1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/TargetSchedule.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-licm" 42 43 static cl::opt<bool> 44 AvoidSpeculation("avoid-speculation", 45 cl::desc("MachineLICM should avoid speculation"), 46 cl::init(true), cl::Hidden); 47 48 static cl::opt<bool> 49 HoistCheapInsts("hoist-cheap-insts", 50 cl::desc("MachineLICM should hoist even cheap instructions"), 51 cl::init(false), cl::Hidden); 52 53 static cl::opt<bool> 54 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 55 cl::desc("MachineLICM should sink instructions into " 56 "loops to avoid register spills"), 57 cl::init(false), cl::Hidden); 58 59 STATISTIC(NumHoisted, 60 "Number of machine instructions hoisted out of loops"); 61 STATISTIC(NumLowRP, 62 "Number of instructions hoisted in low reg pressure situation"); 63 STATISTIC(NumHighLatency, 64 "Number of high latency instructions hoisted"); 65 STATISTIC(NumCSEed, 66 "Number of hoisted machine instructions CSEed"); 67 STATISTIC(NumPostRAHoisted, 68 "Number of machine instructions hoisted out of loops post regalloc"); 69 70 namespace { 71 class MachineLICM : public MachineFunctionPass { 72 const TargetInstrInfo *TII; 73 const TargetLoweringBase *TLI; 74 const TargetRegisterInfo *TRI; 75 const MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 TargetSchedModel SchedModel; 78 bool PreRegAlloc; 79 80 // Various analyses that we use... 81 AliasAnalysis *AA; // Alias analysis info. 82 MachineLoopInfo *MLI; // Current MachineLoopInfo 83 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 84 85 // State that is updated as we process loops 86 bool Changed; // True if a loop is changed. 87 bool FirstInLoop; // True if it's the first LICM in the loop. 88 MachineLoop *CurLoop; // The current loop we are working on. 89 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 90 91 // Exit blocks for CurLoop. 92 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 93 94 bool isExitBlock(const MachineBasicBlock *MBB) const { 95 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 96 ExitBlocks.end(); 97 } 98 99 // Track 'estimated' register pressure. 100 SmallSet<unsigned, 32> RegSeen; 101 SmallVector<unsigned, 8> RegPressure; 102 103 // Register pressure "limit" per register pressure set. If the pressure 104 // is higher than the limit, then it's considered high. 105 SmallVector<unsigned, 8> RegLimit; 106 107 // Register pressure on path leading from loop preheader to current BB. 108 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 109 110 // For each opcode, keep a list of potential CSE instructions. 111 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 112 113 enum { 114 SpeculateFalse = 0, 115 SpeculateTrue = 1, 116 SpeculateUnknown = 2 117 }; 118 119 // If a MBB does not dominate loop exiting blocks then it may not safe 120 // to hoist loads from this block. 121 // Tri-state: 0 - false, 1 - true, 2 - unknown 122 unsigned SpeculationState; 123 124 public: 125 static char ID; // Pass identification, replacement for typeid 126 MachineLICM() : 127 MachineFunctionPass(ID), PreRegAlloc(true) { 128 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 129 } 130 131 explicit MachineLICM(bool PreRA) : 132 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 133 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 void getAnalysisUsage(AnalysisUsage &AU) const override { 139 AU.addRequired<MachineLoopInfo>(); 140 AU.addRequired<MachineDominatorTree>(); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addPreserved<MachineLoopInfo>(); 143 AU.addPreserved<MachineDominatorTree>(); 144 MachineFunctionPass::getAnalysisUsage(AU); 145 } 146 147 void releaseMemory() override { 148 RegSeen.clear(); 149 RegPressure.clear(); 150 RegLimit.clear(); 151 BackTrace.clear(); 152 CSEMap.clear(); 153 } 154 155 private: 156 /// Keep track of information about hoisting candidates. 157 struct CandidateInfo { 158 MachineInstr *MI; 159 unsigned Def; 160 int FI; 161 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 162 : MI(mi), Def(def), FI(fi) {} 163 }; 164 165 void HoistRegionPostRA(); 166 167 void HoistPostRA(MachineInstr *MI, unsigned Def); 168 169 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 170 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 171 SmallVectorImpl<CandidateInfo> &Candidates); 172 173 void AddToLiveIns(unsigned Reg); 174 175 bool IsLICMCandidate(MachineInstr &I); 176 177 bool IsLoopInvariantInst(MachineInstr &I); 178 179 bool HasLoopPHIUse(const MachineInstr *MI) const; 180 181 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 182 unsigned Reg) const; 183 184 bool IsCheapInstruction(MachineInstr &MI) const; 185 186 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 187 bool Cheap); 188 189 void UpdateBackTraceRegPressure(const MachineInstr *MI); 190 191 bool IsProfitableToHoist(MachineInstr &MI); 192 193 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 194 195 void EnterScope(MachineBasicBlock *MBB); 196 197 void ExitScope(MachineBasicBlock *MBB); 198 199 void ExitScopeIfDone( 200 MachineDomTreeNode *Node, 201 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 202 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 203 204 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 205 206 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 207 208 void SinkIntoLoop(); 209 210 void InitRegPressure(MachineBasicBlock *BB); 211 212 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 213 bool ConsiderSeen, 214 bool ConsiderUnseenAsDef); 215 216 void UpdateRegPressure(const MachineInstr *MI, 217 bool ConsiderUnseenAsDef = false); 218 219 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 220 221 const MachineInstr * 222 LookForDuplicate(const MachineInstr *MI, 223 std::vector<const MachineInstr *> &PrevMIs); 224 225 bool EliminateCSE( 226 MachineInstr *MI, 227 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 228 229 bool MayCSE(MachineInstr *MI); 230 231 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 232 233 void InitCSEMap(MachineBasicBlock *BB); 234 235 MachineBasicBlock *getCurPreheader(); 236 }; 237 } // end anonymous namespace 238 239 char MachineLICM::ID = 0; 240 char &llvm::MachineLICMID = MachineLICM::ID; 241 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 242 "Machine Loop Invariant Code Motion", false, false) 243 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 244 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 245 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 246 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 247 "Machine Loop Invariant Code Motion", false, false) 248 249 /// Test if the given loop is the outer-most loop that has a unique predecessor. 250 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 251 // Check whether this loop even has a unique predecessor. 252 if (!CurLoop->getLoopPredecessor()) 253 return false; 254 // Ok, now check to see if any of its outer loops do. 255 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 256 if (L->getLoopPredecessor()) 257 return false; 258 // None of them did, so this is the outermost with a unique predecessor. 259 return true; 260 } 261 262 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 263 if (skipOptnoneFunction(*MF.getFunction())) 264 return false; 265 266 Changed = FirstInLoop = false; 267 const TargetSubtargetInfo &ST = MF.getSubtarget(); 268 TII = ST.getInstrInfo(); 269 TLI = ST.getTargetLowering(); 270 TRI = ST.getRegisterInfo(); 271 MFI = MF.getFrameInfo(); 272 MRI = &MF.getRegInfo(); 273 SchedModel.init(ST.getSchedModel(), &ST, TII); 274 275 PreRegAlloc = MRI->isSSA(); 276 277 if (PreRegAlloc) 278 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 279 else 280 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 281 DEBUG(dbgs() << MF.getName() << " ********\n"); 282 283 if (PreRegAlloc) { 284 // Estimate register pressure during pre-regalloc pass. 285 unsigned NumRPS = TRI->getNumRegPressureSets(); 286 RegPressure.resize(NumRPS); 287 std::fill(RegPressure.begin(), RegPressure.end(), 0); 288 RegLimit.resize(NumRPS); 289 for (unsigned i = 0, e = NumRPS; i != e; ++i) 290 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 291 } 292 293 // Get our Loop information... 294 MLI = &getAnalysis<MachineLoopInfo>(); 295 DT = &getAnalysis<MachineDominatorTree>(); 296 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 297 298 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 299 while (!Worklist.empty()) { 300 CurLoop = Worklist.pop_back_val(); 301 CurPreheader = nullptr; 302 ExitBlocks.clear(); 303 304 // If this is done before regalloc, only visit outer-most preheader-sporting 305 // loops. 306 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 307 Worklist.append(CurLoop->begin(), CurLoop->end()); 308 continue; 309 } 310 311 CurLoop->getExitBlocks(ExitBlocks); 312 313 if (!PreRegAlloc) 314 HoistRegionPostRA(); 315 else { 316 // CSEMap is initialized for loop header when the first instruction is 317 // being hoisted. 318 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 319 FirstInLoop = true; 320 HoistOutOfLoop(N); 321 CSEMap.clear(); 322 323 if (SinkInstsToAvoidSpills) 324 SinkIntoLoop(); 325 } 326 } 327 328 return Changed; 329 } 330 331 /// Return true if instruction stores to the specified frame. 332 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 333 // If we lost memory operands, conservatively assume that the instruction 334 // writes to all slots. 335 if (MI->memoperands_empty()) 336 return true; 337 for (const MachineMemOperand *MemOp : MI->memoperands()) { 338 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 339 continue; 340 if (const FixedStackPseudoSourceValue *Value = 341 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 342 if (Value->getFrameIndex() == FI) 343 return true; 344 } 345 } 346 return false; 347 } 348 349 /// Examine the instruction for potentai LICM candidate. Also 350 /// gather register def and frame object update information. 351 void MachineLICM::ProcessMI(MachineInstr *MI, 352 BitVector &PhysRegDefs, 353 BitVector &PhysRegClobbers, 354 SmallSet<int, 32> &StoredFIs, 355 SmallVectorImpl<CandidateInfo> &Candidates) { 356 bool RuledOut = false; 357 bool HasNonInvariantUse = false; 358 unsigned Def = 0; 359 for (const MachineOperand &MO : MI->operands()) { 360 if (MO.isFI()) { 361 // Remember if the instruction stores to the frame index. 362 int FI = MO.getIndex(); 363 if (!StoredFIs.count(FI) && 364 MFI->isSpillSlotObjectIndex(FI) && 365 InstructionStoresToFI(MI, FI)) 366 StoredFIs.insert(FI); 367 HasNonInvariantUse = true; 368 continue; 369 } 370 371 // We can't hoist an instruction defining a physreg that is clobbered in 372 // the loop. 373 if (MO.isRegMask()) { 374 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 375 continue; 376 } 377 378 if (!MO.isReg()) 379 continue; 380 unsigned Reg = MO.getReg(); 381 if (!Reg) 382 continue; 383 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 384 "Not expecting virtual register!"); 385 386 if (!MO.isDef()) { 387 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 388 // If it's using a non-loop-invariant register, then it's obviously not 389 // safe to hoist. 390 HasNonInvariantUse = true; 391 continue; 392 } 393 394 if (MO.isImplicit()) { 395 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 396 PhysRegClobbers.set(*AI); 397 if (!MO.isDead()) 398 // Non-dead implicit def? This cannot be hoisted. 399 RuledOut = true; 400 // No need to check if a dead implicit def is also defined by 401 // another instruction. 402 continue; 403 } 404 405 // FIXME: For now, avoid instructions with multiple defs, unless 406 // it's a dead implicit def. 407 if (Def) 408 RuledOut = true; 409 else 410 Def = Reg; 411 412 // If we have already seen another instruction that defines the same 413 // register, then this is not safe. Two defs is indicated by setting a 414 // PhysRegClobbers bit. 415 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 416 if (PhysRegDefs.test(*AS)) 417 PhysRegClobbers.set(*AS); 418 PhysRegDefs.set(*AS); 419 } 420 if (PhysRegClobbers.test(Reg)) 421 // MI defined register is seen defined by another instruction in 422 // the loop, it cannot be a LICM candidate. 423 RuledOut = true; 424 } 425 426 // Only consider reloads for now and remats which do not have register 427 // operands. FIXME: Consider unfold load folding instructions. 428 if (Def && !RuledOut) { 429 int FI = INT_MIN; 430 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 431 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 432 Candidates.push_back(CandidateInfo(MI, Def, FI)); 433 } 434 } 435 436 /// Walk the specified region of the CFG and hoist loop invariants out to the 437 /// preheader. 438 void MachineLICM::HoistRegionPostRA() { 439 MachineBasicBlock *Preheader = getCurPreheader(); 440 if (!Preheader) 441 return; 442 443 unsigned NumRegs = TRI->getNumRegs(); 444 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 445 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 446 447 SmallVector<CandidateInfo, 32> Candidates; 448 SmallSet<int, 32> StoredFIs; 449 450 // Walk the entire region, count number of defs for each register, and 451 // collect potential LICM candidates. 452 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 453 for (MachineBasicBlock *BB : Blocks) { 454 // If the header of the loop containing this basic block is a landing pad, 455 // then don't try to hoist instructions out of this loop. 456 const MachineLoop *ML = MLI->getLoopFor(BB); 457 if (ML && ML->getHeader()->isEHPad()) continue; 458 459 // Conservatively treat live-in's as an external def. 460 // FIXME: That means a reload that're reused in successor block(s) will not 461 // be LICM'ed. 462 for (const auto &LI : BB->liveins()) { 463 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 464 PhysRegDefs.set(*AI); 465 } 466 467 SpeculationState = SpeculateUnknown; 468 for (MachineInstr &MI : *BB) 469 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 470 } 471 472 // Gather the registers read / clobbered by the terminator. 473 BitVector TermRegs(NumRegs); 474 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 475 if (TI != Preheader->end()) { 476 for (const MachineOperand &MO : TI->operands()) { 477 if (!MO.isReg()) 478 continue; 479 unsigned Reg = MO.getReg(); 480 if (!Reg) 481 continue; 482 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 483 TermRegs.set(*AI); 484 } 485 } 486 487 // Now evaluate whether the potential candidates qualify. 488 // 1. Check if the candidate defined register is defined by another 489 // instruction in the loop. 490 // 2. If the candidate is a load from stack slot (always true for now), 491 // check if the slot is stored anywhere in the loop. 492 // 3. Make sure candidate def should not clobber 493 // registers read by the terminator. Similarly its def should not be 494 // clobbered by the terminator. 495 for (CandidateInfo &Candidate : Candidates) { 496 if (Candidate.FI != INT_MIN && 497 StoredFIs.count(Candidate.FI)) 498 continue; 499 500 unsigned Def = Candidate.Def; 501 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 502 bool Safe = true; 503 MachineInstr *MI = Candidate.MI; 504 for (const MachineOperand &MO : MI->operands()) { 505 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 506 continue; 507 unsigned Reg = MO.getReg(); 508 if (PhysRegDefs.test(Reg) || 509 PhysRegClobbers.test(Reg)) { 510 // If it's using a non-loop-invariant register, then it's obviously 511 // not safe to hoist. 512 Safe = false; 513 break; 514 } 515 } 516 if (Safe) 517 HoistPostRA(MI, Candidate.Def); 518 } 519 } 520 } 521 522 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 523 /// sure it is not killed by any instructions in the loop. 524 void MachineLICM::AddToLiveIns(unsigned Reg) { 525 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 526 for (MachineBasicBlock *BB : Blocks) { 527 if (!BB->isLiveIn(Reg)) 528 BB->addLiveIn(Reg); 529 for (MachineInstr &MI : *BB) { 530 for (MachineOperand &MO : MI.operands()) { 531 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 532 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 533 MO.setIsKill(false); 534 } 535 } 536 } 537 } 538 539 /// When an instruction is found to only use loop invariant operands that is 540 /// safe to hoist, this instruction is called to do the dirty work. 541 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 542 MachineBasicBlock *Preheader = getCurPreheader(); 543 544 // Now move the instructions to the predecessor, inserting it before any 545 // terminator instructions. 546 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 547 << MI->getParent()->getNumber() << ": " << *MI); 548 549 // Splice the instruction to the preheader. 550 MachineBasicBlock *MBB = MI->getParent(); 551 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 552 553 // Add register to livein list to all the BBs in the current loop since a 554 // loop invariant must be kept live throughout the whole loop. This is 555 // important to ensure later passes do not scavenge the def register. 556 AddToLiveIns(Def); 557 558 ++NumPostRAHoisted; 559 Changed = true; 560 } 561 562 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 563 /// may not be safe to hoist. 564 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 565 if (SpeculationState != SpeculateUnknown) 566 return SpeculationState == SpeculateFalse; 567 568 if (BB != CurLoop->getHeader()) { 569 // Check loop exiting blocks. 570 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 571 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 572 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 573 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 574 SpeculationState = SpeculateTrue; 575 return false; 576 } 577 } 578 579 SpeculationState = SpeculateFalse; 580 return true; 581 } 582 583 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 584 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 585 586 // Remember livein register pressure. 587 BackTrace.push_back(RegPressure); 588 } 589 590 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 591 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 592 BackTrace.pop_back(); 593 } 594 595 /// Destroy scope for the MBB that corresponds to the given dominator tree node 596 /// if its a leaf or all of its children are done. Walk up the dominator tree to 597 /// destroy ancestors which are now done. 598 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 599 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 600 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 601 if (OpenChildren[Node]) 602 return; 603 604 // Pop scope. 605 ExitScope(Node->getBlock()); 606 607 // Now traverse upwards to pop ancestors whose offsprings are all done. 608 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 609 unsigned Left = --OpenChildren[Parent]; 610 if (Left != 0) 611 break; 612 ExitScope(Parent->getBlock()); 613 Node = Parent; 614 } 615 } 616 617 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 618 /// specified header block, and that are in the current loop) in depth first 619 /// order w.r.t the DominatorTree. This allows us to visit definitions before 620 /// uses, allowing us to hoist a loop body in one pass without iteration. 621 /// 622 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 623 MachineBasicBlock *Preheader = getCurPreheader(); 624 if (!Preheader) 625 return; 626 627 SmallVector<MachineDomTreeNode*, 32> Scopes; 628 SmallVector<MachineDomTreeNode*, 8> WorkList; 629 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 630 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 631 632 // Perform a DFS walk to determine the order of visit. 633 WorkList.push_back(HeaderN); 634 while (!WorkList.empty()) { 635 MachineDomTreeNode *Node = WorkList.pop_back_val(); 636 assert(Node && "Null dominator tree node?"); 637 MachineBasicBlock *BB = Node->getBlock(); 638 639 // If the header of the loop containing this basic block is a landing pad, 640 // then don't try to hoist instructions out of this loop. 641 const MachineLoop *ML = MLI->getLoopFor(BB); 642 if (ML && ML->getHeader()->isEHPad()) 643 continue; 644 645 // If this subregion is not in the top level loop at all, exit. 646 if (!CurLoop->contains(BB)) 647 continue; 648 649 Scopes.push_back(Node); 650 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 651 unsigned NumChildren = Children.size(); 652 653 // Don't hoist things out of a large switch statement. This often causes 654 // code to be hoisted that wasn't going to be executed, and increases 655 // register pressure in a situation where it's likely to matter. 656 if (BB->succ_size() >= 25) 657 NumChildren = 0; 658 659 OpenChildren[Node] = NumChildren; 660 // Add children in reverse order as then the next popped worklist node is 661 // the first child of this node. This means we ultimately traverse the 662 // DOM tree in exactly the same order as if we'd recursed. 663 for (int i = (int)NumChildren-1; i >= 0; --i) { 664 MachineDomTreeNode *Child = Children[i]; 665 ParentMap[Child] = Node; 666 WorkList.push_back(Child); 667 } 668 } 669 670 if (Scopes.size() == 0) 671 return; 672 673 // Compute registers which are livein into the loop headers. 674 RegSeen.clear(); 675 BackTrace.clear(); 676 InitRegPressure(Preheader); 677 678 // Now perform LICM. 679 for (MachineDomTreeNode *Node : Scopes) { 680 MachineBasicBlock *MBB = Node->getBlock(); 681 682 EnterScope(MBB); 683 684 // Process the block 685 SpeculationState = SpeculateUnknown; 686 for (MachineBasicBlock::iterator 687 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 688 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 689 MachineInstr *MI = &*MII; 690 if (!Hoist(MI, Preheader)) 691 UpdateRegPressure(MI); 692 MII = NextMII; 693 } 694 695 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 696 ExitScopeIfDone(Node, OpenChildren, ParentMap); 697 } 698 } 699 700 /// Sink instructions into loops if profitable. This especially tries to prevent 701 /// register spills caused by register pressure if there is little to no 702 /// overhead moving instructions into loops. 703 void MachineLICM::SinkIntoLoop() { 704 MachineBasicBlock *Preheader = getCurPreheader(); 705 if (!Preheader) 706 return; 707 708 SmallVector<MachineInstr *, 8> Candidates; 709 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 710 I != Preheader->instr_end(); ++I) { 711 // We need to ensure that we can safely move this instruction into the loop. 712 // As such, it must not have side-effects, e.g. such as a call has. 713 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 714 Candidates.push_back(&*I); 715 } 716 717 for (MachineInstr *I : Candidates) { 718 const MachineOperand &MO = I->getOperand(0); 719 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 720 continue; 721 if (!MRI->hasOneDef(MO.getReg())) 722 continue; 723 bool CanSink = true; 724 MachineBasicBlock *B = nullptr; 725 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 726 // FIXME: Come up with a proper cost model that estimates whether sinking 727 // the instruction (and thus possibly executing it on every loop 728 // iteration) is more expensive than a register. 729 // For now assumes that copies are cheap and thus almost always worth it. 730 if (!MI.isCopy()) { 731 CanSink = false; 732 break; 733 } 734 if (!B) { 735 B = MI.getParent(); 736 continue; 737 } 738 B = DT->findNearestCommonDominator(B, MI.getParent()); 739 if (!B) { 740 CanSink = false; 741 break; 742 } 743 } 744 if (!CanSink || !B || B == Preheader) 745 continue; 746 B->splice(B->getFirstNonPHI(), Preheader, I); 747 } 748 } 749 750 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 751 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 752 } 753 754 /// Find all virtual register references that are liveout of the preheader to 755 /// initialize the starting "register pressure". Note this does not count live 756 /// through (livein but not used) registers. 757 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 758 std::fill(RegPressure.begin(), RegPressure.end(), 0); 759 760 // If the preheader has only a single predecessor and it ends with a 761 // fallthrough or an unconditional branch, then scan its predecessor for live 762 // defs as well. This happens whenever the preheader is created by splitting 763 // the critical edge from the loop predecessor to the loop header. 764 if (BB->pred_size() == 1) { 765 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 766 SmallVector<MachineOperand, 4> Cond; 767 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 768 InitRegPressure(*BB->pred_begin()); 769 } 770 771 for (const MachineInstr &MI : *BB) 772 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 773 } 774 775 /// Update estimate of register pressure after the specified instruction. 776 void MachineLICM::UpdateRegPressure(const MachineInstr *MI, 777 bool ConsiderUnseenAsDef) { 778 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 779 for (const auto &RPIdAndCost : Cost) { 780 unsigned Class = RPIdAndCost.first; 781 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 782 RegPressure[Class] = 0; 783 else 784 RegPressure[Class] += RPIdAndCost.second; 785 } 786 } 787 788 /// Calculate the additional register pressure that the registers used in MI 789 /// cause. 790 /// 791 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 792 /// figure out which usages are live-ins. 793 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 794 DenseMap<unsigned, int> 795 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 796 bool ConsiderUnseenAsDef) { 797 DenseMap<unsigned, int> Cost; 798 if (MI->isImplicitDef()) 799 return Cost; 800 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 801 const MachineOperand &MO = MI->getOperand(i); 802 if (!MO.isReg() || MO.isImplicit()) 803 continue; 804 unsigned Reg = MO.getReg(); 805 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 806 continue; 807 808 // FIXME: It seems bad to use RegSeen only for some of these calculations. 809 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 810 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 811 812 RegClassWeight W = TRI->getRegClassWeight(RC); 813 int RCCost = 0; 814 if (MO.isDef()) 815 RCCost = W.RegWeight; 816 else { 817 bool isKill = isOperandKill(MO, MRI); 818 if (isNew && !isKill && ConsiderUnseenAsDef) 819 // Haven't seen this, it must be a livein. 820 RCCost = W.RegWeight; 821 else if (!isNew && isKill) 822 RCCost = -W.RegWeight; 823 } 824 if (RCCost == 0) 825 continue; 826 const int *PS = TRI->getRegClassPressureSets(RC); 827 for (; *PS != -1; ++PS) { 828 if (Cost.find(*PS) == Cost.end()) 829 Cost[*PS] = RCCost; 830 else 831 Cost[*PS] += RCCost; 832 } 833 } 834 return Cost; 835 } 836 837 /// Return true if this machine instruction loads from global offset table or 838 /// constant pool. 839 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 840 assert (MI.mayLoad() && "Expected MI that loads!"); 841 842 // If we lost memory operands, conservatively assume that the instruction 843 // reads from everything.. 844 if (MI.memoperands_empty()) 845 return true; 846 847 for (MachineMemOperand *MemOp : MI.memoperands()) 848 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 849 if (PSV->isGOT() || PSV->isConstantPool()) 850 return true; 851 852 return false; 853 } 854 855 /// Returns true if the instruction may be a suitable candidate for LICM. 856 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 857 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 858 // Check if it's safe to move the instruction. 859 bool DontMoveAcrossStore = true; 860 if (!I.isSafeToMove(AA, DontMoveAcrossStore)) 861 return false; 862 863 // If it is load then check if it is guaranteed to execute by making sure that 864 // it dominates all exiting blocks. If it doesn't, then there is a path out of 865 // the loop which does not execute this load, so we can't hoist it. Loads 866 // from constant memory are not safe to speculate all the time, for example 867 // indexed load from a jump table. 868 // Stores and side effects are already checked by isSafeToMove. 869 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 870 !IsGuaranteedToExecute(I.getParent())) 871 return false; 872 873 return true; 874 } 875 876 /// Returns true if the instruction is loop invariant. 877 /// I.e., all virtual register operands are defined outside of the loop, 878 /// physical registers aren't accessed explicitly, and there are no side 879 /// effects that aren't captured by the operands or other flags. 880 /// 881 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 882 if (!IsLICMCandidate(I)) 883 return false; 884 885 // The instruction is loop invariant if all of its operands are. 886 for (const MachineOperand &MO : I.operands()) { 887 if (!MO.isReg()) 888 continue; 889 890 unsigned Reg = MO.getReg(); 891 if (Reg == 0) continue; 892 893 // Don't hoist an instruction that uses or defines a physical register. 894 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 895 if (MO.isUse()) { 896 // If the physreg has no defs anywhere, it's just an ambient register 897 // and we can freely move its uses. Alternatively, if it's allocatable, 898 // it could get allocated to something with a def during allocation. 899 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 900 return false; 901 // Otherwise it's safe to move. 902 continue; 903 } else if (!MO.isDead()) { 904 // A def that isn't dead. We can't move it. 905 return false; 906 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 907 // If the reg is live into the loop, we can't hoist an instruction 908 // which would clobber it. 909 return false; 910 } 911 } 912 913 if (!MO.isUse()) 914 continue; 915 916 assert(MRI->getVRegDef(Reg) && 917 "Machine instr not mapped for this vreg?!"); 918 919 // If the loop contains the definition of an operand, then the instruction 920 // isn't loop invariant. 921 if (CurLoop->contains(MRI->getVRegDef(Reg))) 922 return false; 923 } 924 925 // If we got this far, the instruction is loop invariant! 926 return true; 927 } 928 929 930 /// Return true if the specified instruction is used by a phi node and hoisting 931 /// it could cause a copy to be inserted. 932 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 933 SmallVector<const MachineInstr*, 8> Work(1, MI); 934 do { 935 MI = Work.pop_back_val(); 936 for (const MachineOperand &MO : MI->operands()) { 937 if (!MO.isReg() || !MO.isDef()) 938 continue; 939 unsigned Reg = MO.getReg(); 940 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 941 continue; 942 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 943 // A PHI may cause a copy to be inserted. 944 if (UseMI.isPHI()) { 945 // A PHI inside the loop causes a copy because the live range of Reg is 946 // extended across the PHI. 947 if (CurLoop->contains(&UseMI)) 948 return true; 949 // A PHI in an exit block can cause a copy to be inserted if the PHI 950 // has multiple predecessors in the loop with different values. 951 // For now, approximate by rejecting all exit blocks. 952 if (isExitBlock(UseMI.getParent())) 953 return true; 954 continue; 955 } 956 // Look past copies as well. 957 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 958 Work.push_back(&UseMI); 959 } 960 } 961 } while (!Work.empty()); 962 return false; 963 } 964 965 /// Compute operand latency between a def of 'Reg' and an use in the current 966 /// loop, return true if the target considered it high. 967 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 968 unsigned DefIdx, unsigned Reg) const { 969 if (MRI->use_nodbg_empty(Reg)) 970 return false; 971 972 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 973 if (UseMI.isCopyLike()) 974 continue; 975 if (!CurLoop->contains(UseMI.getParent())) 976 continue; 977 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 978 const MachineOperand &MO = UseMI.getOperand(i); 979 if (!MO.isReg() || !MO.isUse()) 980 continue; 981 unsigned MOReg = MO.getReg(); 982 if (MOReg != Reg) 983 continue; 984 985 if (TII->hasHighOperandLatency(SchedModel, MRI, &MI, DefIdx, &UseMI, i)) 986 return true; 987 } 988 989 // Only look at the first in loop use. 990 break; 991 } 992 993 return false; 994 } 995 996 /// Return true if the instruction is marked "cheap" or the operand latency 997 /// between its def and a use is one or less. 998 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 999 if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike()) 1000 return true; 1001 1002 bool isCheap = false; 1003 unsigned NumDefs = MI.getDesc().getNumDefs(); 1004 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1005 MachineOperand &DefMO = MI.getOperand(i); 1006 if (!DefMO.isReg() || !DefMO.isDef()) 1007 continue; 1008 --NumDefs; 1009 unsigned Reg = DefMO.getReg(); 1010 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1011 continue; 1012 1013 if (!TII->hasLowDefLatency(SchedModel, &MI, i)) 1014 return false; 1015 isCheap = true; 1016 } 1017 1018 return isCheap; 1019 } 1020 1021 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1022 /// given cost matrix can cause high register pressure. 1023 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1024 bool CheapInstr) { 1025 for (const auto &RPIdAndCost : Cost) { 1026 if (RPIdAndCost.second <= 0) 1027 continue; 1028 1029 unsigned Class = RPIdAndCost.first; 1030 int Limit = RegLimit[Class]; 1031 1032 // Don't hoist cheap instructions if they would increase register pressure, 1033 // even if we're under the limit. 1034 if (CheapInstr && !HoistCheapInsts) 1035 return true; 1036 1037 for (const auto &RP : BackTrace) 1038 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1039 return true; 1040 } 1041 1042 return false; 1043 } 1044 1045 /// Traverse the back trace from header to the current block and update their 1046 /// register pressures to reflect the effect of hoisting MI from the current 1047 /// block to the preheader. 1048 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1049 // First compute the 'cost' of the instruction, i.e. its contribution 1050 // to register pressure. 1051 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1052 /*ConsiderUnseenAsDef=*/false); 1053 1054 // Update register pressure of blocks from loop header to current block. 1055 for (auto &RP : BackTrace) 1056 for (const auto &RPIdAndCost : Cost) 1057 RP[RPIdAndCost.first] += RPIdAndCost.second; 1058 } 1059 1060 /// Return true if it is potentially profitable to hoist the given loop 1061 /// invariant. 1062 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1063 if (MI.isImplicitDef()) 1064 return true; 1065 1066 // Besides removing computation from the loop, hoisting an instruction has 1067 // these effects: 1068 // 1069 // - The value defined by the instruction becomes live across the entire 1070 // loop. This increases register pressure in the loop. 1071 // 1072 // - If the value is used by a PHI in the loop, a copy will be required for 1073 // lowering the PHI after extending the live range. 1074 // 1075 // - When hoisting the last use of a value in the loop, that value no longer 1076 // needs to be live in the loop. This lowers register pressure in the loop. 1077 1078 bool CheapInstr = IsCheapInstruction(MI); 1079 bool CreatesCopy = HasLoopPHIUse(&MI); 1080 1081 // Don't hoist a cheap instruction if it would create a copy in the loop. 1082 if (CheapInstr && CreatesCopy) { 1083 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1084 return false; 1085 } 1086 1087 // Rematerializable instructions should always be hoisted since the register 1088 // allocator can just pull them down again when needed. 1089 if (TII->isTriviallyReMaterializable(&MI, AA)) 1090 return true; 1091 1092 // FIXME: If there are long latency loop-invariant instructions inside the 1093 // loop at this point, why didn't the optimizer's LICM hoist them? 1094 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1095 const MachineOperand &MO = MI.getOperand(i); 1096 if (!MO.isReg() || MO.isImplicit()) 1097 continue; 1098 unsigned Reg = MO.getReg(); 1099 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1100 continue; 1101 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1102 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1103 ++NumHighLatency; 1104 return true; 1105 } 1106 } 1107 1108 // Estimate register pressure to determine whether to LICM the instruction. 1109 // In low register pressure situation, we can be more aggressive about 1110 // hoisting. Also, favors hoisting long latency instructions even in 1111 // moderately high pressure situation. 1112 // Cheap instructions will only be hoisted if they don't increase register 1113 // pressure at all. 1114 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1115 /*ConsiderUnseenAsDef=*/false); 1116 1117 // Visit BBs from header to current BB, if hoisting this doesn't cause 1118 // high register pressure, then it's safe to proceed. 1119 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1120 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1121 ++NumLowRP; 1122 return true; 1123 } 1124 1125 // Don't risk increasing register pressure if it would create copies. 1126 if (CreatesCopy) { 1127 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1128 return false; 1129 } 1130 1131 // Do not "speculate" in high register pressure situation. If an 1132 // instruction is not guaranteed to be executed in the loop, it's best to be 1133 // conservative. 1134 if (AvoidSpeculation && 1135 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1136 DEBUG(dbgs() << "Won't speculate: " << MI); 1137 return false; 1138 } 1139 1140 // High register pressure situation, only hoist if the instruction is going 1141 // to be remat'ed. 1142 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1143 !MI.isInvariantLoad(AA)) { 1144 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 /// Unfold a load from the given machineinstr if the load itself could be 1152 /// hoisted. Return the unfolded and hoistable load, or null if the load 1153 /// couldn't be unfolded or if it wouldn't be hoistable. 1154 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1155 // Don't unfold simple loads. 1156 if (MI->canFoldAsLoad()) 1157 return nullptr; 1158 1159 // If not, we may be able to unfold a load and hoist that. 1160 // First test whether the instruction is loading from an amenable 1161 // memory location. 1162 if (!MI->isInvariantLoad(AA)) 1163 return nullptr; 1164 1165 // Next determine the register class for a temporary register. 1166 unsigned LoadRegIndex; 1167 unsigned NewOpc = 1168 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1169 /*UnfoldLoad=*/true, 1170 /*UnfoldStore=*/false, 1171 &LoadRegIndex); 1172 if (NewOpc == 0) return nullptr; 1173 const MCInstrDesc &MID = TII->get(NewOpc); 1174 if (MID.getNumDefs() != 1) return nullptr; 1175 MachineFunction &MF = *MI->getParent()->getParent(); 1176 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1177 // Ok, we're unfolding. Create a temporary register and do the unfold. 1178 unsigned Reg = MRI->createVirtualRegister(RC); 1179 1180 SmallVector<MachineInstr *, 2> NewMIs; 1181 bool Success = 1182 TII->unfoldMemoryOperand(MF, MI, Reg, 1183 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1184 NewMIs); 1185 (void)Success; 1186 assert(Success && 1187 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1188 "succeeded!"); 1189 assert(NewMIs.size() == 2 && 1190 "Unfolded a load into multiple instructions!"); 1191 MachineBasicBlock *MBB = MI->getParent(); 1192 MachineBasicBlock::iterator Pos = MI; 1193 MBB->insert(Pos, NewMIs[0]); 1194 MBB->insert(Pos, NewMIs[1]); 1195 // If unfolding produced a load that wasn't loop-invariant or profitable to 1196 // hoist, discard the new instructions and bail. 1197 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1198 NewMIs[0]->eraseFromParent(); 1199 NewMIs[1]->eraseFromParent(); 1200 return nullptr; 1201 } 1202 1203 // Update register pressure for the unfolded instruction. 1204 UpdateRegPressure(NewMIs[1]); 1205 1206 // Otherwise we successfully unfolded a load that we can hoist. 1207 MI->eraseFromParent(); 1208 return NewMIs[0]; 1209 } 1210 1211 /// Initialize the CSE map with instructions that are in the current loop 1212 /// preheader that may become duplicates of instructions that are hoisted 1213 /// out of the loop. 1214 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1215 for (MachineInstr &MI : *BB) 1216 CSEMap[MI.getOpcode()].push_back(&MI); 1217 } 1218 1219 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1220 /// Return this instruction if it's found. 1221 const MachineInstr* 1222 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1223 std::vector<const MachineInstr*> &PrevMIs) { 1224 for (const MachineInstr *PrevMI : PrevMIs) 1225 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) 1226 return PrevMI; 1227 1228 return nullptr; 1229 } 1230 1231 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1232 /// computes the same value. If it's found, do a RAU on with the definition of 1233 /// the existing instruction rather than hoisting the instruction to the 1234 /// preheader. 1235 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1236 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1237 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1238 // the undef property onto uses. 1239 if (CI == CSEMap.end() || MI->isImplicitDef()) 1240 return false; 1241 1242 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1243 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1244 1245 // Replace virtual registers defined by MI by their counterparts defined 1246 // by Dup. 1247 SmallVector<unsigned, 2> Defs; 1248 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1249 const MachineOperand &MO = MI->getOperand(i); 1250 1251 // Physical registers may not differ here. 1252 assert((!MO.isReg() || MO.getReg() == 0 || 1253 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1254 MO.getReg() == Dup->getOperand(i).getReg()) && 1255 "Instructions with different phys regs are not identical!"); 1256 1257 if (MO.isReg() && MO.isDef() && 1258 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1259 Defs.push_back(i); 1260 } 1261 1262 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1263 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1264 unsigned Idx = Defs[i]; 1265 unsigned Reg = MI->getOperand(Idx).getReg(); 1266 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1267 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1268 1269 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1270 // Restore old RCs if more than one defs. 1271 for (unsigned j = 0; j != i; ++j) 1272 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1273 return false; 1274 } 1275 } 1276 1277 for (unsigned Idx : Defs) { 1278 unsigned Reg = MI->getOperand(Idx).getReg(); 1279 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1280 MRI->replaceRegWith(Reg, DupReg); 1281 MRI->clearKillFlags(DupReg); 1282 } 1283 1284 MI->eraseFromParent(); 1285 ++NumCSEed; 1286 return true; 1287 } 1288 return false; 1289 } 1290 1291 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1292 /// the loop. 1293 bool MachineLICM::MayCSE(MachineInstr *MI) { 1294 unsigned Opcode = MI->getOpcode(); 1295 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1296 CI = CSEMap.find(Opcode); 1297 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1298 // the undef property onto uses. 1299 if (CI == CSEMap.end() || MI->isImplicitDef()) 1300 return false; 1301 1302 return LookForDuplicate(MI, CI->second) != nullptr; 1303 } 1304 1305 /// When an instruction is found to use only loop invariant operands 1306 /// that are safe to hoist, this instruction is called to do the dirty work. 1307 /// It returns true if the instruction is hoisted. 1308 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1309 // First check whether we should hoist this instruction. 1310 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1311 // If not, try unfolding a hoistable load. 1312 MI = ExtractHoistableLoad(MI); 1313 if (!MI) return false; 1314 } 1315 1316 // Now move the instructions to the predecessor, inserting it before any 1317 // terminator instructions. 1318 DEBUG({ 1319 dbgs() << "Hoisting " << *MI; 1320 if (Preheader->getBasicBlock()) 1321 dbgs() << " to MachineBasicBlock " 1322 << Preheader->getName(); 1323 if (MI->getParent()->getBasicBlock()) 1324 dbgs() << " from MachineBasicBlock " 1325 << MI->getParent()->getName(); 1326 dbgs() << "\n"; 1327 }); 1328 1329 // If this is the first instruction being hoisted to the preheader, 1330 // initialize the CSE map with potential common expressions. 1331 if (FirstInLoop) { 1332 InitCSEMap(Preheader); 1333 FirstInLoop = false; 1334 } 1335 1336 // Look for opportunity to CSE the hoisted instruction. 1337 unsigned Opcode = MI->getOpcode(); 1338 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1339 CI = CSEMap.find(Opcode); 1340 if (!EliminateCSE(MI, CI)) { 1341 // Otherwise, splice the instruction to the preheader. 1342 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1343 1344 // Update register pressure for BBs from header to this block. 1345 UpdateBackTraceRegPressure(MI); 1346 1347 // Clear the kill flags of any register this instruction defines, 1348 // since they may need to be live throughout the entire loop 1349 // rather than just live for part of it. 1350 for (MachineOperand &MO : MI->operands()) 1351 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1352 MRI->clearKillFlags(MO.getReg()); 1353 1354 // Add to the CSE map. 1355 if (CI != CSEMap.end()) 1356 CI->second.push_back(MI); 1357 else 1358 CSEMap[Opcode].push_back(MI); 1359 } 1360 1361 ++NumHoisted; 1362 Changed = true; 1363 1364 return true; 1365 } 1366 1367 /// Get the preheader for the current loop, splitting a critical edge if needed. 1368 MachineBasicBlock *MachineLICM::getCurPreheader() { 1369 // Determine the block to which to hoist instructions. If we can't find a 1370 // suitable loop predecessor, we can't do any hoisting. 1371 1372 // If we've tried to get a preheader and failed, don't try again. 1373 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1374 return nullptr; 1375 1376 if (!CurPreheader) { 1377 CurPreheader = CurLoop->getLoopPreheader(); 1378 if (!CurPreheader) { 1379 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1380 if (!Pred) { 1381 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1382 return nullptr; 1383 } 1384 1385 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1386 if (!CurPreheader) { 1387 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1388 return nullptr; 1389 } 1390 } 1391 } 1392 return CurPreheader; 1393 } 1394