1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 if (isDef()) 97 setIsUndef(false); 98 } 99 setReg(Reg); 100 } 101 102 /// Change a def to a use, or a use to a def. 103 void MachineOperand::setIsDef(bool Val) { 104 assert(isReg() && "Wrong MachineOperand accessor"); 105 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 106 if (IsDef == Val) 107 return; 108 // MRI may keep uses and defs in different list positions. 109 if (MachineInstr *MI = getParent()) 110 if (MachineBasicBlock *MBB = MI->getParent()) 111 if (MachineFunction *MF = MBB->getParent()) { 112 MachineRegisterInfo &MRI = MF->getRegInfo(); 113 MRI.removeRegOperandFromUseList(this); 114 IsDef = Val; 115 MRI.addRegOperandToUseList(this); 116 return; 117 } 118 IsDef = Val; 119 } 120 121 // If this operand is currently a register operand, and if this is in a 122 // function, deregister the operand from the register's use/def list. 123 void MachineOperand::removeRegFromUses() { 124 if (!isReg() || !isOnRegUseList()) 125 return; 126 127 if (MachineInstr *MI = getParent()) { 128 if (MachineBasicBlock *MBB = MI->getParent()) { 129 if (MachineFunction *MF = MBB->getParent()) 130 MF->getRegInfo().removeRegOperandFromUseList(this); 131 } 132 } 133 } 134 135 /// ChangeToImmediate - Replace this operand with a new immediate operand of 136 /// the specified value. If an operand is known to be an immediate already, 137 /// the setImm method should be used. 138 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 139 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 140 141 removeRegFromUses(); 142 143 OpKind = MO_Immediate; 144 Contents.ImmVal = ImmVal; 145 } 146 147 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 148 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 149 150 removeRegFromUses(); 151 152 OpKind = MO_FPImmediate; 153 Contents.CFP = FPImm; 154 } 155 156 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 157 assert((!isReg() || !isTied()) && 158 "Cannot change a tied operand into an external symbol"); 159 160 removeRegFromUses(); 161 162 OpKind = MO_ExternalSymbol; 163 Contents.OffsetedInfo.Val.SymbolName = SymName; 164 setOffset(0); // Offset is always 0. 165 setTargetFlags(TargetFlags); 166 } 167 168 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 169 assert((!isReg() || !isTied()) && 170 "Cannot change a tied operand into an MCSymbol"); 171 172 removeRegFromUses(); 173 174 OpKind = MO_MCSymbol; 175 Contents.Sym = Sym; 176 } 177 178 void MachineOperand::ChangeToFrameIndex(int Idx) { 179 assert((!isReg() || !isTied()) && 180 "Cannot change a tied operand into a FrameIndex"); 181 182 removeRegFromUses(); 183 184 OpKind = MO_FrameIndex; 185 setIndex(Idx); 186 } 187 188 /// ChangeToRegister - Replace this operand with a new register operand of 189 /// the specified value. If an operand is known to be an register already, 190 /// the setReg method should be used. 191 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 192 bool isKill, bool isDead, bool isUndef, 193 bool isDebug) { 194 MachineRegisterInfo *RegInfo = nullptr; 195 if (MachineInstr *MI = getParent()) 196 if (MachineBasicBlock *MBB = MI->getParent()) 197 if (MachineFunction *MF = MBB->getParent()) 198 RegInfo = &MF->getRegInfo(); 199 // If this operand is already a register operand, remove it from the 200 // register's use/def lists. 201 bool WasReg = isReg(); 202 if (RegInfo && WasReg) 203 RegInfo->removeRegOperandFromUseList(this); 204 205 // Change this to a register and set the reg#. 206 OpKind = MO_Register; 207 SmallContents.RegNo = Reg; 208 SubReg_TargetFlags = 0; 209 IsDef = isDef; 210 IsImp = isImp; 211 IsKill = isKill; 212 IsDead = isDead; 213 IsUndef = isUndef; 214 IsInternalRead = false; 215 IsEarlyClobber = false; 216 IsDebug = isDebug; 217 // Ensure isOnRegUseList() returns false. 218 Contents.Reg.Prev = nullptr; 219 // Preserve the tie when the operand was already a register. 220 if (!WasReg) 221 TiedTo = 0; 222 223 // If this operand is embedded in a function, add the operand to the 224 // register's use/def list. 225 if (RegInfo) 226 RegInfo->addRegOperandToUseList(this); 227 } 228 229 /// isIdenticalTo - Return true if this operand is identical to the specified 230 /// operand. Note that this should stay in sync with the hash_value overload 231 /// below. 232 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 233 if (getType() != Other.getType() || 234 getTargetFlags() != Other.getTargetFlags()) 235 return false; 236 237 switch (getType()) { 238 case MachineOperand::MO_Register: 239 return getReg() == Other.getReg() && isDef() == Other.isDef() && 240 getSubReg() == Other.getSubReg(); 241 case MachineOperand::MO_Immediate: 242 return getImm() == Other.getImm(); 243 case MachineOperand::MO_CImmediate: 244 return getCImm() == Other.getCImm(); 245 case MachineOperand::MO_FPImmediate: 246 return getFPImm() == Other.getFPImm(); 247 case MachineOperand::MO_MachineBasicBlock: 248 return getMBB() == Other.getMBB(); 249 case MachineOperand::MO_FrameIndex: 250 return getIndex() == Other.getIndex(); 251 case MachineOperand::MO_ConstantPoolIndex: 252 case MachineOperand::MO_TargetIndex: 253 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 254 case MachineOperand::MO_JumpTableIndex: 255 return getIndex() == Other.getIndex(); 256 case MachineOperand::MO_GlobalAddress: 257 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 258 case MachineOperand::MO_ExternalSymbol: 259 return !strcmp(getSymbolName(), Other.getSymbolName()) && 260 getOffset() == Other.getOffset(); 261 case MachineOperand::MO_BlockAddress: 262 return getBlockAddress() == Other.getBlockAddress() && 263 getOffset() == Other.getOffset(); 264 case MachineOperand::MO_RegisterMask: 265 case MachineOperand::MO_RegisterLiveOut: { 266 // Shallow compare of the two RegMasks 267 const uint32_t *RegMask = getRegMask(); 268 const uint32_t *OtherRegMask = Other.getRegMask(); 269 if (RegMask == OtherRegMask) 270 return true; 271 272 // Calculate the size of the RegMask 273 const MachineFunction *MF = getParent()->getParent()->getParent(); 274 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 275 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 276 277 // Deep compare of the two RegMasks 278 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 279 } 280 case MachineOperand::MO_MCSymbol: 281 return getMCSymbol() == Other.getMCSymbol(); 282 case MachineOperand::MO_CFIIndex: 283 return getCFIIndex() == Other.getCFIIndex(); 284 case MachineOperand::MO_Metadata: 285 return getMetadata() == Other.getMetadata(); 286 case MachineOperand::MO_IntrinsicID: 287 return getIntrinsicID() == Other.getIntrinsicID(); 288 case MachineOperand::MO_Predicate: 289 return getPredicate() == Other.getPredicate(); 290 } 291 llvm_unreachable("Invalid machine operand type"); 292 } 293 294 // Note: this must stay exactly in sync with isIdenticalTo above. 295 hash_code llvm::hash_value(const MachineOperand &MO) { 296 switch (MO.getType()) { 297 case MachineOperand::MO_Register: 298 // Register operands don't have target flags. 299 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 300 case MachineOperand::MO_Immediate: 301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 302 case MachineOperand::MO_CImmediate: 303 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 304 case MachineOperand::MO_FPImmediate: 305 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 306 case MachineOperand::MO_MachineBasicBlock: 307 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 308 case MachineOperand::MO_FrameIndex: 309 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 310 case MachineOperand::MO_ConstantPoolIndex: 311 case MachineOperand::MO_TargetIndex: 312 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 313 MO.getOffset()); 314 case MachineOperand::MO_JumpTableIndex: 315 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 316 case MachineOperand::MO_ExternalSymbol: 317 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 318 MO.getSymbolName()); 319 case MachineOperand::MO_GlobalAddress: 320 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 321 MO.getOffset()); 322 case MachineOperand::MO_BlockAddress: 323 return hash_combine(MO.getType(), MO.getTargetFlags(), 324 MO.getBlockAddress(), MO.getOffset()); 325 case MachineOperand::MO_RegisterMask: 326 case MachineOperand::MO_RegisterLiveOut: 327 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 328 case MachineOperand::MO_Metadata: 329 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 330 case MachineOperand::MO_MCSymbol: 331 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 332 case MachineOperand::MO_CFIIndex: 333 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 334 case MachineOperand::MO_IntrinsicID: 335 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 336 case MachineOperand::MO_Predicate: 337 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 338 } 339 llvm_unreachable("Invalid machine operand type"); 340 } 341 342 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 343 const TargetIntrinsicInfo *IntrinsicInfo) const { 344 ModuleSlotTracker DummyMST(nullptr); 345 print(OS, DummyMST, TRI, IntrinsicInfo); 346 } 347 348 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 349 const TargetRegisterInfo *TRI, 350 const TargetIntrinsicInfo *IntrinsicInfo) const { 351 switch (getType()) { 352 case MachineOperand::MO_Register: 353 OS << PrintReg(getReg(), TRI, getSubReg()); 354 355 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 356 isInternalRead() || isEarlyClobber() || isTied()) { 357 OS << '<'; 358 bool NeedComma = false; 359 if (isDef()) { 360 if (NeedComma) OS << ','; 361 if (isEarlyClobber()) 362 OS << "earlyclobber,"; 363 if (isImplicit()) 364 OS << "imp-"; 365 OS << "def"; 366 NeedComma = true; 367 // <def,read-undef> only makes sense when getSubReg() is set. 368 // Don't clutter the output otherwise. 369 if (isUndef() && getSubReg()) 370 OS << ",read-undef"; 371 } else if (isImplicit()) { 372 OS << "imp-use"; 373 NeedComma = true; 374 } 375 376 if (isKill()) { 377 if (NeedComma) OS << ','; 378 OS << "kill"; 379 NeedComma = true; 380 } 381 if (isDead()) { 382 if (NeedComma) OS << ','; 383 OS << "dead"; 384 NeedComma = true; 385 } 386 if (isUndef() && isUse()) { 387 if (NeedComma) OS << ','; 388 OS << "undef"; 389 NeedComma = true; 390 } 391 if (isInternalRead()) { 392 if (NeedComma) OS << ','; 393 OS << "internal"; 394 NeedComma = true; 395 } 396 if (isTied()) { 397 if (NeedComma) OS << ','; 398 OS << "tied"; 399 if (TiedTo != 15) 400 OS << unsigned(TiedTo - 1); 401 } 402 OS << '>'; 403 } 404 break; 405 case MachineOperand::MO_Immediate: 406 OS << getImm(); 407 break; 408 case MachineOperand::MO_CImmediate: 409 getCImm()->getValue().print(OS, false); 410 break; 411 case MachineOperand::MO_FPImmediate: 412 if (getFPImm()->getType()->isFloatTy()) { 413 OS << getFPImm()->getValueAPF().convertToFloat(); 414 } else if (getFPImm()->getType()->isHalfTy()) { 415 APFloat APF = getFPImm()->getValueAPF(); 416 bool Unused; 417 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 418 OS << "half " << APF.convertToFloat(); 419 } else { 420 OS << getFPImm()->getValueAPF().convertToDouble(); 421 } 422 break; 423 case MachineOperand::MO_MachineBasicBlock: 424 OS << "<BB#" << getMBB()->getNumber() << ">"; 425 break; 426 case MachineOperand::MO_FrameIndex: 427 OS << "<fi#" << getIndex() << '>'; 428 break; 429 case MachineOperand::MO_ConstantPoolIndex: 430 OS << "<cp#" << getIndex(); 431 if (getOffset()) OS << "+" << getOffset(); 432 OS << '>'; 433 break; 434 case MachineOperand::MO_TargetIndex: 435 OS << "<ti#" << getIndex(); 436 if (getOffset()) OS << "+" << getOffset(); 437 OS << '>'; 438 break; 439 case MachineOperand::MO_JumpTableIndex: 440 OS << "<jt#" << getIndex() << '>'; 441 break; 442 case MachineOperand::MO_GlobalAddress: 443 OS << "<ga:"; 444 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 445 if (getOffset()) OS << "+" << getOffset(); 446 OS << '>'; 447 break; 448 case MachineOperand::MO_ExternalSymbol: 449 OS << "<es:" << getSymbolName(); 450 if (getOffset()) OS << "+" << getOffset(); 451 OS << '>'; 452 break; 453 case MachineOperand::MO_BlockAddress: 454 OS << '<'; 455 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 456 if (getOffset()) OS << "+" << getOffset(); 457 OS << '>'; 458 break; 459 case MachineOperand::MO_RegisterMask: { 460 unsigned NumRegsInMask = 0; 461 unsigned NumRegsEmitted = 0; 462 OS << "<regmask"; 463 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 464 unsigned MaskWord = i / 32; 465 unsigned MaskBit = i % 32; 466 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 467 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 468 OS << " " << PrintReg(i, TRI); 469 NumRegsEmitted++; 470 } 471 NumRegsInMask++; 472 } 473 } 474 if (NumRegsEmitted != NumRegsInMask) 475 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 476 OS << ">"; 477 break; 478 } 479 case MachineOperand::MO_RegisterLiveOut: 480 OS << "<regliveout>"; 481 break; 482 case MachineOperand::MO_Metadata: 483 OS << '<'; 484 getMetadata()->printAsOperand(OS, MST); 485 OS << '>'; 486 break; 487 case MachineOperand::MO_MCSymbol: 488 OS << "<MCSym=" << *getMCSymbol() << '>'; 489 break; 490 case MachineOperand::MO_CFIIndex: 491 OS << "<call frame instruction>"; 492 break; 493 case MachineOperand::MO_IntrinsicID: { 494 Intrinsic::ID ID = getIntrinsicID(); 495 if (ID < Intrinsic::num_intrinsics) 496 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 497 else if (IntrinsicInfo) 498 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 499 else 500 OS << "<intrinsic:" << ID << '>'; 501 break; 502 } 503 case MachineOperand::MO_Predicate: { 504 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 505 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 506 << CmpInst::getPredicateName(Pred) << '>'; 507 } 508 } 509 if (unsigned TF = getTargetFlags()) 510 OS << "[TF=" << TF << ']'; 511 } 512 513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 514 LLVM_DUMP_METHOD void MachineOperand::dump() const { 515 dbgs() << *this << '\n'; 516 } 517 #endif 518 519 //===----------------------------------------------------------------------===// 520 // MachineMemOperand Implementation 521 //===----------------------------------------------------------------------===// 522 523 /// getAddrSpace - Return the LLVM IR address space number that this pointer 524 /// points into. 525 unsigned MachinePointerInfo::getAddrSpace() const { 526 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 527 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 528 } 529 530 /// getConstantPool - Return a MachinePointerInfo record that refers to the 531 /// constant pool. 532 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 533 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 534 } 535 536 /// getFixedStack - Return a MachinePointerInfo record that refers to the 537 /// the specified FrameIndex. 538 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 539 int FI, int64_t Offset) { 540 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 541 } 542 543 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 544 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 545 } 546 547 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 548 return MachinePointerInfo(MF.getPSVManager().getGOT()); 549 } 550 551 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 552 int64_t Offset) { 553 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 554 } 555 556 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 557 uint64_t s, unsigned int a, 558 const AAMDNodes &AAInfo, 559 const MDNode *Ranges, 560 SynchronizationScope SynchScope, 561 AtomicOrdering Ordering, 562 AtomicOrdering FailureOrdering) 563 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 564 AAInfo(AAInfo), Ranges(Ranges) { 565 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 566 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 567 "invalid pointer value"); 568 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 569 assert((isLoad() || isStore()) && "Not a load/store!"); 570 571 AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); 572 assert(getSynchScope() == SynchScope && "Value truncated"); 573 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 574 assert(getOrdering() == Ordering && "Value truncated"); 575 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 576 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 577 } 578 579 /// Profile - Gather unique data for the object. 580 /// 581 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 582 ID.AddInteger(getOffset()); 583 ID.AddInteger(Size); 584 ID.AddPointer(getOpaqueValue()); 585 ID.AddInteger(getFlags()); 586 ID.AddInteger(getBaseAlignment()); 587 } 588 589 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 590 // The Value and Offset may differ due to CSE. But the flags and size 591 // should be the same. 592 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 593 assert(MMO->getSize() == getSize() && "Size mismatch!"); 594 595 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 596 // Update the alignment value. 597 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 598 // Also update the base and offset, because the new alignment may 599 // not be applicable with the old ones. 600 PtrInfo = MMO->PtrInfo; 601 } 602 } 603 604 /// getAlignment - Return the minimum known alignment in bytes of the 605 /// actual memory reference. 606 uint64_t MachineMemOperand::getAlignment() const { 607 return MinAlign(getBaseAlignment(), getOffset()); 608 } 609 610 void MachineMemOperand::print(raw_ostream &OS) const { 611 ModuleSlotTracker DummyMST(nullptr); 612 print(OS, DummyMST); 613 } 614 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 615 assert((isLoad() || isStore()) && 616 "SV has to be a load, store or both."); 617 618 if (isVolatile()) 619 OS << "Volatile "; 620 621 if (isLoad()) 622 OS << "LD"; 623 if (isStore()) 624 OS << "ST"; 625 OS << getSize(); 626 627 // Print the address information. 628 OS << "["; 629 if (const Value *V = getValue()) 630 V->printAsOperand(OS, /*PrintType=*/false, MST); 631 else if (const PseudoSourceValue *PSV = getPseudoValue()) 632 PSV->printCustom(OS); 633 else 634 OS << "<unknown>"; 635 636 unsigned AS = getAddrSpace(); 637 if (AS != 0) 638 OS << "(addrspace=" << AS << ')'; 639 640 // If the alignment of the memory reference itself differs from the alignment 641 // of the base pointer, print the base alignment explicitly, next to the base 642 // pointer. 643 if (getBaseAlignment() != getAlignment()) 644 OS << "(align=" << getBaseAlignment() << ")"; 645 646 if (getOffset() != 0) 647 OS << "+" << getOffset(); 648 OS << "]"; 649 650 // Print the alignment of the reference. 651 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 652 OS << "(align=" << getAlignment() << ")"; 653 654 // Print TBAA info. 655 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 656 OS << "(tbaa="; 657 if (TBAAInfo->getNumOperands() > 0) 658 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 659 else 660 OS << "<unknown>"; 661 OS << ")"; 662 } 663 664 // Print AA scope info. 665 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 666 OS << "(alias.scope="; 667 if (ScopeInfo->getNumOperands() > 0) 668 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 669 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 670 if (i != ie-1) 671 OS << ","; 672 } 673 else 674 OS << "<unknown>"; 675 OS << ")"; 676 } 677 678 // Print AA noalias scope info. 679 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 680 OS << "(noalias="; 681 if (NoAliasInfo->getNumOperands() > 0) 682 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 683 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 684 if (i != ie-1) 685 OS << ","; 686 } 687 else 688 OS << "<unknown>"; 689 OS << ")"; 690 } 691 692 if (isNonTemporal()) 693 OS << "(nontemporal)"; 694 if (isDereferenceable()) 695 OS << "(dereferenceable)"; 696 if (isInvariant()) 697 OS << "(invariant)"; 698 } 699 700 //===----------------------------------------------------------------------===// 701 // MachineInstr Implementation 702 //===----------------------------------------------------------------------===// 703 704 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 705 if (MCID->ImplicitDefs) 706 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 707 ++ImpDefs) 708 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 709 if (MCID->ImplicitUses) 710 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 711 ++ImpUses) 712 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 713 } 714 715 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 716 /// implicit operands. It reserves space for the number of operands specified by 717 /// the MCInstrDesc. 718 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 719 DebugLoc dl, bool NoImp) 720 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 721 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 722 debugLoc(std::move(dl)) { 723 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 724 725 // Reserve space for the expected number of operands. 726 if (unsigned NumOps = MCID->getNumOperands() + 727 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 728 CapOperands = OperandCapacity::get(NumOps); 729 Operands = MF.allocateOperandArray(CapOperands); 730 } 731 732 if (!NoImp) 733 addImplicitDefUseOperands(MF); 734 } 735 736 /// MachineInstr ctor - Copies MachineInstr arg exactly 737 /// 738 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 739 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 740 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 741 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) { 742 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 743 744 CapOperands = OperandCapacity::get(MI.getNumOperands()); 745 Operands = MF.allocateOperandArray(CapOperands); 746 747 // Copy operands. 748 for (const MachineOperand &MO : MI.operands()) 749 addOperand(MF, MO); 750 751 // Copy all the sensible flags. 752 setFlags(MI.Flags); 753 } 754 755 /// getRegInfo - If this instruction is embedded into a MachineFunction, 756 /// return the MachineRegisterInfo object for the current function, otherwise 757 /// return null. 758 MachineRegisterInfo *MachineInstr::getRegInfo() { 759 if (MachineBasicBlock *MBB = getParent()) 760 return &MBB->getParent()->getRegInfo(); 761 return nullptr; 762 } 763 764 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 765 /// this instruction from their respective use lists. This requires that the 766 /// operands already be on their use lists. 767 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 768 for (MachineOperand &MO : operands()) 769 if (MO.isReg()) 770 MRI.removeRegOperandFromUseList(&MO); 771 } 772 773 /// AddRegOperandsToUseLists - Add all of the register operands in 774 /// this instruction from their respective use lists. This requires that the 775 /// operands not be on their use lists yet. 776 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 777 for (MachineOperand &MO : operands()) 778 if (MO.isReg()) 779 MRI.addRegOperandToUseList(&MO); 780 } 781 782 void MachineInstr::addOperand(const MachineOperand &Op) { 783 MachineBasicBlock *MBB = getParent(); 784 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 785 MachineFunction *MF = MBB->getParent(); 786 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 787 addOperand(*MF, Op); 788 } 789 790 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 791 /// ranges. If MRI is non-null also update use-def chains. 792 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 793 unsigned NumOps, MachineRegisterInfo *MRI) { 794 if (MRI) 795 return MRI->moveOperands(Dst, Src, NumOps); 796 797 // MachineOperand is a trivially copyable type so we can just use memmove. 798 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 799 } 800 801 /// addOperand - Add the specified operand to the instruction. If it is an 802 /// implicit operand, it is added to the end of the operand list. If it is 803 /// an explicit operand it is added at the end of the explicit operand list 804 /// (before the first implicit operand). 805 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 806 assert(MCID && "Cannot add operands before providing an instr descriptor"); 807 808 // Check if we're adding one of our existing operands. 809 if (&Op >= Operands && &Op < Operands + NumOperands) { 810 // This is unusual: MI->addOperand(MI->getOperand(i)). 811 // If adding Op requires reallocating or moving existing operands around, 812 // the Op reference could go stale. Support it by copying Op. 813 MachineOperand CopyOp(Op); 814 return addOperand(MF, CopyOp); 815 } 816 817 // Find the insert location for the new operand. Implicit registers go at 818 // the end, everything else goes before the implicit regs. 819 // 820 // FIXME: Allow mixed explicit and implicit operands on inline asm. 821 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 822 // implicit-defs, but they must not be moved around. See the FIXME in 823 // InstrEmitter.cpp. 824 unsigned OpNo = getNumOperands(); 825 bool isImpReg = Op.isReg() && Op.isImplicit(); 826 if (!isImpReg && !isInlineAsm()) { 827 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 828 --OpNo; 829 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 830 } 831 } 832 833 #ifndef NDEBUG 834 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 835 // OpNo now points as the desired insertion point. Unless this is a variadic 836 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 837 // RegMask operands go between the explicit and implicit operands. 838 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 839 OpNo < MCID->getNumOperands() || isMetaDataOp) && 840 "Trying to add an operand to a machine instr that is already done!"); 841 #endif 842 843 MachineRegisterInfo *MRI = getRegInfo(); 844 845 // Determine if the Operands array needs to be reallocated. 846 // Save the old capacity and operand array. 847 OperandCapacity OldCap = CapOperands; 848 MachineOperand *OldOperands = Operands; 849 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 850 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 851 Operands = MF.allocateOperandArray(CapOperands); 852 // Move the operands before the insertion point. 853 if (OpNo) 854 moveOperands(Operands, OldOperands, OpNo, MRI); 855 } 856 857 // Move the operands following the insertion point. 858 if (OpNo != NumOperands) 859 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 860 MRI); 861 ++NumOperands; 862 863 // Deallocate the old operand array. 864 if (OldOperands != Operands && OldOperands) 865 MF.deallocateOperandArray(OldCap, OldOperands); 866 867 // Copy Op into place. It still needs to be inserted into the MRI use lists. 868 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 869 NewMO->ParentMI = this; 870 871 // When adding a register operand, tell MRI about it. 872 if (NewMO->isReg()) { 873 // Ensure isOnRegUseList() returns false, regardless of Op's status. 874 NewMO->Contents.Reg.Prev = nullptr; 875 // Ignore existing ties. This is not a property that can be copied. 876 NewMO->TiedTo = 0; 877 // Add the new operand to MRI, but only for instructions in an MBB. 878 if (MRI) 879 MRI->addRegOperandToUseList(NewMO); 880 // The MCID operand information isn't accurate until we start adding 881 // explicit operands. The implicit operands are added first, then the 882 // explicits are inserted before them. 883 if (!isImpReg) { 884 // Tie uses to defs as indicated in MCInstrDesc. 885 if (NewMO->isUse()) { 886 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 887 if (DefIdx != -1) 888 tieOperands(DefIdx, OpNo); 889 } 890 // If the register operand is flagged as early, mark the operand as such. 891 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 892 NewMO->setIsEarlyClobber(true); 893 } 894 } 895 } 896 897 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 898 /// fewer operand than it started with. 899 /// 900 void MachineInstr::RemoveOperand(unsigned OpNo) { 901 assert(OpNo < getNumOperands() && "Invalid operand number"); 902 untieRegOperand(OpNo); 903 904 #ifndef NDEBUG 905 // Moving tied operands would break the ties. 906 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 907 if (Operands[i].isReg()) 908 assert(!Operands[i].isTied() && "Cannot move tied operands"); 909 #endif 910 911 MachineRegisterInfo *MRI = getRegInfo(); 912 if (MRI && Operands[OpNo].isReg()) 913 MRI->removeRegOperandFromUseList(Operands + OpNo); 914 915 // Don't call the MachineOperand destructor. A lot of this code depends on 916 // MachineOperand having a trivial destructor anyway, and adding a call here 917 // wouldn't make it 'destructor-correct'. 918 919 if (unsigned N = NumOperands - 1 - OpNo) 920 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 921 --NumOperands; 922 } 923 924 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 925 /// This function should be used only occasionally. The setMemRefs function 926 /// is the primary method for setting up a MachineInstr's MemRefs list. 927 void MachineInstr::addMemOperand(MachineFunction &MF, 928 MachineMemOperand *MO) { 929 mmo_iterator OldMemRefs = MemRefs; 930 unsigned OldNumMemRefs = NumMemRefs; 931 932 unsigned NewNum = NumMemRefs + 1; 933 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 934 935 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 936 NewMemRefs[NewNum - 1] = MO; 937 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 938 } 939 940 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 941 /// identical. 942 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 943 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 944 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 945 if ((E1 - I1) != (E2 - I2)) 946 return false; 947 for (; I1 != E1; ++I1, ++I2) { 948 if (**I1 != **I2) 949 return false; 950 } 951 return true; 952 } 953 954 std::pair<MachineInstr::mmo_iterator, unsigned> 955 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 956 957 // If either of the incoming memrefs are empty, we must be conservative and 958 // treat this as if we've exhausted our space for memrefs and dropped them. 959 if (memoperands_empty() || Other.memoperands_empty()) 960 return std::make_pair(nullptr, 0); 961 962 // If both instructions have identical memrefs, we don't need to merge them. 963 // Since many instructions have a single memref, and we tend to merge things 964 // like pairs of loads from the same location, this catches a large number of 965 // cases in practice. 966 if (hasIdenticalMMOs(*this, Other)) 967 return std::make_pair(MemRefs, NumMemRefs); 968 969 // TODO: consider uniquing elements within the operand lists to reduce 970 // space usage and fall back to conservative information less often. 971 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 972 973 // If we don't have enough room to store this many memrefs, be conservative 974 // and drop them. Otherwise, we'd fail asserts when trying to add them to 975 // the new instruction. 976 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 977 return std::make_pair(nullptr, 0); 978 979 MachineFunction *MF = getParent()->getParent(); 980 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 981 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 982 MemBegin); 983 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 984 MemEnd); 985 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 986 "missing memrefs"); 987 988 return std::make_pair(MemBegin, CombinedNumMemRefs); 989 } 990 991 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 992 assert(!isBundledWithPred() && "Must be called on bundle header"); 993 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 994 if (MII->getDesc().getFlags() & Mask) { 995 if (Type == AnyInBundle) 996 return true; 997 } else { 998 if (Type == AllInBundle && !MII->isBundle()) 999 return false; 1000 } 1001 // This was the last instruction in the bundle. 1002 if (!MII->isBundledWithSucc()) 1003 return Type == AllInBundle; 1004 } 1005 } 1006 1007 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1008 MICheckType Check) const { 1009 // If opcodes or number of operands are not the same then the two 1010 // instructions are obviously not identical. 1011 if (Other.getOpcode() != getOpcode() || 1012 Other.getNumOperands() != getNumOperands()) 1013 return false; 1014 1015 if (isBundle()) { 1016 // We have passed the test above that both instructions have the same 1017 // opcode, so we know that both instructions are bundles here. Let's compare 1018 // MIs inside the bundle. 1019 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1020 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1021 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1022 // Loop until we analysed the last intruction inside at least one of the 1023 // bundles. 1024 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1025 ++I1; 1026 ++I2; 1027 if (!I1->isIdenticalTo(*I2, Check)) 1028 return false; 1029 } 1030 // If we've reached the end of just one of the two bundles, but not both, 1031 // the instructions are not identical. 1032 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1033 return false; 1034 } 1035 1036 // Check operands to make sure they match. 1037 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1038 const MachineOperand &MO = getOperand(i); 1039 const MachineOperand &OMO = Other.getOperand(i); 1040 if (!MO.isReg()) { 1041 if (!MO.isIdenticalTo(OMO)) 1042 return false; 1043 continue; 1044 } 1045 1046 // Clients may or may not want to ignore defs when testing for equality. 1047 // For example, machine CSE pass only cares about finding common 1048 // subexpressions, so it's safe to ignore virtual register defs. 1049 if (MO.isDef()) { 1050 if (Check == IgnoreDefs) 1051 continue; 1052 else if (Check == IgnoreVRegDefs) { 1053 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1054 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1055 if (MO.getReg() != OMO.getReg()) 1056 return false; 1057 } else { 1058 if (!MO.isIdenticalTo(OMO)) 1059 return false; 1060 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1061 return false; 1062 } 1063 } else { 1064 if (!MO.isIdenticalTo(OMO)) 1065 return false; 1066 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1067 return false; 1068 } 1069 } 1070 // If DebugLoc does not match then two dbg.values are not identical. 1071 if (isDebugValue()) 1072 if (getDebugLoc() && Other.getDebugLoc() && 1073 getDebugLoc() != Other.getDebugLoc()) 1074 return false; 1075 return true; 1076 } 1077 1078 MachineInstr *MachineInstr::removeFromParent() { 1079 assert(getParent() && "Not embedded in a basic block!"); 1080 return getParent()->remove(this); 1081 } 1082 1083 MachineInstr *MachineInstr::removeFromBundle() { 1084 assert(getParent() && "Not embedded in a basic block!"); 1085 return getParent()->remove_instr(this); 1086 } 1087 1088 void MachineInstr::eraseFromParent() { 1089 assert(getParent() && "Not embedded in a basic block!"); 1090 getParent()->erase(this); 1091 } 1092 1093 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1094 assert(getParent() && "Not embedded in a basic block!"); 1095 MachineBasicBlock *MBB = getParent(); 1096 MachineFunction *MF = MBB->getParent(); 1097 assert(MF && "Not embedded in a function!"); 1098 1099 MachineInstr *MI = (MachineInstr *)this; 1100 MachineRegisterInfo &MRI = MF->getRegInfo(); 1101 1102 for (const MachineOperand &MO : MI->operands()) { 1103 if (!MO.isReg() || !MO.isDef()) 1104 continue; 1105 unsigned Reg = MO.getReg(); 1106 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1107 continue; 1108 MRI.markUsesInDebugValueAsUndef(Reg); 1109 } 1110 MI->eraseFromParent(); 1111 } 1112 1113 void MachineInstr::eraseFromBundle() { 1114 assert(getParent() && "Not embedded in a basic block!"); 1115 getParent()->erase_instr(this); 1116 } 1117 1118 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1119 /// 1120 unsigned MachineInstr::getNumExplicitOperands() const { 1121 unsigned NumOperands = MCID->getNumOperands(); 1122 if (!MCID->isVariadic()) 1123 return NumOperands; 1124 1125 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1126 const MachineOperand &MO = getOperand(i); 1127 if (!MO.isReg() || !MO.isImplicit()) 1128 NumOperands++; 1129 } 1130 return NumOperands; 1131 } 1132 1133 void MachineInstr::bundleWithPred() { 1134 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1135 setFlag(BundledPred); 1136 MachineBasicBlock::instr_iterator Pred = getIterator(); 1137 --Pred; 1138 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1139 Pred->setFlag(BundledSucc); 1140 } 1141 1142 void MachineInstr::bundleWithSucc() { 1143 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1144 setFlag(BundledSucc); 1145 MachineBasicBlock::instr_iterator Succ = getIterator(); 1146 ++Succ; 1147 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1148 Succ->setFlag(BundledPred); 1149 } 1150 1151 void MachineInstr::unbundleFromPred() { 1152 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1153 clearFlag(BundledPred); 1154 MachineBasicBlock::instr_iterator Pred = getIterator(); 1155 --Pred; 1156 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1157 Pred->clearFlag(BundledSucc); 1158 } 1159 1160 void MachineInstr::unbundleFromSucc() { 1161 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1162 clearFlag(BundledSucc); 1163 MachineBasicBlock::instr_iterator Succ = getIterator(); 1164 ++Succ; 1165 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1166 Succ->clearFlag(BundledPred); 1167 } 1168 1169 bool MachineInstr::isStackAligningInlineAsm() const { 1170 if (isInlineAsm()) { 1171 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1172 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1179 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1180 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1181 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1182 } 1183 1184 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1185 unsigned *GroupNo) const { 1186 assert(isInlineAsm() && "Expected an inline asm instruction"); 1187 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1188 1189 // Ignore queries about the initial operands. 1190 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1191 return -1; 1192 1193 unsigned Group = 0; 1194 unsigned NumOps; 1195 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1196 i += NumOps) { 1197 const MachineOperand &FlagMO = getOperand(i); 1198 // If we reach the implicit register operands, stop looking. 1199 if (!FlagMO.isImm()) 1200 return -1; 1201 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1202 if (i + NumOps > OpIdx) { 1203 if (GroupNo) 1204 *GroupNo = Group; 1205 return i; 1206 } 1207 ++Group; 1208 } 1209 return -1; 1210 } 1211 1212 const DILocalVariable *MachineInstr::getDebugVariable() const { 1213 assert(isDebugValue() && "not a DBG_VALUE"); 1214 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1215 } 1216 1217 const DIExpression *MachineInstr::getDebugExpression() const { 1218 assert(isDebugValue() && "not a DBG_VALUE"); 1219 return cast<DIExpression>(getOperand(3).getMetadata()); 1220 } 1221 1222 const TargetRegisterClass* 1223 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1224 const TargetInstrInfo *TII, 1225 const TargetRegisterInfo *TRI) const { 1226 assert(getParent() && "Can't have an MBB reference here!"); 1227 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1228 const MachineFunction &MF = *getParent()->getParent(); 1229 1230 // Most opcodes have fixed constraints in their MCInstrDesc. 1231 if (!isInlineAsm()) 1232 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1233 1234 if (!getOperand(OpIdx).isReg()) 1235 return nullptr; 1236 1237 // For tied uses on inline asm, get the constraint from the def. 1238 unsigned DefIdx; 1239 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1240 OpIdx = DefIdx; 1241 1242 // Inline asm stores register class constraints in the flag word. 1243 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1244 if (FlagIdx < 0) 1245 return nullptr; 1246 1247 unsigned Flag = getOperand(FlagIdx).getImm(); 1248 unsigned RCID; 1249 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1250 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1251 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1252 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1253 return TRI->getRegClass(RCID); 1254 1255 // Assume that all registers in a memory operand are pointers. 1256 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1257 return TRI->getPointerRegClass(MF); 1258 1259 return nullptr; 1260 } 1261 1262 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1263 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1264 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1265 // Check every operands inside the bundle if we have 1266 // been asked to. 1267 if (ExploreBundle) 1268 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1269 ++OpndIt) 1270 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1271 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1272 else 1273 // Otherwise, just check the current operands. 1274 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1275 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1276 return CurRC; 1277 } 1278 1279 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1280 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1281 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1282 assert(CurRC && "Invalid initial register class"); 1283 // Check if Reg is constrained by some of its use/def from MI. 1284 const MachineOperand &MO = getOperand(OpIdx); 1285 if (!MO.isReg() || MO.getReg() != Reg) 1286 return CurRC; 1287 // If yes, accumulate the constraints through the operand. 1288 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1289 } 1290 1291 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1292 unsigned OpIdx, const TargetRegisterClass *CurRC, 1293 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1294 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1295 const MachineOperand &MO = getOperand(OpIdx); 1296 assert(MO.isReg() && 1297 "Cannot get register constraints for non-register operand"); 1298 assert(CurRC && "Invalid initial register class"); 1299 if (unsigned SubIdx = MO.getSubReg()) { 1300 if (OpRC) 1301 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1302 else 1303 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1304 } else if (OpRC) 1305 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1306 return CurRC; 1307 } 1308 1309 /// Return the number of instructions inside the MI bundle, not counting the 1310 /// header instruction. 1311 unsigned MachineInstr::getBundleSize() const { 1312 MachineBasicBlock::const_instr_iterator I = getIterator(); 1313 unsigned Size = 0; 1314 while (I->isBundledWithSucc()) { 1315 ++Size; 1316 ++I; 1317 } 1318 return Size; 1319 } 1320 1321 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1322 /// the given register (not considering sub/super-registers). 1323 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1324 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1325 const MachineOperand &MO = getOperand(i); 1326 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1327 return true; 1328 } 1329 return false; 1330 } 1331 1332 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1333 /// the specific register or -1 if it is not found. It further tightens 1334 /// the search criteria to a use that kills the register if isKill is true. 1335 int MachineInstr::findRegisterUseOperandIdx( 1336 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1337 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1338 const MachineOperand &MO = getOperand(i); 1339 if (!MO.isReg() || !MO.isUse()) 1340 continue; 1341 unsigned MOReg = MO.getReg(); 1342 if (!MOReg) 1343 continue; 1344 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1345 TargetRegisterInfo::isPhysicalRegister(Reg) && 1346 TRI->isSubRegister(MOReg, Reg))) 1347 if (!isKill || MO.isKill()) 1348 return i; 1349 } 1350 return -1; 1351 } 1352 1353 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1354 /// indicating if this instruction reads or writes Reg. This also considers 1355 /// partial defines. 1356 std::pair<bool,bool> 1357 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1358 SmallVectorImpl<unsigned> *Ops) const { 1359 bool PartDef = false; // Partial redefine. 1360 bool FullDef = false; // Full define. 1361 bool Use = false; 1362 1363 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1364 const MachineOperand &MO = getOperand(i); 1365 if (!MO.isReg() || MO.getReg() != Reg) 1366 continue; 1367 if (Ops) 1368 Ops->push_back(i); 1369 if (MO.isUse()) 1370 Use |= !MO.isUndef(); 1371 else if (MO.getSubReg() && !MO.isUndef()) 1372 // A partial <def,undef> doesn't count as reading the register. 1373 PartDef = true; 1374 else 1375 FullDef = true; 1376 } 1377 // A partial redefine uses Reg unless there is also a full define. 1378 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1379 } 1380 1381 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1382 /// the specified register or -1 if it is not found. If isDead is true, defs 1383 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1384 /// also checks if there is a def of a super-register. 1385 int 1386 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1387 const TargetRegisterInfo *TRI) const { 1388 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1389 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1390 const MachineOperand &MO = getOperand(i); 1391 // Accept regmask operands when Overlap is set. 1392 // Ignore them when looking for a specific def operand (Overlap == false). 1393 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1394 return i; 1395 if (!MO.isReg() || !MO.isDef()) 1396 continue; 1397 unsigned MOReg = MO.getReg(); 1398 bool Found = (MOReg == Reg); 1399 if (!Found && TRI && isPhys && 1400 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1401 if (Overlap) 1402 Found = TRI->regsOverlap(MOReg, Reg); 1403 else 1404 Found = TRI->isSubRegister(MOReg, Reg); 1405 } 1406 if (Found && (!isDead || MO.isDead())) 1407 return i; 1408 } 1409 return -1; 1410 } 1411 1412 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1413 /// operand list that is used to represent the predicate. It returns -1 if 1414 /// none is found. 1415 int MachineInstr::findFirstPredOperandIdx() const { 1416 // Don't call MCID.findFirstPredOperandIdx() because this variant 1417 // is sometimes called on an instruction that's not yet complete, and 1418 // so the number of operands is less than the MCID indicates. In 1419 // particular, the PTX target does this. 1420 const MCInstrDesc &MCID = getDesc(); 1421 if (MCID.isPredicable()) { 1422 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1423 if (MCID.OpInfo[i].isPredicate()) 1424 return i; 1425 } 1426 1427 return -1; 1428 } 1429 1430 // MachineOperand::TiedTo is 4 bits wide. 1431 const unsigned TiedMax = 15; 1432 1433 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1434 /// 1435 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1436 /// field. TiedTo can have these values: 1437 /// 1438 /// 0: Operand is not tied to anything. 1439 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1440 /// TiedMax: Tied to an operand >= TiedMax-1. 1441 /// 1442 /// The tied def must be one of the first TiedMax operands on a normal 1443 /// instruction. INLINEASM instructions allow more tied defs. 1444 /// 1445 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1446 MachineOperand &DefMO = getOperand(DefIdx); 1447 MachineOperand &UseMO = getOperand(UseIdx); 1448 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1449 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1450 assert(!DefMO.isTied() && "Def is already tied to another use"); 1451 assert(!UseMO.isTied() && "Use is already tied to another def"); 1452 1453 if (DefIdx < TiedMax) 1454 UseMO.TiedTo = DefIdx + 1; 1455 else { 1456 // Inline asm can use the group descriptors to find tied operands, but on 1457 // normal instruction, the tied def must be within the first TiedMax 1458 // operands. 1459 assert(isInlineAsm() && "DefIdx out of range"); 1460 UseMO.TiedTo = TiedMax; 1461 } 1462 1463 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1464 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1465 } 1466 1467 /// Given the index of a tied register operand, find the operand it is tied to. 1468 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1469 /// which must exist. 1470 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1471 const MachineOperand &MO = getOperand(OpIdx); 1472 assert(MO.isTied() && "Operand isn't tied"); 1473 1474 // Normally TiedTo is in range. 1475 if (MO.TiedTo < TiedMax) 1476 return MO.TiedTo - 1; 1477 1478 // Uses on normal instructions can be out of range. 1479 if (!isInlineAsm()) { 1480 // Normal tied defs must be in the 0..TiedMax-1 range. 1481 if (MO.isUse()) 1482 return TiedMax - 1; 1483 // MO is a def. Search for the tied use. 1484 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1485 const MachineOperand &UseMO = getOperand(i); 1486 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1487 return i; 1488 } 1489 llvm_unreachable("Can't find tied use"); 1490 } 1491 1492 // Now deal with inline asm by parsing the operand group descriptor flags. 1493 // Find the beginning of each operand group. 1494 SmallVector<unsigned, 8> GroupIdx; 1495 unsigned OpIdxGroup = ~0u; 1496 unsigned NumOps; 1497 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1498 i += NumOps) { 1499 const MachineOperand &FlagMO = getOperand(i); 1500 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1501 unsigned CurGroup = GroupIdx.size(); 1502 GroupIdx.push_back(i); 1503 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1504 // OpIdx belongs to this operand group. 1505 if (OpIdx > i && OpIdx < i + NumOps) 1506 OpIdxGroup = CurGroup; 1507 unsigned TiedGroup; 1508 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1509 continue; 1510 // Operands in this group are tied to operands in TiedGroup which must be 1511 // earlier. Find the number of operands between the two groups. 1512 unsigned Delta = i - GroupIdx[TiedGroup]; 1513 1514 // OpIdx is a use tied to TiedGroup. 1515 if (OpIdxGroup == CurGroup) 1516 return OpIdx - Delta; 1517 1518 // OpIdx is a def tied to this use group. 1519 if (OpIdxGroup == TiedGroup) 1520 return OpIdx + Delta; 1521 } 1522 llvm_unreachable("Invalid tied operand on inline asm"); 1523 } 1524 1525 /// clearKillInfo - Clears kill flags on all operands. 1526 /// 1527 void MachineInstr::clearKillInfo() { 1528 for (MachineOperand &MO : operands()) { 1529 if (MO.isReg() && MO.isUse()) 1530 MO.setIsKill(false); 1531 } 1532 } 1533 1534 void MachineInstr::substituteRegister(unsigned FromReg, 1535 unsigned ToReg, 1536 unsigned SubIdx, 1537 const TargetRegisterInfo &RegInfo) { 1538 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1539 if (SubIdx) 1540 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1541 for (MachineOperand &MO : operands()) { 1542 if (!MO.isReg() || MO.getReg() != FromReg) 1543 continue; 1544 MO.substPhysReg(ToReg, RegInfo); 1545 } 1546 } else { 1547 for (MachineOperand &MO : operands()) { 1548 if (!MO.isReg() || MO.getReg() != FromReg) 1549 continue; 1550 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1551 } 1552 } 1553 } 1554 1555 /// isSafeToMove - Return true if it is safe to move this instruction. If 1556 /// SawStore is set to true, it means that there is a store (or call) between 1557 /// the instruction's location and its intended destination. 1558 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1559 // Ignore stuff that we obviously can't move. 1560 // 1561 // Treat volatile loads as stores. This is not strictly necessary for 1562 // volatiles, but it is required for atomic loads. It is not allowed to move 1563 // a load across an atomic load with Ordering > Monotonic. 1564 if (mayStore() || isCall() || 1565 (mayLoad() && hasOrderedMemoryRef())) { 1566 SawStore = true; 1567 return false; 1568 } 1569 1570 if (isPosition() || isDebugValue() || isTerminator() || 1571 hasUnmodeledSideEffects()) 1572 return false; 1573 1574 // See if this instruction does a load. If so, we have to guarantee that the 1575 // loaded value doesn't change between the load and the its intended 1576 // destination. The check for isInvariantLoad gives the targe the chance to 1577 // classify the load as always returning a constant, e.g. a constant pool 1578 // load. 1579 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1580 // Otherwise, this is a real load. If there is a store between the load and 1581 // end of block, we can't move it. 1582 return !SawStore; 1583 1584 return true; 1585 } 1586 1587 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1588 bool UseTBAA) { 1589 const MachineFunction *MF = getParent()->getParent(); 1590 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1591 1592 // If neither instruction stores to memory, they can't alias in any 1593 // meaningful way, even if they read from the same address. 1594 if (!mayStore() && !Other.mayStore()) 1595 return false; 1596 1597 // Let the target decide if memory accesses cannot possibly overlap. 1598 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1599 return false; 1600 1601 if (!AA) 1602 return true; 1603 1604 // FIXME: Need to handle multiple memory operands to support all targets. 1605 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1606 return true; 1607 1608 MachineMemOperand *MMOa = *memoperands_begin(); 1609 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1610 1611 if (!MMOa->getValue() || !MMOb->getValue()) 1612 return true; 1613 1614 // The following interface to AA is fashioned after DAGCombiner::isAlias 1615 // and operates with MachineMemOperand offset with some important 1616 // assumptions: 1617 // - LLVM fundamentally assumes flat address spaces. 1618 // - MachineOperand offset can *only* result from legalization and 1619 // cannot affect queries other than the trivial case of overlap 1620 // checking. 1621 // - These offsets never wrap and never step outside 1622 // of allocated objects. 1623 // - There should never be any negative offsets here. 1624 // 1625 // FIXME: Modify API to hide this math from "user" 1626 // FIXME: Even before we go to AA we can reason locally about some 1627 // memory objects. It can save compile time, and possibly catch some 1628 // corner cases not currently covered. 1629 1630 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1631 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 1632 1633 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 1634 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 1635 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 1636 1637 AliasResult AAResult = 1638 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, 1639 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1640 MemoryLocation(MMOb->getValue(), Overlapb, 1641 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1642 1643 return (AAResult != NoAlias); 1644 } 1645 1646 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1647 /// or volatile memory reference, or if the information describing the memory 1648 /// reference is not available. Return false if it is known to have no ordered 1649 /// memory references. 1650 bool MachineInstr::hasOrderedMemoryRef() const { 1651 // An instruction known never to access memory won't have a volatile access. 1652 if (!mayStore() && 1653 !mayLoad() && 1654 !isCall() && 1655 !hasUnmodeledSideEffects()) 1656 return false; 1657 1658 // Otherwise, if the instruction has no memory reference information, 1659 // conservatively assume it wasn't preserved. 1660 if (memoperands_empty()) 1661 return true; 1662 1663 // Check if any of our memory operands are ordered. 1664 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1665 return !MMO->isUnordered(); 1666 }); 1667 } 1668 1669 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1670 /// trap and is loading from a location whose value is invariant across a run of 1671 /// this function. 1672 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1673 // If the instruction doesn't load at all, it isn't an invariant load. 1674 if (!mayLoad()) 1675 return false; 1676 1677 // If the instruction has lost its memoperands, conservatively assume that 1678 // it may not be an invariant load. 1679 if (memoperands_empty()) 1680 return false; 1681 1682 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1683 1684 for (MachineMemOperand *MMO : memoperands()) { 1685 if (MMO->isVolatile()) return false; 1686 if (MMO->isStore()) return false; 1687 if (MMO->isInvariant() && MMO->isDereferenceable()) 1688 continue; 1689 1690 // A load from a constant PseudoSourceValue is invariant. 1691 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1692 if (PSV->isConstant(&MFI)) 1693 continue; 1694 1695 if (const Value *V = MMO->getValue()) { 1696 // If we have an AliasAnalysis, ask it whether the memory is constant. 1697 if (AA && 1698 AA->pointsToConstantMemory( 1699 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1700 continue; 1701 } 1702 1703 // Otherwise assume conservatively. 1704 return false; 1705 } 1706 1707 // Everything checks out. 1708 return true; 1709 } 1710 1711 /// isConstantValuePHI - If the specified instruction is a PHI that always 1712 /// merges together the same virtual register, return the register, otherwise 1713 /// return 0. 1714 unsigned MachineInstr::isConstantValuePHI() const { 1715 if (!isPHI()) 1716 return 0; 1717 assert(getNumOperands() >= 3 && 1718 "It's illegal to have a PHI without source operands"); 1719 1720 unsigned Reg = getOperand(1).getReg(); 1721 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1722 if (getOperand(i).getReg() != Reg) 1723 return 0; 1724 return Reg; 1725 } 1726 1727 bool MachineInstr::hasUnmodeledSideEffects() const { 1728 if (hasProperty(MCID::UnmodeledSideEffects)) 1729 return true; 1730 if (isInlineAsm()) { 1731 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1732 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1733 return true; 1734 } 1735 1736 return false; 1737 } 1738 1739 bool MachineInstr::isLoadFoldBarrier() const { 1740 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1741 } 1742 1743 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1744 /// 1745 bool MachineInstr::allDefsAreDead() const { 1746 for (const MachineOperand &MO : operands()) { 1747 if (!MO.isReg() || MO.isUse()) 1748 continue; 1749 if (!MO.isDead()) 1750 return false; 1751 } 1752 return true; 1753 } 1754 1755 /// copyImplicitOps - Copy implicit register operands from specified 1756 /// instruction to this instruction. 1757 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1758 const MachineInstr &MI) { 1759 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1760 i != e; ++i) { 1761 const MachineOperand &MO = MI.getOperand(i); 1762 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1763 addOperand(MF, MO); 1764 } 1765 } 1766 1767 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1768 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1769 dbgs() << " "; 1770 print(dbgs()); 1771 } 1772 #endif 1773 1774 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1775 const TargetInstrInfo *TII) const { 1776 const Module *M = nullptr; 1777 if (const MachineBasicBlock *MBB = getParent()) 1778 if (const MachineFunction *MF = MBB->getParent()) 1779 M = MF->getFunction()->getParent(); 1780 1781 ModuleSlotTracker MST(M); 1782 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1783 } 1784 1785 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1786 bool SkipOpers, bool SkipDebugLoc, 1787 const TargetInstrInfo *TII) const { 1788 // We can be a bit tidier if we know the MachineFunction. 1789 const MachineFunction *MF = nullptr; 1790 const TargetRegisterInfo *TRI = nullptr; 1791 const MachineRegisterInfo *MRI = nullptr; 1792 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1793 1794 if (const MachineBasicBlock *MBB = getParent()) { 1795 MF = MBB->getParent(); 1796 if (MF) { 1797 MRI = &MF->getRegInfo(); 1798 TRI = MF->getSubtarget().getRegisterInfo(); 1799 if (!TII) 1800 TII = MF->getSubtarget().getInstrInfo(); 1801 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1802 } 1803 } 1804 1805 // Save a list of virtual registers. 1806 SmallVector<unsigned, 8> VirtRegs; 1807 1808 // Print explicitly defined operands on the left of an assignment syntax. 1809 unsigned StartOp = 0, e = getNumOperands(); 1810 for (; StartOp < e && getOperand(StartOp).isReg() && 1811 getOperand(StartOp).isDef() && 1812 !getOperand(StartOp).isImplicit(); 1813 ++StartOp) { 1814 if (StartOp != 0) OS << ", "; 1815 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1816 unsigned Reg = getOperand(StartOp).getReg(); 1817 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1818 VirtRegs.push_back(Reg); 1819 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1820 if (Ty.isValid()) 1821 OS << '(' << Ty << ')'; 1822 } 1823 } 1824 1825 if (StartOp != 0) 1826 OS << " = "; 1827 1828 // Print the opcode name. 1829 if (TII) 1830 OS << TII->getName(getOpcode()); 1831 else 1832 OS << "UNKNOWN"; 1833 1834 if (SkipOpers) 1835 return; 1836 1837 // Print the rest of the operands. 1838 bool OmittedAnyCallClobbers = false; 1839 bool FirstOp = true; 1840 unsigned AsmDescOp = ~0u; 1841 unsigned AsmOpCount = 0; 1842 1843 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1844 // Print asm string. 1845 OS << " "; 1846 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1847 1848 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1849 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1850 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1851 OS << " [sideeffect]"; 1852 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1853 OS << " [mayload]"; 1854 if (ExtraInfo & InlineAsm::Extra_MayStore) 1855 OS << " [maystore]"; 1856 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1857 OS << " [isconvergent]"; 1858 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1859 OS << " [alignstack]"; 1860 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1861 OS << " [attdialect]"; 1862 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1863 OS << " [inteldialect]"; 1864 1865 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1866 FirstOp = false; 1867 } 1868 1869 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1870 const MachineOperand &MO = getOperand(i); 1871 1872 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1873 VirtRegs.push_back(MO.getReg()); 1874 1875 // Omit call-clobbered registers which aren't used anywhere. This makes 1876 // call instructions much less noisy on targets where calls clobber lots 1877 // of registers. Don't rely on MO.isDead() because we may be called before 1878 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1879 if (MRI && isCall() && 1880 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1881 unsigned Reg = MO.getReg(); 1882 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1883 if (MRI->use_empty(Reg)) { 1884 bool HasAliasLive = false; 1885 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1886 unsigned AliasReg = *AI; 1887 if (!MRI->use_empty(AliasReg)) { 1888 HasAliasLive = true; 1889 break; 1890 } 1891 } 1892 if (!HasAliasLive) { 1893 OmittedAnyCallClobbers = true; 1894 continue; 1895 } 1896 } 1897 } 1898 } 1899 1900 if (FirstOp) FirstOp = false; else OS << ","; 1901 OS << " "; 1902 if (i < getDesc().NumOperands) { 1903 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1904 if (MCOI.isPredicate()) 1905 OS << "pred:"; 1906 if (MCOI.isOptionalDef()) 1907 OS << "opt:"; 1908 } 1909 if (isDebugValue() && MO.isMetadata()) { 1910 // Pretty print DBG_VALUE instructions. 1911 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1912 if (DIV && !DIV->getName().empty()) 1913 OS << "!\"" << DIV->getName() << '\"'; 1914 else 1915 MO.print(OS, MST, TRI); 1916 } else if (TRI && (isInsertSubreg() || isRegSequence() || 1917 (isSubregToReg() && i == 3)) && MO.isImm()) { 1918 OS << TRI->getSubRegIndexName(MO.getImm()); 1919 } else if (i == AsmDescOp && MO.isImm()) { 1920 // Pretty print the inline asm operand descriptor. 1921 OS << '$' << AsmOpCount++; 1922 unsigned Flag = MO.getImm(); 1923 switch (InlineAsm::getKind(Flag)) { 1924 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1925 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1926 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1927 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1928 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1929 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1930 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1931 } 1932 1933 unsigned RCID = 0; 1934 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1935 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1936 if (TRI) { 1937 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1938 } else 1939 OS << ":RC" << RCID; 1940 } 1941 1942 if (InlineAsm::isMemKind(Flag)) { 1943 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1944 switch (MCID) { 1945 case InlineAsm::Constraint_es: OS << ":es"; break; 1946 case InlineAsm::Constraint_i: OS << ":i"; break; 1947 case InlineAsm::Constraint_m: OS << ":m"; break; 1948 case InlineAsm::Constraint_o: OS << ":o"; break; 1949 case InlineAsm::Constraint_v: OS << ":v"; break; 1950 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1951 case InlineAsm::Constraint_R: OS << ":R"; break; 1952 case InlineAsm::Constraint_S: OS << ":S"; break; 1953 case InlineAsm::Constraint_T: OS << ":T"; break; 1954 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1955 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1956 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1957 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1958 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1959 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1960 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1961 case InlineAsm::Constraint_X: OS << ":X"; break; 1962 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1963 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1964 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1965 default: OS << ":?"; break; 1966 } 1967 } 1968 1969 unsigned TiedTo = 0; 1970 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1971 OS << " tiedto:$" << TiedTo; 1972 1973 OS << ']'; 1974 1975 // Compute the index of the next operand descriptor. 1976 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1977 } else 1978 MO.print(OS, MST, TRI); 1979 } 1980 1981 // Briefly indicate whether any call clobbers were omitted. 1982 if (OmittedAnyCallClobbers) { 1983 if (!FirstOp) OS << ","; 1984 OS << " ..."; 1985 } 1986 1987 bool HaveSemi = false; 1988 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1989 if (Flags & PrintableFlags) { 1990 if (!HaveSemi) { 1991 OS << ";"; 1992 HaveSemi = true; 1993 } 1994 OS << " flags: "; 1995 1996 if (Flags & FrameSetup) 1997 OS << "FrameSetup"; 1998 1999 if (Flags & FrameDestroy) 2000 OS << "FrameDestroy"; 2001 } 2002 2003 if (!memoperands_empty()) { 2004 if (!HaveSemi) { 2005 OS << ";"; 2006 HaveSemi = true; 2007 } 2008 2009 OS << " mem:"; 2010 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2011 i != e; ++i) { 2012 (*i)->print(OS, MST); 2013 if (std::next(i) != e) 2014 OS << " "; 2015 } 2016 } 2017 2018 // Print the regclass of any virtual registers encountered. 2019 if (MRI && !VirtRegs.empty()) { 2020 if (!HaveSemi) { 2021 OS << ";"; 2022 HaveSemi = true; 2023 } 2024 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2025 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2026 if (!RC) 2027 continue; 2028 // Generic virtual registers do not have register classes. 2029 if (RC.is<const RegisterBank *>()) 2030 OS << " " << RC.get<const RegisterBank *>()->getName(); 2031 else 2032 OS << " " 2033 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2034 OS << ':' << PrintReg(VirtRegs[i]); 2035 for (unsigned j = i+1; j != VirtRegs.size();) { 2036 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2037 ++j; 2038 continue; 2039 } 2040 if (VirtRegs[i] != VirtRegs[j]) 2041 OS << "," << PrintReg(VirtRegs[j]); 2042 VirtRegs.erase(VirtRegs.begin()+j); 2043 } 2044 } 2045 } 2046 2047 // Print debug location information. 2048 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2049 if (!HaveSemi) 2050 OS << ";"; 2051 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2052 OS << " line no:" << DV->getLine(); 2053 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2054 DebugLoc InlinedAtDL(InlinedAt); 2055 if (InlinedAtDL && MF) { 2056 OS << " inlined @[ "; 2057 InlinedAtDL.print(OS); 2058 OS << " ]"; 2059 } 2060 } 2061 if (isIndirectDebugValue()) 2062 OS << " indirect"; 2063 } else if (SkipDebugLoc) { 2064 return; 2065 } else if (debugLoc && MF) { 2066 if (!HaveSemi) 2067 OS << ";"; 2068 OS << " dbg:"; 2069 debugLoc.print(OS); 2070 } 2071 2072 OS << '\n'; 2073 } 2074 2075 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2076 const TargetRegisterInfo *RegInfo, 2077 bool AddIfNotFound) { 2078 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2079 bool hasAliases = isPhysReg && 2080 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2081 bool Found = false; 2082 SmallVector<unsigned,4> DeadOps; 2083 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2084 MachineOperand &MO = getOperand(i); 2085 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2086 continue; 2087 2088 // DEBUG_VALUE nodes do not contribute to code generation and should 2089 // always be ignored. Failure to do so may result in trying to modify 2090 // KILL flags on DEBUG_VALUE nodes. 2091 if (MO.isDebug()) 2092 continue; 2093 2094 unsigned Reg = MO.getReg(); 2095 if (!Reg) 2096 continue; 2097 2098 if (Reg == IncomingReg) { 2099 if (!Found) { 2100 if (MO.isKill()) 2101 // The register is already marked kill. 2102 return true; 2103 if (isPhysReg && isRegTiedToDefOperand(i)) 2104 // Two-address uses of physregs must not be marked kill. 2105 return true; 2106 MO.setIsKill(); 2107 Found = true; 2108 } 2109 } else if (hasAliases && MO.isKill() && 2110 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2111 // A super-register kill already exists. 2112 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2113 return true; 2114 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2115 DeadOps.push_back(i); 2116 } 2117 } 2118 2119 // Trim unneeded kill operands. 2120 while (!DeadOps.empty()) { 2121 unsigned OpIdx = DeadOps.back(); 2122 if (getOperand(OpIdx).isImplicit()) 2123 RemoveOperand(OpIdx); 2124 else 2125 getOperand(OpIdx).setIsKill(false); 2126 DeadOps.pop_back(); 2127 } 2128 2129 // If not found, this means an alias of one of the operands is killed. Add a 2130 // new implicit operand if required. 2131 if (!Found && AddIfNotFound) { 2132 addOperand(MachineOperand::CreateReg(IncomingReg, 2133 false /*IsDef*/, 2134 true /*IsImp*/, 2135 true /*IsKill*/)); 2136 return true; 2137 } 2138 return Found; 2139 } 2140 2141 void MachineInstr::clearRegisterKills(unsigned Reg, 2142 const TargetRegisterInfo *RegInfo) { 2143 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2144 RegInfo = nullptr; 2145 for (MachineOperand &MO : operands()) { 2146 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2147 continue; 2148 unsigned OpReg = MO.getReg(); 2149 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2150 MO.setIsKill(false); 2151 } 2152 } 2153 2154 bool MachineInstr::addRegisterDead(unsigned Reg, 2155 const TargetRegisterInfo *RegInfo, 2156 bool AddIfNotFound) { 2157 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2158 bool hasAliases = isPhysReg && 2159 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2160 bool Found = false; 2161 SmallVector<unsigned,4> DeadOps; 2162 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2163 MachineOperand &MO = getOperand(i); 2164 if (!MO.isReg() || !MO.isDef()) 2165 continue; 2166 unsigned MOReg = MO.getReg(); 2167 if (!MOReg) 2168 continue; 2169 2170 if (MOReg == Reg) { 2171 MO.setIsDead(); 2172 Found = true; 2173 } else if (hasAliases && MO.isDead() && 2174 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2175 // There exists a super-register that's marked dead. 2176 if (RegInfo->isSuperRegister(Reg, MOReg)) 2177 return true; 2178 if (RegInfo->isSubRegister(Reg, MOReg)) 2179 DeadOps.push_back(i); 2180 } 2181 } 2182 2183 // Trim unneeded dead operands. 2184 while (!DeadOps.empty()) { 2185 unsigned OpIdx = DeadOps.back(); 2186 if (getOperand(OpIdx).isImplicit()) 2187 RemoveOperand(OpIdx); 2188 else 2189 getOperand(OpIdx).setIsDead(false); 2190 DeadOps.pop_back(); 2191 } 2192 2193 // If not found, this means an alias of one of the operands is dead. Add a 2194 // new implicit operand if required. 2195 if (Found || !AddIfNotFound) 2196 return Found; 2197 2198 addOperand(MachineOperand::CreateReg(Reg, 2199 true /*IsDef*/, 2200 true /*IsImp*/, 2201 false /*IsKill*/, 2202 true /*IsDead*/)); 2203 return true; 2204 } 2205 2206 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2207 for (MachineOperand &MO : operands()) { 2208 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2209 continue; 2210 MO.setIsDead(false); 2211 } 2212 } 2213 2214 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2215 for (MachineOperand &MO : operands()) { 2216 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2217 continue; 2218 MO.setIsUndef(IsUndef); 2219 } 2220 } 2221 2222 void MachineInstr::addRegisterDefined(unsigned Reg, 2223 const TargetRegisterInfo *RegInfo) { 2224 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2225 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2226 if (MO) 2227 return; 2228 } else { 2229 for (const MachineOperand &MO : operands()) { 2230 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2231 MO.getSubReg() == 0) 2232 return; 2233 } 2234 } 2235 addOperand(MachineOperand::CreateReg(Reg, 2236 true /*IsDef*/, 2237 true /*IsImp*/)); 2238 } 2239 2240 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2241 const TargetRegisterInfo &TRI) { 2242 bool HasRegMask = false; 2243 for (MachineOperand &MO : operands()) { 2244 if (MO.isRegMask()) { 2245 HasRegMask = true; 2246 continue; 2247 } 2248 if (!MO.isReg() || !MO.isDef()) continue; 2249 unsigned Reg = MO.getReg(); 2250 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2251 // If there are no uses, including partial uses, the def is dead. 2252 if (none_of(UsedRegs, 2253 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2254 MO.setIsDead(); 2255 } 2256 2257 // This is a call with a register mask operand. 2258 // Mask clobbers are always dead, so add defs for the non-dead defines. 2259 if (HasRegMask) 2260 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2261 I != E; ++I) 2262 addRegisterDefined(*I, &TRI); 2263 } 2264 2265 unsigned 2266 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2267 // Build up a buffer of hash code components. 2268 SmallVector<size_t, 8> HashComponents; 2269 HashComponents.reserve(MI->getNumOperands() + 1); 2270 HashComponents.push_back(MI->getOpcode()); 2271 for (const MachineOperand &MO : MI->operands()) { 2272 if (MO.isReg() && MO.isDef() && 2273 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2274 continue; // Skip virtual register defs. 2275 2276 HashComponents.push_back(hash_value(MO)); 2277 } 2278 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2279 } 2280 2281 void MachineInstr::emitError(StringRef Msg) const { 2282 // Find the source location cookie. 2283 unsigned LocCookie = 0; 2284 const MDNode *LocMD = nullptr; 2285 for (unsigned i = getNumOperands(); i != 0; --i) { 2286 if (getOperand(i-1).isMetadata() && 2287 (LocMD = getOperand(i-1).getMetadata()) && 2288 LocMD->getNumOperands() != 0) { 2289 if (const ConstantInt *CI = 2290 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2291 LocCookie = CI->getZExtValue(); 2292 break; 2293 } 2294 } 2295 } 2296 2297 if (const MachineBasicBlock *MBB = getParent()) 2298 if (const MachineFunction *MF = MBB->getParent()) 2299 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2300 report_fatal_error(Msg); 2301 } 2302 2303 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2304 const MCInstrDesc &MCID, bool IsIndirect, 2305 unsigned Reg, unsigned Offset, 2306 const MDNode *Variable, const MDNode *Expr) { 2307 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2308 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2309 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2310 "Expected inlined-at fields to agree"); 2311 if (IsIndirect) 2312 return BuildMI(MF, DL, MCID) 2313 .addReg(Reg, RegState::Debug) 2314 .addImm(Offset) 2315 .addMetadata(Variable) 2316 .addMetadata(Expr); 2317 else { 2318 assert(Offset == 0 && "A direct address cannot have an offset."); 2319 return BuildMI(MF, DL, MCID) 2320 .addReg(Reg, RegState::Debug) 2321 .addReg(0U, RegState::Debug) 2322 .addMetadata(Variable) 2323 .addMetadata(Expr); 2324 } 2325 } 2326 2327 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2328 MachineBasicBlock::iterator I, 2329 const DebugLoc &DL, const MCInstrDesc &MCID, 2330 bool IsIndirect, unsigned Reg, 2331 unsigned Offset, const MDNode *Variable, 2332 const MDNode *Expr) { 2333 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2334 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2335 MachineFunction &MF = *BB.getParent(); 2336 MachineInstr *MI = 2337 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2338 BB.insert(I, MI); 2339 return MachineInstrBuilder(MF, MI); 2340 } 2341