1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <limits> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "machinelicm" 58 59 static cl::opt<bool> 60 AvoidSpeculation("avoid-speculation", 61 cl::desc("MachineLICM should avoid speculation"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 HoistCheapInsts("hoist-cheap-insts", 66 cl::desc("MachineLICM should hoist even cheap instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 71 cl::desc("MachineLICM should sink instructions into " 72 "loops to avoid register spills"), 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> 75 HoistConstStores("hoist-const-stores", 76 cl::desc("Hoist invariant stores"), 77 cl::init(true), cl::Hidden); 78 79 STATISTIC(NumHoisted, 80 "Number of machine instructions hoisted out of loops"); 81 STATISTIC(NumLowRP, 82 "Number of instructions hoisted in low reg pressure situation"); 83 STATISTIC(NumHighLatency, 84 "Number of high latency instructions hoisted"); 85 STATISTIC(NumCSEed, 86 "Number of hoisted machine instructions CSEed"); 87 STATISTIC(NumPostRAHoisted, 88 "Number of machine instructions hoisted out of loops post regalloc"); 89 STATISTIC(NumStoreConst, 90 "Number of stores of const phys reg hoisted out of loops"); 91 92 namespace { 93 94 class MachineLICMBase : public MachineFunctionPass { 95 const TargetInstrInfo *TII; 96 const TargetLoweringBase *TLI; 97 const TargetRegisterInfo *TRI; 98 const MachineFrameInfo *MFI; 99 MachineRegisterInfo *MRI; 100 TargetSchedModel SchedModel; 101 bool PreRegAlloc; 102 103 // Various analyses that we use... 104 AliasAnalysis *AA; // Alias analysis info. 105 MachineLoopInfo *MLI; // Current MachineLoopInfo 106 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 107 108 // State that is updated as we process loops 109 bool Changed; // True if a loop is changed. 110 bool FirstInLoop; // True if it's the first LICM in the loop. 111 MachineLoop *CurLoop; // The current loop we are working on. 112 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 113 114 // Exit blocks for CurLoop. 115 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 116 117 bool isExitBlock(const MachineBasicBlock *MBB) const { 118 return is_contained(ExitBlocks, MBB); 119 } 120 121 // Track 'estimated' register pressure. 122 SmallSet<unsigned, 32> RegSeen; 123 SmallVector<unsigned, 8> RegPressure; 124 125 // Register pressure "limit" per register pressure set. If the pressure 126 // is higher than the limit, then it's considered high. 127 SmallVector<unsigned, 8> RegLimit; 128 129 // Register pressure on path leading from loop preheader to current BB. 130 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 131 132 // For each opcode, keep a list of potential CSE instructions. 133 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 134 135 enum { 136 SpeculateFalse = 0, 137 SpeculateTrue = 1, 138 SpeculateUnknown = 2 139 }; 140 141 // If a MBB does not dominate loop exiting blocks then it may not safe 142 // to hoist loads from this block. 143 // Tri-state: 0 - false, 1 - true, 2 - unknown 144 unsigned SpeculationState; 145 146 public: 147 MachineLICMBase(char &PassID, bool PreRegAlloc) 148 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override; 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<MachineLoopInfo>(); 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addRequired<AAResultsWrapperPass>(); 156 AU.addPreserved<MachineLoopInfo>(); 157 AU.addPreserved<MachineDominatorTree>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 void releaseMemory() override { 162 RegSeen.clear(); 163 RegPressure.clear(); 164 RegLimit.clear(); 165 BackTrace.clear(); 166 CSEMap.clear(); 167 } 168 169 private: 170 /// Keep track of information about hoisting candidates. 171 struct CandidateInfo { 172 MachineInstr *MI; 173 unsigned Def; 174 int FI; 175 176 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 177 : MI(mi), Def(def), FI(fi) {} 178 }; 179 180 void HoistRegionPostRA(); 181 182 void HoistPostRA(MachineInstr *MI, unsigned Def); 183 184 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 185 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 186 SmallVectorImpl<CandidateInfo> &Candidates); 187 188 void AddToLiveIns(unsigned Reg); 189 190 bool IsLICMCandidate(MachineInstr &I); 191 192 bool IsLoopInvariantInst(MachineInstr &I); 193 194 bool HasLoopPHIUse(const MachineInstr *MI) const; 195 196 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 197 unsigned Reg) const; 198 199 bool IsCheapInstruction(MachineInstr &MI) const; 200 201 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 202 bool Cheap); 203 204 void UpdateBackTraceRegPressure(const MachineInstr *MI); 205 206 bool IsProfitableToHoist(MachineInstr &MI); 207 208 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 209 210 void EnterScope(MachineBasicBlock *MBB); 211 212 void ExitScope(MachineBasicBlock *MBB); 213 214 void ExitScopeIfDone( 215 MachineDomTreeNode *Node, 216 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 217 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 218 219 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 220 221 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 222 223 void SinkIntoLoop(); 224 225 void InitRegPressure(MachineBasicBlock *BB); 226 227 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 228 bool ConsiderSeen, 229 bool ConsiderUnseenAsDef); 230 231 void UpdateRegPressure(const MachineInstr *MI, 232 bool ConsiderUnseenAsDef = false); 233 234 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 235 236 const MachineInstr * 237 LookForDuplicate(const MachineInstr *MI, 238 std::vector<const MachineInstr *> &PrevMIs); 239 240 bool EliminateCSE( 241 MachineInstr *MI, 242 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 243 244 bool MayCSE(MachineInstr *MI); 245 246 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 247 248 void InitCSEMap(MachineBasicBlock *BB); 249 250 MachineBasicBlock *getCurPreheader(); 251 }; 252 253 class MachineLICM : public MachineLICMBase { 254 public: 255 static char ID; 256 MachineLICM() : MachineLICMBase(ID, false) { 257 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 258 } 259 }; 260 261 class EarlyMachineLICM : public MachineLICMBase { 262 public: 263 static char ID; 264 EarlyMachineLICM() : MachineLICMBase(ID, true) { 265 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 266 } 267 }; 268 269 } // end anonymous namespace 270 271 char MachineLICM::ID; 272 char EarlyMachineLICM::ID; 273 274 char &llvm::MachineLICMID = MachineLICM::ID; 275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 276 277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 278 "Machine Loop Invariant Code Motion", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 283 "Machine Loop Invariant Code Motion", false, false) 284 285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 286 "Early Machine Loop Invariant Code Motion", false, false) 287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 291 "Early Machine Loop Invariant Code Motion", false, false) 292 293 /// Test if the given loop is the outer-most loop that has a unique predecessor. 294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 295 // Check whether this loop even has a unique predecessor. 296 if (!CurLoop->getLoopPredecessor()) 297 return false; 298 // Ok, now check to see if any of its outer loops do. 299 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 300 if (L->getLoopPredecessor()) 301 return false; 302 // None of them did, so this is the outermost with a unique predecessor. 303 return true; 304 } 305 306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 307 if (skipFunction(MF.getFunction())) 308 return false; 309 310 Changed = FirstInLoop = false; 311 const TargetSubtargetInfo &ST = MF.getSubtarget(); 312 TII = ST.getInstrInfo(); 313 TLI = ST.getTargetLowering(); 314 TRI = ST.getRegisterInfo(); 315 MFI = &MF.getFrameInfo(); 316 MRI = &MF.getRegInfo(); 317 SchedModel.init(&ST); 318 319 PreRegAlloc = MRI->isSSA(); 320 321 if (PreRegAlloc) 322 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 323 else 324 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 325 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 326 327 if (PreRegAlloc) { 328 // Estimate register pressure during pre-regalloc pass. 329 unsigned NumRPS = TRI->getNumRegPressureSets(); 330 RegPressure.resize(NumRPS); 331 std::fill(RegPressure.begin(), RegPressure.end(), 0); 332 RegLimit.resize(NumRPS); 333 for (unsigned i = 0, e = NumRPS; i != e; ++i) 334 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 335 } 336 337 // Get our Loop information... 338 MLI = &getAnalysis<MachineLoopInfo>(); 339 DT = &getAnalysis<MachineDominatorTree>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 343 while (!Worklist.empty()) { 344 CurLoop = Worklist.pop_back_val(); 345 CurPreheader = nullptr; 346 ExitBlocks.clear(); 347 348 // If this is done before regalloc, only visit outer-most preheader-sporting 349 // loops. 350 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 351 Worklist.append(CurLoop->begin(), CurLoop->end()); 352 continue; 353 } 354 355 CurLoop->getExitBlocks(ExitBlocks); 356 357 if (!PreRegAlloc) 358 HoistRegionPostRA(); 359 else { 360 // CSEMap is initialized for loop header when the first instruction is 361 // being hoisted. 362 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 363 FirstInLoop = true; 364 HoistOutOfLoop(N); 365 CSEMap.clear(); 366 367 if (SinkInstsToAvoidSpills) 368 SinkIntoLoop(); 369 } 370 } 371 372 return Changed; 373 } 374 375 /// Return true if instruction stores to the specified frame. 376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 377 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 378 // true since they have no memory operands. 379 if (!MI->mayStore()) 380 return false; 381 // If we lost memory operands, conservatively assume that the instruction 382 // writes to all slots. 383 if (MI->memoperands_empty()) 384 return true; 385 for (const MachineMemOperand *MemOp : MI->memoperands()) { 386 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 387 continue; 388 if (const FixedStackPseudoSourceValue *Value = 389 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 390 if (Value->getFrameIndex() == FI) 391 return true; 392 } 393 } 394 return false; 395 } 396 397 /// Examine the instruction for potentai LICM candidate. Also 398 /// gather register def and frame object update information. 399 void MachineLICMBase::ProcessMI(MachineInstr *MI, 400 BitVector &PhysRegDefs, 401 BitVector &PhysRegClobbers, 402 SmallSet<int, 32> &StoredFIs, 403 SmallVectorImpl<CandidateInfo> &Candidates) { 404 bool RuledOut = false; 405 bool HasNonInvariantUse = false; 406 unsigned Def = 0; 407 for (const MachineOperand &MO : MI->operands()) { 408 if (MO.isFI()) { 409 // Remember if the instruction stores to the frame index. 410 int FI = MO.getIndex(); 411 if (!StoredFIs.count(FI) && 412 MFI->isSpillSlotObjectIndex(FI) && 413 InstructionStoresToFI(MI, FI)) 414 StoredFIs.insert(FI); 415 HasNonInvariantUse = true; 416 continue; 417 } 418 419 // We can't hoist an instruction defining a physreg that is clobbered in 420 // the loop. 421 if (MO.isRegMask()) { 422 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 423 continue; 424 } 425 426 if (!MO.isReg()) 427 continue; 428 unsigned Reg = MO.getReg(); 429 if (!Reg) 430 continue; 431 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 432 "Not expecting virtual register!"); 433 434 if (!MO.isDef()) { 435 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 436 // If it's using a non-loop-invariant register, then it's obviously not 437 // safe to hoist. 438 HasNonInvariantUse = true; 439 continue; 440 } 441 442 if (MO.isImplicit()) { 443 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 444 PhysRegClobbers.set(*AI); 445 if (!MO.isDead()) 446 // Non-dead implicit def? This cannot be hoisted. 447 RuledOut = true; 448 // No need to check if a dead implicit def is also defined by 449 // another instruction. 450 continue; 451 } 452 453 // FIXME: For now, avoid instructions with multiple defs, unless 454 // it's a dead implicit def. 455 if (Def) 456 RuledOut = true; 457 else 458 Def = Reg; 459 460 // If we have already seen another instruction that defines the same 461 // register, then this is not safe. Two defs is indicated by setting a 462 // PhysRegClobbers bit. 463 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 464 if (PhysRegDefs.test(*AS)) 465 PhysRegClobbers.set(*AS); 466 PhysRegDefs.set(*AS); 467 } 468 if (PhysRegClobbers.test(Reg)) 469 // MI defined register is seen defined by another instruction in 470 // the loop, it cannot be a LICM candidate. 471 RuledOut = true; 472 } 473 474 // Only consider reloads for now and remats which do not have register 475 // operands. FIXME: Consider unfold load folding instructions. 476 if (Def && !RuledOut) { 477 int FI = std::numeric_limits<int>::min(); 478 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 479 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 480 Candidates.push_back(CandidateInfo(MI, Def, FI)); 481 } 482 } 483 484 /// Walk the specified region of the CFG and hoist loop invariants out to the 485 /// preheader. 486 void MachineLICMBase::HoistRegionPostRA() { 487 MachineBasicBlock *Preheader = getCurPreheader(); 488 if (!Preheader) 489 return; 490 491 unsigned NumRegs = TRI->getNumRegs(); 492 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 493 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 494 495 SmallVector<CandidateInfo, 32> Candidates; 496 SmallSet<int, 32> StoredFIs; 497 498 // Walk the entire region, count number of defs for each register, and 499 // collect potential LICM candidates. 500 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 501 // If the header of the loop containing this basic block is a landing pad, 502 // then don't try to hoist instructions out of this loop. 503 const MachineLoop *ML = MLI->getLoopFor(BB); 504 if (ML && ML->getHeader()->isEHPad()) continue; 505 506 // Conservatively treat live-in's as an external def. 507 // FIXME: That means a reload that're reused in successor block(s) will not 508 // be LICM'ed. 509 for (const auto &LI : BB->liveins()) { 510 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 511 PhysRegDefs.set(*AI); 512 } 513 514 SpeculationState = SpeculateUnknown; 515 for (MachineInstr &MI : *BB) 516 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 517 } 518 519 // Gather the registers read / clobbered by the terminator. 520 BitVector TermRegs(NumRegs); 521 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 522 if (TI != Preheader->end()) { 523 for (const MachineOperand &MO : TI->operands()) { 524 if (!MO.isReg()) 525 continue; 526 unsigned Reg = MO.getReg(); 527 if (!Reg) 528 continue; 529 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 530 TermRegs.set(*AI); 531 } 532 } 533 534 // Now evaluate whether the potential candidates qualify. 535 // 1. Check if the candidate defined register is defined by another 536 // instruction in the loop. 537 // 2. If the candidate is a load from stack slot (always true for now), 538 // check if the slot is stored anywhere in the loop. 539 // 3. Make sure candidate def should not clobber 540 // registers read by the terminator. Similarly its def should not be 541 // clobbered by the terminator. 542 for (CandidateInfo &Candidate : Candidates) { 543 if (Candidate.FI != std::numeric_limits<int>::min() && 544 StoredFIs.count(Candidate.FI)) 545 continue; 546 547 unsigned Def = Candidate.Def; 548 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 549 bool Safe = true; 550 MachineInstr *MI = Candidate.MI; 551 for (const MachineOperand &MO : MI->operands()) { 552 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 553 continue; 554 unsigned Reg = MO.getReg(); 555 if (PhysRegDefs.test(Reg) || 556 PhysRegClobbers.test(Reg)) { 557 // If it's using a non-loop-invariant register, then it's obviously 558 // not safe to hoist. 559 Safe = false; 560 break; 561 } 562 } 563 if (Safe) 564 HoistPostRA(MI, Candidate.Def); 565 } 566 } 567 } 568 569 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 570 /// sure it is not killed by any instructions in the loop. 571 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 572 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 573 if (!BB->isLiveIn(Reg)) 574 BB->addLiveIn(Reg); 575 for (MachineInstr &MI : *BB) { 576 for (MachineOperand &MO : MI.operands()) { 577 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 578 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 579 MO.setIsKill(false); 580 } 581 } 582 } 583 } 584 585 /// When an instruction is found to only use loop invariant operands that is 586 /// safe to hoist, this instruction is called to do the dirty work. 587 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 588 MachineBasicBlock *Preheader = getCurPreheader(); 589 590 // Now move the instructions to the predecessor, inserting it before any 591 // terminator instructions. 592 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 593 << " from " << printMBBReference(*MI->getParent()) << ": " 594 << *MI); 595 596 // Splice the instruction to the preheader. 597 MachineBasicBlock *MBB = MI->getParent(); 598 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 599 600 // Add register to livein list to all the BBs in the current loop since a 601 // loop invariant must be kept live throughout the whole loop. This is 602 // important to ensure later passes do not scavenge the def register. 603 AddToLiveIns(Def); 604 605 ++NumPostRAHoisted; 606 Changed = true; 607 } 608 609 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 610 /// may not be safe to hoist. 611 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 612 if (SpeculationState != SpeculateUnknown) 613 return SpeculationState == SpeculateFalse; 614 615 if (BB != CurLoop->getHeader()) { 616 // Check loop exiting blocks. 617 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 618 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 619 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 620 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 621 SpeculationState = SpeculateTrue; 622 return false; 623 } 624 } 625 626 SpeculationState = SpeculateFalse; 627 return true; 628 } 629 630 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 631 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 632 633 // Remember livein register pressure. 634 BackTrace.push_back(RegPressure); 635 } 636 637 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 638 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 639 BackTrace.pop_back(); 640 } 641 642 /// Destroy scope for the MBB that corresponds to the given dominator tree node 643 /// if its a leaf or all of its children are done. Walk up the dominator tree to 644 /// destroy ancestors which are now done. 645 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 646 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 647 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 648 if (OpenChildren[Node]) 649 return; 650 651 // Pop scope. 652 ExitScope(Node->getBlock()); 653 654 // Now traverse upwards to pop ancestors whose offsprings are all done. 655 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 656 unsigned Left = --OpenChildren[Parent]; 657 if (Left != 0) 658 break; 659 ExitScope(Parent->getBlock()); 660 Node = Parent; 661 } 662 } 663 664 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 665 /// specified header block, and that are in the current loop) in depth first 666 /// order w.r.t the DominatorTree. This allows us to visit definitions before 667 /// uses, allowing us to hoist a loop body in one pass without iteration. 668 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 669 MachineBasicBlock *Preheader = getCurPreheader(); 670 if (!Preheader) 671 return; 672 673 SmallVector<MachineDomTreeNode*, 32> Scopes; 674 SmallVector<MachineDomTreeNode*, 8> WorkList; 675 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 676 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 677 678 // Perform a DFS walk to determine the order of visit. 679 WorkList.push_back(HeaderN); 680 while (!WorkList.empty()) { 681 MachineDomTreeNode *Node = WorkList.pop_back_val(); 682 assert(Node && "Null dominator tree node?"); 683 MachineBasicBlock *BB = Node->getBlock(); 684 685 // If the header of the loop containing this basic block is a landing pad, 686 // then don't try to hoist instructions out of this loop. 687 const MachineLoop *ML = MLI->getLoopFor(BB); 688 if (ML && ML->getHeader()->isEHPad()) 689 continue; 690 691 // If this subregion is not in the top level loop at all, exit. 692 if (!CurLoop->contains(BB)) 693 continue; 694 695 Scopes.push_back(Node); 696 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 697 unsigned NumChildren = Children.size(); 698 699 // Don't hoist things out of a large switch statement. This often causes 700 // code to be hoisted that wasn't going to be executed, and increases 701 // register pressure in a situation where it's likely to matter. 702 if (BB->succ_size() >= 25) 703 NumChildren = 0; 704 705 OpenChildren[Node] = NumChildren; 706 // Add children in reverse order as then the next popped worklist node is 707 // the first child of this node. This means we ultimately traverse the 708 // DOM tree in exactly the same order as if we'd recursed. 709 for (int i = (int)NumChildren-1; i >= 0; --i) { 710 MachineDomTreeNode *Child = Children[i]; 711 ParentMap[Child] = Node; 712 WorkList.push_back(Child); 713 } 714 } 715 716 if (Scopes.size() == 0) 717 return; 718 719 // Compute registers which are livein into the loop headers. 720 RegSeen.clear(); 721 BackTrace.clear(); 722 InitRegPressure(Preheader); 723 724 // Now perform LICM. 725 for (MachineDomTreeNode *Node : Scopes) { 726 MachineBasicBlock *MBB = Node->getBlock(); 727 728 EnterScope(MBB); 729 730 // Process the block 731 SpeculationState = SpeculateUnknown; 732 for (MachineBasicBlock::iterator 733 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 734 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 735 MachineInstr *MI = &*MII; 736 if (!Hoist(MI, Preheader)) 737 UpdateRegPressure(MI); 738 // If we have hoisted an instruction that may store, it can only be a 739 // constant store. 740 MII = NextMII; 741 } 742 743 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 744 ExitScopeIfDone(Node, OpenChildren, ParentMap); 745 } 746 } 747 748 /// Sink instructions into loops if profitable. This especially tries to prevent 749 /// register spills caused by register pressure if there is little to no 750 /// overhead moving instructions into loops. 751 void MachineLICMBase::SinkIntoLoop() { 752 MachineBasicBlock *Preheader = getCurPreheader(); 753 if (!Preheader) 754 return; 755 756 SmallVector<MachineInstr *, 8> Candidates; 757 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 758 I != Preheader->instr_end(); ++I) { 759 // We need to ensure that we can safely move this instruction into the loop. 760 // As such, it must not have side-effects, e.g. such as a call has. 761 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 762 Candidates.push_back(&*I); 763 } 764 765 for (MachineInstr *I : Candidates) { 766 const MachineOperand &MO = I->getOperand(0); 767 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 768 continue; 769 if (!MRI->hasOneDef(MO.getReg())) 770 continue; 771 bool CanSink = true; 772 MachineBasicBlock *B = nullptr; 773 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 774 // FIXME: Come up with a proper cost model that estimates whether sinking 775 // the instruction (and thus possibly executing it on every loop 776 // iteration) is more expensive than a register. 777 // For now assumes that copies are cheap and thus almost always worth it. 778 if (!MI.isCopy()) { 779 CanSink = false; 780 break; 781 } 782 if (!B) { 783 B = MI.getParent(); 784 continue; 785 } 786 B = DT->findNearestCommonDominator(B, MI.getParent()); 787 if (!B) { 788 CanSink = false; 789 break; 790 } 791 } 792 if (!CanSink || !B || B == Preheader) 793 continue; 794 B->splice(B->getFirstNonPHI(), Preheader, I); 795 } 796 } 797 798 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 799 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 800 } 801 802 /// Find all virtual register references that are liveout of the preheader to 803 /// initialize the starting "register pressure". Note this does not count live 804 /// through (livein but not used) registers. 805 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 806 std::fill(RegPressure.begin(), RegPressure.end(), 0); 807 808 // If the preheader has only a single predecessor and it ends with a 809 // fallthrough or an unconditional branch, then scan its predecessor for live 810 // defs as well. This happens whenever the preheader is created by splitting 811 // the critical edge from the loop predecessor to the loop header. 812 if (BB->pred_size() == 1) { 813 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 814 SmallVector<MachineOperand, 4> Cond; 815 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 816 InitRegPressure(*BB->pred_begin()); 817 } 818 819 for (const MachineInstr &MI : *BB) 820 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 821 } 822 823 /// Update estimate of register pressure after the specified instruction. 824 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 825 bool ConsiderUnseenAsDef) { 826 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 827 for (const auto &RPIdAndCost : Cost) { 828 unsigned Class = RPIdAndCost.first; 829 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 830 RegPressure[Class] = 0; 831 else 832 RegPressure[Class] += RPIdAndCost.second; 833 } 834 } 835 836 /// Calculate the additional register pressure that the registers used in MI 837 /// cause. 838 /// 839 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 840 /// figure out which usages are live-ins. 841 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 842 DenseMap<unsigned, int> 843 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 844 bool ConsiderUnseenAsDef) { 845 DenseMap<unsigned, int> Cost; 846 if (MI->isImplicitDef()) 847 return Cost; 848 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 849 const MachineOperand &MO = MI->getOperand(i); 850 if (!MO.isReg() || MO.isImplicit()) 851 continue; 852 unsigned Reg = MO.getReg(); 853 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 854 continue; 855 856 // FIXME: It seems bad to use RegSeen only for some of these calculations. 857 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 858 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 859 860 RegClassWeight W = TRI->getRegClassWeight(RC); 861 int RCCost = 0; 862 if (MO.isDef()) 863 RCCost = W.RegWeight; 864 else { 865 bool isKill = isOperandKill(MO, MRI); 866 if (isNew && !isKill && ConsiderUnseenAsDef) 867 // Haven't seen this, it must be a livein. 868 RCCost = W.RegWeight; 869 else if (!isNew && isKill) 870 RCCost = -W.RegWeight; 871 } 872 if (RCCost == 0) 873 continue; 874 const int *PS = TRI->getRegClassPressureSets(RC); 875 for (; *PS != -1; ++PS) { 876 if (Cost.find(*PS) == Cost.end()) 877 Cost[*PS] = RCCost; 878 else 879 Cost[*PS] += RCCost; 880 } 881 } 882 return Cost; 883 } 884 885 /// Return true if this machine instruction loads from global offset table or 886 /// constant pool. 887 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 888 assert(MI.mayLoad() && "Expected MI that loads!"); 889 890 // If we lost memory operands, conservatively assume that the instruction 891 // reads from everything.. 892 if (MI.memoperands_empty()) 893 return true; 894 895 for (MachineMemOperand *MemOp : MI.memoperands()) 896 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 897 if (PSV->isGOT() || PSV->isConstantPool()) 898 return true; 899 900 return false; 901 } 902 903 // This function iterates through all the operands of the input store MI and 904 // checks that each register operand statisfies isCallerPreservedPhysReg. 905 // This means, the value being stored and the address where it is being stored 906 // is constant throughout the body of the function (not including prologue and 907 // epilogue). When called with an MI that isn't a store, it returns false. 908 // A future improvement can be to check if the store registers are constant 909 // throughout the loop rather than throughout the funtion. 910 static bool isInvariantStore(const MachineInstr &MI, 911 const TargetRegisterInfo *TRI, 912 const MachineRegisterInfo *MRI) { 913 914 bool FoundCallerPresReg = false; 915 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 916 (MI.getNumOperands() == 0)) 917 return false; 918 919 // Check that all register operands are caller-preserved physical registers. 920 for (const MachineOperand &MO : MI.operands()) { 921 if (MO.isReg()) { 922 unsigned Reg = MO.getReg(); 923 // If operand is a virtual register, check if it comes from a copy of a 924 // physical register. 925 if (TargetRegisterInfo::isVirtualRegister(Reg)) 926 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 927 if (TargetRegisterInfo::isVirtualRegister(Reg)) 928 return false; 929 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 930 return false; 931 else 932 FoundCallerPresReg = true; 933 } else if (!MO.isImm()) { 934 return false; 935 } 936 } 937 return FoundCallerPresReg; 938 } 939 940 // Return true if the input MI is a copy instruction that feeds an invariant 941 // store instruction. This means that the src of the copy has to satisfy 942 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 943 // isInvariantStore. 944 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 945 const MachineRegisterInfo *MRI, 946 const TargetRegisterInfo *TRI) { 947 948 // FIXME: If targets would like to look through instructions that aren't 949 // pure copies, this can be updated to a query. 950 if (!MI.isCopy()) 951 return false; 952 953 const MachineFunction *MF = MI.getMF(); 954 // Check that we are copying a constant physical register. 955 unsigned CopySrcReg = MI.getOperand(1).getReg(); 956 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) 957 return false; 958 959 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 960 return false; 961 962 unsigned CopyDstReg = MI.getOperand(0).getReg(); 963 // Check if any of the uses of the copy are invariant stores. 964 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && 965 "copy dst is not a virtual reg"); 966 967 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 968 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 969 return true; 970 } 971 return false; 972 } 973 974 /// Returns true if the instruction may be a suitable candidate for LICM. 975 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 976 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 977 // Check if it's safe to move the instruction. 978 bool DontMoveAcrossStore = true; 979 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 980 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 981 return false; 982 } 983 984 // If it is load then check if it is guaranteed to execute by making sure that 985 // it dominates all exiting blocks. If it doesn't, then there is a path out of 986 // the loop which does not execute this load, so we can't hoist it. Loads 987 // from constant memory are not safe to speculate all the time, for example 988 // indexed load from a jump table. 989 // Stores and side effects are already checked by isSafeToMove. 990 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 991 !IsGuaranteedToExecute(I.getParent())) 992 return false; 993 994 return true; 995 } 996 997 /// Returns true if the instruction is loop invariant. 998 /// I.e., all virtual register operands are defined outside of the loop, 999 /// physical registers aren't accessed explicitly, and there are no side 1000 /// effects that aren't captured by the operands or other flags. 1001 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1002 if (!IsLICMCandidate(I)) 1003 return false; 1004 1005 // The instruction is loop invariant if all of its operands are. 1006 for (const MachineOperand &MO : I.operands()) { 1007 if (!MO.isReg()) 1008 continue; 1009 1010 unsigned Reg = MO.getReg(); 1011 if (Reg == 0) continue; 1012 1013 // Don't hoist an instruction that uses or defines a physical register. 1014 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1015 if (MO.isUse()) { 1016 // If the physreg has no defs anywhere, it's just an ambient register 1017 // and we can freely move its uses. Alternatively, if it's allocatable, 1018 // it could get allocated to something with a def during allocation. 1019 // However, if the physreg is known to always be caller saved/restored 1020 // then this use is safe to hoist. 1021 if (!MRI->isConstantPhysReg(Reg) && 1022 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1023 return false; 1024 // Otherwise it's safe to move. 1025 continue; 1026 } else if (!MO.isDead()) { 1027 // A def that isn't dead. We can't move it. 1028 return false; 1029 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1030 // If the reg is live into the loop, we can't hoist an instruction 1031 // which would clobber it. 1032 return false; 1033 } 1034 } 1035 1036 if (!MO.isUse()) 1037 continue; 1038 1039 assert(MRI->getVRegDef(Reg) && 1040 "Machine instr not mapped for this vreg?!"); 1041 1042 // If the loop contains the definition of an operand, then the instruction 1043 // isn't loop invariant. 1044 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1045 return false; 1046 } 1047 1048 // If we got this far, the instruction is loop invariant! 1049 return true; 1050 } 1051 1052 /// Return true if the specified instruction is used by a phi node and hoisting 1053 /// it could cause a copy to be inserted. 1054 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1055 SmallVector<const MachineInstr*, 8> Work(1, MI); 1056 do { 1057 MI = Work.pop_back_val(); 1058 for (const MachineOperand &MO : MI->operands()) { 1059 if (!MO.isReg() || !MO.isDef()) 1060 continue; 1061 unsigned Reg = MO.getReg(); 1062 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1063 continue; 1064 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1065 // A PHI may cause a copy to be inserted. 1066 if (UseMI.isPHI()) { 1067 // A PHI inside the loop causes a copy because the live range of Reg is 1068 // extended across the PHI. 1069 if (CurLoop->contains(&UseMI)) 1070 return true; 1071 // A PHI in an exit block can cause a copy to be inserted if the PHI 1072 // has multiple predecessors in the loop with different values. 1073 // For now, approximate by rejecting all exit blocks. 1074 if (isExitBlock(UseMI.getParent())) 1075 return true; 1076 continue; 1077 } 1078 // Look past copies as well. 1079 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1080 Work.push_back(&UseMI); 1081 } 1082 } 1083 } while (!Work.empty()); 1084 return false; 1085 } 1086 1087 /// Compute operand latency between a def of 'Reg' and an use in the current 1088 /// loop, return true if the target considered it high. 1089 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1090 unsigned DefIdx, 1091 unsigned Reg) const { 1092 if (MRI->use_nodbg_empty(Reg)) 1093 return false; 1094 1095 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1096 if (UseMI.isCopyLike()) 1097 continue; 1098 if (!CurLoop->contains(UseMI.getParent())) 1099 continue; 1100 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1101 const MachineOperand &MO = UseMI.getOperand(i); 1102 if (!MO.isReg() || !MO.isUse()) 1103 continue; 1104 unsigned MOReg = MO.getReg(); 1105 if (MOReg != Reg) 1106 continue; 1107 1108 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1109 return true; 1110 } 1111 1112 // Only look at the first in loop use. 1113 break; 1114 } 1115 1116 return false; 1117 } 1118 1119 /// Return true if the instruction is marked "cheap" or the operand latency 1120 /// between its def and a use is one or less. 1121 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1122 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1123 return true; 1124 1125 bool isCheap = false; 1126 unsigned NumDefs = MI.getDesc().getNumDefs(); 1127 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1128 MachineOperand &DefMO = MI.getOperand(i); 1129 if (!DefMO.isReg() || !DefMO.isDef()) 1130 continue; 1131 --NumDefs; 1132 unsigned Reg = DefMO.getReg(); 1133 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1134 continue; 1135 1136 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1137 return false; 1138 isCheap = true; 1139 } 1140 1141 return isCheap; 1142 } 1143 1144 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1145 /// given cost matrix can cause high register pressure. 1146 bool 1147 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1148 bool CheapInstr) { 1149 for (const auto &RPIdAndCost : Cost) { 1150 if (RPIdAndCost.second <= 0) 1151 continue; 1152 1153 unsigned Class = RPIdAndCost.first; 1154 int Limit = RegLimit[Class]; 1155 1156 // Don't hoist cheap instructions if they would increase register pressure, 1157 // even if we're under the limit. 1158 if (CheapInstr && !HoistCheapInsts) 1159 return true; 1160 1161 for (const auto &RP : BackTrace) 1162 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1163 return true; 1164 } 1165 1166 return false; 1167 } 1168 1169 /// Traverse the back trace from header to the current block and update their 1170 /// register pressures to reflect the effect of hoisting MI from the current 1171 /// block to the preheader. 1172 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1173 // First compute the 'cost' of the instruction, i.e. its contribution 1174 // to register pressure. 1175 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1176 /*ConsiderUnseenAsDef=*/false); 1177 1178 // Update register pressure of blocks from loop header to current block. 1179 for (auto &RP : BackTrace) 1180 for (const auto &RPIdAndCost : Cost) 1181 RP[RPIdAndCost.first] += RPIdAndCost.second; 1182 } 1183 1184 /// Return true if it is potentially profitable to hoist the given loop 1185 /// invariant. 1186 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1187 if (MI.isImplicitDef()) 1188 return true; 1189 1190 // Besides removing computation from the loop, hoisting an instruction has 1191 // these effects: 1192 // 1193 // - The value defined by the instruction becomes live across the entire 1194 // loop. This increases register pressure in the loop. 1195 // 1196 // - If the value is used by a PHI in the loop, a copy will be required for 1197 // lowering the PHI after extending the live range. 1198 // 1199 // - When hoisting the last use of a value in the loop, that value no longer 1200 // needs to be live in the loop. This lowers register pressure in the loop. 1201 1202 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1203 return true; 1204 1205 bool CheapInstr = IsCheapInstruction(MI); 1206 bool CreatesCopy = HasLoopPHIUse(&MI); 1207 1208 // Don't hoist a cheap instruction if it would create a copy in the loop. 1209 if (CheapInstr && CreatesCopy) { 1210 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1211 return false; 1212 } 1213 1214 // Rematerializable instructions should always be hoisted since the register 1215 // allocator can just pull them down again when needed. 1216 if (TII->isTriviallyReMaterializable(MI, AA)) 1217 return true; 1218 1219 // FIXME: If there are long latency loop-invariant instructions inside the 1220 // loop at this point, why didn't the optimizer's LICM hoist them? 1221 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1222 const MachineOperand &MO = MI.getOperand(i); 1223 if (!MO.isReg() || MO.isImplicit()) 1224 continue; 1225 unsigned Reg = MO.getReg(); 1226 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1227 continue; 1228 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1229 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1230 ++NumHighLatency; 1231 return true; 1232 } 1233 } 1234 1235 // Estimate register pressure to determine whether to LICM the instruction. 1236 // In low register pressure situation, we can be more aggressive about 1237 // hoisting. Also, favors hoisting long latency instructions even in 1238 // moderately high pressure situation. 1239 // Cheap instructions will only be hoisted if they don't increase register 1240 // pressure at all. 1241 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1242 /*ConsiderUnseenAsDef=*/false); 1243 1244 // Visit BBs from header to current BB, if hoisting this doesn't cause 1245 // high register pressure, then it's safe to proceed. 1246 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1247 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1248 ++NumLowRP; 1249 return true; 1250 } 1251 1252 // Don't risk increasing register pressure if it would create copies. 1253 if (CreatesCopy) { 1254 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1255 return false; 1256 } 1257 1258 // Do not "speculate" in high register pressure situation. If an 1259 // instruction is not guaranteed to be executed in the loop, it's best to be 1260 // conservative. 1261 if (AvoidSpeculation && 1262 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1263 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1264 return false; 1265 } 1266 1267 // High register pressure situation, only hoist if the instruction is going 1268 // to be remat'ed. 1269 if (!TII->isTriviallyReMaterializable(MI, AA) && 1270 !MI.isDereferenceableInvariantLoad(AA)) { 1271 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1272 return false; 1273 } 1274 1275 return true; 1276 } 1277 1278 /// Unfold a load from the given machineinstr if the load itself could be 1279 /// hoisted. Return the unfolded and hoistable load, or null if the load 1280 /// couldn't be unfolded or if it wouldn't be hoistable. 1281 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1282 // Don't unfold simple loads. 1283 if (MI->canFoldAsLoad()) 1284 return nullptr; 1285 1286 // If not, we may be able to unfold a load and hoist that. 1287 // First test whether the instruction is loading from an amenable 1288 // memory location. 1289 if (!MI->isDereferenceableInvariantLoad(AA)) 1290 return nullptr; 1291 1292 // Next determine the register class for a temporary register. 1293 unsigned LoadRegIndex; 1294 unsigned NewOpc = 1295 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1296 /*UnfoldLoad=*/true, 1297 /*UnfoldStore=*/false, 1298 &LoadRegIndex); 1299 if (NewOpc == 0) return nullptr; 1300 const MCInstrDesc &MID = TII->get(NewOpc); 1301 MachineFunction &MF = *MI->getMF(); 1302 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1303 // Ok, we're unfolding. Create a temporary register and do the unfold. 1304 unsigned Reg = MRI->createVirtualRegister(RC); 1305 1306 SmallVector<MachineInstr *, 2> NewMIs; 1307 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1308 /*UnfoldLoad=*/true, 1309 /*UnfoldStore=*/false, NewMIs); 1310 (void)Success; 1311 assert(Success && 1312 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1313 "succeeded!"); 1314 assert(NewMIs.size() == 2 && 1315 "Unfolded a load into multiple instructions!"); 1316 MachineBasicBlock *MBB = MI->getParent(); 1317 MachineBasicBlock::iterator Pos = MI; 1318 MBB->insert(Pos, NewMIs[0]); 1319 MBB->insert(Pos, NewMIs[1]); 1320 // If unfolding produced a load that wasn't loop-invariant or profitable to 1321 // hoist, discard the new instructions and bail. 1322 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1323 NewMIs[0]->eraseFromParent(); 1324 NewMIs[1]->eraseFromParent(); 1325 return nullptr; 1326 } 1327 1328 // Update register pressure for the unfolded instruction. 1329 UpdateRegPressure(NewMIs[1]); 1330 1331 // Otherwise we successfully unfolded a load that we can hoist. 1332 MI->eraseFromParent(); 1333 return NewMIs[0]; 1334 } 1335 1336 /// Initialize the CSE map with instructions that are in the current loop 1337 /// preheader that may become duplicates of instructions that are hoisted 1338 /// out of the loop. 1339 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1340 for (MachineInstr &MI : *BB) 1341 CSEMap[MI.getOpcode()].push_back(&MI); 1342 } 1343 1344 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1345 /// Return this instruction if it's found. 1346 const MachineInstr* 1347 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1348 std::vector<const MachineInstr*> &PrevMIs) { 1349 for (const MachineInstr *PrevMI : PrevMIs) 1350 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1351 return PrevMI; 1352 1353 return nullptr; 1354 } 1355 1356 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1357 /// computes the same value. If it's found, do a RAU on with the definition of 1358 /// the existing instruction rather than hoisting the instruction to the 1359 /// preheader. 1360 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1361 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1362 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1363 // the undef property onto uses. 1364 if (CI == CSEMap.end() || MI->isImplicitDef()) 1365 return false; 1366 1367 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1368 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1369 1370 // Replace virtual registers defined by MI by their counterparts defined 1371 // by Dup. 1372 SmallVector<unsigned, 2> Defs; 1373 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1374 const MachineOperand &MO = MI->getOperand(i); 1375 1376 // Physical registers may not differ here. 1377 assert((!MO.isReg() || MO.getReg() == 0 || 1378 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1379 MO.getReg() == Dup->getOperand(i).getReg()) && 1380 "Instructions with different phys regs are not identical!"); 1381 1382 if (MO.isReg() && MO.isDef() && 1383 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1384 Defs.push_back(i); 1385 } 1386 1387 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1388 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1389 unsigned Idx = Defs[i]; 1390 unsigned Reg = MI->getOperand(Idx).getReg(); 1391 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1392 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1393 1394 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1395 // Restore old RCs if more than one defs. 1396 for (unsigned j = 0; j != i; ++j) 1397 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1398 return false; 1399 } 1400 } 1401 1402 for (unsigned Idx : Defs) { 1403 unsigned Reg = MI->getOperand(Idx).getReg(); 1404 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1405 MRI->replaceRegWith(Reg, DupReg); 1406 MRI->clearKillFlags(DupReg); 1407 } 1408 1409 MI->eraseFromParent(); 1410 ++NumCSEed; 1411 return true; 1412 } 1413 return false; 1414 } 1415 1416 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1417 /// the loop. 1418 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1419 unsigned Opcode = MI->getOpcode(); 1420 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1421 CI = CSEMap.find(Opcode); 1422 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1423 // the undef property onto uses. 1424 if (CI == CSEMap.end() || MI->isImplicitDef()) 1425 return false; 1426 1427 return LookForDuplicate(MI, CI->second) != nullptr; 1428 } 1429 1430 /// When an instruction is found to use only loop invariant operands 1431 /// that are safe to hoist, this instruction is called to do the dirty work. 1432 /// It returns true if the instruction is hoisted. 1433 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1434 // First check whether we should hoist this instruction. 1435 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1436 // If not, try unfolding a hoistable load. 1437 MI = ExtractHoistableLoad(MI); 1438 if (!MI) return false; 1439 } 1440 1441 // If we have hoisted an instruction that may store, it can only be a constant 1442 // store. 1443 if (MI->mayStore()) 1444 NumStoreConst++; 1445 1446 // Now move the instructions to the predecessor, inserting it before any 1447 // terminator instructions. 1448 LLVM_DEBUG({ 1449 dbgs() << "Hoisting " << *MI; 1450 if (MI->getParent()->getBasicBlock()) 1451 dbgs() << " from " << printMBBReference(*MI->getParent()); 1452 if (Preheader->getBasicBlock()) 1453 dbgs() << " to " << printMBBReference(*Preheader); 1454 dbgs() << "\n"; 1455 }); 1456 1457 // If this is the first instruction being hoisted to the preheader, 1458 // initialize the CSE map with potential common expressions. 1459 if (FirstInLoop) { 1460 InitCSEMap(Preheader); 1461 FirstInLoop = false; 1462 } 1463 1464 // Look for opportunity to CSE the hoisted instruction. 1465 unsigned Opcode = MI->getOpcode(); 1466 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1467 CI = CSEMap.find(Opcode); 1468 if (!EliminateCSE(MI, CI)) { 1469 // Otherwise, splice the instruction to the preheader. 1470 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1471 1472 // Since we are moving the instruction out of its basic block, we do not 1473 // retain its debug location. Doing so would degrade the debugging 1474 // experience and adversely affect the accuracy of profiling information. 1475 MI->setDebugLoc(DebugLoc()); 1476 1477 // Update register pressure for BBs from header to this block. 1478 UpdateBackTraceRegPressure(MI); 1479 1480 // Clear the kill flags of any register this instruction defines, 1481 // since they may need to be live throughout the entire loop 1482 // rather than just live for part of it. 1483 for (MachineOperand &MO : MI->operands()) 1484 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1485 MRI->clearKillFlags(MO.getReg()); 1486 1487 // Add to the CSE map. 1488 if (CI != CSEMap.end()) 1489 CI->second.push_back(MI); 1490 else 1491 CSEMap[Opcode].push_back(MI); 1492 } 1493 1494 ++NumHoisted; 1495 Changed = true; 1496 1497 return true; 1498 } 1499 1500 /// Get the preheader for the current loop, splitting a critical edge if needed. 1501 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1502 // Determine the block to which to hoist instructions. If we can't find a 1503 // suitable loop predecessor, we can't do any hoisting. 1504 1505 // If we've tried to get a preheader and failed, don't try again. 1506 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1507 return nullptr; 1508 1509 if (!CurPreheader) { 1510 CurPreheader = CurLoop->getLoopPreheader(); 1511 if (!CurPreheader) { 1512 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1513 if (!Pred) { 1514 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1515 return nullptr; 1516 } 1517 1518 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1519 if (!CurPreheader) { 1520 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1521 return nullptr; 1522 } 1523 } 1524 } 1525 return CurPreheader; 1526 } 1527