1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machinelicm"
60 
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63                  cl::desc("MachineLICM should avoid speculation"),
64                  cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68                 cl::desc("MachineLICM should hoist even cheap instructions"),
69                 cl::init(false), cl::Hidden);
70 
71 static cl::opt<bool>
72 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
73                        cl::desc("MachineLICM should sink instructions into "
74                                 "loops to avoid register spills"),
75                        cl::init(false), cl::Hidden);
76 static cl::opt<bool>
77 HoistConstStores("hoist-const-stores",
78                  cl::desc("Hoist invariant stores"),
79                  cl::init(true), cl::Hidden);
80 // The default threshold of 100 (i.e. if target block is 100 times hotter)
81 // is based on empirical data on a single target and is subject to tuning.
82 static cl::opt<unsigned>
83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
84                              cl::desc("Do not hoist instructions if target"
85                              "block is N times hotter than the source."),
86                              cl::init(100), cl::Hidden);
87 
88 enum class UseBFI { None, PGO, All };
89 
90 static cl::opt<UseBFI>
91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
92                               cl::desc("Disable hoisting instructions to"
93                               " hotter blocks"),
94                               cl::init(UseBFI::PGO), cl::Hidden,
95                               cl::values(clEnumValN(UseBFI::None, "none",
96                               "disable the feature"),
97                               clEnumValN(UseBFI::PGO, "pgo",
98                               "enable the feature when using profile data"),
99                               clEnumValN(UseBFI::All, "all",
100                               "enable the feature with/wo profile data")));
101 
102 STATISTIC(NumHoisted,
103           "Number of machine instructions hoisted out of loops");
104 STATISTIC(NumLowRP,
105           "Number of instructions hoisted in low reg pressure situation");
106 STATISTIC(NumHighLatency,
107           "Number of high latency instructions hoisted");
108 STATISTIC(NumCSEed,
109           "Number of hoisted machine instructions CSEed");
110 STATISTIC(NumPostRAHoisted,
111           "Number of machine instructions hoisted out of loops post regalloc");
112 STATISTIC(NumStoreConst,
113           "Number of stores of const phys reg hoisted out of loops");
114 STATISTIC(NumNotHoistedDueToHotness,
115           "Number of instructions not hoisted due to block frequency");
116 
117 namespace {
118 
119   class MachineLICMBase : public MachineFunctionPass {
120     const TargetInstrInfo *TII;
121     const TargetLoweringBase *TLI;
122     const TargetRegisterInfo *TRI;
123     const MachineFrameInfo *MFI;
124     MachineRegisterInfo *MRI;
125     TargetSchedModel SchedModel;
126     bool PreRegAlloc;
127     bool HasProfileData;
128 
129     // Various analyses that we use...
130     AliasAnalysis        *AA;      // Alias analysis info.
131     MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
132     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
133     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
134 
135     // State that is updated as we process loops
136     bool         Changed;          // True if a loop is changed.
137     bool         FirstInLoop;      // True if it's the first LICM in the loop.
138     MachineLoop *CurLoop;          // The current loop we are working on.
139     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
140 
141     // Exit blocks for CurLoop.
142     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
143 
144     bool isExitBlock(const MachineBasicBlock *MBB) const {
145       return is_contained(ExitBlocks, MBB);
146     }
147 
148     // Track 'estimated' register pressure.
149     SmallSet<Register, 32> RegSeen;
150     SmallVector<unsigned, 8> RegPressure;
151 
152     // Register pressure "limit" per register pressure set. If the pressure
153     // is higher than the limit, then it's considered high.
154     SmallVector<unsigned, 8> RegLimit;
155 
156     // Register pressure on path leading from loop preheader to current BB.
157     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
158 
159     // For each opcode, keep a list of potential CSE instructions.
160     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
161 
162     enum {
163       SpeculateFalse   = 0,
164       SpeculateTrue    = 1,
165       SpeculateUnknown = 2
166     };
167 
168     // If a MBB does not dominate loop exiting blocks then it may not safe
169     // to hoist loads from this block.
170     // Tri-state: 0 - false, 1 - true, 2 - unknown
171     unsigned SpeculationState;
172 
173   public:
174     MachineLICMBase(char &PassID, bool PreRegAlloc)
175         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
176 
177     bool runOnMachineFunction(MachineFunction &MF) override;
178 
179     void getAnalysisUsage(AnalysisUsage &AU) const override {
180       AU.addRequired<MachineLoopInfo>();
181       if (DisableHoistingToHotterBlocks != UseBFI::None)
182         AU.addRequired<MachineBlockFrequencyInfo>();
183       AU.addRequired<MachineDominatorTree>();
184       AU.addRequired<AAResultsWrapperPass>();
185       AU.addPreserved<MachineLoopInfo>();
186       MachineFunctionPass::getAnalysisUsage(AU);
187     }
188 
189     void releaseMemory() override {
190       RegSeen.clear();
191       RegPressure.clear();
192       RegLimit.clear();
193       BackTrace.clear();
194       CSEMap.clear();
195     }
196 
197   private:
198     /// Keep track of information about hoisting candidates.
199     struct CandidateInfo {
200       MachineInstr *MI;
201       unsigned      Def;
202       int           FI;
203 
204       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
205         : MI(mi), Def(def), FI(fi) {}
206     };
207 
208     void HoistRegionPostRA();
209 
210     void HoistPostRA(MachineInstr *MI, unsigned Def);
211 
212     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
213                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
214                    SmallVectorImpl<CandidateInfo> &Candidates);
215 
216     void AddToLiveIns(MCRegister Reg);
217 
218     bool IsLICMCandidate(MachineInstr &I);
219 
220     bool IsLoopInvariantInst(MachineInstr &I);
221 
222     bool HasLoopPHIUse(const MachineInstr *MI) const;
223 
224     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
225                                Register Reg) const;
226 
227     bool IsCheapInstruction(MachineInstr &MI) const;
228 
229     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
230                                  bool Cheap);
231 
232     void UpdateBackTraceRegPressure(const MachineInstr *MI);
233 
234     bool IsProfitableToHoist(MachineInstr &MI);
235 
236     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
237 
238     void EnterScope(MachineBasicBlock *MBB);
239 
240     void ExitScope(MachineBasicBlock *MBB);
241 
242     void ExitScopeIfDone(
243         MachineDomTreeNode *Node,
244         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
245         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
246 
247     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
248 
249     void SinkIntoLoop();
250 
251     void InitRegPressure(MachineBasicBlock *BB);
252 
253     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
254                                              bool ConsiderSeen,
255                                              bool ConsiderUnseenAsDef);
256 
257     void UpdateRegPressure(const MachineInstr *MI,
258                            bool ConsiderUnseenAsDef = false);
259 
260     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
261 
262     const MachineInstr *
263     LookForDuplicate(const MachineInstr *MI,
264                      std::vector<const MachineInstr *> &PrevMIs);
265 
266     bool EliminateCSE(
267         MachineInstr *MI,
268         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
269 
270     bool MayCSE(MachineInstr *MI);
271 
272     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
273 
274     void InitCSEMap(MachineBasicBlock *BB);
275 
276     bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
277                             MachineBasicBlock *TgtBlock);
278     MachineBasicBlock *getCurPreheader();
279   };
280 
281   class MachineLICM : public MachineLICMBase {
282   public:
283     static char ID;
284     MachineLICM() : MachineLICMBase(ID, false) {
285       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
286     }
287   };
288 
289   class EarlyMachineLICM : public MachineLICMBase {
290   public:
291     static char ID;
292     EarlyMachineLICM() : MachineLICMBase(ID, true) {
293       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineLICM::ID;
300 char EarlyMachineLICM::ID;
301 
302 char &llvm::MachineLICMID = MachineLICM::ID;
303 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
304 
305 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
306                       "Machine Loop Invariant Code Motion", false, false)
307 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
308 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
309 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
310 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
311 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
312                     "Machine Loop Invariant Code Motion", false, false)
313 
314 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
315                       "Early Machine Loop Invariant Code Motion", false, false)
316 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
317 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
318 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
319 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
320 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
321                     "Early Machine Loop Invariant Code Motion", false, false)
322 
323 /// Test if the given loop is the outer-most loop that has a unique predecessor.
324 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
325   // Check whether this loop even has a unique predecessor.
326   if (!CurLoop->getLoopPredecessor())
327     return false;
328   // Ok, now check to see if any of its outer loops do.
329   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
330     if (L->getLoopPredecessor())
331       return false;
332   // None of them did, so this is the outermost with a unique predecessor.
333   return true;
334 }
335 
336 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
337   if (skipFunction(MF.getFunction()))
338     return false;
339 
340   Changed = FirstInLoop = false;
341   const TargetSubtargetInfo &ST = MF.getSubtarget();
342   TII = ST.getInstrInfo();
343   TLI = ST.getTargetLowering();
344   TRI = ST.getRegisterInfo();
345   MFI = &MF.getFrameInfo();
346   MRI = &MF.getRegInfo();
347   SchedModel.init(&ST);
348 
349   PreRegAlloc = MRI->isSSA();
350   HasProfileData = MF.getFunction().hasProfileData();
351 
352   if (PreRegAlloc)
353     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
354   else
355     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
356   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
357 
358   if (PreRegAlloc) {
359     // Estimate register pressure during pre-regalloc pass.
360     unsigned NumRPS = TRI->getNumRegPressureSets();
361     RegPressure.resize(NumRPS);
362     std::fill(RegPressure.begin(), RegPressure.end(), 0);
363     RegLimit.resize(NumRPS);
364     for (unsigned i = 0, e = NumRPS; i != e; ++i)
365       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
366   }
367 
368   // Get our Loop information...
369   if (DisableHoistingToHotterBlocks != UseBFI::None)
370     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
371   MLI = &getAnalysis<MachineLoopInfo>();
372   DT  = &getAnalysis<MachineDominatorTree>();
373   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
374 
375   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
376   while (!Worklist.empty()) {
377     CurLoop = Worklist.pop_back_val();
378     CurPreheader = nullptr;
379     ExitBlocks.clear();
380 
381     // If this is done before regalloc, only visit outer-most preheader-sporting
382     // loops.
383     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
384       Worklist.append(CurLoop->begin(), CurLoop->end());
385       continue;
386     }
387 
388     CurLoop->getExitBlocks(ExitBlocks);
389 
390     if (!PreRegAlloc)
391       HoistRegionPostRA();
392     else {
393       // CSEMap is initialized for loop header when the first instruction is
394       // being hoisted.
395       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
396       FirstInLoop = true;
397       HoistOutOfLoop(N);
398       CSEMap.clear();
399 
400       if (SinkInstsToAvoidSpills)
401         SinkIntoLoop();
402     }
403   }
404 
405   return Changed;
406 }
407 
408 /// Return true if instruction stores to the specified frame.
409 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
410   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
411   // true since they have no memory operands.
412   if (!MI->mayStore())
413      return false;
414   // If we lost memory operands, conservatively assume that the instruction
415   // writes to all slots.
416   if (MI->memoperands_empty())
417     return true;
418   for (const MachineMemOperand *MemOp : MI->memoperands()) {
419     if (!MemOp->isStore() || !MemOp->getPseudoValue())
420       continue;
421     if (const FixedStackPseudoSourceValue *Value =
422         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
423       if (Value->getFrameIndex() == FI)
424         return true;
425     }
426   }
427   return false;
428 }
429 
430 /// Examine the instruction for potentai LICM candidate. Also
431 /// gather register def and frame object update information.
432 void MachineLICMBase::ProcessMI(MachineInstr *MI,
433                                 BitVector &PhysRegDefs,
434                                 BitVector &PhysRegClobbers,
435                                 SmallSet<int, 32> &StoredFIs,
436                                 SmallVectorImpl<CandidateInfo> &Candidates) {
437   bool RuledOut = false;
438   bool HasNonInvariantUse = false;
439   unsigned Def = 0;
440   for (const MachineOperand &MO : MI->operands()) {
441     if (MO.isFI()) {
442       // Remember if the instruction stores to the frame index.
443       int FI = MO.getIndex();
444       if (!StoredFIs.count(FI) &&
445           MFI->isSpillSlotObjectIndex(FI) &&
446           InstructionStoresToFI(MI, FI))
447         StoredFIs.insert(FI);
448       HasNonInvariantUse = true;
449       continue;
450     }
451 
452     // We can't hoist an instruction defining a physreg that is clobbered in
453     // the loop.
454     if (MO.isRegMask()) {
455       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
456       continue;
457     }
458 
459     if (!MO.isReg())
460       continue;
461     Register Reg = MO.getReg();
462     if (!Reg)
463       continue;
464     assert(Register::isPhysicalRegister(Reg) &&
465            "Not expecting virtual register!");
466 
467     if (!MO.isDef()) {
468       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
469         // If it's using a non-loop-invariant register, then it's obviously not
470         // safe to hoist.
471         HasNonInvariantUse = true;
472       continue;
473     }
474 
475     if (MO.isImplicit()) {
476       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
477         PhysRegClobbers.set(*AI);
478       if (!MO.isDead())
479         // Non-dead implicit def? This cannot be hoisted.
480         RuledOut = true;
481       // No need to check if a dead implicit def is also defined by
482       // another instruction.
483       continue;
484     }
485 
486     // FIXME: For now, avoid instructions with multiple defs, unless
487     // it's a dead implicit def.
488     if (Def)
489       RuledOut = true;
490     else
491       Def = Reg;
492 
493     // If we have already seen another instruction that defines the same
494     // register, then this is not safe.  Two defs is indicated by setting a
495     // PhysRegClobbers bit.
496     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
497       if (PhysRegDefs.test(*AS))
498         PhysRegClobbers.set(*AS);
499     }
500     // Need a second loop because MCRegAliasIterator can visit the same
501     // register twice.
502     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
503       PhysRegDefs.set(*AS);
504 
505     if (PhysRegClobbers.test(Reg))
506       // MI defined register is seen defined by another instruction in
507       // the loop, it cannot be a LICM candidate.
508       RuledOut = true;
509   }
510 
511   // Only consider reloads for now and remats which do not have register
512   // operands. FIXME: Consider unfold load folding instructions.
513   if (Def && !RuledOut) {
514     int FI = std::numeric_limits<int>::min();
515     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
516         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
517       Candidates.push_back(CandidateInfo(MI, Def, FI));
518   }
519 }
520 
521 /// Walk the specified region of the CFG and hoist loop invariants out to the
522 /// preheader.
523 void MachineLICMBase::HoistRegionPostRA() {
524   MachineBasicBlock *Preheader = getCurPreheader();
525   if (!Preheader)
526     return;
527 
528   unsigned NumRegs = TRI->getNumRegs();
529   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
530   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
531 
532   SmallVector<CandidateInfo, 32> Candidates;
533   SmallSet<int, 32> StoredFIs;
534 
535   // Walk the entire region, count number of defs for each register, and
536   // collect potential LICM candidates.
537   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
538     // If the header of the loop containing this basic block is a landing pad,
539     // then don't try to hoist instructions out of this loop.
540     const MachineLoop *ML = MLI->getLoopFor(BB);
541     if (ML && ML->getHeader()->isEHPad()) continue;
542 
543     // Conservatively treat live-in's as an external def.
544     // FIXME: That means a reload that're reused in successor block(s) will not
545     // be LICM'ed.
546     for (const auto &LI : BB->liveins()) {
547       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
548         PhysRegDefs.set(*AI);
549     }
550 
551     SpeculationState = SpeculateUnknown;
552     for (MachineInstr &MI : *BB)
553       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
554   }
555 
556   // Gather the registers read / clobbered by the terminator.
557   BitVector TermRegs(NumRegs);
558   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
559   if (TI != Preheader->end()) {
560     for (const MachineOperand &MO : TI->operands()) {
561       if (!MO.isReg())
562         continue;
563       Register Reg = MO.getReg();
564       if (!Reg)
565         continue;
566       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
567         TermRegs.set(*AI);
568     }
569   }
570 
571   // Now evaluate whether the potential candidates qualify.
572   // 1. Check if the candidate defined register is defined by another
573   //    instruction in the loop.
574   // 2. If the candidate is a load from stack slot (always true for now),
575   //    check if the slot is stored anywhere in the loop.
576   // 3. Make sure candidate def should not clobber
577   //    registers read by the terminator. Similarly its def should not be
578   //    clobbered by the terminator.
579   for (CandidateInfo &Candidate : Candidates) {
580     if (Candidate.FI != std::numeric_limits<int>::min() &&
581         StoredFIs.count(Candidate.FI))
582       continue;
583 
584     unsigned Def = Candidate.Def;
585     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
586       bool Safe = true;
587       MachineInstr *MI = Candidate.MI;
588       for (const MachineOperand &MO : MI->operands()) {
589         if (!MO.isReg() || MO.isDef() || !MO.getReg())
590           continue;
591         Register Reg = MO.getReg();
592         if (PhysRegDefs.test(Reg) ||
593             PhysRegClobbers.test(Reg)) {
594           // If it's using a non-loop-invariant register, then it's obviously
595           // not safe to hoist.
596           Safe = false;
597           break;
598         }
599       }
600       if (Safe)
601         HoistPostRA(MI, Candidate.Def);
602     }
603   }
604 }
605 
606 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
607 /// sure it is not killed by any instructions in the loop.
608 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
609   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
610     if (!BB->isLiveIn(Reg))
611       BB->addLiveIn(Reg);
612     for (MachineInstr &MI : *BB) {
613       for (MachineOperand &MO : MI.operands()) {
614         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
615         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
616           MO.setIsKill(false);
617       }
618     }
619   }
620 }
621 
622 /// When an instruction is found to only use loop invariant operands that is
623 /// safe to hoist, this instruction is called to do the dirty work.
624 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
625   MachineBasicBlock *Preheader = getCurPreheader();
626 
627   // Now move the instructions to the predecessor, inserting it before any
628   // terminator instructions.
629   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
630                     << " from " << printMBBReference(*MI->getParent()) << ": "
631                     << *MI);
632 
633   // Splice the instruction to the preheader.
634   MachineBasicBlock *MBB = MI->getParent();
635   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
636 
637   // Since we are moving the instruction out of its basic block, we do not
638   // retain its debug location. Doing so would degrade the debugging
639   // experience and adversely affect the accuracy of profiling information.
640   assert(!MI->isDebugInstr() && "Should not hoist debug inst");
641   MI->setDebugLoc(DebugLoc());
642 
643   // Add register to livein list to all the BBs in the current loop since a
644   // loop invariant must be kept live throughout the whole loop. This is
645   // important to ensure later passes do not scavenge the def register.
646   AddToLiveIns(Def);
647 
648   ++NumPostRAHoisted;
649   Changed = true;
650 }
651 
652 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
653 /// may not be safe to hoist.
654 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
655   if (SpeculationState != SpeculateUnknown)
656     return SpeculationState == SpeculateFalse;
657 
658   if (BB != CurLoop->getHeader()) {
659     // Check loop exiting blocks.
660     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
661     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
662     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
663       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
664         SpeculationState = SpeculateTrue;
665         return false;
666       }
667   }
668 
669   SpeculationState = SpeculateFalse;
670   return true;
671 }
672 
673 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
674   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
675 
676   // Remember livein register pressure.
677   BackTrace.push_back(RegPressure);
678 }
679 
680 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
681   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
682   BackTrace.pop_back();
683 }
684 
685 /// Destroy scope for the MBB that corresponds to the given dominator tree node
686 /// if its a leaf or all of its children are done. Walk up the dominator tree to
687 /// destroy ancestors which are now done.
688 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
689     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
690     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
691   if (OpenChildren[Node])
692     return;
693 
694   // Pop scope.
695   ExitScope(Node->getBlock());
696 
697   // Now traverse upwards to pop ancestors whose offsprings are all done.
698   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
699     unsigned Left = --OpenChildren[Parent];
700     if (Left != 0)
701       break;
702     ExitScope(Parent->getBlock());
703     Node = Parent;
704   }
705 }
706 
707 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
708 /// specified header block, and that are in the current loop) in depth first
709 /// order w.r.t the DominatorTree. This allows us to visit definitions before
710 /// uses, allowing us to hoist a loop body in one pass without iteration.
711 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
712   MachineBasicBlock *Preheader = getCurPreheader();
713   if (!Preheader)
714     return;
715 
716   SmallVector<MachineDomTreeNode*, 32> Scopes;
717   SmallVector<MachineDomTreeNode*, 8> WorkList;
718   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
719   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
720 
721   // Perform a DFS walk to determine the order of visit.
722   WorkList.push_back(HeaderN);
723   while (!WorkList.empty()) {
724     MachineDomTreeNode *Node = WorkList.pop_back_val();
725     assert(Node && "Null dominator tree node?");
726     MachineBasicBlock *BB = Node->getBlock();
727 
728     // If the header of the loop containing this basic block is a landing pad,
729     // then don't try to hoist instructions out of this loop.
730     const MachineLoop *ML = MLI->getLoopFor(BB);
731     if (ML && ML->getHeader()->isEHPad())
732       continue;
733 
734     // If this subregion is not in the top level loop at all, exit.
735     if (!CurLoop->contains(BB))
736       continue;
737 
738     Scopes.push_back(Node);
739     unsigned NumChildren = Node->getNumChildren();
740 
741     // Don't hoist things out of a large switch statement.  This often causes
742     // code to be hoisted that wasn't going to be executed, and increases
743     // register pressure in a situation where it's likely to matter.
744     if (BB->succ_size() >= 25)
745       NumChildren = 0;
746 
747     OpenChildren[Node] = NumChildren;
748     if (NumChildren) {
749       // Add children in reverse order as then the next popped worklist node is
750       // the first child of this node.  This means we ultimately traverse the
751       // DOM tree in exactly the same order as if we'd recursed.
752       for (MachineDomTreeNode *Child : reverse(Node->children())) {
753         ParentMap[Child] = Node;
754         WorkList.push_back(Child);
755       }
756     }
757   }
758 
759   if (Scopes.size() == 0)
760     return;
761 
762   // Compute registers which are livein into the loop headers.
763   RegSeen.clear();
764   BackTrace.clear();
765   InitRegPressure(Preheader);
766 
767   // Now perform LICM.
768   for (MachineDomTreeNode *Node : Scopes) {
769     MachineBasicBlock *MBB = Node->getBlock();
770 
771     EnterScope(MBB);
772 
773     // Process the block
774     SpeculationState = SpeculateUnknown;
775     for (MachineBasicBlock::iterator
776          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
777       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
778       MachineInstr *MI = &*MII;
779       if (!Hoist(MI, Preheader))
780         UpdateRegPressure(MI);
781       // If we have hoisted an instruction that may store, it can only be a
782       // constant store.
783       MII = NextMII;
784     }
785 
786     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
787     ExitScopeIfDone(Node, OpenChildren, ParentMap);
788   }
789 }
790 
791 /// Sink instructions into loops if profitable. This especially tries to prevent
792 /// register spills caused by register pressure if there is little to no
793 /// overhead moving instructions into loops.
794 void MachineLICMBase::SinkIntoLoop() {
795   MachineBasicBlock *Preheader = getCurPreheader();
796   if (!Preheader)
797     return;
798 
799   SmallVector<MachineInstr *, 8> Candidates;
800   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
801        I != Preheader->instr_end(); ++I) {
802     // We need to ensure that we can safely move this instruction into the loop.
803     // As such, it must not have side-effects, e.g. such as a call has.
804     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
805       Candidates.push_back(&*I);
806   }
807 
808   for (MachineInstr *I : Candidates) {
809     const MachineOperand &MO = I->getOperand(0);
810     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
811       continue;
812     if (!MRI->hasOneDef(MO.getReg()))
813       continue;
814     bool CanSink = true;
815     MachineBasicBlock *B = nullptr;
816     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
817       // FIXME: Come up with a proper cost model that estimates whether sinking
818       // the instruction (and thus possibly executing it on every loop
819       // iteration) is more expensive than a register.
820       // For now assumes that copies are cheap and thus almost always worth it.
821       if (!MI.isCopy()) {
822         CanSink = false;
823         break;
824       }
825       if (!B) {
826         B = MI.getParent();
827         continue;
828       }
829       B = DT->findNearestCommonDominator(B, MI.getParent());
830       if (!B) {
831         CanSink = false;
832         break;
833       }
834     }
835     if (!CanSink || !B || B == Preheader)
836       continue;
837 
838     LLVM_DEBUG(dbgs() << "Sinking to " << printMBBReference(*B) << " from "
839                       << printMBBReference(*I->getParent()) << ": " << *I);
840     B->splice(B->getFirstNonPHI(), Preheader, I);
841 
842     // The instruction is is moved from its basic block, so do not retain the
843     // debug information.
844     assert(!I->isDebugInstr() && "Should not sink debug inst");
845     I->setDebugLoc(DebugLoc());
846   }
847 }
848 
849 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
850   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
851 }
852 
853 /// Find all virtual register references that are liveout of the preheader to
854 /// initialize the starting "register pressure". Note this does not count live
855 /// through (livein but not used) registers.
856 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
857   std::fill(RegPressure.begin(), RegPressure.end(), 0);
858 
859   // If the preheader has only a single predecessor and it ends with a
860   // fallthrough or an unconditional branch, then scan its predecessor for live
861   // defs as well. This happens whenever the preheader is created by splitting
862   // the critical edge from the loop predecessor to the loop header.
863   if (BB->pred_size() == 1) {
864     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
865     SmallVector<MachineOperand, 4> Cond;
866     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
867       InitRegPressure(*BB->pred_begin());
868   }
869 
870   for (const MachineInstr &MI : *BB)
871     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
872 }
873 
874 /// Update estimate of register pressure after the specified instruction.
875 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
876                                         bool ConsiderUnseenAsDef) {
877   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
878   for (const auto &RPIdAndCost : Cost) {
879     unsigned Class = RPIdAndCost.first;
880     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
881       RegPressure[Class] = 0;
882     else
883       RegPressure[Class] += RPIdAndCost.second;
884   }
885 }
886 
887 /// Calculate the additional register pressure that the registers used in MI
888 /// cause.
889 ///
890 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
891 /// figure out which usages are live-ins.
892 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
893 DenseMap<unsigned, int>
894 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
895                                   bool ConsiderUnseenAsDef) {
896   DenseMap<unsigned, int> Cost;
897   if (MI->isImplicitDef())
898     return Cost;
899   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
900     const MachineOperand &MO = MI->getOperand(i);
901     if (!MO.isReg() || MO.isImplicit())
902       continue;
903     Register Reg = MO.getReg();
904     if (!Register::isVirtualRegister(Reg))
905       continue;
906 
907     // FIXME: It seems bad to use RegSeen only for some of these calculations.
908     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
909     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
910 
911     RegClassWeight W = TRI->getRegClassWeight(RC);
912     int RCCost = 0;
913     if (MO.isDef())
914       RCCost = W.RegWeight;
915     else {
916       bool isKill = isOperandKill(MO, MRI);
917       if (isNew && !isKill && ConsiderUnseenAsDef)
918         // Haven't seen this, it must be a livein.
919         RCCost = W.RegWeight;
920       else if (!isNew && isKill)
921         RCCost = -W.RegWeight;
922     }
923     if (RCCost == 0)
924       continue;
925     const int *PS = TRI->getRegClassPressureSets(RC);
926     for (; *PS != -1; ++PS) {
927       if (Cost.find(*PS) == Cost.end())
928         Cost[*PS] = RCCost;
929       else
930         Cost[*PS] += RCCost;
931     }
932   }
933   return Cost;
934 }
935 
936 /// Return true if this machine instruction loads from global offset table or
937 /// constant pool.
938 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
939   assert(MI.mayLoad() && "Expected MI that loads!");
940 
941   // If we lost memory operands, conservatively assume that the instruction
942   // reads from everything..
943   if (MI.memoperands_empty())
944     return true;
945 
946   for (MachineMemOperand *MemOp : MI.memoperands())
947     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
948       if (PSV->isGOT() || PSV->isConstantPool())
949         return true;
950 
951   return false;
952 }
953 
954 // This function iterates through all the operands of the input store MI and
955 // checks that each register operand statisfies isCallerPreservedPhysReg.
956 // This means, the value being stored and the address where it is being stored
957 // is constant throughout the body of the function (not including prologue and
958 // epilogue). When called with an MI that isn't a store, it returns false.
959 // A future improvement can be to check if the store registers are constant
960 // throughout the loop rather than throughout the funtion.
961 static bool isInvariantStore(const MachineInstr &MI,
962                              const TargetRegisterInfo *TRI,
963                              const MachineRegisterInfo *MRI) {
964 
965   bool FoundCallerPresReg = false;
966   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
967       (MI.getNumOperands() == 0))
968     return false;
969 
970   // Check that all register operands are caller-preserved physical registers.
971   for (const MachineOperand &MO : MI.operands()) {
972     if (MO.isReg()) {
973       Register Reg = MO.getReg();
974       // If operand is a virtual register, check if it comes from a copy of a
975       // physical register.
976       if (Register::isVirtualRegister(Reg))
977         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
978       if (Register::isVirtualRegister(Reg))
979         return false;
980       if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
981         return false;
982       else
983         FoundCallerPresReg = true;
984     } else if (!MO.isImm()) {
985         return false;
986     }
987   }
988   return FoundCallerPresReg;
989 }
990 
991 // Return true if the input MI is a copy instruction that feeds an invariant
992 // store instruction. This means that the src of the copy has to satisfy
993 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
994 // isInvariantStore.
995 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
996                                         const MachineRegisterInfo *MRI,
997                                         const TargetRegisterInfo *TRI) {
998 
999   // FIXME: If targets would like to look through instructions that aren't
1000   // pure copies, this can be updated to a query.
1001   if (!MI.isCopy())
1002     return false;
1003 
1004   const MachineFunction *MF = MI.getMF();
1005   // Check that we are copying a constant physical register.
1006   Register CopySrcReg = MI.getOperand(1).getReg();
1007   if (Register::isVirtualRegister(CopySrcReg))
1008     return false;
1009 
1010   if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
1011     return false;
1012 
1013   Register CopyDstReg = MI.getOperand(0).getReg();
1014   // Check if any of the uses of the copy are invariant stores.
1015   assert(Register::isVirtualRegister(CopyDstReg) &&
1016          "copy dst is not a virtual reg");
1017 
1018   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
1019     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
1020       return true;
1021   }
1022   return false;
1023 }
1024 
1025 /// Returns true if the instruction may be a suitable candidate for LICM.
1026 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
1027 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
1028   // Check if it's safe to move the instruction.
1029   bool DontMoveAcrossStore = true;
1030   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
1031       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
1032     return false;
1033   }
1034 
1035   // If it is load then check if it is guaranteed to execute by making sure that
1036   // it dominates all exiting blocks. If it doesn't, then there is a path out of
1037   // the loop which does not execute this load, so we can't hoist it. Loads
1038   // from constant memory are not safe to speculate all the time, for example
1039   // indexed load from a jump table.
1040   // Stores and side effects are already checked by isSafeToMove.
1041   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
1042       !IsGuaranteedToExecute(I.getParent()))
1043     return false;
1044 
1045   // Convergent attribute has been used on operations that involve inter-thread
1046   // communication which results are implicitly affected by the enclosing
1047   // control flows. It is not safe to hoist or sink such operations across
1048   // control flow.
1049   if (I.isConvergent())
1050     return false;
1051 
1052   return true;
1053 }
1054 
1055 /// Returns true if the instruction is loop invariant.
1056 /// I.e., all virtual register operands are defined outside of the loop,
1057 /// physical registers aren't accessed explicitly, and there are no side
1058 /// effects that aren't captured by the operands or other flags.
1059 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1060   if (!IsLICMCandidate(I))
1061     return false;
1062 
1063   // The instruction is loop invariant if all of its operands are.
1064   for (const MachineOperand &MO : I.operands()) {
1065     if (!MO.isReg())
1066       continue;
1067 
1068     Register Reg = MO.getReg();
1069     if (Reg == 0) continue;
1070 
1071     // Don't hoist an instruction that uses or defines a physical register.
1072     if (Register::isPhysicalRegister(Reg)) {
1073       if (MO.isUse()) {
1074         // If the physreg has no defs anywhere, it's just an ambient register
1075         // and we can freely move its uses. Alternatively, if it's allocatable,
1076         // it could get allocated to something with a def during allocation.
1077         // However, if the physreg is known to always be caller saved/restored
1078         // then this use is safe to hoist.
1079         if (!MRI->isConstantPhysReg(Reg) &&
1080             !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())))
1081           return false;
1082         // Otherwise it's safe to move.
1083         continue;
1084       } else if (!MO.isDead()) {
1085         // A def that isn't dead. We can't move it.
1086         return false;
1087       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1088         // If the reg is live into the loop, we can't hoist an instruction
1089         // which would clobber it.
1090         return false;
1091       }
1092     }
1093 
1094     if (!MO.isUse())
1095       continue;
1096 
1097     assert(MRI->getVRegDef(Reg) &&
1098            "Machine instr not mapped for this vreg?!");
1099 
1100     // If the loop contains the definition of an operand, then the instruction
1101     // isn't loop invariant.
1102     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1103       return false;
1104   }
1105 
1106   // If we got this far, the instruction is loop invariant!
1107   return true;
1108 }
1109 
1110 /// Return true if the specified instruction is used by a phi node and hoisting
1111 /// it could cause a copy to be inserted.
1112 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1113   SmallVector<const MachineInstr*, 8> Work(1, MI);
1114   do {
1115     MI = Work.pop_back_val();
1116     for (const MachineOperand &MO : MI->operands()) {
1117       if (!MO.isReg() || !MO.isDef())
1118         continue;
1119       Register Reg = MO.getReg();
1120       if (!Register::isVirtualRegister(Reg))
1121         continue;
1122       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1123         // A PHI may cause a copy to be inserted.
1124         if (UseMI.isPHI()) {
1125           // A PHI inside the loop causes a copy because the live range of Reg is
1126           // extended across the PHI.
1127           if (CurLoop->contains(&UseMI))
1128             return true;
1129           // A PHI in an exit block can cause a copy to be inserted if the PHI
1130           // has multiple predecessors in the loop with different values.
1131           // For now, approximate by rejecting all exit blocks.
1132           if (isExitBlock(UseMI.getParent()))
1133             return true;
1134           continue;
1135         }
1136         // Look past copies as well.
1137         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1138           Work.push_back(&UseMI);
1139       }
1140     }
1141   } while (!Work.empty());
1142   return false;
1143 }
1144 
1145 /// Compute operand latency between a def of 'Reg' and an use in the current
1146 /// loop, return true if the target considered it high.
1147 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1148                                             Register Reg) const {
1149   if (MRI->use_nodbg_empty(Reg))
1150     return false;
1151 
1152   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1153     if (UseMI.isCopyLike())
1154       continue;
1155     if (!CurLoop->contains(UseMI.getParent()))
1156       continue;
1157     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1158       const MachineOperand &MO = UseMI.getOperand(i);
1159       if (!MO.isReg() || !MO.isUse())
1160         continue;
1161       Register MOReg = MO.getReg();
1162       if (MOReg != Reg)
1163         continue;
1164 
1165       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1166         return true;
1167     }
1168 
1169     // Only look at the first in loop use.
1170     break;
1171   }
1172 
1173   return false;
1174 }
1175 
1176 /// Return true if the instruction is marked "cheap" or the operand latency
1177 /// between its def and a use is one or less.
1178 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1179   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1180     return true;
1181 
1182   bool isCheap = false;
1183   unsigned NumDefs = MI.getDesc().getNumDefs();
1184   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1185     MachineOperand &DefMO = MI.getOperand(i);
1186     if (!DefMO.isReg() || !DefMO.isDef())
1187       continue;
1188     --NumDefs;
1189     Register Reg = DefMO.getReg();
1190     if (Register::isPhysicalRegister(Reg))
1191       continue;
1192 
1193     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1194       return false;
1195     isCheap = true;
1196   }
1197 
1198   return isCheap;
1199 }
1200 
1201 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1202 /// given cost matrix can cause high register pressure.
1203 bool
1204 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1205                                          bool CheapInstr) {
1206   for (const auto &RPIdAndCost : Cost) {
1207     if (RPIdAndCost.second <= 0)
1208       continue;
1209 
1210     unsigned Class = RPIdAndCost.first;
1211     int Limit = RegLimit[Class];
1212 
1213     // Don't hoist cheap instructions if they would increase register pressure,
1214     // even if we're under the limit.
1215     if (CheapInstr && !HoistCheapInsts)
1216       return true;
1217 
1218     for (const auto &RP : BackTrace)
1219       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1220         return true;
1221   }
1222 
1223   return false;
1224 }
1225 
1226 /// Traverse the back trace from header to the current block and update their
1227 /// register pressures to reflect the effect of hoisting MI from the current
1228 /// block to the preheader.
1229 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1230   // First compute the 'cost' of the instruction, i.e. its contribution
1231   // to register pressure.
1232   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1233                                /*ConsiderUnseenAsDef=*/false);
1234 
1235   // Update register pressure of blocks from loop header to current block.
1236   for (auto &RP : BackTrace)
1237     for (const auto &RPIdAndCost : Cost)
1238       RP[RPIdAndCost.first] += RPIdAndCost.second;
1239 }
1240 
1241 /// Return true if it is potentially profitable to hoist the given loop
1242 /// invariant.
1243 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1244   if (MI.isImplicitDef())
1245     return true;
1246 
1247   // Besides removing computation from the loop, hoisting an instruction has
1248   // these effects:
1249   //
1250   // - The value defined by the instruction becomes live across the entire
1251   //   loop. This increases register pressure in the loop.
1252   //
1253   // - If the value is used by a PHI in the loop, a copy will be required for
1254   //   lowering the PHI after extending the live range.
1255   //
1256   // - When hoisting the last use of a value in the loop, that value no longer
1257   //   needs to be live in the loop. This lowers register pressure in the loop.
1258 
1259   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1260     return true;
1261 
1262   bool CheapInstr = IsCheapInstruction(MI);
1263   bool CreatesCopy = HasLoopPHIUse(&MI);
1264 
1265   // Don't hoist a cheap instruction if it would create a copy in the loop.
1266   if (CheapInstr && CreatesCopy) {
1267     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1268     return false;
1269   }
1270 
1271   // Rematerializable instructions should always be hoisted since the register
1272   // allocator can just pull them down again when needed.
1273   if (TII->isTriviallyReMaterializable(MI, AA))
1274     return true;
1275 
1276   // FIXME: If there are long latency loop-invariant instructions inside the
1277   // loop at this point, why didn't the optimizer's LICM hoist them?
1278   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1279     const MachineOperand &MO = MI.getOperand(i);
1280     if (!MO.isReg() || MO.isImplicit())
1281       continue;
1282     Register Reg = MO.getReg();
1283     if (!Register::isVirtualRegister(Reg))
1284       continue;
1285     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1286       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1287       ++NumHighLatency;
1288       return true;
1289     }
1290   }
1291 
1292   // Estimate register pressure to determine whether to LICM the instruction.
1293   // In low register pressure situation, we can be more aggressive about
1294   // hoisting. Also, favors hoisting long latency instructions even in
1295   // moderately high pressure situation.
1296   // Cheap instructions will only be hoisted if they don't increase register
1297   // pressure at all.
1298   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1299                                /*ConsiderUnseenAsDef=*/false);
1300 
1301   // Visit BBs from header to current BB, if hoisting this doesn't cause
1302   // high register pressure, then it's safe to proceed.
1303   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1304     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1305     ++NumLowRP;
1306     return true;
1307   }
1308 
1309   // Don't risk increasing register pressure if it would create copies.
1310   if (CreatesCopy) {
1311     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1312     return false;
1313   }
1314 
1315   // Do not "speculate" in high register pressure situation. If an
1316   // instruction is not guaranteed to be executed in the loop, it's best to be
1317   // conservative.
1318   if (AvoidSpeculation &&
1319       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1320     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1321     return false;
1322   }
1323 
1324   // High register pressure situation, only hoist if the instruction is going
1325   // to be remat'ed.
1326   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1327       !MI.isDereferenceableInvariantLoad(AA)) {
1328     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1329     return false;
1330   }
1331 
1332   return true;
1333 }
1334 
1335 /// Unfold a load from the given machineinstr if the load itself could be
1336 /// hoisted. Return the unfolded and hoistable load, or null if the load
1337 /// couldn't be unfolded or if it wouldn't be hoistable.
1338 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1339   // Don't unfold simple loads.
1340   if (MI->canFoldAsLoad())
1341     return nullptr;
1342 
1343   // If not, we may be able to unfold a load and hoist that.
1344   // First test whether the instruction is loading from an amenable
1345   // memory location.
1346   if (!MI->isDereferenceableInvariantLoad(AA))
1347     return nullptr;
1348 
1349   // Next determine the register class for a temporary register.
1350   unsigned LoadRegIndex;
1351   unsigned NewOpc =
1352     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1353                                     /*UnfoldLoad=*/true,
1354                                     /*UnfoldStore=*/false,
1355                                     &LoadRegIndex);
1356   if (NewOpc == 0) return nullptr;
1357   const MCInstrDesc &MID = TII->get(NewOpc);
1358   MachineFunction &MF = *MI->getMF();
1359   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1360   // Ok, we're unfolding. Create a temporary register and do the unfold.
1361   Register Reg = MRI->createVirtualRegister(RC);
1362 
1363   SmallVector<MachineInstr *, 2> NewMIs;
1364   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1365                                           /*UnfoldLoad=*/true,
1366                                           /*UnfoldStore=*/false, NewMIs);
1367   (void)Success;
1368   assert(Success &&
1369          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1370          "succeeded!");
1371   assert(NewMIs.size() == 2 &&
1372          "Unfolded a load into multiple instructions!");
1373   MachineBasicBlock *MBB = MI->getParent();
1374   MachineBasicBlock::iterator Pos = MI;
1375   MBB->insert(Pos, NewMIs[0]);
1376   MBB->insert(Pos, NewMIs[1]);
1377   // If unfolding produced a load that wasn't loop-invariant or profitable to
1378   // hoist, discard the new instructions and bail.
1379   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1380     NewMIs[0]->eraseFromParent();
1381     NewMIs[1]->eraseFromParent();
1382     return nullptr;
1383   }
1384 
1385   // Update register pressure for the unfolded instruction.
1386   UpdateRegPressure(NewMIs[1]);
1387 
1388   // Otherwise we successfully unfolded a load that we can hoist.
1389 
1390   // Update the call site info.
1391   if (MI->shouldUpdateCallSiteInfo())
1392     MF.eraseCallSiteInfo(MI);
1393 
1394   MI->eraseFromParent();
1395   return NewMIs[0];
1396 }
1397 
1398 /// Initialize the CSE map with instructions that are in the current loop
1399 /// preheader that may become duplicates of instructions that are hoisted
1400 /// out of the loop.
1401 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1402   for (MachineInstr &MI : *BB)
1403     CSEMap[MI.getOpcode()].push_back(&MI);
1404 }
1405 
1406 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1407 /// Return this instruction if it's found.
1408 const MachineInstr*
1409 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1410                                   std::vector<const MachineInstr*> &PrevMIs) {
1411   for (const MachineInstr *PrevMI : PrevMIs)
1412     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1413       return PrevMI;
1414 
1415   return nullptr;
1416 }
1417 
1418 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1419 /// computes the same value. If it's found, do a RAU on with the definition of
1420 /// the existing instruction rather than hoisting the instruction to the
1421 /// preheader.
1422 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1423     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1424   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1425   // the undef property onto uses.
1426   if (CI == CSEMap.end() || MI->isImplicitDef())
1427     return false;
1428 
1429   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1430     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1431 
1432     // Replace virtual registers defined by MI by their counterparts defined
1433     // by Dup.
1434     SmallVector<unsigned, 2> Defs;
1435     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1436       const MachineOperand &MO = MI->getOperand(i);
1437 
1438       // Physical registers may not differ here.
1439       assert((!MO.isReg() || MO.getReg() == 0 ||
1440               !Register::isPhysicalRegister(MO.getReg()) ||
1441               MO.getReg() == Dup->getOperand(i).getReg()) &&
1442              "Instructions with different phys regs are not identical!");
1443 
1444       if (MO.isReg() && MO.isDef() &&
1445           !Register::isPhysicalRegister(MO.getReg()))
1446         Defs.push_back(i);
1447     }
1448 
1449     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1450     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1451       unsigned Idx = Defs[i];
1452       Register Reg = MI->getOperand(Idx).getReg();
1453       Register DupReg = Dup->getOperand(Idx).getReg();
1454       OrigRCs.push_back(MRI->getRegClass(DupReg));
1455 
1456       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1457         // Restore old RCs if more than one defs.
1458         for (unsigned j = 0; j != i; ++j)
1459           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1460         return false;
1461       }
1462     }
1463 
1464     for (unsigned Idx : Defs) {
1465       Register Reg = MI->getOperand(Idx).getReg();
1466       Register DupReg = Dup->getOperand(Idx).getReg();
1467       MRI->replaceRegWith(Reg, DupReg);
1468       MRI->clearKillFlags(DupReg);
1469     }
1470 
1471     MI->eraseFromParent();
1472     ++NumCSEed;
1473     return true;
1474   }
1475   return false;
1476 }
1477 
1478 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1479 /// the loop.
1480 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1481   unsigned Opcode = MI->getOpcode();
1482   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1483     CI = CSEMap.find(Opcode);
1484   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1485   // the undef property onto uses.
1486   if (CI == CSEMap.end() || MI->isImplicitDef())
1487     return false;
1488 
1489   return LookForDuplicate(MI, CI->second) != nullptr;
1490 }
1491 
1492 /// When an instruction is found to use only loop invariant operands
1493 /// that are safe to hoist, this instruction is called to do the dirty work.
1494 /// It returns true if the instruction is hoisted.
1495 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1496   MachineBasicBlock *SrcBlock = MI->getParent();
1497 
1498   // Disable the instruction hoisting due to block hotness
1499   if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1500       (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1501       isTgtHotterThanSrc(SrcBlock, Preheader)) {
1502     ++NumNotHoistedDueToHotness;
1503     return false;
1504   }
1505   // First check whether we should hoist this instruction.
1506   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1507     // If not, try unfolding a hoistable load.
1508     MI = ExtractHoistableLoad(MI);
1509     if (!MI) return false;
1510   }
1511 
1512   // If we have hoisted an instruction that may store, it can only be a constant
1513   // store.
1514   if (MI->mayStore())
1515     NumStoreConst++;
1516 
1517   // Now move the instructions to the predecessor, inserting it before any
1518   // terminator instructions.
1519   LLVM_DEBUG({
1520     dbgs() << "Hoisting " << *MI;
1521     if (MI->getParent()->getBasicBlock())
1522       dbgs() << " from " << printMBBReference(*MI->getParent());
1523     if (Preheader->getBasicBlock())
1524       dbgs() << " to " << printMBBReference(*Preheader);
1525     dbgs() << "\n";
1526   });
1527 
1528   // If this is the first instruction being hoisted to the preheader,
1529   // initialize the CSE map with potential common expressions.
1530   if (FirstInLoop) {
1531     InitCSEMap(Preheader);
1532     FirstInLoop = false;
1533   }
1534 
1535   // Look for opportunity to CSE the hoisted instruction.
1536   unsigned Opcode = MI->getOpcode();
1537   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1538     CI = CSEMap.find(Opcode);
1539   if (!EliminateCSE(MI, CI)) {
1540     // Otherwise, splice the instruction to the preheader.
1541     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1542 
1543     // Since we are moving the instruction out of its basic block, we do not
1544     // retain its debug location. Doing so would degrade the debugging
1545     // experience and adversely affect the accuracy of profiling information.
1546     assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1547     MI->setDebugLoc(DebugLoc());
1548 
1549     // Update register pressure for BBs from header to this block.
1550     UpdateBackTraceRegPressure(MI);
1551 
1552     // Clear the kill flags of any register this instruction defines,
1553     // since they may need to be live throughout the entire loop
1554     // rather than just live for part of it.
1555     for (MachineOperand &MO : MI->operands())
1556       if (MO.isReg() && MO.isDef() && !MO.isDead())
1557         MRI->clearKillFlags(MO.getReg());
1558 
1559     // Add to the CSE map.
1560     if (CI != CSEMap.end())
1561       CI->second.push_back(MI);
1562     else
1563       CSEMap[Opcode].push_back(MI);
1564   }
1565 
1566   ++NumHoisted;
1567   Changed = true;
1568 
1569   return true;
1570 }
1571 
1572 /// Get the preheader for the current loop, splitting a critical edge if needed.
1573 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1574   // Determine the block to which to hoist instructions. If we can't find a
1575   // suitable loop predecessor, we can't do any hoisting.
1576 
1577   // If we've tried to get a preheader and failed, don't try again.
1578   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1579     return nullptr;
1580 
1581   if (!CurPreheader) {
1582     CurPreheader = CurLoop->getLoopPreheader();
1583     if (!CurPreheader) {
1584       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1585       if (!Pred) {
1586         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1587         return nullptr;
1588       }
1589 
1590       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1591       if (!CurPreheader) {
1592         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1593         return nullptr;
1594       }
1595     }
1596   }
1597   return CurPreheader;
1598 }
1599 
1600 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1601 /// times hotter than the source basic block.
1602 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1603                                          MachineBasicBlock *TgtBlock) {
1604   // Parse source and target basic block frequency from MBFI
1605   uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1606   uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1607 
1608   // Disable the hoisting if source block frequency is zero
1609   if (!SrcBF)
1610     return true;
1611 
1612   double Ratio = (double)DstBF / SrcBF;
1613 
1614   // Compare the block frequency ratio with the threshold
1615   return Ratio > BlockFrequencyRatioThreshold;
1616 }
1617