1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSlotTracker.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LowLevelTypeImpl.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61
62 using namespace llvm;
63
getMFIfAvailable(const MachineInstr & MI)64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65 if (const MachineBasicBlock *MBB = MI.getParent())
66 if (const MachineFunction *MF = MBB->getParent())
67 return MF;
68 return nullptr;
69 }
70
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
tryToGetTargetInfo(const MachineInstr & MI,const TargetRegisterInfo * & TRI,const MachineRegisterInfo * & MRI,const TargetIntrinsicInfo * & IntrinsicInfo,const TargetInstrInfo * & TII)73 static void tryToGetTargetInfo(const MachineInstr &MI,
74 const TargetRegisterInfo *&TRI,
75 const MachineRegisterInfo *&MRI,
76 const TargetIntrinsicInfo *&IntrinsicInfo,
77 const TargetInstrInfo *&TII) {
78
79 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80 TRI = MF->getSubtarget().getRegisterInfo();
81 MRI = &MF->getRegInfo();
82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83 TII = MF->getSubtarget().getInstrInfo();
84 }
85 }
86
addImplicitDefUseOperands(MachineFunction & MF)87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88 if (MCID->ImplicitDefs)
89 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
90 ++ImpDefs)
91 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
92 if (MCID->ImplicitUses)
93 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
94 ++ImpUses)
95 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
96 }
97
98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
99 /// implicit operands. It reserves space for the number of operands specified by
100 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & TID,DebugLoc DL,bool NoImp)101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
102 DebugLoc DL, bool NoImp)
103 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
104 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
105
106 // Reserve space for the expected number of operands.
107 if (unsigned NumOps = MCID->getNumOperands() +
108 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
109 CapOperands = OperandCapacity::get(NumOps);
110 Operands = MF.allocateOperandArray(CapOperands);
111 }
112
113 if (!NoImp)
114 addImplicitDefUseOperands(MF);
115 }
116
117 /// MachineInstr ctor - Copies MachineInstr arg exactly.
118 /// Does not copy the number from debug instruction numbering, to preserve
119 /// uniqueness.
MachineInstr(MachineFunction & MF,const MachineInstr & MI)120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
121 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
122 DebugInstrNum(0) {
123 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124
125 CapOperands = OperandCapacity::get(MI.getNumOperands());
126 Operands = MF.allocateOperandArray(CapOperands);
127
128 // Copy operands.
129 for (const MachineOperand &MO : MI.operands())
130 addOperand(MF, MO);
131
132 // Copy all the sensible flags.
133 setFlags(MI.Flags);
134 }
135
moveBefore(MachineInstr * MovePos)136 void MachineInstr::moveBefore(MachineInstr *MovePos) {
137 MovePos->getParent()->splice(MovePos, getParent(), getIterator());
138 }
139
140 /// getRegInfo - If this instruction is embedded into a MachineFunction,
141 /// return the MachineRegisterInfo object for the current function, otherwise
142 /// return null.
getRegInfo()143 MachineRegisterInfo *MachineInstr::getRegInfo() {
144 if (MachineBasicBlock *MBB = getParent())
145 return &MBB->getParent()->getRegInfo();
146 return nullptr;
147 }
148
removeRegOperandsFromUseLists(MachineRegisterInfo & MRI)149 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
150 for (MachineOperand &MO : operands())
151 if (MO.isReg())
152 MRI.removeRegOperandFromUseList(&MO);
153 }
154
addRegOperandsToUseLists(MachineRegisterInfo & MRI)155 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
156 for (MachineOperand &MO : operands())
157 if (MO.isReg())
158 MRI.addRegOperandToUseList(&MO);
159 }
160
addOperand(const MachineOperand & Op)161 void MachineInstr::addOperand(const MachineOperand &Op) {
162 MachineBasicBlock *MBB = getParent();
163 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
164 MachineFunction *MF = MBB->getParent();
165 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
166 addOperand(*MF, Op);
167 }
168
169 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
170 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)171 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
172 unsigned NumOps, MachineRegisterInfo *MRI) {
173 if (MRI)
174 return MRI->moveOperands(Dst, Src, NumOps);
175 // MachineOperand is a trivially copyable type so we can just use memmove.
176 assert(Dst && Src && "Unknown operands");
177 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
178 }
179
180 /// addOperand - Add the specified operand to the instruction. If it is an
181 /// implicit operand, it is added to the end of the operand list. If it is
182 /// an explicit operand it is added at the end of the explicit operand list
183 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)184 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
185 assert(MCID && "Cannot add operands before providing an instr descriptor");
186
187 // Check if we're adding one of our existing operands.
188 if (&Op >= Operands && &Op < Operands + NumOperands) {
189 // This is unusual: MI->addOperand(MI->getOperand(i)).
190 // If adding Op requires reallocating or moving existing operands around,
191 // the Op reference could go stale. Support it by copying Op.
192 MachineOperand CopyOp(Op);
193 return addOperand(MF, CopyOp);
194 }
195
196 // Find the insert location for the new operand. Implicit registers go at
197 // the end, everything else goes before the implicit regs.
198 //
199 // FIXME: Allow mixed explicit and implicit operands on inline asm.
200 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
201 // implicit-defs, but they must not be moved around. See the FIXME in
202 // InstrEmitter.cpp.
203 unsigned OpNo = getNumOperands();
204 bool isImpReg = Op.isReg() && Op.isImplicit();
205 if (!isImpReg && !isInlineAsm()) {
206 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
207 --OpNo;
208 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
209 }
210 }
211
212 // OpNo now points as the desired insertion point. Unless this is a variadic
213 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
214 // RegMask operands go between the explicit and implicit operands.
215 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
216 Op.isValidExcessOperand()) &&
217 "Trying to add an operand to a machine instr that is already done!");
218
219 MachineRegisterInfo *MRI = getRegInfo();
220
221 // Determine if the Operands array needs to be reallocated.
222 // Save the old capacity and operand array.
223 OperandCapacity OldCap = CapOperands;
224 MachineOperand *OldOperands = Operands;
225 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
226 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
227 Operands = MF.allocateOperandArray(CapOperands);
228 // Move the operands before the insertion point.
229 if (OpNo)
230 moveOperands(Operands, OldOperands, OpNo, MRI);
231 }
232
233 // Move the operands following the insertion point.
234 if (OpNo != NumOperands)
235 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
236 MRI);
237 ++NumOperands;
238
239 // Deallocate the old operand array.
240 if (OldOperands != Operands && OldOperands)
241 MF.deallocateOperandArray(OldCap, OldOperands);
242
243 // Copy Op into place. It still needs to be inserted into the MRI use lists.
244 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
245 NewMO->ParentMI = this;
246
247 // When adding a register operand, tell MRI about it.
248 if (NewMO->isReg()) {
249 // Ensure isOnRegUseList() returns false, regardless of Op's status.
250 NewMO->Contents.Reg.Prev = nullptr;
251 // Ignore existing ties. This is not a property that can be copied.
252 NewMO->TiedTo = 0;
253 // Add the new operand to MRI, but only for instructions in an MBB.
254 if (MRI)
255 MRI->addRegOperandToUseList(NewMO);
256 // The MCID operand information isn't accurate until we start adding
257 // explicit operands. The implicit operands are added first, then the
258 // explicits are inserted before them.
259 if (!isImpReg) {
260 // Tie uses to defs as indicated in MCInstrDesc.
261 if (NewMO->isUse()) {
262 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
263 if (DefIdx != -1)
264 tieOperands(DefIdx, OpNo);
265 }
266 // If the register operand is flagged as early, mark the operand as such.
267 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
268 NewMO->setIsEarlyClobber(true);
269 }
270 // Ensure debug instructions set debug flag on register uses.
271 if (NewMO->isUse() && isDebugInstr())
272 NewMO->setIsDebug();
273 }
274 }
275
removeOperand(unsigned OpNo)276 void MachineInstr::removeOperand(unsigned OpNo) {
277 assert(OpNo < getNumOperands() && "Invalid operand number");
278 untieRegOperand(OpNo);
279
280 #ifndef NDEBUG
281 // Moving tied operands would break the ties.
282 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
283 if (Operands[i].isReg())
284 assert(!Operands[i].isTied() && "Cannot move tied operands");
285 #endif
286
287 MachineRegisterInfo *MRI = getRegInfo();
288 if (MRI && Operands[OpNo].isReg())
289 MRI->removeRegOperandFromUseList(Operands + OpNo);
290
291 // Don't call the MachineOperand destructor. A lot of this code depends on
292 // MachineOperand having a trivial destructor anyway, and adding a call here
293 // wouldn't make it 'destructor-correct'.
294
295 if (unsigned N = NumOperands - 1 - OpNo)
296 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
297 --NumOperands;
298 }
299
setExtraInfo(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker)300 void MachineInstr::setExtraInfo(MachineFunction &MF,
301 ArrayRef<MachineMemOperand *> MMOs,
302 MCSymbol *PreInstrSymbol,
303 MCSymbol *PostInstrSymbol,
304 MDNode *HeapAllocMarker) {
305 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
306 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
307 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
308 int NumPointers =
309 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
310
311 // Drop all extra info if there is none.
312 if (NumPointers <= 0) {
313 Info.clear();
314 return;
315 }
316
317 // If more than one pointer, then store out of line. Store heap alloc markers
318 // out of line because PointerSumType cannot hold more than 4 tag types with
319 // 32-bit pointers.
320 // FIXME: Maybe we should make the symbols in the extra info mutable?
321 else if (NumPointers > 1 || HasHeapAllocMarker) {
322 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
323 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
324 return;
325 }
326
327 // Otherwise store the single pointer inline.
328 if (HasPreInstrSymbol)
329 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
330 else if (HasPostInstrSymbol)
331 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
332 else
333 Info.set<EIIK_MMO>(MMOs[0]);
334 }
335
dropMemRefs(MachineFunction & MF)336 void MachineInstr::dropMemRefs(MachineFunction &MF) {
337 if (memoperands_empty())
338 return;
339
340 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
341 getHeapAllocMarker());
342 }
343
setMemRefs(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs)344 void MachineInstr::setMemRefs(MachineFunction &MF,
345 ArrayRef<MachineMemOperand *> MMOs) {
346 if (MMOs.empty()) {
347 dropMemRefs(MF);
348 return;
349 }
350
351 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
352 getHeapAllocMarker());
353 }
354
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)355 void MachineInstr::addMemOperand(MachineFunction &MF,
356 MachineMemOperand *MO) {
357 SmallVector<MachineMemOperand *, 2> MMOs;
358 MMOs.append(memoperands_begin(), memoperands_end());
359 MMOs.push_back(MO);
360 setMemRefs(MF, MMOs);
361 }
362
cloneMemRefs(MachineFunction & MF,const MachineInstr & MI)363 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
364 if (this == &MI)
365 // Nothing to do for a self-clone!
366 return;
367
368 assert(&MF == MI.getMF() &&
369 "Invalid machine functions when cloning memory refrences!");
370 // See if we can just steal the extra info already allocated for the
371 // instruction. We can do this whenever the pre- and post-instruction symbols
372 // are the same (including null).
373 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
374 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
375 getHeapAllocMarker() == MI.getHeapAllocMarker()) {
376 Info = MI.Info;
377 return;
378 }
379
380 // Otherwise, fall back on a copy-based clone.
381 setMemRefs(MF, MI.memoperands());
382 }
383
384 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
385 /// identical.
hasIdenticalMMOs(ArrayRef<MachineMemOperand * > LHS,ArrayRef<MachineMemOperand * > RHS)386 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
387 ArrayRef<MachineMemOperand *> RHS) {
388 if (LHS.size() != RHS.size())
389 return false;
390
391 auto LHSPointees = make_pointee_range(LHS);
392 auto RHSPointees = make_pointee_range(RHS);
393 return std::equal(LHSPointees.begin(), LHSPointees.end(),
394 RHSPointees.begin());
395 }
396
cloneMergedMemRefs(MachineFunction & MF,ArrayRef<const MachineInstr * > MIs)397 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
398 ArrayRef<const MachineInstr *> MIs) {
399 // Try handling easy numbers of MIs with simpler mechanisms.
400 if (MIs.empty()) {
401 dropMemRefs(MF);
402 return;
403 }
404 if (MIs.size() == 1) {
405 cloneMemRefs(MF, *MIs[0]);
406 return;
407 }
408 // Because an empty memoperands list provides *no* information and must be
409 // handled conservatively (assuming the instruction can do anything), the only
410 // way to merge with it is to drop all other memoperands.
411 if (MIs[0]->memoperands_empty()) {
412 dropMemRefs(MF);
413 return;
414 }
415
416 // Handle the general case.
417 SmallVector<MachineMemOperand *, 2> MergedMMOs;
418 // Start with the first instruction.
419 assert(&MF == MIs[0]->getMF() &&
420 "Invalid machine functions when cloning memory references!");
421 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
422 // Now walk all the other instructions and accumulate any different MMOs.
423 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
424 assert(&MF == MI.getMF() &&
425 "Invalid machine functions when cloning memory references!");
426
427 // Skip MIs with identical operands to the first. This is a somewhat
428 // arbitrary hack but will catch common cases without being quadratic.
429 // TODO: We could fully implement merge semantics here if needed.
430 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
431 continue;
432
433 // Because an empty memoperands list provides *no* information and must be
434 // handled conservatively (assuming the instruction can do anything), the
435 // only way to merge with it is to drop all other memoperands.
436 if (MI.memoperands_empty()) {
437 dropMemRefs(MF);
438 return;
439 }
440
441 // Otherwise accumulate these into our temporary buffer of the merged state.
442 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
443 }
444
445 setMemRefs(MF, MergedMMOs);
446 }
447
setPreInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)448 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
449 // Do nothing if old and new symbols are the same.
450 if (Symbol == getPreInstrSymbol())
451 return;
452
453 // If there was only one symbol and we're removing it, just clear info.
454 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
455 Info.clear();
456 return;
457 }
458
459 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
460 getHeapAllocMarker());
461 }
462
setPostInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)463 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
464 // Do nothing if old and new symbols are the same.
465 if (Symbol == getPostInstrSymbol())
466 return;
467
468 // If there was only one symbol and we're removing it, just clear info.
469 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
470 Info.clear();
471 return;
472 }
473
474 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
475 getHeapAllocMarker());
476 }
477
setHeapAllocMarker(MachineFunction & MF,MDNode * Marker)478 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
479 // Do nothing if old and new symbols are the same.
480 if (Marker == getHeapAllocMarker())
481 return;
482
483 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
484 Marker);
485 }
486
cloneInstrSymbols(MachineFunction & MF,const MachineInstr & MI)487 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
488 const MachineInstr &MI) {
489 if (this == &MI)
490 // Nothing to do for a self-clone!
491 return;
492
493 assert(&MF == MI.getMF() &&
494 "Invalid machine functions when cloning instruction symbols!");
495
496 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
497 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
498 setHeapAllocMarker(MF, MI.getHeapAllocMarker());
499 }
500
mergeFlagsWith(const MachineInstr & Other) const501 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
502 // For now, the just return the union of the flags. If the flags get more
503 // complicated over time, we might need more logic here.
504 return getFlags() | Other.getFlags();
505 }
506
copyFlagsFromInstruction(const Instruction & I)507 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
508 uint16_t MIFlags = 0;
509 // Copy the wrapping flags.
510 if (const OverflowingBinaryOperator *OB =
511 dyn_cast<OverflowingBinaryOperator>(&I)) {
512 if (OB->hasNoSignedWrap())
513 MIFlags |= MachineInstr::MIFlag::NoSWrap;
514 if (OB->hasNoUnsignedWrap())
515 MIFlags |= MachineInstr::MIFlag::NoUWrap;
516 }
517
518 // Copy the exact flag.
519 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
520 if (PE->isExact())
521 MIFlags |= MachineInstr::MIFlag::IsExact;
522
523 // Copy the fast-math flags.
524 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
525 const FastMathFlags Flags = FP->getFastMathFlags();
526 if (Flags.noNaNs())
527 MIFlags |= MachineInstr::MIFlag::FmNoNans;
528 if (Flags.noInfs())
529 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
530 if (Flags.noSignedZeros())
531 MIFlags |= MachineInstr::MIFlag::FmNsz;
532 if (Flags.allowReciprocal())
533 MIFlags |= MachineInstr::MIFlag::FmArcp;
534 if (Flags.allowContract())
535 MIFlags |= MachineInstr::MIFlag::FmContract;
536 if (Flags.approxFunc())
537 MIFlags |= MachineInstr::MIFlag::FmAfn;
538 if (Flags.allowReassoc())
539 MIFlags |= MachineInstr::MIFlag::FmReassoc;
540 }
541
542 return MIFlags;
543 }
544
copyIRFlags(const Instruction & I)545 void MachineInstr::copyIRFlags(const Instruction &I) {
546 Flags = copyFlagsFromInstruction(I);
547 }
548
hasPropertyInBundle(uint64_t Mask,QueryType Type) const549 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
550 assert(!isBundledWithPred() && "Must be called on bundle header");
551 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
552 if (MII->getDesc().getFlags() & Mask) {
553 if (Type == AnyInBundle)
554 return true;
555 } else {
556 if (Type == AllInBundle && !MII->isBundle())
557 return false;
558 }
559 // This was the last instruction in the bundle.
560 if (!MII->isBundledWithSucc())
561 return Type == AllInBundle;
562 }
563 }
564
isIdenticalTo(const MachineInstr & Other,MICheckType Check) const565 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
566 MICheckType Check) const {
567 // If opcodes or number of operands are not the same then the two
568 // instructions are obviously not identical.
569 if (Other.getOpcode() != getOpcode() ||
570 Other.getNumOperands() != getNumOperands())
571 return false;
572
573 if (isBundle()) {
574 // We have passed the test above that both instructions have the same
575 // opcode, so we know that both instructions are bundles here. Let's compare
576 // MIs inside the bundle.
577 assert(Other.isBundle() && "Expected that both instructions are bundles.");
578 MachineBasicBlock::const_instr_iterator I1 = getIterator();
579 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
580 // Loop until we analysed the last intruction inside at least one of the
581 // bundles.
582 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
583 ++I1;
584 ++I2;
585 if (!I1->isIdenticalTo(*I2, Check))
586 return false;
587 }
588 // If we've reached the end of just one of the two bundles, but not both,
589 // the instructions are not identical.
590 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
591 return false;
592 }
593
594 // Check operands to make sure they match.
595 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
596 const MachineOperand &MO = getOperand(i);
597 const MachineOperand &OMO = Other.getOperand(i);
598 if (!MO.isReg()) {
599 if (!MO.isIdenticalTo(OMO))
600 return false;
601 continue;
602 }
603
604 // Clients may or may not want to ignore defs when testing for equality.
605 // For example, machine CSE pass only cares about finding common
606 // subexpressions, so it's safe to ignore virtual register defs.
607 if (MO.isDef()) {
608 if (Check == IgnoreDefs)
609 continue;
610 else if (Check == IgnoreVRegDefs) {
611 if (!Register::isVirtualRegister(MO.getReg()) ||
612 !Register::isVirtualRegister(OMO.getReg()))
613 if (!MO.isIdenticalTo(OMO))
614 return false;
615 } else {
616 if (!MO.isIdenticalTo(OMO))
617 return false;
618 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
619 return false;
620 }
621 } else {
622 if (!MO.isIdenticalTo(OMO))
623 return false;
624 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
625 return false;
626 }
627 }
628 // If DebugLoc does not match then two debug instructions are not identical.
629 if (isDebugInstr())
630 if (getDebugLoc() && Other.getDebugLoc() &&
631 getDebugLoc() != Other.getDebugLoc())
632 return false;
633 return true;
634 }
635
getMF() const636 const MachineFunction *MachineInstr::getMF() const {
637 return getParent()->getParent();
638 }
639
removeFromParent()640 MachineInstr *MachineInstr::removeFromParent() {
641 assert(getParent() && "Not embedded in a basic block!");
642 return getParent()->remove(this);
643 }
644
removeFromBundle()645 MachineInstr *MachineInstr::removeFromBundle() {
646 assert(getParent() && "Not embedded in a basic block!");
647 return getParent()->remove_instr(this);
648 }
649
eraseFromParent()650 void MachineInstr::eraseFromParent() {
651 assert(getParent() && "Not embedded in a basic block!");
652 getParent()->erase(this);
653 }
654
eraseFromBundle()655 void MachineInstr::eraseFromBundle() {
656 assert(getParent() && "Not embedded in a basic block!");
657 getParent()->erase_instr(this);
658 }
659
isCandidateForCallSiteEntry(QueryType Type) const660 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
661 if (!isCall(Type))
662 return false;
663 switch (getOpcode()) {
664 case TargetOpcode::PATCHPOINT:
665 case TargetOpcode::STACKMAP:
666 case TargetOpcode::STATEPOINT:
667 case TargetOpcode::FENTRY_CALL:
668 return false;
669 }
670 return true;
671 }
672
shouldUpdateCallSiteInfo() const673 bool MachineInstr::shouldUpdateCallSiteInfo() const {
674 if (isBundle())
675 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
676 return isCandidateForCallSiteEntry();
677 }
678
getNumExplicitOperands() const679 unsigned MachineInstr::getNumExplicitOperands() const {
680 unsigned NumOperands = MCID->getNumOperands();
681 if (!MCID->isVariadic())
682 return NumOperands;
683
684 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
685 const MachineOperand &MO = getOperand(I);
686 // The operands must always be in the following order:
687 // - explicit reg defs,
688 // - other explicit operands (reg uses, immediates, etc.),
689 // - implicit reg defs
690 // - implicit reg uses
691 if (MO.isReg() && MO.isImplicit())
692 break;
693 ++NumOperands;
694 }
695 return NumOperands;
696 }
697
getNumExplicitDefs() const698 unsigned MachineInstr::getNumExplicitDefs() const {
699 unsigned NumDefs = MCID->getNumDefs();
700 if (!MCID->isVariadic())
701 return NumDefs;
702
703 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
704 const MachineOperand &MO = getOperand(I);
705 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
706 break;
707 ++NumDefs;
708 }
709 return NumDefs;
710 }
711
bundleWithPred()712 void MachineInstr::bundleWithPred() {
713 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
714 setFlag(BundledPred);
715 MachineBasicBlock::instr_iterator Pred = getIterator();
716 --Pred;
717 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
718 Pred->setFlag(BundledSucc);
719 }
720
bundleWithSucc()721 void MachineInstr::bundleWithSucc() {
722 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
723 setFlag(BundledSucc);
724 MachineBasicBlock::instr_iterator Succ = getIterator();
725 ++Succ;
726 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
727 Succ->setFlag(BundledPred);
728 }
729
unbundleFromPred()730 void MachineInstr::unbundleFromPred() {
731 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
732 clearFlag(BundledPred);
733 MachineBasicBlock::instr_iterator Pred = getIterator();
734 --Pred;
735 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
736 Pred->clearFlag(BundledSucc);
737 }
738
unbundleFromSucc()739 void MachineInstr::unbundleFromSucc() {
740 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
741 clearFlag(BundledSucc);
742 MachineBasicBlock::instr_iterator Succ = getIterator();
743 ++Succ;
744 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
745 Succ->clearFlag(BundledPred);
746 }
747
isStackAligningInlineAsm() const748 bool MachineInstr::isStackAligningInlineAsm() const {
749 if (isInlineAsm()) {
750 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
751 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
752 return true;
753 }
754 return false;
755 }
756
getInlineAsmDialect() const757 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
758 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
759 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
760 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
761 }
762
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const763 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
764 unsigned *GroupNo) const {
765 assert(isInlineAsm() && "Expected an inline asm instruction");
766 assert(OpIdx < getNumOperands() && "OpIdx out of range");
767
768 // Ignore queries about the initial operands.
769 if (OpIdx < InlineAsm::MIOp_FirstOperand)
770 return -1;
771
772 unsigned Group = 0;
773 unsigned NumOps;
774 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
775 i += NumOps) {
776 const MachineOperand &FlagMO = getOperand(i);
777 // If we reach the implicit register operands, stop looking.
778 if (!FlagMO.isImm())
779 return -1;
780 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
781 if (i + NumOps > OpIdx) {
782 if (GroupNo)
783 *GroupNo = Group;
784 return i;
785 }
786 ++Group;
787 }
788 return -1;
789 }
790
getDebugLabel() const791 const DILabel *MachineInstr::getDebugLabel() const {
792 assert(isDebugLabel() && "not a DBG_LABEL");
793 return cast<DILabel>(getOperand(0).getMetadata());
794 }
795
getDebugVariableOp() const796 const MachineOperand &MachineInstr::getDebugVariableOp() const {
797 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
798 unsigned VariableOp = isDebugValueList() ? 0 : 2;
799 return getOperand(VariableOp);
800 }
801
getDebugVariableOp()802 MachineOperand &MachineInstr::getDebugVariableOp() {
803 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
804 unsigned VariableOp = isDebugValueList() ? 0 : 2;
805 return getOperand(VariableOp);
806 }
807
getDebugVariable() const808 const DILocalVariable *MachineInstr::getDebugVariable() const {
809 return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
810 }
811
getDebugExpressionOp() const812 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
813 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
814 unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
815 return getOperand(ExpressionOp);
816 }
817
getDebugExpressionOp()818 MachineOperand &MachineInstr::getDebugExpressionOp() {
819 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
820 unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
821 return getOperand(ExpressionOp);
822 }
823
getDebugExpression() const824 const DIExpression *MachineInstr::getDebugExpression() const {
825 return cast<DIExpression>(getDebugExpressionOp().getMetadata());
826 }
827
isDebugEntryValue() const828 bool MachineInstr::isDebugEntryValue() const {
829 return isDebugValue() && getDebugExpression()->isEntryValue();
830 }
831
832 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const833 MachineInstr::getRegClassConstraint(unsigned OpIdx,
834 const TargetInstrInfo *TII,
835 const TargetRegisterInfo *TRI) const {
836 assert(getParent() && "Can't have an MBB reference here!");
837 assert(getMF() && "Can't have an MF reference here!");
838 const MachineFunction &MF = *getMF();
839
840 // Most opcodes have fixed constraints in their MCInstrDesc.
841 if (!isInlineAsm())
842 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
843
844 if (!getOperand(OpIdx).isReg())
845 return nullptr;
846
847 // For tied uses on inline asm, get the constraint from the def.
848 unsigned DefIdx;
849 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
850 OpIdx = DefIdx;
851
852 // Inline asm stores register class constraints in the flag word.
853 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
854 if (FlagIdx < 0)
855 return nullptr;
856
857 unsigned Flag = getOperand(FlagIdx).getImm();
858 unsigned RCID;
859 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
860 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
861 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
862 InlineAsm::hasRegClassConstraint(Flag, RCID))
863 return TRI->getRegClass(RCID);
864
865 // Assume that all registers in a memory operand are pointers.
866 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
867 return TRI->getPointerRegClass(MF);
868
869 return nullptr;
870 }
871
getRegClassConstraintEffectForVReg(Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const872 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
873 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
874 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
875 // Check every operands inside the bundle if we have
876 // been asked to.
877 if (ExploreBundle)
878 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
879 ++OpndIt)
880 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
881 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
882 else
883 // Otherwise, just check the current operands.
884 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
885 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
886 return CurRC;
887 }
888
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const889 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
890 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
891 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
892 assert(CurRC && "Invalid initial register class");
893 // Check if Reg is constrained by some of its use/def from MI.
894 const MachineOperand &MO = getOperand(OpIdx);
895 if (!MO.isReg() || MO.getReg() != Reg)
896 return CurRC;
897 // If yes, accumulate the constraints through the operand.
898 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
899 }
900
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const901 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
902 unsigned OpIdx, const TargetRegisterClass *CurRC,
903 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
904 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
905 const MachineOperand &MO = getOperand(OpIdx);
906 assert(MO.isReg() &&
907 "Cannot get register constraints for non-register operand");
908 assert(CurRC && "Invalid initial register class");
909 if (unsigned SubIdx = MO.getSubReg()) {
910 if (OpRC)
911 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
912 else
913 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
914 } else if (OpRC)
915 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
916 return CurRC;
917 }
918
919 /// Return the number of instructions inside the MI bundle, not counting the
920 /// header instruction.
getBundleSize() const921 unsigned MachineInstr::getBundleSize() const {
922 MachineBasicBlock::const_instr_iterator I = getIterator();
923 unsigned Size = 0;
924 while (I->isBundledWithSucc()) {
925 ++Size;
926 ++I;
927 }
928 return Size;
929 }
930
931 /// Returns true if the MachineInstr has an implicit-use operand of exactly
932 /// the given register (not considering sub/super-registers).
hasRegisterImplicitUseOperand(Register Reg) const933 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
934 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
935 const MachineOperand &MO = getOperand(i);
936 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
937 return true;
938 }
939 return false;
940 }
941
942 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
943 /// the specific register or -1 if it is not found. It further tightens
944 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(Register Reg,bool isKill,const TargetRegisterInfo * TRI) const945 int MachineInstr::findRegisterUseOperandIdx(
946 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
947 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
948 const MachineOperand &MO = getOperand(i);
949 if (!MO.isReg() || !MO.isUse())
950 continue;
951 Register MOReg = MO.getReg();
952 if (!MOReg)
953 continue;
954 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
955 if (!isKill || MO.isKill())
956 return i;
957 }
958 return -1;
959 }
960
961 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
962 /// indicating if this instruction reads or writes Reg. This also considers
963 /// partial defines.
964 std::pair<bool,bool>
readsWritesVirtualRegister(Register Reg,SmallVectorImpl<unsigned> * Ops) const965 MachineInstr::readsWritesVirtualRegister(Register Reg,
966 SmallVectorImpl<unsigned> *Ops) const {
967 bool PartDef = false; // Partial redefine.
968 bool FullDef = false; // Full define.
969 bool Use = false;
970
971 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
972 const MachineOperand &MO = getOperand(i);
973 if (!MO.isReg() || MO.getReg() != Reg)
974 continue;
975 if (Ops)
976 Ops->push_back(i);
977 if (MO.isUse())
978 Use |= !MO.isUndef();
979 else if (MO.getSubReg() && !MO.isUndef())
980 // A partial def undef doesn't count as reading the register.
981 PartDef = true;
982 else
983 FullDef = true;
984 }
985 // A partial redefine uses Reg unless there is also a full define.
986 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
987 }
988
989 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
990 /// the specified register or -1 if it is not found. If isDead is true, defs
991 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
992 /// also checks if there is a def of a super-register.
993 int
findRegisterDefOperandIdx(Register Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const994 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
995 const TargetRegisterInfo *TRI) const {
996 bool isPhys = Register::isPhysicalRegister(Reg);
997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998 const MachineOperand &MO = getOperand(i);
999 // Accept regmask operands when Overlap is set.
1000 // Ignore them when looking for a specific def operand (Overlap == false).
1001 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1002 return i;
1003 if (!MO.isReg() || !MO.isDef())
1004 continue;
1005 Register MOReg = MO.getReg();
1006 bool Found = (MOReg == Reg);
1007 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1008 if (Overlap)
1009 Found = TRI->regsOverlap(MOReg, Reg);
1010 else
1011 Found = TRI->isSubRegister(MOReg, Reg);
1012 }
1013 if (Found && (!isDead || MO.isDead()))
1014 return i;
1015 }
1016 return -1;
1017 }
1018
1019 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1020 /// operand list that is used to represent the predicate. It returns -1 if
1021 /// none is found.
findFirstPredOperandIdx() const1022 int MachineInstr::findFirstPredOperandIdx() const {
1023 // Don't call MCID.findFirstPredOperandIdx() because this variant
1024 // is sometimes called on an instruction that's not yet complete, and
1025 // so the number of operands is less than the MCID indicates. In
1026 // particular, the PTX target does this.
1027 const MCInstrDesc &MCID = getDesc();
1028 if (MCID.isPredicable()) {
1029 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1030 if (MCID.OpInfo[i].isPredicate())
1031 return i;
1032 }
1033
1034 return -1;
1035 }
1036
1037 // MachineOperand::TiedTo is 4 bits wide.
1038 const unsigned TiedMax = 15;
1039
1040 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1041 ///
1042 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1043 /// field. TiedTo can have these values:
1044 ///
1045 /// 0: Operand is not tied to anything.
1046 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1047 /// TiedMax: Tied to an operand >= TiedMax-1.
1048 ///
1049 /// The tied def must be one of the first TiedMax operands on a normal
1050 /// instruction. INLINEASM instructions allow more tied defs.
1051 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1052 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1053 MachineOperand &DefMO = getOperand(DefIdx);
1054 MachineOperand &UseMO = getOperand(UseIdx);
1055 assert(DefMO.isDef() && "DefIdx must be a def operand");
1056 assert(UseMO.isUse() && "UseIdx must be a use operand");
1057 assert(!DefMO.isTied() && "Def is already tied to another use");
1058 assert(!UseMO.isTied() && "Use is already tied to another def");
1059
1060 if (DefIdx < TiedMax)
1061 UseMO.TiedTo = DefIdx + 1;
1062 else {
1063 // Inline asm can use the group descriptors to find tied operands,
1064 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1065 // but on normal instruction, the tied def must be within the first TiedMax
1066 // operands.
1067 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1068 "DefIdx out of range");
1069 UseMO.TiedTo = TiedMax;
1070 }
1071
1072 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1073 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1074 }
1075
1076 /// Given the index of a tied register operand, find the operand it is tied to.
1077 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1078 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1079 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1080 const MachineOperand &MO = getOperand(OpIdx);
1081 assert(MO.isTied() && "Operand isn't tied");
1082
1083 // Normally TiedTo is in range.
1084 if (MO.TiedTo < TiedMax)
1085 return MO.TiedTo - 1;
1086
1087 // Uses on normal instructions can be out of range.
1088 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1089 // Normal tied defs must be in the 0..TiedMax-1 range.
1090 if (MO.isUse())
1091 return TiedMax - 1;
1092 // MO is a def. Search for the tied use.
1093 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1094 const MachineOperand &UseMO = getOperand(i);
1095 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1096 return i;
1097 }
1098 llvm_unreachable("Can't find tied use");
1099 }
1100
1101 if (getOpcode() == TargetOpcode::STATEPOINT) {
1102 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1103 // on registers.
1104 StatepointOpers SO(this);
1105 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1106 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1107 unsigned NumDefs = getNumDefs();
1108 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1109 while (!getOperand(CurUseIdx).isReg())
1110 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1111 if (OpIdx == CurDefIdx)
1112 return CurUseIdx;
1113 if (OpIdx == CurUseIdx)
1114 return CurDefIdx;
1115 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1116 }
1117 llvm_unreachable("Can't find tied use");
1118 }
1119
1120 // Now deal with inline asm by parsing the operand group descriptor flags.
1121 // Find the beginning of each operand group.
1122 SmallVector<unsigned, 8> GroupIdx;
1123 unsigned OpIdxGroup = ~0u;
1124 unsigned NumOps;
1125 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1126 i += NumOps) {
1127 const MachineOperand &FlagMO = getOperand(i);
1128 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1129 unsigned CurGroup = GroupIdx.size();
1130 GroupIdx.push_back(i);
1131 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1132 // OpIdx belongs to this operand group.
1133 if (OpIdx > i && OpIdx < i + NumOps)
1134 OpIdxGroup = CurGroup;
1135 unsigned TiedGroup;
1136 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1137 continue;
1138 // Operands in this group are tied to operands in TiedGroup which must be
1139 // earlier. Find the number of operands between the two groups.
1140 unsigned Delta = i - GroupIdx[TiedGroup];
1141
1142 // OpIdx is a use tied to TiedGroup.
1143 if (OpIdxGroup == CurGroup)
1144 return OpIdx - Delta;
1145
1146 // OpIdx is a def tied to this use group.
1147 if (OpIdxGroup == TiedGroup)
1148 return OpIdx + Delta;
1149 }
1150 llvm_unreachable("Invalid tied operand on inline asm");
1151 }
1152
1153 /// clearKillInfo - Clears kill flags on all operands.
1154 ///
clearKillInfo()1155 void MachineInstr::clearKillInfo() {
1156 for (MachineOperand &MO : operands()) {
1157 if (MO.isReg() && MO.isUse())
1158 MO.setIsKill(false);
1159 }
1160 }
1161
substituteRegister(Register FromReg,Register ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1162 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1163 unsigned SubIdx,
1164 const TargetRegisterInfo &RegInfo) {
1165 if (Register::isPhysicalRegister(ToReg)) {
1166 if (SubIdx)
1167 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1168 for (MachineOperand &MO : operands()) {
1169 if (!MO.isReg() || MO.getReg() != FromReg)
1170 continue;
1171 MO.substPhysReg(ToReg, RegInfo);
1172 }
1173 } else {
1174 for (MachineOperand &MO : operands()) {
1175 if (!MO.isReg() || MO.getReg() != FromReg)
1176 continue;
1177 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1178 }
1179 }
1180 }
1181
1182 /// isSafeToMove - Return true if it is safe to move this instruction. If
1183 /// SawStore is set to true, it means that there is a store (or call) between
1184 /// the instruction's location and its intended destination.
isSafeToMove(AAResults * AA,bool & SawStore) const1185 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1186 // Ignore stuff that we obviously can't move.
1187 //
1188 // Treat volatile loads as stores. This is not strictly necessary for
1189 // volatiles, but it is required for atomic loads. It is not allowed to move
1190 // a load across an atomic load with Ordering > Monotonic.
1191 if (mayStore() || isCall() || isPHI() ||
1192 (mayLoad() && hasOrderedMemoryRef())) {
1193 SawStore = true;
1194 return false;
1195 }
1196
1197 if (isPosition() || isDebugInstr() || isTerminator() ||
1198 mayRaiseFPException() || hasUnmodeledSideEffects())
1199 return false;
1200
1201 // See if this instruction does a load. If so, we have to guarantee that the
1202 // loaded value doesn't change between the load and the its intended
1203 // destination. The check for isInvariantLoad gives the target the chance to
1204 // classify the load as always returning a constant, e.g. a constant pool
1205 // load.
1206 if (mayLoad() && !isDereferenceableInvariantLoad())
1207 // Otherwise, this is a real load. If there is a store between the load and
1208 // end of block, we can't move it.
1209 return !SawStore;
1210
1211 return true;
1212 }
1213
MemOperandsHaveAlias(const MachineFrameInfo & MFI,AAResults * AA,bool UseTBAA,const MachineMemOperand * MMOa,const MachineMemOperand * MMOb)1214 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1215 bool UseTBAA, const MachineMemOperand *MMOa,
1216 const MachineMemOperand *MMOb) {
1217 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1218 // operates with MachineMemOperand offset with some important assumptions:
1219 // - LLVM fundamentally assumes flat address spaces.
1220 // - MachineOperand offset can *only* result from legalization and cannot
1221 // affect queries other than the trivial case of overlap checking.
1222 // - These offsets never wrap and never step outside of allocated objects.
1223 // - There should never be any negative offsets here.
1224 //
1225 // FIXME: Modify API to hide this math from "user"
1226 // Even before we go to AA we can reason locally about some memory objects. It
1227 // can save compile time, and possibly catch some corner cases not currently
1228 // covered.
1229
1230 int64_t OffsetA = MMOa->getOffset();
1231 int64_t OffsetB = MMOb->getOffset();
1232 int64_t MinOffset = std::min(OffsetA, OffsetB);
1233
1234 uint64_t WidthA = MMOa->getSize();
1235 uint64_t WidthB = MMOb->getSize();
1236 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1237 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1238
1239 const Value *ValA = MMOa->getValue();
1240 const Value *ValB = MMOb->getValue();
1241 bool SameVal = (ValA && ValB && (ValA == ValB));
1242 if (!SameVal) {
1243 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1244 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1245 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1246 return false;
1247 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1248 return false;
1249 if (PSVa && PSVb && (PSVa == PSVb))
1250 SameVal = true;
1251 }
1252
1253 if (SameVal) {
1254 if (!KnownWidthA || !KnownWidthB)
1255 return true;
1256 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1257 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1258 return (MinOffset + LowWidth > MaxOffset);
1259 }
1260
1261 if (!AA)
1262 return true;
1263
1264 if (!ValA || !ValB)
1265 return true;
1266
1267 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1268 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1269
1270 int64_t OverlapA =
1271 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1272 int64_t OverlapB =
1273 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1274
1275 return !AA->isNoAlias(
1276 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1277 MemoryLocation(ValB, OverlapB,
1278 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1279 }
1280
mayAlias(AAResults * AA,const MachineInstr & Other,bool UseTBAA) const1281 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1282 bool UseTBAA) const {
1283 const MachineFunction *MF = getMF();
1284 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1285 const MachineFrameInfo &MFI = MF->getFrameInfo();
1286
1287 // Exclude call instruction which may alter the memory but can not be handled
1288 // by this function.
1289 if (isCall() || Other.isCall())
1290 return true;
1291
1292 // If neither instruction stores to memory, they can't alias in any
1293 // meaningful way, even if they read from the same address.
1294 if (!mayStore() && !Other.mayStore())
1295 return false;
1296
1297 // Both instructions must be memory operations to be able to alias.
1298 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1299 return false;
1300
1301 // Let the target decide if memory accesses cannot possibly overlap.
1302 if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1303 return false;
1304
1305 // Memory operations without memory operands may access anything. Be
1306 // conservative and assume `MayAlias`.
1307 if (memoperands_empty() || Other.memoperands_empty())
1308 return true;
1309
1310 // Skip if there are too many memory operands.
1311 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1312 if (NumChecks > TII->getMemOperandAACheckLimit())
1313 return true;
1314
1315 // Check each pair of memory operands from both instructions, which can't
1316 // alias only if all pairs won't alias.
1317 for (auto *MMOa : memoperands())
1318 for (auto *MMOb : Other.memoperands())
1319 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1320 return true;
1321
1322 return false;
1323 }
1324
1325 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1326 /// or volatile memory reference, or if the information describing the memory
1327 /// reference is not available. Return false if it is known to have no ordered
1328 /// memory references.
hasOrderedMemoryRef() const1329 bool MachineInstr::hasOrderedMemoryRef() const {
1330 // An instruction known never to access memory won't have a volatile access.
1331 if (!mayStore() &&
1332 !mayLoad() &&
1333 !isCall() &&
1334 !hasUnmodeledSideEffects())
1335 return false;
1336
1337 // Otherwise, if the instruction has no memory reference information,
1338 // conservatively assume it wasn't preserved.
1339 if (memoperands_empty())
1340 return true;
1341
1342 // Check if any of our memory operands are ordered.
1343 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1344 return !MMO->isUnordered();
1345 });
1346 }
1347
1348 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1349 /// trap and is loading from a location whose value is invariant across a run of
1350 /// this function.
isDereferenceableInvariantLoad() const1351 bool MachineInstr::isDereferenceableInvariantLoad() const {
1352 // If the instruction doesn't load at all, it isn't an invariant load.
1353 if (!mayLoad())
1354 return false;
1355
1356 // If the instruction has lost its memoperands, conservatively assume that
1357 // it may not be an invariant load.
1358 if (memoperands_empty())
1359 return false;
1360
1361 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1362
1363 for (MachineMemOperand *MMO : memoperands()) {
1364 if (!MMO->isUnordered())
1365 // If the memory operand has ordering side effects, we can't move the
1366 // instruction. Such an instruction is technically an invariant load,
1367 // but the caller code would need updated to expect that.
1368 return false;
1369 if (MMO->isStore()) return false;
1370 if (MMO->isInvariant() && MMO->isDereferenceable())
1371 continue;
1372
1373 // A load from a constant PseudoSourceValue is invariant.
1374 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1375 if (PSV->isConstant(&MFI))
1376 continue;
1377 }
1378
1379 // Otherwise assume conservatively.
1380 return false;
1381 }
1382
1383 // Everything checks out.
1384 return true;
1385 }
1386
1387 /// isConstantValuePHI - If the specified instruction is a PHI that always
1388 /// merges together the same virtual register, return the register, otherwise
1389 /// return 0.
isConstantValuePHI() const1390 unsigned MachineInstr::isConstantValuePHI() const {
1391 if (!isPHI())
1392 return 0;
1393 assert(getNumOperands() >= 3 &&
1394 "It's illegal to have a PHI without source operands");
1395
1396 Register Reg = getOperand(1).getReg();
1397 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1398 if (getOperand(i).getReg() != Reg)
1399 return 0;
1400 return Reg;
1401 }
1402
hasUnmodeledSideEffects() const1403 bool MachineInstr::hasUnmodeledSideEffects() const {
1404 if (hasProperty(MCID::UnmodeledSideEffects))
1405 return true;
1406 if (isInlineAsm()) {
1407 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1408 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1409 return true;
1410 }
1411
1412 return false;
1413 }
1414
isLoadFoldBarrier() const1415 bool MachineInstr::isLoadFoldBarrier() const {
1416 return mayStore() || isCall() ||
1417 (hasUnmodeledSideEffects() && !isPseudoProbe());
1418 }
1419
1420 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1421 ///
allDefsAreDead() const1422 bool MachineInstr::allDefsAreDead() const {
1423 for (const MachineOperand &MO : operands()) {
1424 if (!MO.isReg() || MO.isUse())
1425 continue;
1426 if (!MO.isDead())
1427 return false;
1428 }
1429 return true;
1430 }
1431
1432 /// copyImplicitOps - Copy implicit register operands from specified
1433 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr & MI)1434 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1435 const MachineInstr &MI) {
1436 for (const MachineOperand &MO :
1437 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1438 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1439 addOperand(MF, MO);
1440 }
1441
hasComplexRegisterTies() const1442 bool MachineInstr::hasComplexRegisterTies() const {
1443 const MCInstrDesc &MCID = getDesc();
1444 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1445 return true;
1446 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1447 const auto &Operand = getOperand(I);
1448 if (!Operand.isReg() || Operand.isDef())
1449 // Ignore the defined registers as MCID marks only the uses as tied.
1450 continue;
1451 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1452 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1453 if (ExpectedTiedIdx != TiedIdx)
1454 return true;
1455 }
1456 return false;
1457 }
1458
getTypeToPrint(unsigned OpIdx,SmallBitVector & PrintedTypes,const MachineRegisterInfo & MRI) const1459 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1460 const MachineRegisterInfo &MRI) const {
1461 const MachineOperand &Op = getOperand(OpIdx);
1462 if (!Op.isReg())
1463 return LLT{};
1464
1465 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1466 return MRI.getType(Op.getReg());
1467
1468 auto &OpInfo = getDesc().OpInfo[OpIdx];
1469 if (!OpInfo.isGenericType())
1470 return MRI.getType(Op.getReg());
1471
1472 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1473 return LLT{};
1474
1475 LLT TypeToPrint = MRI.getType(Op.getReg());
1476 // Don't mark the type index printed if it wasn't actually printed: maybe
1477 // another operand with the same type index has an actual type attached:
1478 if (TypeToPrint.isValid())
1479 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1480 return TypeToPrint;
1481 }
1482
1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1484 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1485 dbgs() << " ";
1486 print(dbgs());
1487 }
1488
dumprImpl(const MachineRegisterInfo & MRI,unsigned Depth,unsigned MaxDepth,SmallPtrSetImpl<const MachineInstr * > & AlreadySeenInstrs) const1489 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1490 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1491 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1492 if (Depth >= MaxDepth)
1493 return;
1494 if (!AlreadySeenInstrs.insert(this).second)
1495 return;
1496 // PadToColumn always inserts at least one space.
1497 // Don't mess up the alignment if we don't want any space.
1498 if (Depth)
1499 fdbgs().PadToColumn(Depth * 2);
1500 print(fdbgs());
1501 for (const MachineOperand &MO : operands()) {
1502 if (!MO.isReg() || MO.isDef())
1503 continue;
1504 Register Reg = MO.getReg();
1505 if (Reg.isPhysical())
1506 continue;
1507 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1508 if (NewMI == nullptr)
1509 continue;
1510 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1511 }
1512 }
1513
dumpr(const MachineRegisterInfo & MRI,unsigned MaxDepth) const1514 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1515 unsigned MaxDepth) const {
1516 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1517 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1518 }
1519 #endif
1520
print(raw_ostream & OS,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1521 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1522 bool SkipDebugLoc, bool AddNewLine,
1523 const TargetInstrInfo *TII) const {
1524 const Module *M = nullptr;
1525 const Function *F = nullptr;
1526 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1527 F = &MF->getFunction();
1528 M = F->getParent();
1529 if (!TII)
1530 TII = MF->getSubtarget().getInstrInfo();
1531 }
1532
1533 ModuleSlotTracker MST(M);
1534 if (F)
1535 MST.incorporateFunction(*F);
1536 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1537 }
1538
print(raw_ostream & OS,ModuleSlotTracker & MST,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1539 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1540 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1541 bool AddNewLine, const TargetInstrInfo *TII) const {
1542 // We can be a bit tidier if we know the MachineFunction.
1543 const TargetRegisterInfo *TRI = nullptr;
1544 const MachineRegisterInfo *MRI = nullptr;
1545 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1546 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1547
1548 if (isCFIInstruction())
1549 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1550
1551 SmallBitVector PrintedTypes(8);
1552 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1553 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1554 if (!ShouldPrintRegisterTies)
1555 return 0U;
1556 const MachineOperand &MO = getOperand(OpIdx);
1557 if (MO.isReg() && MO.isTied() && !MO.isDef())
1558 return findTiedOperandIdx(OpIdx);
1559 return 0U;
1560 };
1561 unsigned StartOp = 0;
1562 unsigned e = getNumOperands();
1563
1564 // Print explicitly defined operands on the left of an assignment syntax.
1565 while (StartOp < e) {
1566 const MachineOperand &MO = getOperand(StartOp);
1567 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1568 break;
1569
1570 if (StartOp != 0)
1571 OS << ", ";
1572
1573 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1574 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1575 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1576 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1577 ++StartOp;
1578 }
1579
1580 if (StartOp != 0)
1581 OS << " = ";
1582
1583 if (getFlag(MachineInstr::FrameSetup))
1584 OS << "frame-setup ";
1585 if (getFlag(MachineInstr::FrameDestroy))
1586 OS << "frame-destroy ";
1587 if (getFlag(MachineInstr::FmNoNans))
1588 OS << "nnan ";
1589 if (getFlag(MachineInstr::FmNoInfs))
1590 OS << "ninf ";
1591 if (getFlag(MachineInstr::FmNsz))
1592 OS << "nsz ";
1593 if (getFlag(MachineInstr::FmArcp))
1594 OS << "arcp ";
1595 if (getFlag(MachineInstr::FmContract))
1596 OS << "contract ";
1597 if (getFlag(MachineInstr::FmAfn))
1598 OS << "afn ";
1599 if (getFlag(MachineInstr::FmReassoc))
1600 OS << "reassoc ";
1601 if (getFlag(MachineInstr::NoUWrap))
1602 OS << "nuw ";
1603 if (getFlag(MachineInstr::NoSWrap))
1604 OS << "nsw ";
1605 if (getFlag(MachineInstr::IsExact))
1606 OS << "exact ";
1607 if (getFlag(MachineInstr::NoFPExcept))
1608 OS << "nofpexcept ";
1609 if (getFlag(MachineInstr::NoMerge))
1610 OS << "nomerge ";
1611
1612 // Print the opcode name.
1613 if (TII)
1614 OS << TII->getName(getOpcode());
1615 else
1616 OS << "UNKNOWN";
1617
1618 if (SkipOpers)
1619 return;
1620
1621 // Print the rest of the operands.
1622 bool FirstOp = true;
1623 unsigned AsmDescOp = ~0u;
1624 unsigned AsmOpCount = 0;
1625
1626 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1627 // Print asm string.
1628 OS << " ";
1629 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1630 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1631 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1632 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1633 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1634 IntrinsicInfo);
1635
1636 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1637 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1638 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1639 OS << " [sideeffect]";
1640 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1641 OS << " [mayload]";
1642 if (ExtraInfo & InlineAsm::Extra_MayStore)
1643 OS << " [maystore]";
1644 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1645 OS << " [isconvergent]";
1646 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1647 OS << " [alignstack]";
1648 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1649 OS << " [attdialect]";
1650 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1651 OS << " [inteldialect]";
1652
1653 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1654 FirstOp = false;
1655 }
1656
1657 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1658 const MachineOperand &MO = getOperand(i);
1659
1660 if (FirstOp) FirstOp = false; else OS << ",";
1661 OS << " ";
1662
1663 if (isDebugValue() && MO.isMetadata()) {
1664 // Pretty print DBG_VALUE* instructions.
1665 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1666 if (DIV && !DIV->getName().empty())
1667 OS << "!\"" << DIV->getName() << '\"';
1668 else {
1669 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1670 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1671 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1672 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1673 }
1674 } else if (isDebugLabel() && MO.isMetadata()) {
1675 // Pretty print DBG_LABEL instructions.
1676 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1677 if (DIL && !DIL->getName().empty())
1678 OS << "\"" << DIL->getName() << '\"';
1679 else {
1680 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1681 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1682 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1683 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1684 }
1685 } else if (i == AsmDescOp && MO.isImm()) {
1686 // Pretty print the inline asm operand descriptor.
1687 OS << '$' << AsmOpCount++;
1688 unsigned Flag = MO.getImm();
1689 OS << ":[";
1690 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1691
1692 unsigned RCID = 0;
1693 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1694 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1695 if (TRI) {
1696 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1697 } else
1698 OS << ":RC" << RCID;
1699 }
1700
1701 if (InlineAsm::isMemKind(Flag)) {
1702 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1703 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1704 }
1705
1706 unsigned TiedTo = 0;
1707 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1708 OS << " tiedto:$" << TiedTo;
1709
1710 OS << ']';
1711
1712 // Compute the index of the next operand descriptor.
1713 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1714 } else {
1715 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1716 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1717 if (MO.isImm() && isOperandSubregIdx(i))
1718 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1719 else
1720 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1721 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1722 }
1723 }
1724
1725 // Print any optional symbols attached to this instruction as-if they were
1726 // operands.
1727 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1728 if (!FirstOp) {
1729 FirstOp = false;
1730 OS << ',';
1731 }
1732 OS << " pre-instr-symbol ";
1733 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1734 }
1735 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1736 if (!FirstOp) {
1737 FirstOp = false;
1738 OS << ',';
1739 }
1740 OS << " post-instr-symbol ";
1741 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1742 }
1743 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1744 if (!FirstOp) {
1745 FirstOp = false;
1746 OS << ',';
1747 }
1748 OS << " heap-alloc-marker ";
1749 HeapAllocMarker->printAsOperand(OS, MST);
1750 }
1751
1752 if (DebugInstrNum) {
1753 if (!FirstOp)
1754 OS << ",";
1755 OS << " debug-instr-number " << DebugInstrNum;
1756 }
1757
1758 if (!SkipDebugLoc) {
1759 if (const DebugLoc &DL = getDebugLoc()) {
1760 if (!FirstOp)
1761 OS << ',';
1762 OS << " debug-location ";
1763 DL->printAsOperand(OS, MST);
1764 }
1765 }
1766
1767 if (!memoperands_empty()) {
1768 SmallVector<StringRef, 0> SSNs;
1769 const LLVMContext *Context = nullptr;
1770 std::unique_ptr<LLVMContext> CtxPtr;
1771 const MachineFrameInfo *MFI = nullptr;
1772 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1773 MFI = &MF->getFrameInfo();
1774 Context = &MF->getFunction().getContext();
1775 } else {
1776 CtxPtr = std::make_unique<LLVMContext>();
1777 Context = CtxPtr.get();
1778 }
1779
1780 OS << " :: ";
1781 bool NeedComma = false;
1782 for (const MachineMemOperand *Op : memoperands()) {
1783 if (NeedComma)
1784 OS << ", ";
1785 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1786 NeedComma = true;
1787 }
1788 }
1789
1790 if (SkipDebugLoc)
1791 return;
1792
1793 bool HaveSemi = false;
1794
1795 // Print debug location information.
1796 if (const DebugLoc &DL = getDebugLoc()) {
1797 if (!HaveSemi) {
1798 OS << ';';
1799 HaveSemi = true;
1800 }
1801 OS << ' ';
1802 DL.print(OS);
1803 }
1804
1805 // Print extra comments for DEBUG_VALUE.
1806 if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1807 if (!HaveSemi) {
1808 OS << ";";
1809 HaveSemi = true;
1810 }
1811 auto *DV = getDebugVariable();
1812 OS << " line no:" << DV->getLine();
1813 if (isIndirectDebugValue())
1814 OS << " indirect";
1815 }
1816 // TODO: DBG_LABEL
1817
1818 if (AddNewLine)
1819 OS << '\n';
1820 }
1821
addRegisterKilled(Register IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1822 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1823 const TargetRegisterInfo *RegInfo,
1824 bool AddIfNotFound) {
1825 bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1826 bool hasAliases = isPhysReg &&
1827 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1828 bool Found = false;
1829 SmallVector<unsigned,4> DeadOps;
1830 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1831 MachineOperand &MO = getOperand(i);
1832 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1833 continue;
1834
1835 // DEBUG_VALUE nodes do not contribute to code generation and should
1836 // always be ignored. Failure to do so may result in trying to modify
1837 // KILL flags on DEBUG_VALUE nodes.
1838 if (MO.isDebug())
1839 continue;
1840
1841 Register Reg = MO.getReg();
1842 if (!Reg)
1843 continue;
1844
1845 if (Reg == IncomingReg) {
1846 if (!Found) {
1847 if (MO.isKill())
1848 // The register is already marked kill.
1849 return true;
1850 if (isPhysReg && isRegTiedToDefOperand(i))
1851 // Two-address uses of physregs must not be marked kill.
1852 return true;
1853 MO.setIsKill();
1854 Found = true;
1855 }
1856 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1857 // A super-register kill already exists.
1858 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1859 return true;
1860 if (RegInfo->isSubRegister(IncomingReg, Reg))
1861 DeadOps.push_back(i);
1862 }
1863 }
1864
1865 // Trim unneeded kill operands.
1866 while (!DeadOps.empty()) {
1867 unsigned OpIdx = DeadOps.back();
1868 if (getOperand(OpIdx).isImplicit() &&
1869 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1870 removeOperand(OpIdx);
1871 else
1872 getOperand(OpIdx).setIsKill(false);
1873 DeadOps.pop_back();
1874 }
1875
1876 // If not found, this means an alias of one of the operands is killed. Add a
1877 // new implicit operand if required.
1878 if (!Found && AddIfNotFound) {
1879 addOperand(MachineOperand::CreateReg(IncomingReg,
1880 false /*IsDef*/,
1881 true /*IsImp*/,
1882 true /*IsKill*/));
1883 return true;
1884 }
1885 return Found;
1886 }
1887
clearRegisterKills(Register Reg,const TargetRegisterInfo * RegInfo)1888 void MachineInstr::clearRegisterKills(Register Reg,
1889 const TargetRegisterInfo *RegInfo) {
1890 if (!Register::isPhysicalRegister(Reg))
1891 RegInfo = nullptr;
1892 for (MachineOperand &MO : operands()) {
1893 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1894 continue;
1895 Register OpReg = MO.getReg();
1896 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1897 MO.setIsKill(false);
1898 }
1899 }
1900
addRegisterDead(Register Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1901 bool MachineInstr::addRegisterDead(Register Reg,
1902 const TargetRegisterInfo *RegInfo,
1903 bool AddIfNotFound) {
1904 bool isPhysReg = Register::isPhysicalRegister(Reg);
1905 bool hasAliases = isPhysReg &&
1906 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1907 bool Found = false;
1908 SmallVector<unsigned,4> DeadOps;
1909 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1910 MachineOperand &MO = getOperand(i);
1911 if (!MO.isReg() || !MO.isDef())
1912 continue;
1913 Register MOReg = MO.getReg();
1914 if (!MOReg)
1915 continue;
1916
1917 if (MOReg == Reg) {
1918 MO.setIsDead();
1919 Found = true;
1920 } else if (hasAliases && MO.isDead() &&
1921 Register::isPhysicalRegister(MOReg)) {
1922 // There exists a super-register that's marked dead.
1923 if (RegInfo->isSuperRegister(Reg, MOReg))
1924 return true;
1925 if (RegInfo->isSubRegister(Reg, MOReg))
1926 DeadOps.push_back(i);
1927 }
1928 }
1929
1930 // Trim unneeded dead operands.
1931 while (!DeadOps.empty()) {
1932 unsigned OpIdx = DeadOps.back();
1933 if (getOperand(OpIdx).isImplicit() &&
1934 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1935 removeOperand(OpIdx);
1936 else
1937 getOperand(OpIdx).setIsDead(false);
1938 DeadOps.pop_back();
1939 }
1940
1941 // If not found, this means an alias of one of the operands is dead. Add a
1942 // new implicit operand if required.
1943 if (Found || !AddIfNotFound)
1944 return Found;
1945
1946 addOperand(MachineOperand::CreateReg(Reg,
1947 true /*IsDef*/,
1948 true /*IsImp*/,
1949 false /*IsKill*/,
1950 true /*IsDead*/));
1951 return true;
1952 }
1953
clearRegisterDeads(Register Reg)1954 void MachineInstr::clearRegisterDeads(Register Reg) {
1955 for (MachineOperand &MO : operands()) {
1956 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1957 continue;
1958 MO.setIsDead(false);
1959 }
1960 }
1961
setRegisterDefReadUndef(Register Reg,bool IsUndef)1962 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1963 for (MachineOperand &MO : operands()) {
1964 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1965 continue;
1966 MO.setIsUndef(IsUndef);
1967 }
1968 }
1969
addRegisterDefined(Register Reg,const TargetRegisterInfo * RegInfo)1970 void MachineInstr::addRegisterDefined(Register Reg,
1971 const TargetRegisterInfo *RegInfo) {
1972 if (Register::isPhysicalRegister(Reg)) {
1973 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1974 if (MO)
1975 return;
1976 } else {
1977 for (const MachineOperand &MO : operands()) {
1978 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1979 MO.getSubReg() == 0)
1980 return;
1981 }
1982 }
1983 addOperand(MachineOperand::CreateReg(Reg,
1984 true /*IsDef*/,
1985 true /*IsImp*/));
1986 }
1987
setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,const TargetRegisterInfo & TRI)1988 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1989 const TargetRegisterInfo &TRI) {
1990 bool HasRegMask = false;
1991 for (MachineOperand &MO : operands()) {
1992 if (MO.isRegMask()) {
1993 HasRegMask = true;
1994 continue;
1995 }
1996 if (!MO.isReg() || !MO.isDef()) continue;
1997 Register Reg = MO.getReg();
1998 if (!Reg.isPhysical())
1999 continue;
2000 // If there are no uses, including partial uses, the def is dead.
2001 if (llvm::none_of(UsedRegs,
2002 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2003 MO.setIsDead();
2004 }
2005
2006 // This is a call with a register mask operand.
2007 // Mask clobbers are always dead, so add defs for the non-dead defines.
2008 if (HasRegMask)
2009 for (const Register &UsedReg : UsedRegs)
2010 addRegisterDefined(UsedReg, &TRI);
2011 }
2012
2013 unsigned
getHashValue(const MachineInstr * const & MI)2014 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2015 // Build up a buffer of hash code components.
2016 SmallVector<size_t, 16> HashComponents;
2017 HashComponents.reserve(MI->getNumOperands() + 1);
2018 HashComponents.push_back(MI->getOpcode());
2019 for (const MachineOperand &MO : MI->operands()) {
2020 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2021 continue; // Skip virtual register defs.
2022
2023 HashComponents.push_back(hash_value(MO));
2024 }
2025 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2026 }
2027
emitError(StringRef Msg) const2028 void MachineInstr::emitError(StringRef Msg) const {
2029 // Find the source location cookie.
2030 uint64_t LocCookie = 0;
2031 const MDNode *LocMD = nullptr;
2032 for (unsigned i = getNumOperands(); i != 0; --i) {
2033 if (getOperand(i-1).isMetadata() &&
2034 (LocMD = getOperand(i-1).getMetadata()) &&
2035 LocMD->getNumOperands() != 0) {
2036 if (const ConstantInt *CI =
2037 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2038 LocCookie = CI->getZExtValue();
2039 break;
2040 }
2041 }
2042 }
2043
2044 if (const MachineBasicBlock *MBB = getParent())
2045 if (const MachineFunction *MF = MBB->getParent())
2046 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2047 report_fatal_error(Msg);
2048 }
2049
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2050 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2051 const MCInstrDesc &MCID, bool IsIndirect,
2052 Register Reg, const MDNode *Variable,
2053 const MDNode *Expr) {
2054 assert(isa<DILocalVariable>(Variable) && "not a variable");
2055 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2056 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2057 "Expected inlined-at fields to agree");
2058 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2059 if (IsIndirect)
2060 MIB.addImm(0U);
2061 else
2062 MIB.addReg(0U);
2063 return MIB.addMetadata(Variable).addMetadata(Expr);
2064 }
2065
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,const MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2066 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2067 const MCInstrDesc &MCID, bool IsIndirect,
2068 const MachineOperand &MO,
2069 const MDNode *Variable, const MDNode *Expr) {
2070 assert(isa<DILocalVariable>(Variable) && "not a variable");
2071 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2072 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2073 "Expected inlined-at fields to agree");
2074 if (MO.isReg())
2075 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2076
2077 auto MIB = BuildMI(MF, DL, MCID).add(MO);
2078 if (IsIndirect)
2079 MIB.addImm(0U);
2080 else
2081 MIB.addReg(0U);
2082 return MIB.addMetadata(Variable).addMetadata(Expr);
2083 }
2084
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,ArrayRef<MachineOperand> MOs,const MDNode * Variable,const MDNode * Expr)2085 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2086 const MCInstrDesc &MCID, bool IsIndirect,
2087 ArrayRef<MachineOperand> MOs,
2088 const MDNode *Variable, const MDNode *Expr) {
2089 assert(isa<DILocalVariable>(Variable) && "not a variable");
2090 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2091 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2092 "Expected inlined-at fields to agree");
2093 if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2094 return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2095
2096 auto MIB = BuildMI(MF, DL, MCID);
2097 MIB.addMetadata(Variable).addMetadata(Expr);
2098 for (const MachineOperand &MO : MOs)
2099 if (MO.isReg())
2100 MIB.addReg(MO.getReg());
2101 else
2102 MIB.add(MO);
2103 return MIB;
2104 }
2105
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2106 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2107 MachineBasicBlock::iterator I,
2108 const DebugLoc &DL, const MCInstrDesc &MCID,
2109 bool IsIndirect, Register Reg,
2110 const MDNode *Variable, const MDNode *Expr) {
2111 MachineFunction &MF = *BB.getParent();
2112 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2113 BB.insert(I, MI);
2114 return MachineInstrBuilder(MF, MI);
2115 }
2116
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2117 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2118 MachineBasicBlock::iterator I,
2119 const DebugLoc &DL, const MCInstrDesc &MCID,
2120 bool IsIndirect, MachineOperand &MO,
2121 const MDNode *Variable, const MDNode *Expr) {
2122 MachineFunction &MF = *BB.getParent();
2123 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2124 BB.insert(I, MI);
2125 return MachineInstrBuilder(MF, *MI);
2126 }
2127
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,ArrayRef<MachineOperand> MOs,const MDNode * Variable,const MDNode * Expr)2128 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2129 MachineBasicBlock::iterator I,
2130 const DebugLoc &DL, const MCInstrDesc &MCID,
2131 bool IsIndirect, ArrayRef<MachineOperand> MOs,
2132 const MDNode *Variable, const MDNode *Expr) {
2133 MachineFunction &MF = *BB.getParent();
2134 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2135 BB.insert(I, MI);
2136 return MachineInstrBuilder(MF, *MI);
2137 }
2138
2139 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2140 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2141 static const DIExpression *
computeExprForSpill(const MachineInstr & MI,SmallVectorImpl<const MachineOperand * > & SpilledOperands)2142 computeExprForSpill(const MachineInstr &MI,
2143 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2144 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2145 "Expected inlined-at fields to agree");
2146
2147 const DIExpression *Expr = MI.getDebugExpression();
2148 if (MI.isIndirectDebugValue()) {
2149 assert(MI.getDebugOffset().getImm() == 0 &&
2150 "DBG_VALUE with nonzero offset");
2151 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2152 } else if (MI.isDebugValueList()) {
2153 // We will replace the spilled register with a frame index, so
2154 // immediately deref all references to the spilled register.
2155 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2156 for (const MachineOperand *Op : SpilledOperands) {
2157 unsigned OpIdx = MI.getDebugOperandIndex(Op);
2158 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2159 }
2160 }
2161 return Expr;
2162 }
computeExprForSpill(const MachineInstr & MI,Register SpillReg)2163 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2164 Register SpillReg) {
2165 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2166 SmallVector<const MachineOperand *> SpillOperands;
2167 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2168 SpillOperands.push_back(&Op);
2169 return computeExprForSpill(MI, SpillOperands);
2170 }
2171
buildDbgValueForSpill(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const MachineInstr & Orig,int FrameIndex,Register SpillReg)2172 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2173 MachineBasicBlock::iterator I,
2174 const MachineInstr &Orig,
2175 int FrameIndex, Register SpillReg) {
2176 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2177 MachineInstrBuilder NewMI =
2178 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2179 // Non-Variadic Operands: Location, Offset, Variable, Expression
2180 // Variadic Operands: Variable, Expression, Locations...
2181 if (Orig.isNonListDebugValue())
2182 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2183 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2184 if (Orig.isDebugValueList()) {
2185 for (const MachineOperand &Op : Orig.debug_operands())
2186 if (Op.isReg() && Op.getReg() == SpillReg)
2187 NewMI.addFrameIndex(FrameIndex);
2188 else
2189 NewMI.add(MachineOperand(Op));
2190 }
2191 return NewMI;
2192 }
buildDbgValueForSpill(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const MachineInstr & Orig,int FrameIndex,SmallVectorImpl<const MachineOperand * > & SpilledOperands)2193 MachineInstr *llvm::buildDbgValueForSpill(
2194 MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2195 const MachineInstr &Orig, int FrameIndex,
2196 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2197 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2198 MachineInstrBuilder NewMI =
2199 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2200 // Non-Variadic Operands: Location, Offset, Variable, Expression
2201 // Variadic Operands: Variable, Expression, Locations...
2202 if (Orig.isNonListDebugValue())
2203 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2204 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2205 if (Orig.isDebugValueList()) {
2206 for (const MachineOperand &Op : Orig.debug_operands())
2207 if (is_contained(SpilledOperands, &Op))
2208 NewMI.addFrameIndex(FrameIndex);
2209 else
2210 NewMI.add(MachineOperand(Op));
2211 }
2212 return NewMI;
2213 }
2214
updateDbgValueForSpill(MachineInstr & Orig,int FrameIndex,Register Reg)2215 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2216 Register Reg) {
2217 const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2218 if (Orig.isNonListDebugValue())
2219 Orig.getDebugOffset().ChangeToImmediate(0U);
2220 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2221 Op.ChangeToFrameIndex(FrameIndex);
2222 Orig.getDebugExpressionOp().setMetadata(Expr);
2223 }
2224
collectDebugValues(SmallVectorImpl<MachineInstr * > & DbgValues)2225 void MachineInstr::collectDebugValues(
2226 SmallVectorImpl<MachineInstr *> &DbgValues) {
2227 MachineInstr &MI = *this;
2228 if (!MI.getOperand(0).isReg())
2229 return;
2230
2231 MachineBasicBlock::iterator DI = MI; ++DI;
2232 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2233 DI != DE; ++DI) {
2234 if (!DI->isDebugValue())
2235 return;
2236 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2237 DbgValues.push_back(&*DI);
2238 }
2239 }
2240
changeDebugValuesDefReg(Register Reg)2241 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2242 // Collect matching debug values.
2243 SmallVector<MachineInstr *, 2> DbgValues;
2244
2245 if (!getOperand(0).isReg())
2246 return;
2247
2248 Register DefReg = getOperand(0).getReg();
2249 auto *MRI = getRegInfo();
2250 for (auto &MO : MRI->use_operands(DefReg)) {
2251 auto *DI = MO.getParent();
2252 if (!DI->isDebugValue())
2253 continue;
2254 if (DI->hasDebugOperandForReg(DefReg)) {
2255 DbgValues.push_back(DI);
2256 }
2257 }
2258
2259 // Propagate Reg to debug value instructions.
2260 for (auto *DBI : DbgValues)
2261 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2262 Op.setReg(Reg);
2263 }
2264
2265 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2266
getSpillSlotSize(const MMOList & Accesses,const MachineFrameInfo & MFI)2267 static unsigned getSpillSlotSize(const MMOList &Accesses,
2268 const MachineFrameInfo &MFI) {
2269 unsigned Size = 0;
2270 for (const auto *A : Accesses)
2271 if (MFI.isSpillSlotObjectIndex(
2272 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2273 ->getFrameIndex()))
2274 Size += A->getSize();
2275 return Size;
2276 }
2277
2278 Optional<unsigned>
getSpillSize(const TargetInstrInfo * TII) const2279 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2280 int FI;
2281 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2282 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2283 if (MFI.isSpillSlotObjectIndex(FI))
2284 return (*memoperands_begin())->getSize();
2285 }
2286 return None;
2287 }
2288
2289 Optional<unsigned>
getFoldedSpillSize(const TargetInstrInfo * TII) const2290 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2291 MMOList Accesses;
2292 if (TII->hasStoreToStackSlot(*this, Accesses))
2293 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2294 return None;
2295 }
2296
2297 Optional<unsigned>
getRestoreSize(const TargetInstrInfo * TII) const2298 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2299 int FI;
2300 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2301 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2302 if (MFI.isSpillSlotObjectIndex(FI))
2303 return (*memoperands_begin())->getSize();
2304 }
2305 return None;
2306 }
2307
2308 Optional<unsigned>
getFoldedRestoreSize(const TargetInstrInfo * TII) const2309 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2310 MMOList Accesses;
2311 if (TII->hasLoadFromStackSlot(*this, Accesses))
2312 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2313 return None;
2314 }
2315
getDebugInstrNum()2316 unsigned MachineInstr::getDebugInstrNum() {
2317 if (DebugInstrNum == 0)
2318 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2319 return DebugInstrNum;
2320 }
2321
getDebugInstrNum(MachineFunction & MF)2322 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2323 if (DebugInstrNum == 0)
2324 DebugInstrNum = MF.getNewDebugInstrNum();
2325 return DebugInstrNum;
2326 }
2327