1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <limits> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "machinelicm" 58 59 static cl::opt<bool> 60 AvoidSpeculation("avoid-speculation", 61 cl::desc("MachineLICM should avoid speculation"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 HoistCheapInsts("hoist-cheap-insts", 66 cl::desc("MachineLICM should hoist even cheap instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 71 cl::desc("MachineLICM should sink instructions into " 72 "loops to avoid register spills"), 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> 75 HoistConstStores("hoist-const-stores", 76 cl::desc("Hoist invariant stores"), 77 cl::init(false), cl::Hidden); 78 79 STATISTIC(NumHoisted, 80 "Number of machine instructions hoisted out of loops"); 81 STATISTIC(NumLowRP, 82 "Number of instructions hoisted in low reg pressure situation"); 83 STATISTIC(NumHighLatency, 84 "Number of high latency instructions hoisted"); 85 STATISTIC(NumCSEed, 86 "Number of hoisted machine instructions CSEed"); 87 STATISTIC(NumPostRAHoisted, 88 "Number of machine instructions hoisted out of loops post regalloc"); 89 STATISTIC(NumStoreConst, 90 "Number of stores of const phys reg hoisted out of loops"); 91 92 namespace { 93 94 class MachineLICMBase : public MachineFunctionPass { 95 const TargetInstrInfo *TII; 96 const TargetLoweringBase *TLI; 97 const TargetRegisterInfo *TRI; 98 const MachineFrameInfo *MFI; 99 MachineRegisterInfo *MRI; 100 TargetSchedModel SchedModel; 101 bool PreRegAlloc; 102 103 // Various analyses that we use... 104 AliasAnalysis *AA; // Alias analysis info. 105 MachineLoopInfo *MLI; // Current MachineLoopInfo 106 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 107 108 // State that is updated as we process loops 109 bool Changed; // True if a loop is changed. 110 bool FirstInLoop; // True if it's the first LICM in the loop. 111 MachineLoop *CurLoop; // The current loop we are working on. 112 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 113 114 // Exit blocks for CurLoop. 115 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 116 117 bool isExitBlock(const MachineBasicBlock *MBB) const { 118 return is_contained(ExitBlocks, MBB); 119 } 120 121 // Track 'estimated' register pressure. 122 SmallSet<unsigned, 32> RegSeen; 123 SmallVector<unsigned, 8> RegPressure; 124 125 // Register pressure "limit" per register pressure set. If the pressure 126 // is higher than the limit, then it's considered high. 127 SmallVector<unsigned, 8> RegLimit; 128 129 // Register pressure on path leading from loop preheader to current BB. 130 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 131 132 // For each opcode, keep a list of potential CSE instructions. 133 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 134 135 enum { 136 SpeculateFalse = 0, 137 SpeculateTrue = 1, 138 SpeculateUnknown = 2 139 }; 140 141 // If a MBB does not dominate loop exiting blocks then it may not safe 142 // to hoist loads from this block. 143 // Tri-state: 0 - false, 1 - true, 2 - unknown 144 unsigned SpeculationState; 145 146 public: 147 MachineLICMBase(char &PassID, bool PreRegAlloc) 148 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override; 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<MachineLoopInfo>(); 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addRequired<AAResultsWrapperPass>(); 156 AU.addPreserved<MachineLoopInfo>(); 157 AU.addPreserved<MachineDominatorTree>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 void releaseMemory() override { 162 RegSeen.clear(); 163 RegPressure.clear(); 164 RegLimit.clear(); 165 BackTrace.clear(); 166 CSEMap.clear(); 167 } 168 169 private: 170 /// Keep track of information about hoisting candidates. 171 struct CandidateInfo { 172 MachineInstr *MI; 173 unsigned Def; 174 int FI; 175 176 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 177 : MI(mi), Def(def), FI(fi) {} 178 }; 179 180 void HoistRegionPostRA(); 181 182 void HoistPostRA(MachineInstr *MI, unsigned Def); 183 184 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 185 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 186 SmallVectorImpl<CandidateInfo> &Candidates); 187 188 void AddToLiveIns(unsigned Reg); 189 190 bool IsLICMCandidate(MachineInstr &I); 191 192 bool IsLoopInvariantInst(MachineInstr &I); 193 194 bool HasLoopPHIUse(const MachineInstr *MI) const; 195 196 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 197 unsigned Reg) const; 198 199 bool IsCheapInstruction(MachineInstr &MI) const; 200 201 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 202 bool Cheap); 203 204 void UpdateBackTraceRegPressure(const MachineInstr *MI); 205 206 bool IsProfitableToHoist(MachineInstr &MI); 207 208 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 209 210 void EnterScope(MachineBasicBlock *MBB); 211 212 void ExitScope(MachineBasicBlock *MBB); 213 214 void ExitScopeIfDone( 215 MachineDomTreeNode *Node, 216 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 217 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 218 219 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 220 221 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 222 223 void SinkIntoLoop(); 224 225 void InitRegPressure(MachineBasicBlock *BB); 226 227 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 228 bool ConsiderSeen, 229 bool ConsiderUnseenAsDef); 230 231 void UpdateRegPressure(const MachineInstr *MI, 232 bool ConsiderUnseenAsDef = false); 233 234 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 235 236 const MachineInstr * 237 LookForDuplicate(const MachineInstr *MI, 238 std::vector<const MachineInstr *> &PrevMIs); 239 240 bool EliminateCSE( 241 MachineInstr *MI, 242 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 243 244 bool MayCSE(MachineInstr *MI); 245 246 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 247 248 void InitCSEMap(MachineBasicBlock *BB); 249 250 MachineBasicBlock *getCurPreheader(); 251 }; 252 253 class MachineLICM : public MachineLICMBase { 254 public: 255 static char ID; 256 MachineLICM() : MachineLICMBase(ID, false) { 257 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 258 } 259 }; 260 261 class EarlyMachineLICM : public MachineLICMBase { 262 public: 263 static char ID; 264 EarlyMachineLICM() : MachineLICMBase(ID, true) { 265 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 266 } 267 }; 268 269 } // end anonymous namespace 270 271 char MachineLICM::ID; 272 char EarlyMachineLICM::ID; 273 274 char &llvm::MachineLICMID = MachineLICM::ID; 275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 276 277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 278 "Machine Loop Invariant Code Motion", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 283 "Machine Loop Invariant Code Motion", false, false) 284 285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 286 "Early Machine Loop Invariant Code Motion", false, false) 287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 291 "Early Machine Loop Invariant Code Motion", false, false) 292 293 /// Test if the given loop is the outer-most loop that has a unique predecessor. 294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 295 // Check whether this loop even has a unique predecessor. 296 if (!CurLoop->getLoopPredecessor()) 297 return false; 298 // Ok, now check to see if any of its outer loops do. 299 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 300 if (L->getLoopPredecessor()) 301 return false; 302 // None of them did, so this is the outermost with a unique predecessor. 303 return true; 304 } 305 306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 307 if (skipFunction(MF.getFunction())) 308 return false; 309 310 Changed = FirstInLoop = false; 311 const TargetSubtargetInfo &ST = MF.getSubtarget(); 312 TII = ST.getInstrInfo(); 313 TLI = ST.getTargetLowering(); 314 TRI = ST.getRegisterInfo(); 315 MFI = &MF.getFrameInfo(); 316 MRI = &MF.getRegInfo(); 317 SchedModel.init(ST.getSchedModel(), &ST, TII); 318 319 PreRegAlloc = MRI->isSSA(); 320 321 if (PreRegAlloc) 322 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 323 else 324 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 325 DEBUG(dbgs() << MF.getName() << " ********\n"); 326 327 if (PreRegAlloc) { 328 // Estimate register pressure during pre-regalloc pass. 329 unsigned NumRPS = TRI->getNumRegPressureSets(); 330 RegPressure.resize(NumRPS); 331 std::fill(RegPressure.begin(), RegPressure.end(), 0); 332 RegLimit.resize(NumRPS); 333 for (unsigned i = 0, e = NumRPS; i != e; ++i) 334 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 335 } 336 337 // Get our Loop information... 338 MLI = &getAnalysis<MachineLoopInfo>(); 339 DT = &getAnalysis<MachineDominatorTree>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 343 while (!Worklist.empty()) { 344 CurLoop = Worklist.pop_back_val(); 345 CurPreheader = nullptr; 346 ExitBlocks.clear(); 347 348 // If this is done before regalloc, only visit outer-most preheader-sporting 349 // loops. 350 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 351 Worklist.append(CurLoop->begin(), CurLoop->end()); 352 continue; 353 } 354 355 CurLoop->getExitBlocks(ExitBlocks); 356 357 if (!PreRegAlloc) 358 HoistRegionPostRA(); 359 else { 360 // CSEMap is initialized for loop header when the first instruction is 361 // being hoisted. 362 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 363 FirstInLoop = true; 364 HoistOutOfLoop(N); 365 CSEMap.clear(); 366 367 if (SinkInstsToAvoidSpills) 368 SinkIntoLoop(); 369 } 370 } 371 372 return Changed; 373 } 374 375 /// Return true if instruction stores to the specified frame. 376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 377 // If we lost memory operands, conservatively assume that the instruction 378 // writes to all slots. 379 if (MI->memoperands_empty()) 380 return true; 381 for (const MachineMemOperand *MemOp : MI->memoperands()) { 382 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 383 continue; 384 if (const FixedStackPseudoSourceValue *Value = 385 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 386 if (Value->getFrameIndex() == FI) 387 return true; 388 } 389 } 390 return false; 391 } 392 393 /// Examine the instruction for potentai LICM candidate. Also 394 /// gather register def and frame object update information. 395 void MachineLICMBase::ProcessMI(MachineInstr *MI, 396 BitVector &PhysRegDefs, 397 BitVector &PhysRegClobbers, 398 SmallSet<int, 32> &StoredFIs, 399 SmallVectorImpl<CandidateInfo> &Candidates) { 400 bool RuledOut = false; 401 bool HasNonInvariantUse = false; 402 unsigned Def = 0; 403 for (const MachineOperand &MO : MI->operands()) { 404 if (MO.isFI()) { 405 // Remember if the instruction stores to the frame index. 406 int FI = MO.getIndex(); 407 if (!StoredFIs.count(FI) && 408 MFI->isSpillSlotObjectIndex(FI) && 409 InstructionStoresToFI(MI, FI)) 410 StoredFIs.insert(FI); 411 HasNonInvariantUse = true; 412 continue; 413 } 414 415 // We can't hoist an instruction defining a physreg that is clobbered in 416 // the loop. 417 if (MO.isRegMask()) { 418 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 419 continue; 420 } 421 422 if (!MO.isReg()) 423 continue; 424 unsigned Reg = MO.getReg(); 425 if (!Reg) 426 continue; 427 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 428 "Not expecting virtual register!"); 429 430 if (!MO.isDef()) { 431 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 432 // If it's using a non-loop-invariant register, then it's obviously not 433 // safe to hoist. 434 HasNonInvariantUse = true; 435 continue; 436 } 437 438 if (MO.isImplicit()) { 439 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 440 PhysRegClobbers.set(*AI); 441 if (!MO.isDead()) 442 // Non-dead implicit def? This cannot be hoisted. 443 RuledOut = true; 444 // No need to check if a dead implicit def is also defined by 445 // another instruction. 446 continue; 447 } 448 449 // FIXME: For now, avoid instructions with multiple defs, unless 450 // it's a dead implicit def. 451 if (Def) 452 RuledOut = true; 453 else 454 Def = Reg; 455 456 // If we have already seen another instruction that defines the same 457 // register, then this is not safe. Two defs is indicated by setting a 458 // PhysRegClobbers bit. 459 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 460 if (PhysRegDefs.test(*AS)) 461 PhysRegClobbers.set(*AS); 462 PhysRegDefs.set(*AS); 463 } 464 if (PhysRegClobbers.test(Reg)) 465 // MI defined register is seen defined by another instruction in 466 // the loop, it cannot be a LICM candidate. 467 RuledOut = true; 468 } 469 470 // Only consider reloads for now and remats which do not have register 471 // operands. FIXME: Consider unfold load folding instructions. 472 if (Def && !RuledOut) { 473 int FI = std::numeric_limits<int>::min(); 474 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 475 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 476 Candidates.push_back(CandidateInfo(MI, Def, FI)); 477 } 478 } 479 480 /// Walk the specified region of the CFG and hoist loop invariants out to the 481 /// preheader. 482 void MachineLICMBase::HoistRegionPostRA() { 483 MachineBasicBlock *Preheader = getCurPreheader(); 484 if (!Preheader) 485 return; 486 487 unsigned NumRegs = TRI->getNumRegs(); 488 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 489 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 490 491 SmallVector<CandidateInfo, 32> Candidates; 492 SmallSet<int, 32> StoredFIs; 493 494 // Walk the entire region, count number of defs for each register, and 495 // collect potential LICM candidates. 496 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 497 for (MachineBasicBlock *BB : Blocks) { 498 // If the header of the loop containing this basic block is a landing pad, 499 // then don't try to hoist instructions out of this loop. 500 const MachineLoop *ML = MLI->getLoopFor(BB); 501 if (ML && ML->getHeader()->isEHPad()) continue; 502 503 // Conservatively treat live-in's as an external def. 504 // FIXME: That means a reload that're reused in successor block(s) will not 505 // be LICM'ed. 506 for (const auto &LI : BB->liveins()) { 507 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 508 PhysRegDefs.set(*AI); 509 } 510 511 SpeculationState = SpeculateUnknown; 512 for (MachineInstr &MI : *BB) 513 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 514 } 515 516 // Gather the registers read / clobbered by the terminator. 517 BitVector TermRegs(NumRegs); 518 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 519 if (TI != Preheader->end()) { 520 for (const MachineOperand &MO : TI->operands()) { 521 if (!MO.isReg()) 522 continue; 523 unsigned Reg = MO.getReg(); 524 if (!Reg) 525 continue; 526 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 527 TermRegs.set(*AI); 528 } 529 } 530 531 // Now evaluate whether the potential candidates qualify. 532 // 1. Check if the candidate defined register is defined by another 533 // instruction in the loop. 534 // 2. If the candidate is a load from stack slot (always true for now), 535 // check if the slot is stored anywhere in the loop. 536 // 3. Make sure candidate def should not clobber 537 // registers read by the terminator. Similarly its def should not be 538 // clobbered by the terminator. 539 for (CandidateInfo &Candidate : Candidates) { 540 if (Candidate.FI != std::numeric_limits<int>::min() && 541 StoredFIs.count(Candidate.FI)) 542 continue; 543 544 unsigned Def = Candidate.Def; 545 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 546 bool Safe = true; 547 MachineInstr *MI = Candidate.MI; 548 for (const MachineOperand &MO : MI->operands()) { 549 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 550 continue; 551 unsigned Reg = MO.getReg(); 552 if (PhysRegDefs.test(Reg) || 553 PhysRegClobbers.test(Reg)) { 554 // If it's using a non-loop-invariant register, then it's obviously 555 // not safe to hoist. 556 Safe = false; 557 break; 558 } 559 } 560 if (Safe) 561 HoistPostRA(MI, Candidate.Def); 562 } 563 } 564 } 565 566 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 567 /// sure it is not killed by any instructions in the loop. 568 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 569 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 570 for (MachineBasicBlock *BB : Blocks) { 571 if (!BB->isLiveIn(Reg)) 572 BB->addLiveIn(Reg); 573 for (MachineInstr &MI : *BB) { 574 for (MachineOperand &MO : MI.operands()) { 575 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 576 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 577 MO.setIsKill(false); 578 } 579 } 580 } 581 } 582 583 /// When an instruction is found to only use loop invariant operands that is 584 /// safe to hoist, this instruction is called to do the dirty work. 585 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 586 MachineBasicBlock *Preheader = getCurPreheader(); 587 588 // Now move the instructions to the predecessor, inserting it before any 589 // terminator instructions. 590 DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) << " from " 591 << printMBBReference(*MI->getParent()) << ": " << *MI); 592 593 // Splice the instruction to the preheader. 594 MachineBasicBlock *MBB = MI->getParent(); 595 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 596 597 // Add register to livein list to all the BBs in the current loop since a 598 // loop invariant must be kept live throughout the whole loop. This is 599 // important to ensure later passes do not scavenge the def register. 600 AddToLiveIns(Def); 601 602 ++NumPostRAHoisted; 603 Changed = true; 604 } 605 606 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 607 /// may not be safe to hoist. 608 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 609 if (SpeculationState != SpeculateUnknown) 610 return SpeculationState == SpeculateFalse; 611 612 if (BB != CurLoop->getHeader()) { 613 // Check loop exiting blocks. 614 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 615 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 616 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 617 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 618 SpeculationState = SpeculateTrue; 619 return false; 620 } 621 } 622 623 SpeculationState = SpeculateFalse; 624 return true; 625 } 626 627 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 628 DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 629 630 // Remember livein register pressure. 631 BackTrace.push_back(RegPressure); 632 } 633 634 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 635 DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 636 BackTrace.pop_back(); 637 } 638 639 /// Destroy scope for the MBB that corresponds to the given dominator tree node 640 /// if its a leaf or all of its children are done. Walk up the dominator tree to 641 /// destroy ancestors which are now done. 642 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 643 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 644 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 645 if (OpenChildren[Node]) 646 return; 647 648 // Pop scope. 649 ExitScope(Node->getBlock()); 650 651 // Now traverse upwards to pop ancestors whose offsprings are all done. 652 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 653 unsigned Left = --OpenChildren[Parent]; 654 if (Left != 0) 655 break; 656 ExitScope(Parent->getBlock()); 657 Node = Parent; 658 } 659 } 660 661 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 662 /// specified header block, and that are in the current loop) in depth first 663 /// order w.r.t the DominatorTree. This allows us to visit definitions before 664 /// uses, allowing us to hoist a loop body in one pass without iteration. 665 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 666 MachineBasicBlock *Preheader = getCurPreheader(); 667 if (!Preheader) 668 return; 669 670 SmallVector<MachineDomTreeNode*, 32> Scopes; 671 SmallVector<MachineDomTreeNode*, 8> WorkList; 672 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 673 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 674 675 // Perform a DFS walk to determine the order of visit. 676 WorkList.push_back(HeaderN); 677 while (!WorkList.empty()) { 678 MachineDomTreeNode *Node = WorkList.pop_back_val(); 679 assert(Node && "Null dominator tree node?"); 680 MachineBasicBlock *BB = Node->getBlock(); 681 682 // If the header of the loop containing this basic block is a landing pad, 683 // then don't try to hoist instructions out of this loop. 684 const MachineLoop *ML = MLI->getLoopFor(BB); 685 if (ML && ML->getHeader()->isEHPad()) 686 continue; 687 688 // If this subregion is not in the top level loop at all, exit. 689 if (!CurLoop->contains(BB)) 690 continue; 691 692 Scopes.push_back(Node); 693 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 694 unsigned NumChildren = Children.size(); 695 696 // Don't hoist things out of a large switch statement. This often causes 697 // code to be hoisted that wasn't going to be executed, and increases 698 // register pressure in a situation where it's likely to matter. 699 if (BB->succ_size() >= 25) 700 NumChildren = 0; 701 702 OpenChildren[Node] = NumChildren; 703 // Add children in reverse order as then the next popped worklist node is 704 // the first child of this node. This means we ultimately traverse the 705 // DOM tree in exactly the same order as if we'd recursed. 706 for (int i = (int)NumChildren-1; i >= 0; --i) { 707 MachineDomTreeNode *Child = Children[i]; 708 ParentMap[Child] = Node; 709 WorkList.push_back(Child); 710 } 711 } 712 713 if (Scopes.size() == 0) 714 return; 715 716 // Compute registers which are livein into the loop headers. 717 RegSeen.clear(); 718 BackTrace.clear(); 719 InitRegPressure(Preheader); 720 721 // Now perform LICM. 722 for (MachineDomTreeNode *Node : Scopes) { 723 MachineBasicBlock *MBB = Node->getBlock(); 724 725 EnterScope(MBB); 726 727 // Process the block 728 SpeculationState = SpeculateUnknown; 729 for (MachineBasicBlock::iterator 730 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 731 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 732 MachineInstr *MI = &*MII; 733 if (!Hoist(MI, Preheader)) 734 UpdateRegPressure(MI); 735 // If we have hoisted an instruction that may store, it can only be a 736 // constant store. 737 MII = NextMII; 738 } 739 740 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 741 ExitScopeIfDone(Node, OpenChildren, ParentMap); 742 } 743 } 744 745 /// Sink instructions into loops if profitable. This especially tries to prevent 746 /// register spills caused by register pressure if there is little to no 747 /// overhead moving instructions into loops. 748 void MachineLICMBase::SinkIntoLoop() { 749 MachineBasicBlock *Preheader = getCurPreheader(); 750 if (!Preheader) 751 return; 752 753 SmallVector<MachineInstr *, 8> Candidates; 754 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 755 I != Preheader->instr_end(); ++I) { 756 // We need to ensure that we can safely move this instruction into the loop. 757 // As such, it must not have side-effects, e.g. such as a call has. 758 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 759 Candidates.push_back(&*I); 760 } 761 762 for (MachineInstr *I : Candidates) { 763 const MachineOperand &MO = I->getOperand(0); 764 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 765 continue; 766 if (!MRI->hasOneDef(MO.getReg())) 767 continue; 768 bool CanSink = true; 769 MachineBasicBlock *B = nullptr; 770 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 771 // FIXME: Come up with a proper cost model that estimates whether sinking 772 // the instruction (and thus possibly executing it on every loop 773 // iteration) is more expensive than a register. 774 // For now assumes that copies are cheap and thus almost always worth it. 775 if (!MI.isCopy()) { 776 CanSink = false; 777 break; 778 } 779 if (!B) { 780 B = MI.getParent(); 781 continue; 782 } 783 B = DT->findNearestCommonDominator(B, MI.getParent()); 784 if (!B) { 785 CanSink = false; 786 break; 787 } 788 } 789 if (!CanSink || !B || B == Preheader) 790 continue; 791 B->splice(B->getFirstNonPHI(), Preheader, I); 792 } 793 } 794 795 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 796 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 797 } 798 799 /// Find all virtual register references that are liveout of the preheader to 800 /// initialize the starting "register pressure". Note this does not count live 801 /// through (livein but not used) registers. 802 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 803 std::fill(RegPressure.begin(), RegPressure.end(), 0); 804 805 // If the preheader has only a single predecessor and it ends with a 806 // fallthrough or an unconditional branch, then scan its predecessor for live 807 // defs as well. This happens whenever the preheader is created by splitting 808 // the critical edge from the loop predecessor to the loop header. 809 if (BB->pred_size() == 1) { 810 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 811 SmallVector<MachineOperand, 4> Cond; 812 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 813 InitRegPressure(*BB->pred_begin()); 814 } 815 816 for (const MachineInstr &MI : *BB) 817 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 818 } 819 820 /// Update estimate of register pressure after the specified instruction. 821 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 822 bool ConsiderUnseenAsDef) { 823 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 824 for (const auto &RPIdAndCost : Cost) { 825 unsigned Class = RPIdAndCost.first; 826 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 827 RegPressure[Class] = 0; 828 else 829 RegPressure[Class] += RPIdAndCost.second; 830 } 831 } 832 833 /// Calculate the additional register pressure that the registers used in MI 834 /// cause. 835 /// 836 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 837 /// figure out which usages are live-ins. 838 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 839 DenseMap<unsigned, int> 840 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 841 bool ConsiderUnseenAsDef) { 842 DenseMap<unsigned, int> Cost; 843 if (MI->isImplicitDef()) 844 return Cost; 845 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 846 const MachineOperand &MO = MI->getOperand(i); 847 if (!MO.isReg() || MO.isImplicit()) 848 continue; 849 unsigned Reg = MO.getReg(); 850 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 851 continue; 852 853 // FIXME: It seems bad to use RegSeen only for some of these calculations. 854 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 855 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 856 857 RegClassWeight W = TRI->getRegClassWeight(RC); 858 int RCCost = 0; 859 if (MO.isDef()) 860 RCCost = W.RegWeight; 861 else { 862 bool isKill = isOperandKill(MO, MRI); 863 if (isNew && !isKill && ConsiderUnseenAsDef) 864 // Haven't seen this, it must be a livein. 865 RCCost = W.RegWeight; 866 else if (!isNew && isKill) 867 RCCost = -W.RegWeight; 868 } 869 if (RCCost == 0) 870 continue; 871 const int *PS = TRI->getRegClassPressureSets(RC); 872 for (; *PS != -1; ++PS) { 873 if (Cost.find(*PS) == Cost.end()) 874 Cost[*PS] = RCCost; 875 else 876 Cost[*PS] += RCCost; 877 } 878 } 879 return Cost; 880 } 881 882 /// Return true if this machine instruction loads from global offset table or 883 /// constant pool. 884 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 885 assert(MI.mayLoad() && "Expected MI that loads!"); 886 887 // If we lost memory operands, conservatively assume that the instruction 888 // reads from everything.. 889 if (MI.memoperands_empty()) 890 return true; 891 892 for (MachineMemOperand *MemOp : MI.memoperands()) 893 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 894 if (PSV->isGOT() || PSV->isConstantPool()) 895 return true; 896 897 return false; 898 } 899 900 // This function iterates through all the operands of the input store MI and 901 // checks that each register operand statisfies isCallerPreservedPhysReg. 902 // This means, the value being stored and the address where it is being stored 903 // is constant throughout the body of the function (not including prologue and 904 // epilogue). When called with an MI that isn't a store, it returns false. 905 static bool isInvariantStore(const MachineInstr &MI, 906 const TargetRegisterInfo *TRI, 907 const MachineRegisterInfo *MRI) { 908 909 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 910 (MI.getNumOperands() == 0)) 911 return false; 912 913 // Check that all register operands are caller-preserved physical registers. 914 for (const MachineOperand &MO : MI.operands()) { 915 if (MO.isReg()) { 916 unsigned Reg = MO.getReg(); 917 // If operand is a virtual register, check if it comes from a copy of a 918 // physical register. 919 if (TargetRegisterInfo::isVirtualRegister(Reg)) 920 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 921 if (TargetRegisterInfo::isVirtualRegister(Reg)) 922 return false; 923 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 924 return false; 925 } 926 } 927 return true; 928 } 929 930 // Return true if the input MI is a copy instruction that feeds an invariant 931 // store instruction. This means that the src of the copy has to satisfy 932 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 933 // isInvariantStore. 934 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 935 const MachineRegisterInfo *MRI, 936 const TargetRegisterInfo *TRI) { 937 938 // FIXME: If targets would like to look through instructions that aren't 939 // pure copies, this can be updated to a query. 940 if (!MI.isCopy()) 941 return false; 942 943 const MachineFunction *MF = MI.getMF(); 944 // Check that we are copying a constant physical register. 945 unsigned CopySrcReg = MI.getOperand(1).getReg(); 946 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) 947 return false; 948 949 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 950 return false; 951 952 unsigned CopyDstReg = MI.getOperand(0).getReg(); 953 // Check if any of the uses of the copy are invariant stores. 954 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && 955 "copy dst is not a virtual reg"); 956 957 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 958 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 959 return true; 960 } 961 return false; 962 } 963 964 /// Returns true if the instruction may be a suitable candidate for LICM. 965 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 966 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 967 // Check if it's safe to move the instruction. 968 bool DontMoveAcrossStore = true; 969 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 970 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 971 return false; 972 } 973 974 // If it is load then check if it is guaranteed to execute by making sure that 975 // it dominates all exiting blocks. If it doesn't, then there is a path out of 976 // the loop which does not execute this load, so we can't hoist it. Loads 977 // from constant memory are not safe to speculate all the time, for example 978 // indexed load from a jump table. 979 // Stores and side effects are already checked by isSafeToMove. 980 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 981 !IsGuaranteedToExecute(I.getParent())) 982 return false; 983 984 return true; 985 } 986 987 /// Returns true if the instruction is loop invariant. 988 /// I.e., all virtual register operands are defined outside of the loop, 989 /// physical registers aren't accessed explicitly, and there are no side 990 /// effects that aren't captured by the operands or other flags. 991 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 992 if (!IsLICMCandidate(I)) 993 return false; 994 995 // The instruction is loop invariant if all of its operands are. 996 for (const MachineOperand &MO : I.operands()) { 997 if (!MO.isReg()) 998 continue; 999 1000 unsigned Reg = MO.getReg(); 1001 if (Reg == 0) continue; 1002 1003 // Don't hoist an instruction that uses or defines a physical register. 1004 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1005 if (MO.isUse()) { 1006 // If the physreg has no defs anywhere, it's just an ambient register 1007 // and we can freely move its uses. Alternatively, if it's allocatable, 1008 // it could get allocated to something with a def during allocation. 1009 // However, if the physreg is known to always be caller saved/restored 1010 // then this use is safe to hoist. 1011 if (!MRI->isConstantPhysReg(Reg) && 1012 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1013 return false; 1014 // Otherwise it's safe to move. 1015 continue; 1016 } else if (!MO.isDead()) { 1017 // A def that isn't dead. We can't move it. 1018 return false; 1019 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1020 // If the reg is live into the loop, we can't hoist an instruction 1021 // which would clobber it. 1022 return false; 1023 } 1024 } 1025 1026 if (!MO.isUse()) 1027 continue; 1028 1029 assert(MRI->getVRegDef(Reg) && 1030 "Machine instr not mapped for this vreg?!"); 1031 1032 // If the loop contains the definition of an operand, then the instruction 1033 // isn't loop invariant. 1034 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1035 return false; 1036 } 1037 1038 // If we got this far, the instruction is loop invariant! 1039 return true; 1040 } 1041 1042 /// Return true if the specified instruction is used by a phi node and hoisting 1043 /// it could cause a copy to be inserted. 1044 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1045 SmallVector<const MachineInstr*, 8> Work(1, MI); 1046 do { 1047 MI = Work.pop_back_val(); 1048 for (const MachineOperand &MO : MI->operands()) { 1049 if (!MO.isReg() || !MO.isDef()) 1050 continue; 1051 unsigned Reg = MO.getReg(); 1052 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1053 continue; 1054 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1055 // A PHI may cause a copy to be inserted. 1056 if (UseMI.isPHI()) { 1057 // A PHI inside the loop causes a copy because the live range of Reg is 1058 // extended across the PHI. 1059 if (CurLoop->contains(&UseMI)) 1060 return true; 1061 // A PHI in an exit block can cause a copy to be inserted if the PHI 1062 // has multiple predecessors in the loop with different values. 1063 // For now, approximate by rejecting all exit blocks. 1064 if (isExitBlock(UseMI.getParent())) 1065 return true; 1066 continue; 1067 } 1068 // Look past copies as well. 1069 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1070 Work.push_back(&UseMI); 1071 } 1072 } 1073 } while (!Work.empty()); 1074 return false; 1075 } 1076 1077 /// Compute operand latency between a def of 'Reg' and an use in the current 1078 /// loop, return true if the target considered it high. 1079 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1080 unsigned DefIdx, 1081 unsigned Reg) const { 1082 if (MRI->use_nodbg_empty(Reg)) 1083 return false; 1084 1085 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1086 if (UseMI.isCopyLike()) 1087 continue; 1088 if (!CurLoop->contains(UseMI.getParent())) 1089 continue; 1090 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1091 const MachineOperand &MO = UseMI.getOperand(i); 1092 if (!MO.isReg() || !MO.isUse()) 1093 continue; 1094 unsigned MOReg = MO.getReg(); 1095 if (MOReg != Reg) 1096 continue; 1097 1098 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1099 return true; 1100 } 1101 1102 // Only look at the first in loop use. 1103 break; 1104 } 1105 1106 return false; 1107 } 1108 1109 /// Return true if the instruction is marked "cheap" or the operand latency 1110 /// between its def and a use is one or less. 1111 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1112 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1113 return true; 1114 1115 bool isCheap = false; 1116 unsigned NumDefs = MI.getDesc().getNumDefs(); 1117 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1118 MachineOperand &DefMO = MI.getOperand(i); 1119 if (!DefMO.isReg() || !DefMO.isDef()) 1120 continue; 1121 --NumDefs; 1122 unsigned Reg = DefMO.getReg(); 1123 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1124 continue; 1125 1126 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1127 return false; 1128 isCheap = true; 1129 } 1130 1131 return isCheap; 1132 } 1133 1134 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1135 /// given cost matrix can cause high register pressure. 1136 bool 1137 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1138 bool CheapInstr) { 1139 for (const auto &RPIdAndCost : Cost) { 1140 if (RPIdAndCost.second <= 0) 1141 continue; 1142 1143 unsigned Class = RPIdAndCost.first; 1144 int Limit = RegLimit[Class]; 1145 1146 // Don't hoist cheap instructions if they would increase register pressure, 1147 // even if we're under the limit. 1148 if (CheapInstr && !HoistCheapInsts) 1149 return true; 1150 1151 for (const auto &RP : BackTrace) 1152 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1153 return true; 1154 } 1155 1156 return false; 1157 } 1158 1159 /// Traverse the back trace from header to the current block and update their 1160 /// register pressures to reflect the effect of hoisting MI from the current 1161 /// block to the preheader. 1162 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1163 // First compute the 'cost' of the instruction, i.e. its contribution 1164 // to register pressure. 1165 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1166 /*ConsiderUnseenAsDef=*/false); 1167 1168 // Update register pressure of blocks from loop header to current block. 1169 for (auto &RP : BackTrace) 1170 for (const auto &RPIdAndCost : Cost) 1171 RP[RPIdAndCost.first] += RPIdAndCost.second; 1172 } 1173 1174 /// Return true if it is potentially profitable to hoist the given loop 1175 /// invariant. 1176 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1177 if (MI.isImplicitDef()) 1178 return true; 1179 1180 // Besides removing computation from the loop, hoisting an instruction has 1181 // these effects: 1182 // 1183 // - The value defined by the instruction becomes live across the entire 1184 // loop. This increases register pressure in the loop. 1185 // 1186 // - If the value is used by a PHI in the loop, a copy will be required for 1187 // lowering the PHI after extending the live range. 1188 // 1189 // - When hoisting the last use of a value in the loop, that value no longer 1190 // needs to be live in the loop. This lowers register pressure in the loop. 1191 1192 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1193 return true; 1194 1195 bool CheapInstr = IsCheapInstruction(MI); 1196 bool CreatesCopy = HasLoopPHIUse(&MI); 1197 1198 // Don't hoist a cheap instruction if it would create a copy in the loop. 1199 if (CheapInstr && CreatesCopy) { 1200 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1201 return false; 1202 } 1203 1204 // Rematerializable instructions should always be hoisted since the register 1205 // allocator can just pull them down again when needed. 1206 if (TII->isTriviallyReMaterializable(MI, AA)) 1207 return true; 1208 1209 // FIXME: If there are long latency loop-invariant instructions inside the 1210 // loop at this point, why didn't the optimizer's LICM hoist them? 1211 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1212 const MachineOperand &MO = MI.getOperand(i); 1213 if (!MO.isReg() || MO.isImplicit()) 1214 continue; 1215 unsigned Reg = MO.getReg(); 1216 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1217 continue; 1218 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1219 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1220 ++NumHighLatency; 1221 return true; 1222 } 1223 } 1224 1225 // Estimate register pressure to determine whether to LICM the instruction. 1226 // In low register pressure situation, we can be more aggressive about 1227 // hoisting. Also, favors hoisting long latency instructions even in 1228 // moderately high pressure situation. 1229 // Cheap instructions will only be hoisted if they don't increase register 1230 // pressure at all. 1231 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1232 /*ConsiderUnseenAsDef=*/false); 1233 1234 // Visit BBs from header to current BB, if hoisting this doesn't cause 1235 // high register pressure, then it's safe to proceed. 1236 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1237 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1238 ++NumLowRP; 1239 return true; 1240 } 1241 1242 // Don't risk increasing register pressure if it would create copies. 1243 if (CreatesCopy) { 1244 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1245 return false; 1246 } 1247 1248 // Do not "speculate" in high register pressure situation. If an 1249 // instruction is not guaranteed to be executed in the loop, it's best to be 1250 // conservative. 1251 if (AvoidSpeculation && 1252 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1253 DEBUG(dbgs() << "Won't speculate: " << MI); 1254 return false; 1255 } 1256 1257 // High register pressure situation, only hoist if the instruction is going 1258 // to be remat'ed. 1259 if (!TII->isTriviallyReMaterializable(MI, AA) && 1260 !MI.isDereferenceableInvariantLoad(AA)) { 1261 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1262 return false; 1263 } 1264 1265 return true; 1266 } 1267 1268 /// Unfold a load from the given machineinstr if the load itself could be 1269 /// hoisted. Return the unfolded and hoistable load, or null if the load 1270 /// couldn't be unfolded or if it wouldn't be hoistable. 1271 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1272 // Don't unfold simple loads. 1273 if (MI->canFoldAsLoad()) 1274 return nullptr; 1275 1276 // If not, we may be able to unfold a load and hoist that. 1277 // First test whether the instruction is loading from an amenable 1278 // memory location. 1279 if (!MI->isDereferenceableInvariantLoad(AA)) 1280 return nullptr; 1281 1282 // Next determine the register class for a temporary register. 1283 unsigned LoadRegIndex; 1284 unsigned NewOpc = 1285 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1286 /*UnfoldLoad=*/true, 1287 /*UnfoldStore=*/false, 1288 &LoadRegIndex); 1289 if (NewOpc == 0) return nullptr; 1290 const MCInstrDesc &MID = TII->get(NewOpc); 1291 MachineFunction &MF = *MI->getMF(); 1292 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1293 // Ok, we're unfolding. Create a temporary register and do the unfold. 1294 unsigned Reg = MRI->createVirtualRegister(RC); 1295 1296 SmallVector<MachineInstr *, 2> NewMIs; 1297 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1298 /*UnfoldLoad=*/true, 1299 /*UnfoldStore=*/false, NewMIs); 1300 (void)Success; 1301 assert(Success && 1302 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1303 "succeeded!"); 1304 assert(NewMIs.size() == 2 && 1305 "Unfolded a load into multiple instructions!"); 1306 MachineBasicBlock *MBB = MI->getParent(); 1307 MachineBasicBlock::iterator Pos = MI; 1308 MBB->insert(Pos, NewMIs[0]); 1309 MBB->insert(Pos, NewMIs[1]); 1310 // If unfolding produced a load that wasn't loop-invariant or profitable to 1311 // hoist, discard the new instructions and bail. 1312 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1313 NewMIs[0]->eraseFromParent(); 1314 NewMIs[1]->eraseFromParent(); 1315 return nullptr; 1316 } 1317 1318 // Update register pressure for the unfolded instruction. 1319 UpdateRegPressure(NewMIs[1]); 1320 1321 // Otherwise we successfully unfolded a load that we can hoist. 1322 MI->eraseFromParent(); 1323 return NewMIs[0]; 1324 } 1325 1326 /// Initialize the CSE map with instructions that are in the current loop 1327 /// preheader that may become duplicates of instructions that are hoisted 1328 /// out of the loop. 1329 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1330 for (MachineInstr &MI : *BB) 1331 CSEMap[MI.getOpcode()].push_back(&MI); 1332 } 1333 1334 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1335 /// Return this instruction if it's found. 1336 const MachineInstr* 1337 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1338 std::vector<const MachineInstr*> &PrevMIs) { 1339 for (const MachineInstr *PrevMI : PrevMIs) 1340 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1341 return PrevMI; 1342 1343 return nullptr; 1344 } 1345 1346 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1347 /// computes the same value. If it's found, do a RAU on with the definition of 1348 /// the existing instruction rather than hoisting the instruction to the 1349 /// preheader. 1350 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1351 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1352 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1353 // the undef property onto uses. 1354 if (CI == CSEMap.end() || MI->isImplicitDef()) 1355 return false; 1356 1357 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1358 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1359 1360 // Replace virtual registers defined by MI by their counterparts defined 1361 // by Dup. 1362 SmallVector<unsigned, 2> Defs; 1363 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1364 const MachineOperand &MO = MI->getOperand(i); 1365 1366 // Physical registers may not differ here. 1367 assert((!MO.isReg() || MO.getReg() == 0 || 1368 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1369 MO.getReg() == Dup->getOperand(i).getReg()) && 1370 "Instructions with different phys regs are not identical!"); 1371 1372 if (MO.isReg() && MO.isDef() && 1373 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1374 Defs.push_back(i); 1375 } 1376 1377 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1378 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1379 unsigned Idx = Defs[i]; 1380 unsigned Reg = MI->getOperand(Idx).getReg(); 1381 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1382 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1383 1384 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1385 // Restore old RCs if more than one defs. 1386 for (unsigned j = 0; j != i; ++j) 1387 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1388 return false; 1389 } 1390 } 1391 1392 for (unsigned Idx : Defs) { 1393 unsigned Reg = MI->getOperand(Idx).getReg(); 1394 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1395 MRI->replaceRegWith(Reg, DupReg); 1396 MRI->clearKillFlags(DupReg); 1397 } 1398 1399 MI->eraseFromParent(); 1400 ++NumCSEed; 1401 return true; 1402 } 1403 return false; 1404 } 1405 1406 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1407 /// the loop. 1408 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1409 unsigned Opcode = MI->getOpcode(); 1410 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1411 CI = CSEMap.find(Opcode); 1412 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1413 // the undef property onto uses. 1414 if (CI == CSEMap.end() || MI->isImplicitDef()) 1415 return false; 1416 1417 return LookForDuplicate(MI, CI->second) != nullptr; 1418 } 1419 1420 /// When an instruction is found to use only loop invariant operands 1421 /// that are safe to hoist, this instruction is called to do the dirty work. 1422 /// It returns true if the instruction is hoisted. 1423 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1424 // First check whether we should hoist this instruction. 1425 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1426 // If not, try unfolding a hoistable load. 1427 MI = ExtractHoistableLoad(MI); 1428 if (!MI) return false; 1429 } 1430 1431 // If we have hoisted an instruction that may store, it can only be a constant 1432 // store. 1433 if (MI->mayStore()) 1434 NumStoreConst++; 1435 1436 // Now move the instructions to the predecessor, inserting it before any 1437 // terminator instructions. 1438 DEBUG({ 1439 dbgs() << "Hoisting " << *MI; 1440 if (MI->getParent()->getBasicBlock()) 1441 dbgs() << " from " << printMBBReference(*MI->getParent()); 1442 if (Preheader->getBasicBlock()) 1443 dbgs() << " to " << printMBBReference(*Preheader); 1444 dbgs() << "\n"; 1445 }); 1446 1447 // If this is the first instruction being hoisted to the preheader, 1448 // initialize the CSE map with potential common expressions. 1449 if (FirstInLoop) { 1450 InitCSEMap(Preheader); 1451 FirstInLoop = false; 1452 } 1453 1454 // Look for opportunity to CSE the hoisted instruction. 1455 unsigned Opcode = MI->getOpcode(); 1456 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1457 CI = CSEMap.find(Opcode); 1458 if (!EliminateCSE(MI, CI)) { 1459 // Otherwise, splice the instruction to the preheader. 1460 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1461 1462 // Since we are moving the instruction out of its basic block, we do not 1463 // retain its debug location. Doing so would degrade the debugging 1464 // experience and adversely affect the accuracy of profiling information. 1465 MI->setDebugLoc(DebugLoc()); 1466 1467 // Update register pressure for BBs from header to this block. 1468 UpdateBackTraceRegPressure(MI); 1469 1470 // Clear the kill flags of any register this instruction defines, 1471 // since they may need to be live throughout the entire loop 1472 // rather than just live for part of it. 1473 for (MachineOperand &MO : MI->operands()) 1474 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1475 MRI->clearKillFlags(MO.getReg()); 1476 1477 // Add to the CSE map. 1478 if (CI != CSEMap.end()) 1479 CI->second.push_back(MI); 1480 else 1481 CSEMap[Opcode].push_back(MI); 1482 } 1483 1484 ++NumHoisted; 1485 Changed = true; 1486 1487 return true; 1488 } 1489 1490 /// Get the preheader for the current loop, splitting a critical edge if needed. 1491 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1492 // Determine the block to which to hoist instructions. If we can't find a 1493 // suitable loop predecessor, we can't do any hoisting. 1494 1495 // If we've tried to get a preheader and failed, don't try again. 1496 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1497 return nullptr; 1498 1499 if (!CurPreheader) { 1500 CurPreheader = CurLoop->getLoopPreheader(); 1501 if (!CurPreheader) { 1502 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1503 if (!Pred) { 1504 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1505 return nullptr; 1506 } 1507 1508 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1509 if (!CurPreheader) { 1510 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1511 return nullptr; 1512 } 1513 } 1514 } 1515 return CurPreheader; 1516 } 1517