DefMO.getReg(); 1092 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1093 continue; 1094 1095 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) 1096 return false; 1097 isCheap = true; 1098 } 1099 1100 return isCheap; 1101 } 1102 1103 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check 1104 /// if hoisting an instruction of the given cost matrix can cause high 1105 /// register pressure. 1106 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1107 bool CheapInstr) { 1108 for (const auto &RPIdAndCost : Cost) { 1109 if (RPIdAndCost.second <= 0) 1110 continue; 1111 1112 unsigned Class = RPIdAndCost.first; 1113 int Limit = RegLimit[Class]; 1114 1115 // Don't hoist cheap instructions if they would increase register pressure, 1116 // even if we're under the limit. 1117 if (CheapInstr && !HoistCheapInsts) 1118 return true; 1119 1120 for (const auto &RP : BackTrace) 1121 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1122 return true; 1123 } 1124 1125 return false; 1126 } 1127 1128 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the 1129 /// current block and update their register pressures to reflect the effect 1130 /// of hoisting MI from the current block to the preheader. 1131 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1132 // First compute the 'cost' of the instruction, i.e. its contribution 1133 // to register pressure. 1134 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1135 /*ConsiderUnseenAsDef=*/false); 1136 1137 // Update register pressure of blocks from loop header to current block. 1138 for (auto &RP : BackTrace) 1139 for (const auto &RPIdAndCost : Cost) 1140 RP[RPIdAndCost.first] += RPIdAndCost.second; 1141 } 1142 1143 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 1144 /// the given loop invariant. 1145 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1146 if (MI.isImplicitDef()) 1147 return true; 1148 1149 // Besides removing computation from the loop, hoisting an instruction has 1150 // these effects: 1151 // 1152 // - The value defined by the instruction becomes live across the entire 1153 // loop. This increases register pressure in the loop. 1154 // 1155 // - If the value is used by a PHI in the loop, a copy will be required for 1156 // lowering the PHI after extending the live range. 1157 // 1158 // - When hoisting the last use of a value in the loop, that value no longer 1159 // needs to be live in the loop. This lowers register pressure in the loop. 1160 1161 bool CheapInstr = IsCheapInstruction(MI); 1162 bool CreatesCopy = HasLoopPHIUse(&MI); 1163 1164 // Don't hoist a cheap instruction if it would create a copy in the loop. 1165 if (CheapInstr && CreatesCopy) { 1166 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1167 return false; 1168 } 1169 1170 // Rematerializable instructions should always be hoisted since the register 1171 // allocator can just pull them down again when needed. 1172 if (TII->isTriviallyReMaterializable(&MI, AA)) 1173 return true; 1174 1175 // FIXME: If there are long latency loop-invariant instructions inside the 1176 // loop at this point, why didn't the optimizer's LICM hoist them? 1177 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1178 const MachineOperand &MO = MI.getOperand(i); 1179 if (!MO.isReg() || MO.isImplicit()) 1180 continue; 1181 unsigned Reg = MO.getReg(); 1182 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1183 continue; 1184 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1185 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1186 ++NumHighLatency; 1187 return true; 1188 } 1189 } 1190 1191 // Estimate register pressure to determine whether to LICM the instruction. 1192 // In low register pressure situation, we can be more aggressive about 1193 // hoisting. Also, favors hoisting long latency instructions even in 1194 // moderately high pressure situation. 1195 // Cheap instructions will only be hoisted if they don't increase register 1196 // pressure at all. 1197 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1198 /*ConsiderUnseenAsDef=*/false); 1199 1200 // Visit BBs from header to current BB, if hoisting this doesn't cause 1201 // high register pressure, then it's safe to proceed. 1202 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1203 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1204 ++NumLowRP; 1205 return true; 1206 } 1207 1208 // Don't risk increasing register pressure if it would create copies. 1209 if (CreatesCopy) { 1210 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1211 return false; 1212 } 1213 1214 // Do not "speculate" in high register pressure situation. If an 1215 // instruction is not guaranteed to be executed in the loop, it's best to be 1216 // conservative. 1217 if (AvoidSpeculation && 1218 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1219 DEBUG(dbgs() << "Won't speculate: " << MI); 1220 return false; 1221 } 1222 1223 // High register pressure situation, only hoist if the instruction is going 1224 // to be remat'ed. 1225 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1226 !MI.isInvariantLoad(AA)) { 1227 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1228 return false; 1229 } 1230 1231 return true; 1232 } 1233 1234 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1235 // Don't unfold simple loads. 1236 if (MI->canFoldAsLoad()) 1237 return nullptr; 1238 1239 // If not, we may be able to unfold a load and hoist that. 1240 // First test whether the instruction is loading from an amenable 1241 // memory location. 1242 if (!MI->isInvariantLoad(AA)) 1243 return nullptr; 1244 1245 // Next determine the register class for a temporary register. 1246 unsigned LoadRegIndex; 1247 unsigned NewOpc = 1248 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1249 /*UnfoldLoad=*/true, 1250 /*UnfoldStore=*/false, 1251 &LoadRegIndex); 1252 if (NewOpc == 0) return nullptr; 1253 const MCInstrDesc &MID = TII->get(NewOpc); 1254 if (MID.getNumDefs() != 1) return nullptr; 1255 MachineFunction &MF = *MI->getParent()->getParent(); 1256 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1257 // Ok, we're unfolding. Create a temporary register and do the unfold. 1258 unsigned Reg = MRI->createVirtualRegister(RC); 1259 1260 SmallVector<MachineInstr *, 2> NewMIs; 1261 bool Success = 1262 TII->unfoldMemoryOperand(MF, MI, Reg, 1263 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1264 NewMIs); 1265 (void)Success; 1266 assert(Success && 1267 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1268 "succeeded!"); 1269 assert(NewMIs.size() == 2 && 1270 "Unfolded a load into multiple instructions!"); 1271 MachineBasicBlock *MBB = MI->getParent(); 1272 MachineBasicBlock::iterator Pos = MI; 1273 MBB->insert(Pos, NewMIs[0]); 1274 MBB->insert(Pos, NewMIs[1]); 1275 // If unfolding produced a load that wasn't loop-invariant or profitable to 1276 // hoist, discard the new instructions and bail. 1277 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1278 NewMIs[0]->eraseFromParent(); 1279 NewMIs[1]->eraseFromParent(); 1280 return nullptr; 1281 } 1282 1283 // Update register pressure for the unfolded instruction. 1284 UpdateRegPressure(NewMIs[1]); 1285 1286 // Otherwise we successfully unfolded a load that we can hoist. 1287 MI->eraseFromParent(); 1288 return NewMIs[0]; 1289 } 1290 1291 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1292 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 1293 const MachineInstr *MI = &*I; 1294 unsigned Opcode = MI->getOpcode(); 1295 CSEMap[Opcode].push_back(MI); 1296 } 1297 } 1298 1299 const MachineInstr* 1300 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1301 std::vector<const MachineInstr*> &PrevMIs) { 1302 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 1303 const MachineInstr *PrevMI = PrevMIs[i]; 1304 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) 1305 return PrevMI; 1306 } 1307 return nullptr; 1308 } 1309 1310 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1311 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1312 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1313 // the undef property onto uses. 1314 if (CI == CSEMap.end() || MI->isImplicitDef()) 1315 return false; 1316 1317 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1318 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1319 1320 // Replace virtual registers defined by MI by their counterparts defined 1321 // by Dup. 1322 SmallVector<unsigned, 2> Defs; 1323 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1324 const MachineOperand &MO = MI->getOperand(i); 1325 1326 // Physical registers may not differ here. 1327 assert((!MO.isReg() || MO.getReg() == 0 || 1328 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1329 MO.getReg() == Dup->getOperand(i).getReg()) && 1330 "Instructions with different phys regs are not identical!"); 1331 1332 if (MO.isReg() && MO.isDef() && 1333 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1334 Defs.push_back(i); 1335 } 1336 1337 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1338 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1339 unsigned Idx = Defs[i]; 1340 unsigned Reg = MI->getOperand(Idx).getReg(); 1341 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1342 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1343 1344 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1345 // Restore old RCs if more than one defs. 1346 for (unsigned j = 0; j != i; ++j) 1347 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1348 return false; 1349 } 1350 } 1351 1352 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1353 unsigned Idx = Defs[i]; 1354 unsigned Reg = MI->getOperand(Idx).getReg(); 1355 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1356 MRI->replaceRegWith(Reg, DupReg); 1357 MRI->clearKillFlags(DupReg); 1358 } 1359 1360 MI->eraseFromParent(); 1361 ++NumCSEed; 1362 return true; 1363 } 1364 return false; 1365 } 1366 1367 /// MayCSE - Return true if the given instruction will be CSE'd if it's 1368 /// hoisted out of the loop. 1369 bool MachineLICM::MayCSE(MachineInstr *MI) { 1370 unsigned Opcode = MI->getOpcode(); 1371 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1372 CI = CSEMap.find(Opcode); 1373 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1374 // the undef property onto uses. 1375 if (CI == CSEMap.end() || MI->isImplicitDef()) 1376 return false; 1377 1378 return LookForDuplicate(MI, CI->second) != nullptr; 1379 } 1380 1381 /// Hoist - When an instruction is found to use only loop invariant operands 1382 /// that are safe to hoist, this instruction is called to do the dirty work. 1383 /// 1384 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1385 // First check whether we should hoist this instruction. 1386 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1387 // If not, try unfolding a hoistable load. 1388 MI = ExtractHoistableLoad(MI); 1389 if (!MI) return false; 1390 } 1391 1392 // Now move the instructions to the predecessor, inserting it before any 1393 // terminator instructions. 1394 DEBUG({ 1395 dbgs() << "Hoisting " << *MI; 1396 if (Preheader->getBasicBlock()) 1397 dbgs() << " to MachineBasicBlock " 1398 << Preheader->getName(); 1399 if (MI->getParent()->getBasicBlock()) 1400 dbgs() << " from MachineBasicBlock " 1401 << MI->getParent()->getName(); 1402 dbgs() << "\n"; 1403 }); 1404 1405 // If this is the first instruction being hoisted to the preheader, 1406 // initialize the CSE map with potential common expressions. 1407 if (FirstInLoop) { 1408 InitCSEMap(Preheader); 1409 FirstInLoop = false; 1410 } 1411 1412 // Look for opportunity to CSE the hoisted instruction. 1413 unsigned Opcode = MI->getOpcode(); 1414 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1415 CI = CSEMap.find(Opcode); 1416 if (!EliminateCSE(MI, CI)) { 1417 // Otherwise, splice the instruction to the preheader. 1418 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1419 1420 // Update register pressure for BBs from header to this block. 1421 UpdateBackTraceRegPressure(MI); 1422 1423 // Clear the kill flags of any register this instruction defines, 1424 // since they may need to be live throughout the entire loop 1425 // rather than just live for part of it. 1426 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1427 MachineOperand &MO = MI->getOperand(i); 1428 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1429 MRI->clearKillFlags(MO.getReg()); 1430 } 1431 1432 // Add to the CSE map. 1433 if (CI != CSEMap.end()) 1434 CI->second.push_back(MI); 1435 else 1436 CSEMap[Opcode].push_back(MI); 1437 } 1438 1439 ++NumHoisted; 1440 Changed = true; 1441 1442 return true; 1443 } 1444 1445 MachineBasicBlock *MachineLICM::getCurPreheader() { 1446 // Determine the block to which to hoist instructions. If we can't find a 1447 // suitable loop predecessor, we can't do any hoisting. 1448 1449 // If we've tried to get a preheader and failed, don't try again. 1450 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1451 return nullptr; 1452 1453 if (!CurPreheader) { 1454 CurPreheader = CurLoop->getLoopPreheader(); 1455 if (!CurPreheader) { 1456 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1457 if (!Pred) { 1458 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1459 return nullptr; 1460 } 1461 1462 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1463 if (!CurPreheader) { 1464 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1465 return nullptr; 1466 } 1467 } 1468 } 1469 return CurPreheader; 1470 } 1471