1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <limits>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "machinelicm"
58 
59 static cl::opt<bool>
60 AvoidSpeculation("avoid-speculation",
61                  cl::desc("MachineLICM should avoid speculation"),
62                  cl::init(true), cl::Hidden);
63 
64 static cl::opt<bool>
65 HoistCheapInsts("hoist-cheap-insts",
66                 cl::desc("MachineLICM should hoist even cheap instructions"),
67                 cl::init(false), cl::Hidden);
68 
69 static cl::opt<bool>
70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
71                        cl::desc("MachineLICM should sink instructions into "
72                                 "loops to avoid register spills"),
73                        cl::init(false), cl::Hidden);
74 static cl::opt<bool>
75 HoistConstStores("hoist-const-stores",
76                  cl::desc("Hoist invariant stores"),
77                  cl::init(true), cl::Hidden);
78 
79 STATISTIC(NumHoisted,
80           "Number of machine instructions hoisted out of loops");
81 STATISTIC(NumLowRP,
82           "Number of instructions hoisted in low reg pressure situation");
83 STATISTIC(NumHighLatency,
84           "Number of high latency instructions hoisted");
85 STATISTIC(NumCSEed,
86           "Number of hoisted machine instructions CSEed");
87 STATISTIC(NumPostRAHoisted,
88           "Number of machine instructions hoisted out of loops post regalloc");
89 STATISTIC(NumStoreConst,
90           "Number of stores of const phys reg hoisted out of loops");
91 
92 namespace {
93 
94   class MachineLICMBase : public MachineFunctionPass {
95     const TargetInstrInfo *TII;
96     const TargetLoweringBase *TLI;
97     const TargetRegisterInfo *TRI;
98     const MachineFrameInfo *MFI;
99     MachineRegisterInfo *MRI;
100     TargetSchedModel SchedModel;
101     bool PreRegAlloc;
102 
103     // Various analyses that we use...
104     AliasAnalysis        *AA;      // Alias analysis info.
105     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
106     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
107 
108     // State that is updated as we process loops
109     bool         Changed;          // True if a loop is changed.
110     bool         FirstInLoop;      // True if it's the first LICM in the loop.
111     MachineLoop *CurLoop;          // The current loop we are working on.
112     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
113 
114     // Exit blocks for CurLoop.
115     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
116 
117     bool isExitBlock(const MachineBasicBlock *MBB) const {
118       return is_contained(ExitBlocks, MBB);
119     }
120 
121     // Track 'estimated' register pressure.
122     SmallSet<unsigned, 32> RegSeen;
123     SmallVector<unsigned, 8> RegPressure;
124 
125     // Register pressure "limit" per register pressure set. If the pressure
126     // is higher than the limit, then it's considered high.
127     SmallVector<unsigned, 8> RegLimit;
128 
129     // Register pressure on path leading from loop preheader to current BB.
130     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
131 
132     // For each opcode, keep a list of potential CSE instructions.
133     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
134 
135     enum {
136       SpeculateFalse   = 0,
137       SpeculateTrue    = 1,
138       SpeculateUnknown = 2
139     };
140 
141     // If a MBB does not dominate loop exiting blocks then it may not safe
142     // to hoist loads from this block.
143     // Tri-state: 0 - false, 1 - true, 2 - unknown
144     unsigned SpeculationState;
145 
146   public:
147     MachineLICMBase(char &PassID, bool PreRegAlloc)
148         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
149 
150     bool runOnMachineFunction(MachineFunction &MF) override;
151 
152     void getAnalysisUsage(AnalysisUsage &AU) const override {
153       AU.addRequired<MachineLoopInfo>();
154       AU.addRequired<MachineDominatorTree>();
155       AU.addRequired<AAResultsWrapperPass>();
156       AU.addPreserved<MachineLoopInfo>();
157       AU.addPreserved<MachineDominatorTree>();
158       MachineFunctionPass::getAnalysisUsage(AU);
159     }
160 
161     void releaseMemory() override {
162       RegSeen.clear();
163       RegPressure.clear();
164       RegLimit.clear();
165       BackTrace.clear();
166       CSEMap.clear();
167     }
168 
169   private:
170     /// Keep track of information about hoisting candidates.
171     struct CandidateInfo {
172       MachineInstr *MI;
173       unsigned      Def;
174       int           FI;
175 
176       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
177         : MI(mi), Def(def), FI(fi) {}
178     };
179 
180     void HoistRegionPostRA();
181 
182     void HoistPostRA(MachineInstr *MI, unsigned Def);
183 
184     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
185                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
186                    SmallVectorImpl<CandidateInfo> &Candidates);
187 
188     void AddToLiveIns(unsigned Reg);
189 
190     bool IsLICMCandidate(MachineInstr &I);
191 
192     bool IsLoopInvariantInst(MachineInstr &I);
193 
194     bool HasLoopPHIUse(const MachineInstr *MI) const;
195 
196     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
197                                unsigned Reg) const;
198 
199     bool IsCheapInstruction(MachineInstr &MI) const;
200 
201     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
202                                  bool Cheap);
203 
204     void UpdateBackTraceRegPressure(const MachineInstr *MI);
205 
206     bool IsProfitableToHoist(MachineInstr &MI);
207 
208     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
209 
210     void EnterScope(MachineBasicBlock *MBB);
211 
212     void ExitScope(MachineBasicBlock *MBB);
213 
214     void ExitScopeIfDone(
215         MachineDomTreeNode *Node,
216         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
217         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
218 
219     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
220 
221     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
222 
223     void SinkIntoLoop();
224 
225     void InitRegPressure(MachineBasicBlock *BB);
226 
227     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
228                                              bool ConsiderSeen,
229                                              bool ConsiderUnseenAsDef);
230 
231     void UpdateRegPressure(const MachineInstr *MI,
232                            bool ConsiderUnseenAsDef = false);
233 
234     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
235 
236     const MachineInstr *
237     LookForDuplicate(const MachineInstr *MI,
238                      std::vector<const MachineInstr *> &PrevMIs);
239 
240     bool EliminateCSE(
241         MachineInstr *MI,
242         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
243 
244     bool MayCSE(MachineInstr *MI);
245 
246     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
247 
248     void InitCSEMap(MachineBasicBlock *BB);
249 
250     MachineBasicBlock *getCurPreheader();
251   };
252 
253   class MachineLICM : public MachineLICMBase {
254   public:
255     static char ID;
256     MachineLICM() : MachineLICMBase(ID, false) {
257       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
258     }
259   };
260 
261   class EarlyMachineLICM : public MachineLICMBase {
262   public:
263     static char ID;
264     EarlyMachineLICM() : MachineLICMBase(ID, true) {
265       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
266     }
267   };
268 
269 } // end anonymous namespace
270 
271 char MachineLICM::ID;
272 char EarlyMachineLICM::ID;
273 
274 char &llvm::MachineLICMID = MachineLICM::ID;
275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
276 
277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
278                       "Machine Loop Invariant Code Motion", false, false)
279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
283                     "Machine Loop Invariant Code Motion", false, false)
284 
285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
286                       "Early Machine Loop Invariant Code Motion", false, false)
287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
291                     "Early Machine Loop Invariant Code Motion", false, false)
292 
293 /// Test if the given loop is the outer-most loop that has a unique predecessor.
294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
295   // Check whether this loop even has a unique predecessor.
296   if (!CurLoop->getLoopPredecessor())
297     return false;
298   // Ok, now check to see if any of its outer loops do.
299   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
300     if (L->getLoopPredecessor())
301       return false;
302   // None of them did, so this is the outermost with a unique predecessor.
303   return true;
304 }
305 
306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
307   if (skipFunction(MF.getFunction()))
308     return false;
309 
310   Changed = FirstInLoop = false;
311   const TargetSubtargetInfo &ST = MF.getSubtarget();
312   TII = ST.getInstrInfo();
313   TLI = ST.getTargetLowering();
314   TRI = ST.getRegisterInfo();
315   MFI = &MF.getFrameInfo();
316   MRI = &MF.getRegInfo();
317   SchedModel.init(&ST);
318 
319   PreRegAlloc = MRI->isSSA();
320 
321   if (PreRegAlloc)
322     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
323   else
324     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
325   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
326 
327   if (PreRegAlloc) {
328     // Estimate register pressure during pre-regalloc pass.
329     unsigned NumRPS = TRI->getNumRegPressureSets();
330     RegPressure.resize(NumRPS);
331     std::fill(RegPressure.begin(), RegPressure.end(), 0);
332     RegLimit.resize(NumRPS);
333     for (unsigned i = 0, e = NumRPS; i != e; ++i)
334       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
335   }
336 
337   // Get our Loop information...
338   MLI = &getAnalysis<MachineLoopInfo>();
339   DT  = &getAnalysis<MachineDominatorTree>();
340   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341 
342   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
343   while (!Worklist.empty()) {
344     CurLoop = Worklist.pop_back_val();
345     CurPreheader = nullptr;
346     ExitBlocks.clear();
347 
348     // If this is done before regalloc, only visit outer-most preheader-sporting
349     // loops.
350     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
351       Worklist.append(CurLoop->begin(), CurLoop->end());
352       continue;
353     }
354 
355     CurLoop->getExitBlocks(ExitBlocks);
356 
357     if (!PreRegAlloc)
358       HoistRegionPostRA();
359     else {
360       // CSEMap is initialized for loop header when the first instruction is
361       // being hoisted.
362       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
363       FirstInLoop = true;
364       HoistOutOfLoop(N);
365       CSEMap.clear();
366 
367       if (SinkInstsToAvoidSpills)
368         SinkIntoLoop();
369     }
370   }
371 
372   return Changed;
373 }
374 
375 /// Return true if instruction stores to the specified frame.
376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
377   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
378   // true since they have no memory operands.
379   if (!MI->mayStore())
380      return false;
381   // If we lost memory operands, conservatively assume that the instruction
382   // writes to all slots.
383   if (MI->memoperands_empty())
384     return true;
385   for (const MachineMemOperand *MemOp : MI->memoperands()) {
386     if (!MemOp->isStore() || !MemOp->getPseudoValue())
387       continue;
388     if (const FixedStackPseudoSourceValue *Value =
389         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
390       if (Value->getFrameIndex() == FI)
391         return true;
392     }
393   }
394   return false;
395 }
396 
397 /// Examine the instruction for potentai LICM candidate. Also
398 /// gather register def and frame object update information.
399 void MachineLICMBase::ProcessMI(MachineInstr *MI,
400                                 BitVector &PhysRegDefs,
401                                 BitVector &PhysRegClobbers,
402                                 SmallSet<int, 32> &StoredFIs,
403                                 SmallVectorImpl<CandidateInfo> &Candidates) {
404   bool RuledOut = false;
405   bool HasNonInvariantUse = false;
406   unsigned Def = 0;
407   for (const MachineOperand &MO : MI->operands()) {
408     if (MO.isFI()) {
409       // Remember if the instruction stores to the frame index.
410       int FI = MO.getIndex();
411       if (!StoredFIs.count(FI) &&
412           MFI->isSpillSlotObjectIndex(FI) &&
413           InstructionStoresToFI(MI, FI))
414         StoredFIs.insert(FI);
415       HasNonInvariantUse = true;
416       continue;
417     }
418 
419     // We can't hoist an instruction defining a physreg that is clobbered in
420     // the loop.
421     if (MO.isRegMask()) {
422       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
423       continue;
424     }
425 
426     if (!MO.isReg())
427       continue;
428     unsigned Reg = MO.getReg();
429     if (!Reg)
430       continue;
431     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
432            "Not expecting virtual register!");
433 
434     if (!MO.isDef()) {
435       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
436         // If it's using a non-loop-invariant register, then it's obviously not
437         // safe to hoist.
438         HasNonInvariantUse = true;
439       continue;
440     }
441 
442     if (MO.isImplicit()) {
443       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
444         PhysRegClobbers.set(*AI);
445       if (!MO.isDead())
446         // Non-dead implicit def? This cannot be hoisted.
447         RuledOut = true;
448       // No need to check if a dead implicit def is also defined by
449       // another instruction.
450       continue;
451     }
452 
453     // FIXME: For now, avoid instructions with multiple defs, unless
454     // it's a dead implicit def.
455     if (Def)
456       RuledOut = true;
457     else
458       Def = Reg;
459 
460     // If we have already seen another instruction that defines the same
461     // register, then this is not safe.  Two defs is indicated by setting a
462     // PhysRegClobbers bit.
463     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
464       if (PhysRegDefs.test(*AS))
465         PhysRegClobbers.set(*AS);
466       PhysRegDefs.set(*AS);
467     }
468     if (PhysRegClobbers.test(Reg))
469       // MI defined register is seen defined by another instruction in
470       // the loop, it cannot be a LICM candidate.
471       RuledOut = true;
472   }
473 
474   // Only consider reloads for now and remats which do not have register
475   // operands. FIXME: Consider unfold load folding instructions.
476   if (Def && !RuledOut) {
477     int FI = std::numeric_limits<int>::min();
478     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
479         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
480       Candidates.push_back(CandidateInfo(MI, Def, FI));
481   }
482 }
483 
484 /// Walk the specified region of the CFG and hoist loop invariants out to the
485 /// preheader.
486 void MachineLICMBase::HoistRegionPostRA() {
487   MachineBasicBlock *Preheader = getCurPreheader();
488   if (!Preheader)
489     return;
490 
491   unsigned NumRegs = TRI->getNumRegs();
492   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
493   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
494 
495   SmallVector<CandidateInfo, 32> Candidates;
496   SmallSet<int, 32> StoredFIs;
497 
498   // Walk the entire region, count number of defs for each register, and
499   // collect potential LICM candidates.
500   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
501     // If the header of the loop containing this basic block is a landing pad,
502     // then don't try to hoist instructions out of this loop.
503     const MachineLoop *ML = MLI->getLoopFor(BB);
504     if (ML && ML->getHeader()->isEHPad()) continue;
505 
506     // Conservatively treat live-in's as an external def.
507     // FIXME: That means a reload that're reused in successor block(s) will not
508     // be LICM'ed.
509     for (const auto &LI : BB->liveins()) {
510       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
511         PhysRegDefs.set(*AI);
512     }
513 
514     SpeculationState = SpeculateUnknown;
515     for (MachineInstr &MI : *BB)
516       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
517   }
518 
519   // Gather the registers read / clobbered by the terminator.
520   BitVector TermRegs(NumRegs);
521   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
522   if (TI != Preheader->end()) {
523     for (const MachineOperand &MO : TI->operands()) {
524       if (!MO.isReg())
525         continue;
526       unsigned Reg = MO.getReg();
527       if (!Reg)
528         continue;
529       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
530         TermRegs.set(*AI);
531     }
532   }
533 
534   // Now evaluate whether the potential candidates qualify.
535   // 1. Check if the candidate defined register is defined by another
536   //    instruction in the loop.
537   // 2. If the candidate is a load from stack slot (always true for now),
538   //    check if the slot is stored anywhere in the loop.
539   // 3. Make sure candidate def should not clobber
540   //    registers read by the terminator. Similarly its def should not be
541   //    clobbered by the terminator.
542   for (CandidateInfo &Candidate : Candidates) {
543     if (Candidate.FI != std::numeric_limits<int>::min() &&
544         StoredFIs.count(Candidate.FI))
545       continue;
546 
547     unsigned Def = Candidate.Def;
548     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
549       bool Safe = true;
550       MachineInstr *MI = Candidate.MI;
551       for (const MachineOperand &MO : MI->operands()) {
552         if (!MO.isReg() || MO.isDef() || !MO.getReg())
553           continue;
554         unsigned Reg = MO.getReg();
555         if (PhysRegDefs.test(Reg) ||
556             PhysRegClobbers.test(Reg)) {
557           // If it's using a non-loop-invariant register, then it's obviously
558           // not safe to hoist.
559           Safe = false;
560           break;
561         }
562       }
563       if (Safe)
564         HoistPostRA(MI, Candidate.Def);
565     }
566   }
567 }
568 
569 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
570 /// sure it is not killed by any instructions in the loop.
571 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
572   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
573     if (!BB->isLiveIn(Reg))
574       BB->addLiveIn(Reg);
575     for (MachineInstr &MI : *BB) {
576       for (MachineOperand &MO : MI.operands()) {
577         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
578         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
579           MO.setIsKill(false);
580       }
581     }
582   }
583 }
584 
585 /// When an instruction is found to only use loop invariant operands that is
586 /// safe to hoist, this instruction is called to do the dirty work.
587 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
588   MachineBasicBlock *Preheader = getCurPreheader();
589 
590   // Now move the instructions to the predecessor, inserting it before any
591   // terminator instructions.
592   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
593                     << " from " << printMBBReference(*MI->getParent()) << ": "
594                     << *MI);
595 
596   // Splice the instruction to the preheader.
597   MachineBasicBlock *MBB = MI->getParent();
598   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
599 
600   // Add register to livein list to all the BBs in the current loop since a
601   // loop invariant must be kept live throughout the whole loop. This is
602   // important to ensure later passes do not scavenge the def register.
603   AddToLiveIns(Def);
604 
605   ++NumPostRAHoisted;
606   Changed = true;
607 }
608 
609 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
610 /// may not be safe to hoist.
611 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
612   if (SpeculationState != SpeculateUnknown)
613     return SpeculationState == SpeculateFalse;
614 
615   if (BB != CurLoop->getHeader()) {
616     // Check loop exiting blocks.
617     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
618     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
619     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
620       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
621         SpeculationState = SpeculateTrue;
622         return false;
623       }
624   }
625 
626   SpeculationState = SpeculateFalse;
627   return true;
628 }
629 
630 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
631   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
632 
633   // Remember livein register pressure.
634   BackTrace.push_back(RegPressure);
635 }
636 
637 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
638   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
639   BackTrace.pop_back();
640 }
641 
642 /// Destroy scope for the MBB that corresponds to the given dominator tree node
643 /// if its a leaf or all of its children are done. Walk up the dominator tree to
644 /// destroy ancestors which are now done.
645 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
646     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
647     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
648   if (OpenChildren[Node])
649     return;
650 
651   // Pop scope.
652   ExitScope(Node->getBlock());
653 
654   // Now traverse upwards to pop ancestors whose offsprings are all done.
655   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
656     unsigned Left = --OpenChildren[Parent];
657     if (Left != 0)
658       break;
659     ExitScope(Parent->getBlock());
660     Node = Parent;
661   }
662 }
663 
664 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
665 /// specified header block, and that are in the current loop) in depth first
666 /// order w.r.t the DominatorTree. This allows us to visit definitions before
667 /// uses, allowing us to hoist a loop body in one pass without iteration.
668 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
669   MachineBasicBlock *Preheader = getCurPreheader();
670   if (!Preheader)
671     return;
672 
673   SmallVector<MachineDomTreeNode*, 32> Scopes;
674   SmallVector<MachineDomTreeNode*, 8> WorkList;
675   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
676   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
677 
678   // Perform a DFS walk to determine the order of visit.
679   WorkList.push_back(HeaderN);
680   while (!WorkList.empty()) {
681     MachineDomTreeNode *Node = WorkList.pop_back_val();
682     assert(Node && "Null dominator tree node?");
683     MachineBasicBlock *BB = Node->getBlock();
684 
685     // If the header of the loop containing this basic block is a landing pad,
686     // then don't try to hoist instructions out of this loop.
687     const MachineLoop *ML = MLI->getLoopFor(BB);
688     if (ML && ML->getHeader()->isEHPad())
689       continue;
690 
691     // If this subregion is not in the top level loop at all, exit.
692     if (!CurLoop->contains(BB))
693       continue;
694 
695     Scopes.push_back(Node);
696     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
697     unsigned NumChildren = Children.size();
698 
699     // Don't hoist things out of a large switch statement.  This often causes
700     // code to be hoisted that wasn't going to be executed, and increases
701     // register pressure in a situation where it's likely to matter.
702     if (BB->succ_size() >= 25)
703       NumChildren = 0;
704 
705     OpenChildren[Node] = NumChildren;
706     // Add children in reverse order as then the next popped worklist node is
707     // the first child of this node.  This means we ultimately traverse the
708     // DOM tree in exactly the same order as if we'd recursed.
709     for (int i = (int)NumChildren-1; i >= 0; --i) {
710       MachineDomTreeNode *Child = Children[i];
711       ParentMap[Child] = Node;
712       WorkList.push_back(Child);
713     }
714   }
715 
716   if (Scopes.size() == 0)
717     return;
718 
719   // Compute registers which are livein into the loop headers.
720   RegSeen.clear();
721   BackTrace.clear();
722   InitRegPressure(Preheader);
723 
724   // Now perform LICM.
725   for (MachineDomTreeNode *Node : Scopes) {
726     MachineBasicBlock *MBB = Node->getBlock();
727 
728     EnterScope(MBB);
729 
730     // Process the block
731     SpeculationState = SpeculateUnknown;
732     for (MachineBasicBlock::iterator
733          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
734       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
735       MachineInstr *MI = &*MII;
736       if (!Hoist(MI, Preheader))
737         UpdateRegPressure(MI);
738       // If we have hoisted an instruction that may store, it can only be a
739       // constant store.
740       MII = NextMII;
741     }
742 
743     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
744     ExitScopeIfDone(Node, OpenChildren, ParentMap);
745   }
746 }
747 
748 /// Sink instructions into loops if profitable. This especially tries to prevent
749 /// register spills caused by register pressure if there is little to no
750 /// overhead moving instructions into loops.
751 void MachineLICMBase::SinkIntoLoop() {
752   MachineBasicBlock *Preheader = getCurPreheader();
753   if (!Preheader)
754     return;
755 
756   SmallVector<MachineInstr *, 8> Candidates;
757   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
758        I != Preheader->instr_end(); ++I) {
759     // We need to ensure that we can safely move this instruction into the loop.
760     // As such, it must not have side-effects, e.g. such as a call has.
761     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
762       Candidates.push_back(&*I);
763   }
764 
765   for (MachineInstr *I : Candidates) {
766     const MachineOperand &MO = I->getOperand(0);
767     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
768       continue;
769     if (!MRI->hasOneDef(MO.getReg()))
770       continue;
771     bool CanSink = true;
772     MachineBasicBlock *B = nullptr;
773     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
774       // FIXME: Come up with a proper cost model that estimates whether sinking
775       // the instruction (and thus possibly executing it on every loop
776       // iteration) is more expensive than a register.
777       // For now assumes that copies are cheap and thus almost always worth it.
778       if (!MI.isCopy()) {
779         CanSink = false;
780         break;
781       }
782       if (!B) {
783         B = MI.getParent();
784         continue;
785       }
786       B = DT->findNearestCommonDominator(B, MI.getParent());
787       if (!B) {
788         CanSink = false;
789         break;
790       }
791     }
792     if (!CanSink || !B || B == Preheader)
793       continue;
794     B->splice(B->getFirstNonPHI(), Preheader, I);
795   }
796 }
797 
798 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
799   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
800 }
801 
802 /// Find all virtual register references that are liveout of the preheader to
803 /// initialize the starting "register pressure". Note this does not count live
804 /// through (livein but not used) registers.
805 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
806   std::fill(RegPressure.begin(), RegPressure.end(), 0);
807 
808   // If the preheader has only a single predecessor and it ends with a
809   // fallthrough or an unconditional branch, then scan its predecessor for live
810   // defs as well. This happens whenever the preheader is created by splitting
811   // the critical edge from the loop predecessor to the loop header.
812   if (BB->pred_size() == 1) {
813     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
814     SmallVector<MachineOperand, 4> Cond;
815     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
816       InitRegPressure(*BB->pred_begin());
817   }
818 
819   for (const MachineInstr &MI : *BB)
820     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
821 }
822 
823 /// Update estimate of register pressure after the specified instruction.
824 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
825                                         bool ConsiderUnseenAsDef) {
826   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
827   for (const auto &RPIdAndCost : Cost) {
828     unsigned Class = RPIdAndCost.first;
829     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
830       RegPressure[Class] = 0;
831     else
832       RegPressure[Class] += RPIdAndCost.second;
833   }
834 }
835 
836 /// Calculate the additional register pressure that the registers used in MI
837 /// cause.
838 ///
839 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
840 /// figure out which usages are live-ins.
841 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
842 DenseMap<unsigned, int>
843 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
844                                   bool ConsiderUnseenAsDef) {
845   DenseMap<unsigned, int> Cost;
846   if (MI->isImplicitDef())
847     return Cost;
848   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
849     const MachineOperand &MO = MI->getOperand(i);
850     if (!MO.isReg() || MO.isImplicit())
851       continue;
852     unsigned Reg = MO.getReg();
853     if (!TargetRegisterInfo::isVirtualRegister(Reg))
854       continue;
855 
856     // FIXME: It seems bad to use RegSeen only for some of these calculations.
857     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
858     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
859 
860     RegClassWeight W = TRI->getRegClassWeight(RC);
861     int RCCost = 0;
862     if (MO.isDef())
863       RCCost = W.RegWeight;
864     else {
865       bool isKill = isOperandKill(MO, MRI);
866       if (isNew && !isKill && ConsiderUnseenAsDef)
867         // Haven't seen this, it must be a livein.
868         RCCost = W.RegWeight;
869       else if (!isNew && isKill)
870         RCCost = -W.RegWeight;
871     }
872     if (RCCost == 0)
873       continue;
874     const int *PS = TRI->getRegClassPressureSets(RC);
875     for (; *PS != -1; ++PS) {
876       if (Cost.find(*PS) == Cost.end())
877         Cost[*PS] = RCCost;
878       else
879         Cost[*PS] += RCCost;
880     }
881   }
882   return Cost;
883 }
884 
885 /// Return true if this machine instruction loads from global offset table or
886 /// constant pool.
887 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
888   assert(MI.mayLoad() && "Expected MI that loads!");
889 
890   // If we lost memory operands, conservatively assume that the instruction
891   // reads from everything..
892   if (MI.memoperands_empty())
893     return true;
894 
895   for (MachineMemOperand *MemOp : MI.memoperands())
896     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
897       if (PSV->isGOT() || PSV->isConstantPool())
898         return true;
899 
900   return false;
901 }
902 
903 // This function iterates through all the operands of the input store MI and
904 // checks that each register operand statisfies isCallerPreservedPhysReg.
905 // This means, the value being stored and the address where it is being stored
906 // is constant throughout the body of the function (not including prologue and
907 // epilogue). When called with an MI that isn't a store, it returns false.
908 // A future improvement can be to check if the store registers are constant
909 // throughout the loop rather than throughout the funtion.
910 static bool isInvariantStore(const MachineInstr &MI,
911                              const TargetRegisterInfo *TRI,
912                              const MachineRegisterInfo *MRI) {
913 
914   bool FoundCallerPresReg = false;
915   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
916       (MI.getNumOperands() == 0))
917     return false;
918 
919   // Check that all register operands are caller-preserved physical registers.
920   for (const MachineOperand &MO : MI.operands()) {
921     if (MO.isReg()) {
922       unsigned Reg = MO.getReg();
923       // If operand is a virtual register, check if it comes from a copy of a
924       // physical register.
925       if (TargetRegisterInfo::isVirtualRegister(Reg))
926         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
927       if (TargetRegisterInfo::isVirtualRegister(Reg))
928         return false;
929       if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
930         return false;
931       else
932         FoundCallerPresReg = true;
933     } else if (!MO.isImm()) {
934         return false;
935     }
936   }
937   return FoundCallerPresReg;
938 }
939 
940 // Return true if the input MI is a copy instruction that feeds an invariant
941 // store instruction. This means that the src of the copy has to satisfy
942 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
943 // isInvariantStore.
944 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
945                                         const MachineRegisterInfo *MRI,
946                                         const TargetRegisterInfo *TRI) {
947 
948   // FIXME: If targets would like to look through instructions that aren't
949   // pure copies, this can be updated to a query.
950   if (!MI.isCopy())
951     return false;
952 
953   const MachineFunction *MF = MI.getMF();
954   // Check that we are copying a constant physical register.
955   unsigned CopySrcReg = MI.getOperand(1).getReg();
956   if (TargetRegisterInfo::isVirtualRegister(CopySrcReg))
957     return false;
958 
959   if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
960     return false;
961 
962   unsigned CopyDstReg = MI.getOperand(0).getReg();
963   // Check if any of the uses of the copy are invariant stores.
964   assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) &&
965           "copy dst is not a virtual reg");
966 
967   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
968     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
969       return true;
970   }
971   return false;
972 }
973 
974 /// Returns true if the instruction may be a suitable candidate for LICM.
975 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
976 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
977   // Check if it's safe to move the instruction.
978   bool DontMoveAcrossStore = true;
979   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
980       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
981     return false;
982   }
983 
984   // If it is load then check if it is guaranteed to execute by making sure that
985   // it dominates all exiting blocks. If it doesn't, then there is a path out of
986   // the loop which does not execute this load, so we can't hoist it. Loads
987   // from constant memory are not safe to speculate all the time, for example
988   // indexed load from a jump table.
989   // Stores and side effects are already checked by isSafeToMove.
990   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
991       !IsGuaranteedToExecute(I.getParent()))
992     return false;
993 
994   return true;
995 }
996 
997 /// Returns true if the instruction is loop invariant.
998 /// I.e., all virtual register operands are defined outside of the loop,
999 /// physical registers aren't accessed explicitly, and there are no side
1000 /// effects that aren't captured by the operands or other flags.
1001 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1002   if (!IsLICMCandidate(I))
1003     return false;
1004 
1005   // The instruction is loop invariant if all of its operands are.
1006   for (const MachineOperand &MO : I.operands()) {
1007     if (!MO.isReg())
1008       continue;
1009 
1010     unsigned Reg = MO.getReg();
1011     if (Reg == 0) continue;
1012 
1013     // Don't hoist an instruction that uses or defines a physical register.
1014     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1015       if (MO.isUse()) {
1016         // If the physreg has no defs anywhere, it's just an ambient register
1017         // and we can freely move its uses. Alternatively, if it's allocatable,
1018         // it could get allocated to something with a def during allocation.
1019         // However, if the physreg is known to always be caller saved/restored
1020         // then this use is safe to hoist.
1021         if (!MRI->isConstantPhysReg(Reg) &&
1022             !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1023           return false;
1024         // Otherwise it's safe to move.
1025         continue;
1026       } else if (!MO.isDead()) {
1027         // A def that isn't dead. We can't move it.
1028         return false;
1029       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1030         // If the reg is live into the loop, we can't hoist an instruction
1031         // which would clobber it.
1032         return false;
1033       }
1034     }
1035 
1036     if (!MO.isUse())
1037       continue;
1038 
1039     assert(MRI->getVRegDef(Reg) &&
1040            "Machine instr not mapped for this vreg?!");
1041 
1042     // If the loop contains the definition of an operand, then the instruction
1043     // isn't loop invariant.
1044     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1045       return false;
1046   }
1047 
1048   // If we got this far, the instruction is loop invariant!
1049   return true;
1050 }
1051 
1052 /// Return true if the specified instruction is used by a phi node and hoisting
1053 /// it could cause a copy to be inserted.
1054 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1055   SmallVector<const MachineInstr*, 8> Work(1, MI);
1056   do {
1057     MI = Work.pop_back_val();
1058     for (const MachineOperand &MO : MI->operands()) {
1059       if (!MO.isReg() || !MO.isDef())
1060         continue;
1061       unsigned Reg = MO.getReg();
1062       if (!TargetRegisterInfo::isVirtualRegister(Reg))
1063         continue;
1064       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1065         // A PHI may cause a copy to be inserted.
1066         if (UseMI.isPHI()) {
1067           // A PHI inside the loop causes a copy because the live range of Reg is
1068           // extended across the PHI.
1069           if (CurLoop->contains(&UseMI))
1070             return true;
1071           // A PHI in an exit block can cause a copy to be inserted if the PHI
1072           // has multiple predecessors in the loop with different values.
1073           // For now, approximate by rejecting all exit blocks.
1074           if (isExitBlock(UseMI.getParent()))
1075             return true;
1076           continue;
1077         }
1078         // Look past copies as well.
1079         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1080           Work.push_back(&UseMI);
1081       }
1082     }
1083   } while (!Work.empty());
1084   return false;
1085 }
1086 
1087 /// Compute operand latency between a def of 'Reg' and an use in the current
1088 /// loop, return true if the target considered it high.
1089 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1090                                             unsigned DefIdx,
1091                                             unsigned Reg) const {
1092   if (MRI->use_nodbg_empty(Reg))
1093     return false;
1094 
1095   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1096     if (UseMI.isCopyLike())
1097       continue;
1098     if (!CurLoop->contains(UseMI.getParent()))
1099       continue;
1100     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1101       const MachineOperand &MO = UseMI.getOperand(i);
1102       if (!MO.isReg() || !MO.isUse())
1103         continue;
1104       unsigned MOReg = MO.getReg();
1105       if (MOReg != Reg)
1106         continue;
1107 
1108       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1109         return true;
1110     }
1111 
1112     // Only look at the first in loop use.
1113     break;
1114   }
1115 
1116   return false;
1117 }
1118 
1119 /// Return true if the instruction is marked "cheap" or the operand latency
1120 /// between its def and a use is one or less.
1121 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1122   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1123     return true;
1124 
1125   bool isCheap = false;
1126   unsigned NumDefs = MI.getDesc().getNumDefs();
1127   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1128     MachineOperand &DefMO = MI.getOperand(i);
1129     if (!DefMO.isReg() || !DefMO.isDef())
1130       continue;
1131     --NumDefs;
1132     unsigned Reg = DefMO.getReg();
1133     if (TargetRegisterInfo::isPhysicalRegister(Reg))
1134       continue;
1135 
1136     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1137       return false;
1138     isCheap = true;
1139   }
1140 
1141   return isCheap;
1142 }
1143 
1144 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1145 /// given cost matrix can cause high register pressure.
1146 bool
1147 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1148                                          bool CheapInstr) {
1149   for (const auto &RPIdAndCost : Cost) {
1150     if (RPIdAndCost.second <= 0)
1151       continue;
1152 
1153     unsigned Class = RPIdAndCost.first;
1154     int Limit = RegLimit[Class];
1155 
1156     // Don't hoist cheap instructions if they would increase register pressure,
1157     // even if we're under the limit.
1158     if (CheapInstr && !HoistCheapInsts)
1159       return true;
1160 
1161     for (const auto &RP : BackTrace)
1162       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1163         return true;
1164   }
1165 
1166   return false;
1167 }
1168 
1169 /// Traverse the back trace from header to the current block and update their
1170 /// register pressures to reflect the effect of hoisting MI from the current
1171 /// block to the preheader.
1172 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1173   // First compute the 'cost' of the instruction, i.e. its contribution
1174   // to register pressure.
1175   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1176                                /*ConsiderUnseenAsDef=*/false);
1177 
1178   // Update register pressure of blocks from loop header to current block.
1179   for (auto &RP : BackTrace)
1180     for (const auto &RPIdAndCost : Cost)
1181       RP[RPIdAndCost.first] += RPIdAndCost.second;
1182 }
1183 
1184 /// Return true if it is potentially profitable to hoist the given loop
1185 /// invariant.
1186 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1187   if (MI.isImplicitDef())
1188     return true;
1189 
1190   // Besides removing computation from the loop, hoisting an instruction has
1191   // these effects:
1192   //
1193   // - The value defined by the instruction becomes live across the entire
1194   //   loop. This increases register pressure in the loop.
1195   //
1196   // - If the value is used by a PHI in the loop, a copy will be required for
1197   //   lowering the PHI after extending the live range.
1198   //
1199   // - When hoisting the last use of a value in the loop, that value no longer
1200   //   needs to be live in the loop. This lowers register pressure in the loop.
1201 
1202   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1203     return true;
1204 
1205   bool CheapInstr = IsCheapInstruction(MI);
1206   bool CreatesCopy = HasLoopPHIUse(&MI);
1207 
1208   // Don't hoist a cheap instruction if it would create a copy in the loop.
1209   if (CheapInstr && CreatesCopy) {
1210     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1211     return false;
1212   }
1213 
1214   // Rematerializable instructions should always be hoisted since the register
1215   // allocator can just pull them down again when needed.
1216   if (TII->isTriviallyReMaterializable(MI, AA))
1217     return true;
1218 
1219   // FIXME: If there are long latency loop-invariant instructions inside the
1220   // loop at this point, why didn't the optimizer's LICM hoist them?
1221   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1222     const MachineOperand &MO = MI.getOperand(i);
1223     if (!MO.isReg() || MO.isImplicit())
1224       continue;
1225     unsigned Reg = MO.getReg();
1226     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1227       continue;
1228     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1229       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1230       ++NumHighLatency;
1231       return true;
1232     }
1233   }
1234 
1235   // Estimate register pressure to determine whether to LICM the instruction.
1236   // In low register pressure situation, we can be more aggressive about
1237   // hoisting. Also, favors hoisting long latency instructions even in
1238   // moderately high pressure situation.
1239   // Cheap instructions will only be hoisted if they don't increase register
1240   // pressure at all.
1241   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1242                                /*ConsiderUnseenAsDef=*/false);
1243 
1244   // Visit BBs from header to current BB, if hoisting this doesn't cause
1245   // high register pressure, then it's safe to proceed.
1246   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1247     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1248     ++NumLowRP;
1249     return true;
1250   }
1251 
1252   // Don't risk increasing register pressure if it would create copies.
1253   if (CreatesCopy) {
1254     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1255     return false;
1256   }
1257 
1258   // Do not "speculate" in high register pressure situation. If an
1259   // instruction is not guaranteed to be executed in the loop, it's best to be
1260   // conservative.
1261   if (AvoidSpeculation &&
1262       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1263     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1264     return false;
1265   }
1266 
1267   // High register pressure situation, only hoist if the instruction is going
1268   // to be remat'ed.
1269   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1270       !MI.isDereferenceableInvariantLoad(AA)) {
1271     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1272     return false;
1273   }
1274 
1275   return true;
1276 }
1277 
1278 /// Unfold a load from the given machineinstr if the load itself could be
1279 /// hoisted. Return the unfolded and hoistable load, or null if the load
1280 /// couldn't be unfolded or if it wouldn't be hoistable.
1281 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1282   // Don't unfold simple loads.
1283   if (MI->canFoldAsLoad())
1284     return nullptr;
1285 
1286   // If not, we may be able to unfold a load and hoist that.
1287   // First test whether the instruction is loading from an amenable
1288   // memory location.
1289   if (!MI->isDereferenceableInvariantLoad(AA))
1290     return nullptr;
1291 
1292   // Next determine the register class for a temporary register.
1293   unsigned LoadRegIndex;
1294   unsigned NewOpc =
1295     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1296                                     /*UnfoldLoad=*/true,
1297                                     /*UnfoldStore=*/false,
1298                                     &LoadRegIndex);
1299   if (NewOpc == 0) return nullptr;
1300   const MCInstrDesc &MID = TII->get(NewOpc);
1301   MachineFunction &MF = *MI->getMF();
1302   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1303   // Ok, we're unfolding. Create a temporary register and do the unfold.
1304   unsigned Reg = MRI->createVirtualRegister(RC);
1305 
1306   SmallVector<MachineInstr *, 2> NewMIs;
1307   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1308                                           /*UnfoldLoad=*/true,
1309                                           /*UnfoldStore=*/false, NewMIs);
1310   (void)Success;
1311   assert(Success &&
1312          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1313          "succeeded!");
1314   assert(NewMIs.size() == 2 &&
1315          "Unfolded a load into multiple instructions!");
1316   MachineBasicBlock *MBB = MI->getParent();
1317   MachineBasicBlock::iterator Pos = MI;
1318   MBB->insert(Pos, NewMIs[0]);
1319   MBB->insert(Pos, NewMIs[1]);
1320   // If unfolding produced a load that wasn't loop-invariant or profitable to
1321   // hoist, discard the new instructions and bail.
1322   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1323     NewMIs[0]->eraseFromParent();
1324     NewMIs[1]->eraseFromParent();
1325     return nullptr;
1326   }
1327 
1328   // Update register pressure for the unfolded instruction.
1329   UpdateRegPressure(NewMIs[1]);
1330 
1331   // Otherwise we successfully unfolded a load that we can hoist.
1332   MI->eraseFromParent();
1333   return NewMIs[0];
1334 }
1335 
1336 /// Initialize the CSE map with instructions that are in the current loop
1337 /// preheader that may become duplicates of instructions that are hoisted
1338 /// out of the loop.
1339 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1340   for (MachineInstr &MI : *BB)
1341     CSEMap[MI.getOpcode()].push_back(&MI);
1342 }
1343 
1344 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1345 /// Return this instruction if it's found.
1346 const MachineInstr*
1347 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1348                                   std::vector<const MachineInstr*> &PrevMIs) {
1349   for (const MachineInstr *PrevMI : PrevMIs)
1350     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1351       return PrevMI;
1352 
1353   return nullptr;
1354 }
1355 
1356 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1357 /// computes the same value. If it's found, do a RAU on with the definition of
1358 /// the existing instruction rather than hoisting the instruction to the
1359 /// preheader.
1360 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1361     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1362   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1363   // the undef property onto uses.
1364   if (CI == CSEMap.end() || MI->isImplicitDef())
1365     return false;
1366 
1367   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1368     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1369 
1370     // Replace virtual registers defined by MI by their counterparts defined
1371     // by Dup.
1372     SmallVector<unsigned, 2> Defs;
1373     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1374       const MachineOperand &MO = MI->getOperand(i);
1375 
1376       // Physical registers may not differ here.
1377       assert((!MO.isReg() || MO.getReg() == 0 ||
1378               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1379               MO.getReg() == Dup->getOperand(i).getReg()) &&
1380              "Instructions with different phys regs are not identical!");
1381 
1382       if (MO.isReg() && MO.isDef() &&
1383           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1384         Defs.push_back(i);
1385     }
1386 
1387     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1388     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1389       unsigned Idx = Defs[i];
1390       unsigned Reg = MI->getOperand(Idx).getReg();
1391       unsigned DupReg = Dup->getOperand(Idx).getReg();
1392       OrigRCs.push_back(MRI->getRegClass(DupReg));
1393 
1394       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1395         // Restore old RCs if more than one defs.
1396         for (unsigned j = 0; j != i; ++j)
1397           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1398         return false;
1399       }
1400     }
1401 
1402     for (unsigned Idx : Defs) {
1403       unsigned Reg = MI->getOperand(Idx).getReg();
1404       unsigned DupReg = Dup->getOperand(Idx).getReg();
1405       MRI->replaceRegWith(Reg, DupReg);
1406       MRI->clearKillFlags(DupReg);
1407     }
1408 
1409     MI->eraseFromParent();
1410     ++NumCSEed;
1411     return true;
1412   }
1413   return false;
1414 }
1415 
1416 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1417 /// the loop.
1418 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1419   unsigned Opcode = MI->getOpcode();
1420   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1421     CI = CSEMap.find(Opcode);
1422   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1423   // the undef property onto uses.
1424   if (CI == CSEMap.end() || MI->isImplicitDef())
1425     return false;
1426 
1427   return LookForDuplicate(MI, CI->second) != nullptr;
1428 }
1429 
1430 /// When an instruction is found to use only loop invariant operands
1431 /// that are safe to hoist, this instruction is called to do the dirty work.
1432 /// It returns true if the instruction is hoisted.
1433 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1434   // First check whether we should hoist this instruction.
1435   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1436     // If not, try unfolding a hoistable load.
1437     MI = ExtractHoistableLoad(MI);
1438     if (!MI) return false;
1439   }
1440 
1441   // If we have hoisted an instruction that may store, it can only be a constant
1442   // store.
1443   if (MI->mayStore())
1444     NumStoreConst++;
1445 
1446   // Now move the instructions to the predecessor, inserting it before any
1447   // terminator instructions.
1448   LLVM_DEBUG({
1449     dbgs() << "Hoisting " << *MI;
1450     if (MI->getParent()->getBasicBlock())
1451       dbgs() << " from " << printMBBReference(*MI->getParent());
1452     if (Preheader->getBasicBlock())
1453       dbgs() << " to " << printMBBReference(*Preheader);
1454     dbgs() << "\n";
1455   });
1456 
1457   // If this is the first instruction being hoisted to the preheader,
1458   // initialize the CSE map with potential common expressions.
1459   if (FirstInLoop) {
1460     InitCSEMap(Preheader);
1461     FirstInLoop = false;
1462   }
1463 
1464   // Look for opportunity to CSE the hoisted instruction.
1465   unsigned Opcode = MI->getOpcode();
1466   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1467     CI = CSEMap.find(Opcode);
1468   if (!EliminateCSE(MI, CI)) {
1469     // Otherwise, splice the instruction to the preheader.
1470     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1471 
1472     // Since we are moving the instruction out of its basic block, we do not
1473     // retain its debug location. Doing so would degrade the debugging
1474     // experience and adversely affect the accuracy of profiling information.
1475     MI->setDebugLoc(DebugLoc());
1476 
1477     // Update register pressure for BBs from header to this block.
1478     UpdateBackTraceRegPressure(MI);
1479 
1480     // Clear the kill flags of any register this instruction defines,
1481     // since they may need to be live throughout the entire loop
1482     // rather than just live for part of it.
1483     for (MachineOperand &MO : MI->operands())
1484       if (MO.isReg() && MO.isDef() && !MO.isDead())
1485         MRI->clearKillFlags(MO.getReg());
1486 
1487     // Add to the CSE map.
1488     if (CI != CSEMap.end())
1489       CI->second.push_back(MI);
1490     else
1491       CSEMap[Opcode].push_back(MI);
1492   }
1493 
1494   ++NumHoisted;
1495   Changed = true;
1496 
1497   return true;
1498 }
1499 
1500 /// Get the preheader for the current loop, splitting a critical edge if needed.
1501 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1502   // Determine the block to which to hoist instructions. If we can't find a
1503   // suitable loop predecessor, we can't do any hoisting.
1504 
1505   // If we've tried to get a preheader and failed, don't try again.
1506   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1507     return nullptr;
1508 
1509   if (!CurPreheader) {
1510     CurPreheader = CurLoop->getLoopPreheader();
1511     if (!CurPreheader) {
1512       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1513       if (!Pred) {
1514         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1515         return nullptr;
1516       }
1517 
1518       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1519       if (!CurPreheader) {
1520         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1521         return nullptr;
1522       }
1523     }
1524   }
1525   return CurPreheader;
1526 }
1527