1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297   }
298 }
299 
300 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
301 /// fewer operand than it started with.
302 ///
303 void MachineInstr::RemoveOperand(unsigned OpNo) {
304   assert(OpNo < getNumOperands() && "Invalid operand number");
305   untieRegOperand(OpNo);
306 
307 #ifndef NDEBUG
308   // Moving tied operands would break the ties.
309   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
310     if (Operands[i].isReg())
311       assert(!Operands[i].isTied() && "Cannot move tied operands");
312 #endif
313 
314   MachineRegisterInfo *MRI = getRegInfo();
315   if (MRI && Operands[OpNo].isReg())
316     MRI->removeRegOperandFromUseList(Operands + OpNo);
317 
318   // Don't call the MachineOperand destructor. A lot of this code depends on
319   // MachineOperand having a trivial destructor anyway, and adding a call here
320   // wouldn't make it 'destructor-correct'.
321 
322   if (unsigned N = NumOperands - 1 - OpNo)
323     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
324   --NumOperands;
325 }
326 
327 void MachineInstr::setExtraInfo(MachineFunction &MF,
328                                 ArrayRef<MachineMemOperand *> MMOs,
329                                 MCSymbol *PreInstrSymbol,
330                                 MCSymbol *PostInstrSymbol,
331                                 MDNode *HeapAllocMarker) {
332   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
333   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
334   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
335   int NumPointers =
336       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
337 
338   // Drop all extra info if there is none.
339   if (NumPointers <= 0) {
340     Info.clear();
341     return;
342   }
343 
344   // If more than one pointer, then store out of line. Store heap alloc markers
345   // out of line because PointerSumType cannot hold more than 4 tag types with
346   // 32-bit pointers.
347   // FIXME: Maybe we should make the symbols in the extra info mutable?
348   else if (NumPointers > 1 || HasHeapAllocMarker) {
349     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
350         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
351     return;
352   }
353 
354   // Otherwise store the single pointer inline.
355   if (HasPreInstrSymbol)
356     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
357   else if (HasPostInstrSymbol)
358     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
359   else
360     Info.set<EIIK_MMO>(MMOs[0]);
361 }
362 
363 void MachineInstr::dropMemRefs(MachineFunction &MF) {
364   if (memoperands_empty())
365     return;
366 
367   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368                getHeapAllocMarker());
369 }
370 
371 void MachineInstr::setMemRefs(MachineFunction &MF,
372                               ArrayRef<MachineMemOperand *> MMOs) {
373   if (MMOs.empty()) {
374     dropMemRefs(MF);
375     return;
376   }
377 
378   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
379                getHeapAllocMarker());
380 }
381 
382 void MachineInstr::addMemOperand(MachineFunction &MF,
383                                  MachineMemOperand *MO) {
384   SmallVector<MachineMemOperand *, 2> MMOs;
385   MMOs.append(memoperands_begin(), memoperands_end());
386   MMOs.push_back(MO);
387   setMemRefs(MF, MMOs);
388 }
389 
390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391   if (this == &MI)
392     // Nothing to do for a self-clone!
393     return;
394 
395   assert(&MF == MI.getMF() &&
396          "Invalid machine functions when cloning memory refrences!");
397   // See if we can just steal the extra info already allocated for the
398   // instruction. We can do this whenever the pre- and post-instruction symbols
399   // are the same (including null).
400   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
403     Info = MI.Info;
404     return;
405   }
406 
407   // Otherwise, fall back on a copy-based clone.
408   setMemRefs(MF, MI.memoperands());
409 }
410 
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
412 /// identical.
413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
414                              ArrayRef<MachineMemOperand *> RHS) {
415   if (LHS.size() != RHS.size())
416     return false;
417 
418   auto LHSPointees = make_pointee_range(LHS);
419   auto RHSPointees = make_pointee_range(RHS);
420   return std::equal(LHSPointees.begin(), LHSPointees.end(),
421                     RHSPointees.begin());
422 }
423 
424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
425                                       ArrayRef<const MachineInstr *> MIs) {
426   // Try handling easy numbers of MIs with simpler mechanisms.
427   if (MIs.empty()) {
428     dropMemRefs(MF);
429     return;
430   }
431   if (MIs.size() == 1) {
432     cloneMemRefs(MF, *MIs[0]);
433     return;
434   }
435   // Because an empty memoperands list provides *no* information and must be
436   // handled conservatively (assuming the instruction can do anything), the only
437   // way to merge with it is to drop all other memoperands.
438   if (MIs[0]->memoperands_empty()) {
439     dropMemRefs(MF);
440     return;
441   }
442 
443   // Handle the general case.
444   SmallVector<MachineMemOperand *, 2> MergedMMOs;
445   // Start with the first instruction.
446   assert(&MF == MIs[0]->getMF() &&
447          "Invalid machine functions when cloning memory references!");
448   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
449   // Now walk all the other instructions and accumulate any different MMOs.
450   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
451     assert(&MF == MI.getMF() &&
452            "Invalid machine functions when cloning memory references!");
453 
454     // Skip MIs with identical operands to the first. This is a somewhat
455     // arbitrary hack but will catch common cases without being quadratic.
456     // TODO: We could fully implement merge semantics here if needed.
457     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
458       continue;
459 
460     // Because an empty memoperands list provides *no* information and must be
461     // handled conservatively (assuming the instruction can do anything), the
462     // only way to merge with it is to drop all other memoperands.
463     if (MI.memoperands_empty()) {
464       dropMemRefs(MF);
465       return;
466     }
467 
468     // Otherwise accumulate these into our temporary buffer of the merged state.
469     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470   }
471 
472   setMemRefs(MF, MergedMMOs);
473 }
474 
475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
476   // Do nothing if old and new symbols are the same.
477   if (Symbol == getPreInstrSymbol())
478     return;
479 
480   // If there was only one symbol and we're removing it, just clear info.
481   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
482     Info.clear();
483     return;
484   }
485 
486   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
487                getHeapAllocMarker());
488 }
489 
490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491   // Do nothing if old and new symbols are the same.
492   if (Symbol == getPostInstrSymbol())
493     return;
494 
495   // If there was only one symbol and we're removing it, just clear info.
496   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497     Info.clear();
498     return;
499   }
500 
501   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
502                getHeapAllocMarker());
503 }
504 
505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
506   // Do nothing if old and new symbols are the same.
507   if (Marker == getHeapAllocMarker())
508     return;
509 
510   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
511                Marker);
512 }
513 
514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
515                                      const MachineInstr &MI) {
516   if (this == &MI)
517     // Nothing to do for a self-clone!
518     return;
519 
520   assert(&MF == MI.getMF() &&
521          "Invalid machine functions when cloning instruction symbols!");
522 
523   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
524   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
525   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
526 }
527 
528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
529   // For now, the just return the union of the flags. If the flags get more
530   // complicated over time, we might need more logic here.
531   return getFlags() | Other.getFlags();
532 }
533 
534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
535   uint16_t MIFlags = 0;
536   // Copy the wrapping flags.
537   if (const OverflowingBinaryOperator *OB =
538           dyn_cast<OverflowingBinaryOperator>(&I)) {
539     if (OB->hasNoSignedWrap())
540       MIFlags |= MachineInstr::MIFlag::NoSWrap;
541     if (OB->hasNoUnsignedWrap())
542       MIFlags |= MachineInstr::MIFlag::NoUWrap;
543   }
544 
545   // Copy the exact flag.
546   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
547     if (PE->isExact())
548       MIFlags |= MachineInstr::MIFlag::IsExact;
549 
550   // Copy the fast-math flags.
551   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
552     const FastMathFlags Flags = FP->getFastMathFlags();
553     if (Flags.noNaNs())
554       MIFlags |= MachineInstr::MIFlag::FmNoNans;
555     if (Flags.noInfs())
556       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
557     if (Flags.noSignedZeros())
558       MIFlags |= MachineInstr::MIFlag::FmNsz;
559     if (Flags.allowReciprocal())
560       MIFlags |= MachineInstr::MIFlag::FmArcp;
561     if (Flags.allowContract())
562       MIFlags |= MachineInstr::MIFlag::FmContract;
563     if (Flags.approxFunc())
564       MIFlags |= MachineInstr::MIFlag::FmAfn;
565     if (Flags.allowReassoc())
566       MIFlags |= MachineInstr::MIFlag::FmReassoc;
567   }
568 
569   return MIFlags;
570 }
571 
572 void MachineInstr::copyIRFlags(const Instruction &I) {
573   Flags = copyFlagsFromInstruction(I);
574 }
575 
576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
577   assert(!isBundledWithPred() && "Must be called on bundle header");
578   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
579     if (MII->getDesc().getFlags() & Mask) {
580       if (Type == AnyInBundle)
581         return true;
582     } else {
583       if (Type == AllInBundle && !MII->isBundle())
584         return false;
585     }
586     // This was the last instruction in the bundle.
587     if (!MII->isBundledWithSucc())
588       return Type == AllInBundle;
589   }
590 }
591 
592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
593                                  MICheckType Check) const {
594   // If opcodes or number of operands are not the same then the two
595   // instructions are obviously not identical.
596   if (Other.getOpcode() != getOpcode() ||
597       Other.getNumOperands() != getNumOperands())
598     return false;
599 
600   if (isBundle()) {
601     // We have passed the test above that both instructions have the same
602     // opcode, so we know that both instructions are bundles here. Let's compare
603     // MIs inside the bundle.
604     assert(Other.isBundle() && "Expected that both instructions are bundles.");
605     MachineBasicBlock::const_instr_iterator I1 = getIterator();
606     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
607     // Loop until we analysed the last intruction inside at least one of the
608     // bundles.
609     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
610       ++I1;
611       ++I2;
612       if (!I1->isIdenticalTo(*I2, Check))
613         return false;
614     }
615     // If we've reached the end of just one of the two bundles, but not both,
616     // the instructions are not identical.
617     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
618       return false;
619   }
620 
621   // Check operands to make sure they match.
622   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
623     const MachineOperand &MO = getOperand(i);
624     const MachineOperand &OMO = Other.getOperand(i);
625     if (!MO.isReg()) {
626       if (!MO.isIdenticalTo(OMO))
627         return false;
628       continue;
629     }
630 
631     // Clients may or may not want to ignore defs when testing for equality.
632     // For example, machine CSE pass only cares about finding common
633     // subexpressions, so it's safe to ignore virtual register defs.
634     if (MO.isDef()) {
635       if (Check == IgnoreDefs)
636         continue;
637       else if (Check == IgnoreVRegDefs) {
638         if (!Register::isVirtualRegister(MO.getReg()) ||
639             !Register::isVirtualRegister(OMO.getReg()))
640           if (!MO.isIdenticalTo(OMO))
641             return false;
642       } else {
643         if (!MO.isIdenticalTo(OMO))
644           return false;
645         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
646           return false;
647       }
648     } else {
649       if (!MO.isIdenticalTo(OMO))
650         return false;
651       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
652         return false;
653     }
654   }
655   // If DebugLoc does not match then two debug instructions are not identical.
656   if (isDebugInstr())
657     if (getDebugLoc() && Other.getDebugLoc() &&
658         getDebugLoc() != Other.getDebugLoc())
659       return false;
660   return true;
661 }
662 
663 const MachineFunction *MachineInstr::getMF() const {
664   return getParent()->getParent();
665 }
666 
667 MachineInstr *MachineInstr::removeFromParent() {
668   assert(getParent() && "Not embedded in a basic block!");
669   return getParent()->remove(this);
670 }
671 
672 MachineInstr *MachineInstr::removeFromBundle() {
673   assert(getParent() && "Not embedded in a basic block!");
674   return getParent()->remove_instr(this);
675 }
676 
677 void MachineInstr::eraseFromParent() {
678   assert(getParent() && "Not embedded in a basic block!");
679   getParent()->erase(this);
680 }
681 
682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683   assert(getParent() && "Not embedded in a basic block!");
684   MachineBasicBlock *MBB = getParent();
685   MachineFunction *MF = MBB->getParent();
686   assert(MF && "Not embedded in a function!");
687 
688   MachineInstr *MI = (MachineInstr *)this;
689   MachineRegisterInfo &MRI = MF->getRegInfo();
690 
691   for (const MachineOperand &MO : MI->operands()) {
692     if (!MO.isReg() || !MO.isDef())
693       continue;
694     Register Reg = MO.getReg();
695     if (!Reg.isVirtual())
696       continue;
697     MRI.markUsesInDebugValueAsUndef(Reg);
698   }
699   MI->eraseFromParent();
700 }
701 
702 void MachineInstr::eraseFromBundle() {
703   assert(getParent() && "Not embedded in a basic block!");
704   getParent()->erase_instr(this);
705 }
706 
707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
708   if (!isCall(Type))
709     return false;
710   switch (getOpcode()) {
711   case TargetOpcode::PATCHABLE_EVENT_CALL:
712   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
713   case TargetOpcode::PATCHPOINT:
714   case TargetOpcode::STACKMAP:
715   case TargetOpcode::STATEPOINT:
716   case TargetOpcode::FENTRY_CALL:
717     return false;
718   }
719   return true;
720 }
721 
722 bool MachineInstr::shouldUpdateCallSiteInfo() const {
723   if (isBundle())
724     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
725   return isCandidateForCallSiteEntry();
726 }
727 
728 unsigned MachineInstr::getNumExplicitOperands() const {
729   unsigned NumOperands = MCID->getNumOperands();
730   if (!MCID->isVariadic())
731     return NumOperands;
732 
733   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
734     const MachineOperand &MO = getOperand(I);
735     // The operands must always be in the following order:
736     // - explicit reg defs,
737     // - other explicit operands (reg uses, immediates, etc.),
738     // - implicit reg defs
739     // - implicit reg uses
740     if (MO.isReg() && MO.isImplicit())
741       break;
742     ++NumOperands;
743   }
744   return NumOperands;
745 }
746 
747 unsigned MachineInstr::getNumExplicitDefs() const {
748   unsigned NumDefs = MCID->getNumDefs();
749   if (!MCID->isVariadic())
750     return NumDefs;
751 
752   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
753     const MachineOperand &MO = getOperand(I);
754     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
755       break;
756     ++NumDefs;
757   }
758   return NumDefs;
759 }
760 
761 void MachineInstr::bundleWithPred() {
762   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
763   setFlag(BundledPred);
764   MachineBasicBlock::instr_iterator Pred = getIterator();
765   --Pred;
766   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
767   Pred->setFlag(BundledSucc);
768 }
769 
770 void MachineInstr::bundleWithSucc() {
771   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
772   setFlag(BundledSucc);
773   MachineBasicBlock::instr_iterator Succ = getIterator();
774   ++Succ;
775   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
776   Succ->setFlag(BundledPred);
777 }
778 
779 void MachineInstr::unbundleFromPred() {
780   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
781   clearFlag(BundledPred);
782   MachineBasicBlock::instr_iterator Pred = getIterator();
783   --Pred;
784   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
785   Pred->clearFlag(BundledSucc);
786 }
787 
788 void MachineInstr::unbundleFromSucc() {
789   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
790   clearFlag(BundledSucc);
791   MachineBasicBlock::instr_iterator Succ = getIterator();
792   ++Succ;
793   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
794   Succ->clearFlag(BundledPred);
795 }
796 
797 bool MachineInstr::isStackAligningInlineAsm() const {
798   if (isInlineAsm()) {
799     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
800     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
801       return true;
802   }
803   return false;
804 }
805 
806 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
807   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
808   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
809   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
810 }
811 
812 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
813                                        unsigned *GroupNo) const {
814   assert(isInlineAsm() && "Expected an inline asm instruction");
815   assert(OpIdx < getNumOperands() && "OpIdx out of range");
816 
817   // Ignore queries about the initial operands.
818   if (OpIdx < InlineAsm::MIOp_FirstOperand)
819     return -1;
820 
821   unsigned Group = 0;
822   unsigned NumOps;
823   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
824        i += NumOps) {
825     const MachineOperand &FlagMO = getOperand(i);
826     // If we reach the implicit register operands, stop looking.
827     if (!FlagMO.isImm())
828       return -1;
829     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
830     if (i + NumOps > OpIdx) {
831       if (GroupNo)
832         *GroupNo = Group;
833       return i;
834     }
835     ++Group;
836   }
837   return -1;
838 }
839 
840 const DILabel *MachineInstr::getDebugLabel() const {
841   assert(isDebugLabel() && "not a DBG_LABEL");
842   return cast<DILabel>(getOperand(0).getMetadata());
843 }
844 
845 const MachineOperand &MachineInstr::getDebugVariableOp() const {
846   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
847   return getOperand(2);
848 }
849 
850 MachineOperand &MachineInstr::getDebugVariableOp() {
851   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
852   return getOperand(2);
853 }
854 
855 const DILocalVariable *MachineInstr::getDebugVariable() const {
856   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
857   return cast<DILocalVariable>(getOperand(2).getMetadata());
858 }
859 
860 MachineOperand &MachineInstr::getDebugExpressionOp() {
861   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
862   return getOperand(3);
863 }
864 
865 const DIExpression *MachineInstr::getDebugExpression() const {
866   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
867   return cast<DIExpression>(getOperand(3).getMetadata());
868 }
869 
870 bool MachineInstr::isDebugEntryValue() const {
871   return isDebugValue() && getDebugExpression()->isEntryValue();
872 }
873 
874 const TargetRegisterClass*
875 MachineInstr::getRegClassConstraint(unsigned OpIdx,
876                                     const TargetInstrInfo *TII,
877                                     const TargetRegisterInfo *TRI) const {
878   assert(getParent() && "Can't have an MBB reference here!");
879   assert(getMF() && "Can't have an MF reference here!");
880   const MachineFunction &MF = *getMF();
881 
882   // Most opcodes have fixed constraints in their MCInstrDesc.
883   if (!isInlineAsm())
884     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
885 
886   if (!getOperand(OpIdx).isReg())
887     return nullptr;
888 
889   // For tied uses on inline asm, get the constraint from the def.
890   unsigned DefIdx;
891   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
892     OpIdx = DefIdx;
893 
894   // Inline asm stores register class constraints in the flag word.
895   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
896   if (FlagIdx < 0)
897     return nullptr;
898 
899   unsigned Flag = getOperand(FlagIdx).getImm();
900   unsigned RCID;
901   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
902        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
903        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
904       InlineAsm::hasRegClassConstraint(Flag, RCID))
905     return TRI->getRegClass(RCID);
906 
907   // Assume that all registers in a memory operand are pointers.
908   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
909     return TRI->getPointerRegClass(MF);
910 
911   return nullptr;
912 }
913 
914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
915     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
916     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
917   // Check every operands inside the bundle if we have
918   // been asked to.
919   if (ExploreBundle)
920     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
921          ++OpndIt)
922       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
923           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
924   else
925     // Otherwise, just check the current operands.
926     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
927       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
928   return CurRC;
929 }
930 
931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
932     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
933     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
934   assert(CurRC && "Invalid initial register class");
935   // Check if Reg is constrained by some of its use/def from MI.
936   const MachineOperand &MO = getOperand(OpIdx);
937   if (!MO.isReg() || MO.getReg() != Reg)
938     return CurRC;
939   // If yes, accumulate the constraints through the operand.
940   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
941 }
942 
943 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
944     unsigned OpIdx, const TargetRegisterClass *CurRC,
945     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
946   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
947   const MachineOperand &MO = getOperand(OpIdx);
948   assert(MO.isReg() &&
949          "Cannot get register constraints for non-register operand");
950   assert(CurRC && "Invalid initial register class");
951   if (unsigned SubIdx = MO.getSubReg()) {
952     if (OpRC)
953       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
954     else
955       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
956   } else if (OpRC)
957     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
958   return CurRC;
959 }
960 
961 /// Return the number of instructions inside the MI bundle, not counting the
962 /// header instruction.
963 unsigned MachineInstr::getBundleSize() const {
964   MachineBasicBlock::const_instr_iterator I = getIterator();
965   unsigned Size = 0;
966   while (I->isBundledWithSucc()) {
967     ++Size;
968     ++I;
969   }
970   return Size;
971 }
972 
973 /// Returns true if the MachineInstr has an implicit-use operand of exactly
974 /// the given register (not considering sub/super-registers).
975 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
976   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
977     const MachineOperand &MO = getOperand(i);
978     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
979       return true;
980   }
981   return false;
982 }
983 
984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
985 /// the specific register or -1 if it is not found. It further tightens
986 /// the search criteria to a use that kills the register if isKill is true.
987 int MachineInstr::findRegisterUseOperandIdx(
988     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
989   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
990     const MachineOperand &MO = getOperand(i);
991     if (!MO.isReg() || !MO.isUse())
992       continue;
993     Register MOReg = MO.getReg();
994     if (!MOReg)
995       continue;
996     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
997       if (!isKill || MO.isKill())
998         return i;
999   }
1000   return -1;
1001 }
1002 
1003 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1004 /// indicating if this instruction reads or writes Reg. This also considers
1005 /// partial defines.
1006 std::pair<bool,bool>
1007 MachineInstr::readsWritesVirtualRegister(Register Reg,
1008                                          SmallVectorImpl<unsigned> *Ops) const {
1009   bool PartDef = false; // Partial redefine.
1010   bool FullDef = false; // Full define.
1011   bool Use = false;
1012 
1013   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1014     const MachineOperand &MO = getOperand(i);
1015     if (!MO.isReg() || MO.getReg() != Reg)
1016       continue;
1017     if (Ops)
1018       Ops->push_back(i);
1019     if (MO.isUse())
1020       Use |= !MO.isUndef();
1021     else if (MO.getSubReg() && !MO.isUndef())
1022       // A partial def undef doesn't count as reading the register.
1023       PartDef = true;
1024     else
1025       FullDef = true;
1026   }
1027   // A partial redefine uses Reg unless there is also a full define.
1028   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1029 }
1030 
1031 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1032 /// the specified register or -1 if it is not found. If isDead is true, defs
1033 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1034 /// also checks if there is a def of a super-register.
1035 int
1036 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1037                                         const TargetRegisterInfo *TRI) const {
1038   bool isPhys = Register::isPhysicalRegister(Reg);
1039   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040     const MachineOperand &MO = getOperand(i);
1041     // Accept regmask operands when Overlap is set.
1042     // Ignore them when looking for a specific def operand (Overlap == false).
1043     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1044       return i;
1045     if (!MO.isReg() || !MO.isDef())
1046       continue;
1047     Register MOReg = MO.getReg();
1048     bool Found = (MOReg == Reg);
1049     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1050       if (Overlap)
1051         Found = TRI->regsOverlap(MOReg, Reg);
1052       else
1053         Found = TRI->isSubRegister(MOReg, Reg);
1054     }
1055     if (Found && (!isDead || MO.isDead()))
1056       return i;
1057   }
1058   return -1;
1059 }
1060 
1061 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1062 /// operand list that is used to represent the predicate. It returns -1 if
1063 /// none is found.
1064 int MachineInstr::findFirstPredOperandIdx() const {
1065   // Don't call MCID.findFirstPredOperandIdx() because this variant
1066   // is sometimes called on an instruction that's not yet complete, and
1067   // so the number of operands is less than the MCID indicates. In
1068   // particular, the PTX target does this.
1069   const MCInstrDesc &MCID = getDesc();
1070   if (MCID.isPredicable()) {
1071     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1072       if (MCID.OpInfo[i].isPredicate())
1073         return i;
1074   }
1075 
1076   return -1;
1077 }
1078 
1079 // MachineOperand::TiedTo is 4 bits wide.
1080 const unsigned TiedMax = 15;
1081 
1082 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1083 ///
1084 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1085 /// field. TiedTo can have these values:
1086 ///
1087 /// 0:              Operand is not tied to anything.
1088 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1089 /// TiedMax:        Tied to an operand >= TiedMax-1.
1090 ///
1091 /// The tied def must be one of the first TiedMax operands on a normal
1092 /// instruction. INLINEASM instructions allow more tied defs.
1093 ///
1094 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1095   MachineOperand &DefMO = getOperand(DefIdx);
1096   MachineOperand &UseMO = getOperand(UseIdx);
1097   assert(DefMO.isDef() && "DefIdx must be a def operand");
1098   assert(UseMO.isUse() && "UseIdx must be a use operand");
1099   assert(!DefMO.isTied() && "Def is already tied to another use");
1100   assert(!UseMO.isTied() && "Use is already tied to another def");
1101 
1102   if (DefIdx < TiedMax)
1103     UseMO.TiedTo = DefIdx + 1;
1104   else {
1105     // Inline asm can use the group descriptors to find tied operands,
1106     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1107     // but on normal instruction, the tied def must be within the first TiedMax
1108     // operands.
1109     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1110            "DefIdx out of range");
1111     UseMO.TiedTo = TiedMax;
1112   }
1113 
1114   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1115   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1116 }
1117 
1118 /// Given the index of a tied register operand, find the operand it is tied to.
1119 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1120 /// which must exist.
1121 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1122   const MachineOperand &MO = getOperand(OpIdx);
1123   assert(MO.isTied() && "Operand isn't tied");
1124 
1125   // Normally TiedTo is in range.
1126   if (MO.TiedTo < TiedMax)
1127     return MO.TiedTo - 1;
1128 
1129   // Uses on normal instructions can be out of range.
1130   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1131     // Normal tied defs must be in the 0..TiedMax-1 range.
1132     if (MO.isUse())
1133       return TiedMax - 1;
1134     // MO is a def. Search for the tied use.
1135     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1136       const MachineOperand &UseMO = getOperand(i);
1137       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1138         return i;
1139     }
1140     llvm_unreachable("Can't find tied use");
1141   }
1142 
1143   if (getOpcode() == TargetOpcode::STATEPOINT) {
1144     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1145     // on registers.
1146     StatepointOpers SO(this);
1147     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1148     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1149     unsigned NumDefs = getNumDefs();
1150     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1151       while (!getOperand(CurUseIdx).isReg())
1152         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1153       if (OpIdx == CurDefIdx)
1154         return CurUseIdx;
1155       if (OpIdx == CurUseIdx)
1156         return CurDefIdx;
1157       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1158     }
1159     llvm_unreachable("Can't find tied use");
1160   }
1161 
1162   // Now deal with inline asm by parsing the operand group descriptor flags.
1163   // Find the beginning of each operand group.
1164   SmallVector<unsigned, 8> GroupIdx;
1165   unsigned OpIdxGroup = ~0u;
1166   unsigned NumOps;
1167   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1168        i += NumOps) {
1169     const MachineOperand &FlagMO = getOperand(i);
1170     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1171     unsigned CurGroup = GroupIdx.size();
1172     GroupIdx.push_back(i);
1173     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1174     // OpIdx belongs to this operand group.
1175     if (OpIdx > i && OpIdx < i + NumOps)
1176       OpIdxGroup = CurGroup;
1177     unsigned TiedGroup;
1178     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1179       continue;
1180     // Operands in this group are tied to operands in TiedGroup which must be
1181     // earlier. Find the number of operands between the two groups.
1182     unsigned Delta = i - GroupIdx[TiedGroup];
1183 
1184     // OpIdx is a use tied to TiedGroup.
1185     if (OpIdxGroup == CurGroup)
1186       return OpIdx - Delta;
1187 
1188     // OpIdx is a def tied to this use group.
1189     if (OpIdxGroup == TiedGroup)
1190       return OpIdx + Delta;
1191   }
1192   llvm_unreachable("Invalid tied operand on inline asm");
1193 }
1194 
1195 /// clearKillInfo - Clears kill flags on all operands.
1196 ///
1197 void MachineInstr::clearKillInfo() {
1198   for (MachineOperand &MO : operands()) {
1199     if (MO.isReg() && MO.isUse())
1200       MO.setIsKill(false);
1201   }
1202 }
1203 
1204 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1205                                       unsigned SubIdx,
1206                                       const TargetRegisterInfo &RegInfo) {
1207   if (Register::isPhysicalRegister(ToReg)) {
1208     if (SubIdx)
1209       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1210     for (MachineOperand &MO : operands()) {
1211       if (!MO.isReg() || MO.getReg() != FromReg)
1212         continue;
1213       MO.substPhysReg(ToReg, RegInfo);
1214     }
1215   } else {
1216     for (MachineOperand &MO : operands()) {
1217       if (!MO.isReg() || MO.getReg() != FromReg)
1218         continue;
1219       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1220     }
1221   }
1222 }
1223 
1224 /// isSafeToMove - Return true if it is safe to move this instruction. If
1225 /// SawStore is set to true, it means that there is a store (or call) between
1226 /// the instruction's location and its intended destination.
1227 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1228   // Ignore stuff that we obviously can't move.
1229   //
1230   // Treat volatile loads as stores. This is not strictly necessary for
1231   // volatiles, but it is required for atomic loads. It is not allowed to move
1232   // a load across an atomic load with Ordering > Monotonic.
1233   if (mayStore() || isCall() || isPHI() ||
1234       (mayLoad() && hasOrderedMemoryRef())) {
1235     SawStore = true;
1236     return false;
1237   }
1238 
1239   if (isPosition() || isDebugInstr() || isTerminator() ||
1240       mayRaiseFPException() || hasUnmodeledSideEffects())
1241     return false;
1242 
1243   // See if this instruction does a load.  If so, we have to guarantee that the
1244   // loaded value doesn't change between the load and the its intended
1245   // destination. The check for isInvariantLoad gives the target the chance to
1246   // classify the load as always returning a constant, e.g. a constant pool
1247   // load.
1248   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1249     // Otherwise, this is a real load.  If there is a store between the load and
1250     // end of block, we can't move it.
1251     return !SawStore;
1252 
1253   return true;
1254 }
1255 
1256 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1257                                  bool UseTBAA, const MachineMemOperand *MMOa,
1258                                  const MachineMemOperand *MMOb) {
1259   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1260   // operates with MachineMemOperand offset with some important assumptions:
1261   //   - LLVM fundamentally assumes flat address spaces.
1262   //   - MachineOperand offset can *only* result from legalization and cannot
1263   //     affect queries other than the trivial case of overlap checking.
1264   //   - These offsets never wrap and never step outside of allocated objects.
1265   //   - There should never be any negative offsets here.
1266   //
1267   // FIXME: Modify API to hide this math from "user"
1268   // Even before we go to AA we can reason locally about some memory objects. It
1269   // can save compile time, and possibly catch some corner cases not currently
1270   // covered.
1271 
1272   int64_t OffsetA = MMOa->getOffset();
1273   int64_t OffsetB = MMOb->getOffset();
1274   int64_t MinOffset = std::min(OffsetA, OffsetB);
1275 
1276   uint64_t WidthA = MMOa->getSize();
1277   uint64_t WidthB = MMOb->getSize();
1278   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1279   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1280 
1281   const Value *ValA = MMOa->getValue();
1282   const Value *ValB = MMOb->getValue();
1283   bool SameVal = (ValA && ValB && (ValA == ValB));
1284   if (!SameVal) {
1285     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1286     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1287     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1288       return false;
1289     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1290       return false;
1291     if (PSVa && PSVb && (PSVa == PSVb))
1292       SameVal = true;
1293   }
1294 
1295   if (SameVal) {
1296     if (!KnownWidthA || !KnownWidthB)
1297       return true;
1298     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1299     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1300     return (MinOffset + LowWidth > MaxOffset);
1301   }
1302 
1303   if (!AA)
1304     return true;
1305 
1306   if (!ValA || !ValB)
1307     return true;
1308 
1309   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1310   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1311 
1312   int64_t OverlapA =
1313       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1314   int64_t OverlapB =
1315       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1316 
1317   AliasResult AAResult = AA->alias(
1318       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1319       MemoryLocation(ValB, OverlapB,
1320                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1321 
1322   return (AAResult != NoAlias);
1323 }
1324 
1325 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1326                             bool UseTBAA) const {
1327   const MachineFunction *MF = getMF();
1328   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1329   const MachineFrameInfo &MFI = MF->getFrameInfo();
1330 
1331   // Exclude call instruction which may alter the memory but can not be handled
1332   // by this function.
1333   if (isCall() || Other.isCall())
1334     return true;
1335 
1336   // If neither instruction stores to memory, they can't alias in any
1337   // meaningful way, even if they read from the same address.
1338   if (!mayStore() && !Other.mayStore())
1339     return false;
1340 
1341   // Both instructions must be memory operations to be able to alias.
1342   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1343     return false;
1344 
1345   // Let the target decide if memory accesses cannot possibly overlap.
1346   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1347     return false;
1348 
1349   // Memory operations without memory operands may access anything. Be
1350   // conservative and assume `MayAlias`.
1351   if (memoperands_empty() || Other.memoperands_empty())
1352     return true;
1353 
1354   // Skip if there are too many memory operands.
1355   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1356   if (NumChecks > TII->getMemOperandAACheckLimit())
1357     return true;
1358 
1359   // Check each pair of memory operands from both instructions, which can't
1360   // alias only if all pairs won't alias.
1361   for (auto *MMOa : memoperands())
1362     for (auto *MMOb : Other.memoperands())
1363       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1364         return true;
1365 
1366   return false;
1367 }
1368 
1369 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1370 /// or volatile memory reference, or if the information describing the memory
1371 /// reference is not available. Return false if it is known to have no ordered
1372 /// memory references.
1373 bool MachineInstr::hasOrderedMemoryRef() const {
1374   // An instruction known never to access memory won't have a volatile access.
1375   if (!mayStore() &&
1376       !mayLoad() &&
1377       !isCall() &&
1378       !hasUnmodeledSideEffects())
1379     return false;
1380 
1381   // Otherwise, if the instruction has no memory reference information,
1382   // conservatively assume it wasn't preserved.
1383   if (memoperands_empty())
1384     return true;
1385 
1386   // Check if any of our memory operands are ordered.
1387   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1388     return !MMO->isUnordered();
1389   });
1390 }
1391 
1392 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1393 /// trap and is loading from a location whose value is invariant across a run of
1394 /// this function.
1395 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1396   // If the instruction doesn't load at all, it isn't an invariant load.
1397   if (!mayLoad())
1398     return false;
1399 
1400   // If the instruction has lost its memoperands, conservatively assume that
1401   // it may not be an invariant load.
1402   if (memoperands_empty())
1403     return false;
1404 
1405   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1406 
1407   for (MachineMemOperand *MMO : memoperands()) {
1408     if (!MMO->isUnordered())
1409       // If the memory operand has ordering side effects, we can't move the
1410       // instruction.  Such an instruction is technically an invariant load,
1411       // but the caller code would need updated to expect that.
1412       return false;
1413     if (MMO->isStore()) return false;
1414     if (MMO->isInvariant() && MMO->isDereferenceable())
1415       continue;
1416 
1417     // A load from a constant PseudoSourceValue is invariant.
1418     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1419       if (PSV->isConstant(&MFI))
1420         continue;
1421 
1422     if (const Value *V = MMO->getValue()) {
1423       // If we have an AliasAnalysis, ask it whether the memory is constant.
1424       if (AA &&
1425           AA->pointsToConstantMemory(
1426               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1427         continue;
1428     }
1429 
1430     // Otherwise assume conservatively.
1431     return false;
1432   }
1433 
1434   // Everything checks out.
1435   return true;
1436 }
1437 
1438 /// isConstantValuePHI - If the specified instruction is a PHI that always
1439 /// merges together the same virtual register, return the register, otherwise
1440 /// return 0.
1441 unsigned MachineInstr::isConstantValuePHI() const {
1442   if (!isPHI())
1443     return 0;
1444   assert(getNumOperands() >= 3 &&
1445          "It's illegal to have a PHI without source operands");
1446 
1447   Register Reg = getOperand(1).getReg();
1448   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1449     if (getOperand(i).getReg() != Reg)
1450       return 0;
1451   return Reg;
1452 }
1453 
1454 bool MachineInstr::hasUnmodeledSideEffects() const {
1455   if (hasProperty(MCID::UnmodeledSideEffects))
1456     return true;
1457   if (isInlineAsm()) {
1458     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1459     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1460       return true;
1461   }
1462 
1463   return false;
1464 }
1465 
1466 bool MachineInstr::isLoadFoldBarrier() const {
1467   return mayStore() || isCall() || hasUnmodeledSideEffects();
1468 }
1469 
1470 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1471 ///
1472 bool MachineInstr::allDefsAreDead() const {
1473   for (const MachineOperand &MO : operands()) {
1474     if (!MO.isReg() || MO.isUse())
1475       continue;
1476     if (!MO.isDead())
1477       return false;
1478   }
1479   return true;
1480 }
1481 
1482 /// copyImplicitOps - Copy implicit register operands from specified
1483 /// instruction to this instruction.
1484 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1485                                    const MachineInstr &MI) {
1486   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1487        i != e; ++i) {
1488     const MachineOperand &MO = MI.getOperand(i);
1489     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1490       addOperand(MF, MO);
1491   }
1492 }
1493 
1494 bool MachineInstr::hasComplexRegisterTies() const {
1495   const MCInstrDesc &MCID = getDesc();
1496   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1497     return true;
1498   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1499     const auto &Operand = getOperand(I);
1500     if (!Operand.isReg() || Operand.isDef())
1501       // Ignore the defined registers as MCID marks only the uses as tied.
1502       continue;
1503     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1504     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1505     if (ExpectedTiedIdx != TiedIdx)
1506       return true;
1507   }
1508   return false;
1509 }
1510 
1511 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1512                                  const MachineRegisterInfo &MRI) const {
1513   const MachineOperand &Op = getOperand(OpIdx);
1514   if (!Op.isReg())
1515     return LLT{};
1516 
1517   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1518     return MRI.getType(Op.getReg());
1519 
1520   auto &OpInfo = getDesc().OpInfo[OpIdx];
1521   if (!OpInfo.isGenericType())
1522     return MRI.getType(Op.getReg());
1523 
1524   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1525     return LLT{};
1526 
1527   LLT TypeToPrint = MRI.getType(Op.getReg());
1528   // Don't mark the type index printed if it wasn't actually printed: maybe
1529   // another operand with the same type index has an actual type attached:
1530   if (TypeToPrint.isValid())
1531     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1532   return TypeToPrint;
1533 }
1534 
1535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1536 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1537   dbgs() << "  ";
1538   print(dbgs());
1539 }
1540 
1541 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1542     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1543     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1544   if (Depth >= MaxDepth)
1545     return;
1546   if (!AlreadySeenInstrs.insert(this).second)
1547     return;
1548   // PadToColumn always inserts at least one space.
1549   // Don't mess up the alignment if we don't want any space.
1550   if (Depth)
1551     fdbgs().PadToColumn(Depth * 2);
1552   print(fdbgs());
1553   for (const MachineOperand &MO : operands()) {
1554     if (!MO.isReg() || MO.isDef())
1555       continue;
1556     Register Reg = MO.getReg();
1557     if (Reg.isPhysical())
1558       continue;
1559     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1560     if (NewMI == nullptr)
1561       continue;
1562     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1563   }
1564 }
1565 
1566 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1567                                           unsigned MaxDepth) const {
1568   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1569   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1570 }
1571 #endif
1572 
1573 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1574                          bool SkipDebugLoc, bool AddNewLine,
1575                          const TargetInstrInfo *TII) const {
1576   const Module *M = nullptr;
1577   const Function *F = nullptr;
1578   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1579     F = &MF->getFunction();
1580     M = F->getParent();
1581     if (!TII)
1582       TII = MF->getSubtarget().getInstrInfo();
1583   }
1584 
1585   ModuleSlotTracker MST(M);
1586   if (F)
1587     MST.incorporateFunction(*F);
1588   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1589 }
1590 
1591 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1592                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1593                          bool AddNewLine, const TargetInstrInfo *TII) const {
1594   // We can be a bit tidier if we know the MachineFunction.
1595   const TargetRegisterInfo *TRI = nullptr;
1596   const MachineRegisterInfo *MRI = nullptr;
1597   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1598   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1599 
1600   if (isCFIInstruction())
1601     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1602 
1603   SmallBitVector PrintedTypes(8);
1604   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1605   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1606     if (!ShouldPrintRegisterTies)
1607       return 0U;
1608     const MachineOperand &MO = getOperand(OpIdx);
1609     if (MO.isReg() && MO.isTied() && !MO.isDef())
1610       return findTiedOperandIdx(OpIdx);
1611     return 0U;
1612   };
1613   unsigned StartOp = 0;
1614   unsigned e = getNumOperands();
1615 
1616   // Print explicitly defined operands on the left of an assignment syntax.
1617   while (StartOp < e) {
1618     const MachineOperand &MO = getOperand(StartOp);
1619     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1620       break;
1621 
1622     if (StartOp != 0)
1623       OS << ", ";
1624 
1625     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1626     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1627     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1628              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1629     ++StartOp;
1630   }
1631 
1632   if (StartOp != 0)
1633     OS << " = ";
1634 
1635   if (getFlag(MachineInstr::FrameSetup))
1636     OS << "frame-setup ";
1637   if (getFlag(MachineInstr::FrameDestroy))
1638     OS << "frame-destroy ";
1639   if (getFlag(MachineInstr::FmNoNans))
1640     OS << "nnan ";
1641   if (getFlag(MachineInstr::FmNoInfs))
1642     OS << "ninf ";
1643   if (getFlag(MachineInstr::FmNsz))
1644     OS << "nsz ";
1645   if (getFlag(MachineInstr::FmArcp))
1646     OS << "arcp ";
1647   if (getFlag(MachineInstr::FmContract))
1648     OS << "contract ";
1649   if (getFlag(MachineInstr::FmAfn))
1650     OS << "afn ";
1651   if (getFlag(MachineInstr::FmReassoc))
1652     OS << "reassoc ";
1653   if (getFlag(MachineInstr::NoUWrap))
1654     OS << "nuw ";
1655   if (getFlag(MachineInstr::NoSWrap))
1656     OS << "nsw ";
1657   if (getFlag(MachineInstr::IsExact))
1658     OS << "exact ";
1659   if (getFlag(MachineInstr::NoFPExcept))
1660     OS << "nofpexcept ";
1661   if (getFlag(MachineInstr::NoMerge))
1662     OS << "nomerge ";
1663 
1664   // Print the opcode name.
1665   if (TII)
1666     OS << TII->getName(getOpcode());
1667   else
1668     OS << "UNKNOWN";
1669 
1670   if (SkipOpers)
1671     return;
1672 
1673   // Print the rest of the operands.
1674   bool FirstOp = true;
1675   unsigned AsmDescOp = ~0u;
1676   unsigned AsmOpCount = 0;
1677 
1678   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1679     // Print asm string.
1680     OS << " ";
1681     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1682     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1683     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1684     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1685                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1686                             IntrinsicInfo);
1687 
1688     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1689     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1690     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1691       OS << " [sideeffect]";
1692     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1693       OS << " [mayload]";
1694     if (ExtraInfo & InlineAsm::Extra_MayStore)
1695       OS << " [maystore]";
1696     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1697       OS << " [isconvergent]";
1698     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1699       OS << " [alignstack]";
1700     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1701       OS << " [attdialect]";
1702     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1703       OS << " [inteldialect]";
1704 
1705     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1706     FirstOp = false;
1707   }
1708 
1709   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1710     const MachineOperand &MO = getOperand(i);
1711 
1712     if (FirstOp) FirstOp = false; else OS << ",";
1713     OS << " ";
1714 
1715     if (isDebugValue() && MO.isMetadata()) {
1716       // Pretty print DBG_VALUE instructions.
1717       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1718       if (DIV && !DIV->getName().empty())
1719         OS << "!\"" << DIV->getName() << '\"';
1720       else {
1721         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1722         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1723         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1724                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1725       }
1726     } else if (isDebugLabel() && MO.isMetadata()) {
1727       // Pretty print DBG_LABEL instructions.
1728       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1729       if (DIL && !DIL->getName().empty())
1730         OS << "\"" << DIL->getName() << '\"';
1731       else {
1732         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1733         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1734         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1735                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1736       }
1737     } else if (i == AsmDescOp && MO.isImm()) {
1738       // Pretty print the inline asm operand descriptor.
1739       OS << '$' << AsmOpCount++;
1740       unsigned Flag = MO.getImm();
1741       OS << ":[";
1742       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1743 
1744       unsigned RCID = 0;
1745       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1746           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1747         if (TRI) {
1748           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1749         } else
1750           OS << ":RC" << RCID;
1751       }
1752 
1753       if (InlineAsm::isMemKind(Flag)) {
1754         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1755         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1756       }
1757 
1758       unsigned TiedTo = 0;
1759       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1760         OS << " tiedto:$" << TiedTo;
1761 
1762       OS << ']';
1763 
1764       // Compute the index of the next operand descriptor.
1765       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1766     } else {
1767       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1768       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1769       if (MO.isImm() && isOperandSubregIdx(i))
1770         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1771       else
1772         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1773                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1774     }
1775   }
1776 
1777   // Print any optional symbols attached to this instruction as-if they were
1778   // operands.
1779   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1780     if (!FirstOp) {
1781       FirstOp = false;
1782       OS << ',';
1783     }
1784     OS << " pre-instr-symbol ";
1785     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1786   }
1787   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1788     if (!FirstOp) {
1789       FirstOp = false;
1790       OS << ',';
1791     }
1792     OS << " post-instr-symbol ";
1793     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1794   }
1795   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1796     if (!FirstOp) {
1797       FirstOp = false;
1798       OS << ',';
1799     }
1800     OS << " heap-alloc-marker ";
1801     HeapAllocMarker->printAsOperand(OS, MST);
1802   }
1803 
1804   if (DebugInstrNum) {
1805     if (!FirstOp)
1806       OS << ",";
1807     OS << " debug-instr-number " << DebugInstrNum;
1808   }
1809 
1810   if (!SkipDebugLoc) {
1811     if (const DebugLoc &DL = getDebugLoc()) {
1812       if (!FirstOp)
1813         OS << ',';
1814       OS << " debug-location ";
1815       DL->printAsOperand(OS, MST);
1816     }
1817   }
1818 
1819   if (!memoperands_empty()) {
1820     SmallVector<StringRef, 0> SSNs;
1821     const LLVMContext *Context = nullptr;
1822     std::unique_ptr<LLVMContext> CtxPtr;
1823     const MachineFrameInfo *MFI = nullptr;
1824     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1825       MFI = &MF->getFrameInfo();
1826       Context = &MF->getFunction().getContext();
1827     } else {
1828       CtxPtr = std::make_unique<LLVMContext>();
1829       Context = CtxPtr.get();
1830     }
1831 
1832     OS << " :: ";
1833     bool NeedComma = false;
1834     for (const MachineMemOperand *Op : memoperands()) {
1835       if (NeedComma)
1836         OS << ", ";
1837       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1838       NeedComma = true;
1839     }
1840   }
1841 
1842   if (SkipDebugLoc)
1843     return;
1844 
1845   bool HaveSemi = false;
1846 
1847   // Print debug location information.
1848   if (const DebugLoc &DL = getDebugLoc()) {
1849     if (!HaveSemi) {
1850       OS << ';';
1851       HaveSemi = true;
1852     }
1853     OS << ' ';
1854     DL.print(OS);
1855   }
1856 
1857   // Print extra comments for DEBUG_VALUE.
1858   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1859     if (!HaveSemi) {
1860       OS << ";";
1861       HaveSemi = true;
1862     }
1863     auto *DV = getDebugVariable();
1864     OS << " line no:" <<  DV->getLine();
1865     if (isIndirectDebugValue())
1866       OS << " indirect";
1867   }
1868   // TODO: DBG_LABEL
1869 
1870   if (AddNewLine)
1871     OS << '\n';
1872 }
1873 
1874 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1875                                      const TargetRegisterInfo *RegInfo,
1876                                      bool AddIfNotFound) {
1877   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1878   bool hasAliases = isPhysReg &&
1879     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1880   bool Found = false;
1881   SmallVector<unsigned,4> DeadOps;
1882   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1883     MachineOperand &MO = getOperand(i);
1884     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1885       continue;
1886 
1887     // DEBUG_VALUE nodes do not contribute to code generation and should
1888     // always be ignored. Failure to do so may result in trying to modify
1889     // KILL flags on DEBUG_VALUE nodes.
1890     if (MO.isDebug())
1891       continue;
1892 
1893     Register Reg = MO.getReg();
1894     if (!Reg)
1895       continue;
1896 
1897     if (Reg == IncomingReg) {
1898       if (!Found) {
1899         if (MO.isKill())
1900           // The register is already marked kill.
1901           return true;
1902         if (isPhysReg && isRegTiedToDefOperand(i))
1903           // Two-address uses of physregs must not be marked kill.
1904           return true;
1905         MO.setIsKill();
1906         Found = true;
1907       }
1908     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1909       // A super-register kill already exists.
1910       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1911         return true;
1912       if (RegInfo->isSubRegister(IncomingReg, Reg))
1913         DeadOps.push_back(i);
1914     }
1915   }
1916 
1917   // Trim unneeded kill operands.
1918   while (!DeadOps.empty()) {
1919     unsigned OpIdx = DeadOps.back();
1920     if (getOperand(OpIdx).isImplicit() &&
1921         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1922       RemoveOperand(OpIdx);
1923     else
1924       getOperand(OpIdx).setIsKill(false);
1925     DeadOps.pop_back();
1926   }
1927 
1928   // If not found, this means an alias of one of the operands is killed. Add a
1929   // new implicit operand if required.
1930   if (!Found && AddIfNotFound) {
1931     addOperand(MachineOperand::CreateReg(IncomingReg,
1932                                          false /*IsDef*/,
1933                                          true  /*IsImp*/,
1934                                          true  /*IsKill*/));
1935     return true;
1936   }
1937   return Found;
1938 }
1939 
1940 void MachineInstr::clearRegisterKills(Register Reg,
1941                                       const TargetRegisterInfo *RegInfo) {
1942   if (!Register::isPhysicalRegister(Reg))
1943     RegInfo = nullptr;
1944   for (MachineOperand &MO : operands()) {
1945     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1946       continue;
1947     Register OpReg = MO.getReg();
1948     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1949       MO.setIsKill(false);
1950   }
1951 }
1952 
1953 bool MachineInstr::addRegisterDead(Register Reg,
1954                                    const TargetRegisterInfo *RegInfo,
1955                                    bool AddIfNotFound) {
1956   bool isPhysReg = Register::isPhysicalRegister(Reg);
1957   bool hasAliases = isPhysReg &&
1958     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1959   bool Found = false;
1960   SmallVector<unsigned,4> DeadOps;
1961   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1962     MachineOperand &MO = getOperand(i);
1963     if (!MO.isReg() || !MO.isDef())
1964       continue;
1965     Register MOReg = MO.getReg();
1966     if (!MOReg)
1967       continue;
1968 
1969     if (MOReg == Reg) {
1970       MO.setIsDead();
1971       Found = true;
1972     } else if (hasAliases && MO.isDead() &&
1973                Register::isPhysicalRegister(MOReg)) {
1974       // There exists a super-register that's marked dead.
1975       if (RegInfo->isSuperRegister(Reg, MOReg))
1976         return true;
1977       if (RegInfo->isSubRegister(Reg, MOReg))
1978         DeadOps.push_back(i);
1979     }
1980   }
1981 
1982   // Trim unneeded dead operands.
1983   while (!DeadOps.empty()) {
1984     unsigned OpIdx = DeadOps.back();
1985     if (getOperand(OpIdx).isImplicit() &&
1986         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1987       RemoveOperand(OpIdx);
1988     else
1989       getOperand(OpIdx).setIsDead(false);
1990     DeadOps.pop_back();
1991   }
1992 
1993   // If not found, this means an alias of one of the operands is dead. Add a
1994   // new implicit operand if required.
1995   if (Found || !AddIfNotFound)
1996     return Found;
1997 
1998   addOperand(MachineOperand::CreateReg(Reg,
1999                                        true  /*IsDef*/,
2000                                        true  /*IsImp*/,
2001                                        false /*IsKill*/,
2002                                        true  /*IsDead*/));
2003   return true;
2004 }
2005 
2006 void MachineInstr::clearRegisterDeads(Register Reg) {
2007   for (MachineOperand &MO : operands()) {
2008     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2009       continue;
2010     MO.setIsDead(false);
2011   }
2012 }
2013 
2014 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2015   for (MachineOperand &MO : operands()) {
2016     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2017       continue;
2018     MO.setIsUndef(IsUndef);
2019   }
2020 }
2021 
2022 void MachineInstr::addRegisterDefined(Register Reg,
2023                                       const TargetRegisterInfo *RegInfo) {
2024   if (Register::isPhysicalRegister(Reg)) {
2025     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2026     if (MO)
2027       return;
2028   } else {
2029     for (const MachineOperand &MO : operands()) {
2030       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2031           MO.getSubReg() == 0)
2032         return;
2033     }
2034   }
2035   addOperand(MachineOperand::CreateReg(Reg,
2036                                        true  /*IsDef*/,
2037                                        true  /*IsImp*/));
2038 }
2039 
2040 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2041                                          const TargetRegisterInfo &TRI) {
2042   bool HasRegMask = false;
2043   for (MachineOperand &MO : operands()) {
2044     if (MO.isRegMask()) {
2045       HasRegMask = true;
2046       continue;
2047     }
2048     if (!MO.isReg() || !MO.isDef()) continue;
2049     Register Reg = MO.getReg();
2050     if (!Reg.isPhysical())
2051       continue;
2052     // If there are no uses, including partial uses, the def is dead.
2053     if (llvm::none_of(UsedRegs,
2054                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2055       MO.setIsDead();
2056   }
2057 
2058   // This is a call with a register mask operand.
2059   // Mask clobbers are always dead, so add defs for the non-dead defines.
2060   if (HasRegMask)
2061     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2062          I != E; ++I)
2063       addRegisterDefined(*I, &TRI);
2064 }
2065 
2066 unsigned
2067 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2068   // Build up a buffer of hash code components.
2069   SmallVector<size_t, 16> HashComponents;
2070   HashComponents.reserve(MI->getNumOperands() + 1);
2071   HashComponents.push_back(MI->getOpcode());
2072   for (const MachineOperand &MO : MI->operands()) {
2073     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2074       continue;  // Skip virtual register defs.
2075 
2076     HashComponents.push_back(hash_value(MO));
2077   }
2078   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2079 }
2080 
2081 void MachineInstr::emitError(StringRef Msg) const {
2082   // Find the source location cookie.
2083   unsigned LocCookie = 0;
2084   const MDNode *LocMD = nullptr;
2085   for (unsigned i = getNumOperands(); i != 0; --i) {
2086     if (getOperand(i-1).isMetadata() &&
2087         (LocMD = getOperand(i-1).getMetadata()) &&
2088         LocMD->getNumOperands() != 0) {
2089       if (const ConstantInt *CI =
2090               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2091         LocCookie = CI->getZExtValue();
2092         break;
2093       }
2094     }
2095   }
2096 
2097   if (const MachineBasicBlock *MBB = getParent())
2098     if (const MachineFunction *MF = MBB->getParent())
2099       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2100   report_fatal_error(Msg);
2101 }
2102 
2103 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2104                                   const MCInstrDesc &MCID, bool IsIndirect,
2105                                   Register Reg, const MDNode *Variable,
2106                                   const MDNode *Expr) {
2107   assert(isa<DILocalVariable>(Variable) && "not a variable");
2108   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2109   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2110          "Expected inlined-at fields to agree");
2111   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2112   if (IsIndirect)
2113     MIB.addImm(0U);
2114   else
2115     MIB.addReg(0U, RegState::Debug);
2116   return MIB.addMetadata(Variable).addMetadata(Expr);
2117 }
2118 
2119 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2120                                   const MCInstrDesc &MCID, bool IsIndirect,
2121                                   MachineOperand &MO, const MDNode *Variable,
2122                                   const MDNode *Expr) {
2123   assert(isa<DILocalVariable>(Variable) && "not a variable");
2124   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2125   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2126          "Expected inlined-at fields to agree");
2127   if (MO.isReg())
2128     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2129 
2130   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2131   if (IsIndirect)
2132     MIB.addImm(0U);
2133   else
2134     MIB.addReg(0U, RegState::Debug);
2135   return MIB.addMetadata(Variable).addMetadata(Expr);
2136  }
2137 
2138 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2139                                   MachineBasicBlock::iterator I,
2140                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2141                                   bool IsIndirect, Register Reg,
2142                                   const MDNode *Variable, const MDNode *Expr) {
2143   MachineFunction &MF = *BB.getParent();
2144   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2145   BB.insert(I, MI);
2146   return MachineInstrBuilder(MF, MI);
2147 }
2148 
2149 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2150                                   MachineBasicBlock::iterator I,
2151                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2152                                   bool IsIndirect, MachineOperand &MO,
2153                                   const MDNode *Variable, const MDNode *Expr) {
2154   MachineFunction &MF = *BB.getParent();
2155   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2156   BB.insert(I, MI);
2157   return MachineInstrBuilder(MF, *MI);
2158 }
2159 
2160 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2161 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2162 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2163   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2164   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2165          "Expected inlined-at fields to agree");
2166 
2167   const DIExpression *Expr = MI.getDebugExpression();
2168   if (MI.isIndirectDebugValue()) {
2169     assert(MI.getDebugOffset().getImm() == 0 &&
2170            "DBG_VALUE with nonzero offset");
2171     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2172   }
2173   return Expr;
2174 }
2175 
2176 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2177                                           MachineBasicBlock::iterator I,
2178                                           const MachineInstr &Orig,
2179                                           int FrameIndex) {
2180   const DIExpression *Expr = computeExprForSpill(Orig);
2181   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2182       .addFrameIndex(FrameIndex)
2183       .addImm(0U)
2184       .addMetadata(Orig.getDebugVariable())
2185       .addMetadata(Expr);
2186 }
2187 
2188 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2189   const DIExpression *Expr = computeExprForSpill(Orig);
2190   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2191   Orig.getDebugOffset().ChangeToImmediate(0U);
2192   Orig.getDebugExpressionOp().setMetadata(Expr);
2193 }
2194 
2195 void MachineInstr::collectDebugValues(
2196                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2197   MachineInstr &MI = *this;
2198   if (!MI.getOperand(0).isReg())
2199     return;
2200 
2201   MachineBasicBlock::iterator DI = MI; ++DI;
2202   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2203        DI != DE; ++DI) {
2204     if (!DI->isDebugValue())
2205       return;
2206     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2207       DbgValues.push_back(&*DI);
2208   }
2209 }
2210 
2211 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2212   // Collect matching debug values.
2213   SmallVector<MachineInstr *, 2> DbgValues;
2214 
2215   if (!getOperand(0).isReg())
2216     return;
2217 
2218   Register DefReg = getOperand(0).getReg();
2219   auto *MRI = getRegInfo();
2220   for (auto &MO : MRI->use_operands(DefReg)) {
2221     auto *DI = MO.getParent();
2222     if (!DI->isDebugValue())
2223       continue;
2224     if (DI->getDebugOperandForReg(DefReg)) {
2225       DbgValues.push_back(DI);
2226     }
2227   }
2228 
2229   // Propagate Reg to debug value instructions.
2230   for (auto *DBI : DbgValues)
2231     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2232 }
2233 
2234 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2235 
2236 static unsigned getSpillSlotSize(const MMOList &Accesses,
2237                                  const MachineFrameInfo &MFI) {
2238   unsigned Size = 0;
2239   for (auto A : Accesses)
2240     if (MFI.isSpillSlotObjectIndex(
2241             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2242                 ->getFrameIndex()))
2243       Size += A->getSize();
2244   return Size;
2245 }
2246 
2247 Optional<unsigned>
2248 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2249   int FI;
2250   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2251     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2252     if (MFI.isSpillSlotObjectIndex(FI))
2253       return (*memoperands_begin())->getSize();
2254   }
2255   return None;
2256 }
2257 
2258 Optional<unsigned>
2259 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2260   MMOList Accesses;
2261   if (TII->hasStoreToStackSlot(*this, Accesses))
2262     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2263   return None;
2264 }
2265 
2266 Optional<unsigned>
2267 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2268   int FI;
2269   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2270     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2271     if (MFI.isSpillSlotObjectIndex(FI))
2272       return (*memoperands_begin())->getSize();
2273   }
2274   return None;
2275 }
2276 
2277 Optional<unsigned>
2278 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2279   MMOList Accesses;
2280   if (TII->hasLoadFromStackSlot(*this, Accesses))
2281     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2282   return None;
2283 }
2284 
2285 unsigned MachineInstr::getDebugInstrNum() {
2286   if (DebugInstrNum == 0)
2287     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2288   return DebugInstrNum;
2289 }
2290