1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/MC/MCRegisterInfo.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/FormattedStream.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <cstring> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 82 if (const MachineBasicBlock *MBB = MI.getParent()) 83 if (const MachineFunction *MF = MBB->getParent()) 84 return MF; 85 return nullptr; 86 } 87 88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 89 // it. 90 static void tryToGetTargetInfo(const MachineInstr &MI, 91 const TargetRegisterInfo *&TRI, 92 const MachineRegisterInfo *&MRI, 93 const TargetIntrinsicInfo *&IntrinsicInfo, 94 const TargetInstrInfo *&TII) { 95 96 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 97 TRI = MF->getSubtarget().getRegisterInfo(); 98 MRI = &MF->getRegInfo(); 99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 100 TII = MF->getSubtarget().getInstrInfo(); 101 } 102 } 103 104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 105 if (MCID->ImplicitDefs) 106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 107 ++ImpDefs) 108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 109 if (MCID->ImplicitUses) 110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 111 ++ImpUses) 112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 113 } 114 115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 116 /// implicit operands. It reserves space for the number of operands specified by 117 /// the MCInstrDesc. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 119 DebugLoc dl, bool NoImp) 120 : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) { 121 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 // Reserve space for the expected number of operands. 124 if (unsigned NumOps = MCID->getNumOperands() + 125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 126 CapOperands = OperandCapacity::get(NumOps); 127 Operands = MF.allocateOperandArray(CapOperands); 128 } 129 130 if (!NoImp) 131 addImplicitDefUseOperands(MF); 132 } 133 134 /// MachineInstr ctor - Copies MachineInstr arg exactly. 135 /// Does not copy the number from debug instruction numbering, to preserve 136 /// uniqueness. 137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 138 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()), 139 DebugInstrNum(0) { 140 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 141 142 CapOperands = OperandCapacity::get(MI.getNumOperands()); 143 Operands = MF.allocateOperandArray(CapOperands); 144 145 // Copy operands. 146 for (const MachineOperand &MO : MI.operands()) 147 addOperand(MF, MO); 148 149 // Copy all the sensible flags. 150 setFlags(MI.Flags); 151 } 152 153 void MachineInstr::moveBefore(MachineInstr *MovePos) { 154 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 155 } 156 157 /// getRegInfo - If this instruction is embedded into a MachineFunction, 158 /// return the MachineRegisterInfo object for the current function, otherwise 159 /// return null. 160 MachineRegisterInfo *MachineInstr::getRegInfo() { 161 if (MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands already be on their use lists. 169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 /// AddRegOperandsToUseLists - Add all of the register operands in 176 /// this instruction from their respective use lists. This requires that the 177 /// operands not be on their use lists yet. 178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 179 for (MachineOperand &MO : operands()) 180 if (MO.isReg()) 181 MRI.addRegOperandToUseList(&MO); 182 } 183 184 void MachineInstr::addOperand(const MachineOperand &Op) { 185 MachineBasicBlock *MBB = getParent(); 186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 MachineFunction *MF = MBB->getParent(); 188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 189 addOperand(*MF, Op); 190 } 191 192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 193 /// ranges. If MRI is non-null also update use-def chains. 194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 195 unsigned NumOps, MachineRegisterInfo *MRI) { 196 if (MRI) 197 return MRI->moveOperands(Dst, Src, NumOps); 198 // MachineOperand is a trivially copyable type so we can just use memmove. 199 assert(Dst && Src && "Unknown operands"); 200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 201 } 202 203 /// addOperand - Add the specified operand to the instruction. If it is an 204 /// implicit operand, it is added to the end of the operand list. If it is 205 /// an explicit operand it is added at the end of the explicit operand list 206 /// (before the first implicit operand). 207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 #ifndef NDEBUG 236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 237 Op.getType() == MachineOperand::MO_MCSymbol; 238 // OpNo now points as the desired insertion point. Unless this is a variadic 239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 240 // RegMask operands go between the explicit and implicit operands. 241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 242 OpNo < MCID->getNumOperands() || isDebugOp) && 243 "Trying to add an operand to a machine instr that is already done!"); 244 #endif 245 246 MachineRegisterInfo *MRI = getRegInfo(); 247 248 // Determine if the Operands array needs to be reallocated. 249 // Save the old capacity and operand array. 250 OperandCapacity OldCap = CapOperands; 251 MachineOperand *OldOperands = Operands; 252 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 254 Operands = MF.allocateOperandArray(CapOperands); 255 // Move the operands before the insertion point. 256 if (OpNo) 257 moveOperands(Operands, OldOperands, OpNo, MRI); 258 } 259 260 // Move the operands following the insertion point. 261 if (OpNo != NumOperands) 262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 263 MRI); 264 ++NumOperands; 265 266 // Deallocate the old operand array. 267 if (OldOperands != Operands && OldOperands) 268 MF.deallocateOperandArray(OldCap, OldOperands); 269 270 // Copy Op into place. It still needs to be inserted into the MRI use lists. 271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 272 NewMO->ParentMI = this; 273 274 // When adding a register operand, tell MRI about it. 275 if (NewMO->isReg()) { 276 // Ensure isOnRegUseList() returns false, regardless of Op's status. 277 NewMO->Contents.Reg.Prev = nullptr; 278 // Ignore existing ties. This is not a property that can be copied. 279 NewMO->TiedTo = 0; 280 // Add the new operand to MRI, but only for instructions in an MBB. 281 if (MRI) 282 MRI->addRegOperandToUseList(NewMO); 283 // The MCID operand information isn't accurate until we start adding 284 // explicit operands. The implicit operands are added first, then the 285 // explicits are inserted before them. 286 if (!isImpReg) { 287 // Tie uses to defs as indicated in MCInstrDesc. 288 if (NewMO->isUse()) { 289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 290 if (DefIdx != -1) 291 tieOperands(DefIdx, OpNo); 292 } 293 // If the register operand is flagged as early, mark the operand as such. 294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 295 NewMO->setIsEarlyClobber(true); 296 } 297 } 298 } 299 300 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 301 /// fewer operand than it started with. 302 /// 303 void MachineInstr::RemoveOperand(unsigned OpNo) { 304 assert(OpNo < getNumOperands() && "Invalid operand number"); 305 untieRegOperand(OpNo); 306 307 #ifndef NDEBUG 308 // Moving tied operands would break the ties. 309 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 310 if (Operands[i].isReg()) 311 assert(!Operands[i].isTied() && "Cannot move tied operands"); 312 #endif 313 314 MachineRegisterInfo *MRI = getRegInfo(); 315 if (MRI && Operands[OpNo].isReg()) 316 MRI->removeRegOperandFromUseList(Operands + OpNo); 317 318 // Don't call the MachineOperand destructor. A lot of this code depends on 319 // MachineOperand having a trivial destructor anyway, and adding a call here 320 // wouldn't make it 'destructor-correct'. 321 322 if (unsigned N = NumOperands - 1 - OpNo) 323 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 324 --NumOperands; 325 } 326 327 void MachineInstr::setExtraInfo(MachineFunction &MF, 328 ArrayRef<MachineMemOperand *> MMOs, 329 MCSymbol *PreInstrSymbol, 330 MCSymbol *PostInstrSymbol, 331 MDNode *HeapAllocMarker) { 332 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 333 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 334 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 335 int NumPointers = 336 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 337 338 // Drop all extra info if there is none. 339 if (NumPointers <= 0) { 340 Info.clear(); 341 return; 342 } 343 344 // If more than one pointer, then store out of line. Store heap alloc markers 345 // out of line because PointerSumType cannot hold more than 4 tag types with 346 // 32-bit pointers. 347 // FIXME: Maybe we should make the symbols in the extra info mutable? 348 else if (NumPointers > 1 || HasHeapAllocMarker) { 349 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 350 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 351 return; 352 } 353 354 // Otherwise store the single pointer inline. 355 if (HasPreInstrSymbol) 356 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 357 else if (HasPostInstrSymbol) 358 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 359 else 360 Info.set<EIIK_MMO>(MMOs[0]); 361 } 362 363 void MachineInstr::dropMemRefs(MachineFunction &MF) { 364 if (memoperands_empty()) 365 return; 366 367 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 368 getHeapAllocMarker()); 369 } 370 371 void MachineInstr::setMemRefs(MachineFunction &MF, 372 ArrayRef<MachineMemOperand *> MMOs) { 373 if (MMOs.empty()) { 374 dropMemRefs(MF); 375 return; 376 } 377 378 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 379 getHeapAllocMarker()); 380 } 381 382 void MachineInstr::addMemOperand(MachineFunction &MF, 383 MachineMemOperand *MO) { 384 SmallVector<MachineMemOperand *, 2> MMOs; 385 MMOs.append(memoperands_begin(), memoperands_end()); 386 MMOs.push_back(MO); 387 setMemRefs(MF, MMOs); 388 } 389 390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 391 if (this == &MI) 392 // Nothing to do for a self-clone! 393 return; 394 395 assert(&MF == MI.getMF() && 396 "Invalid machine functions when cloning memory refrences!"); 397 // See if we can just steal the extra info already allocated for the 398 // instruction. We can do this whenever the pre- and post-instruction symbols 399 // are the same (including null). 400 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 401 getPostInstrSymbol() == MI.getPostInstrSymbol() && 402 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 403 Info = MI.Info; 404 return; 405 } 406 407 // Otherwise, fall back on a copy-based clone. 408 setMemRefs(MF, MI.memoperands()); 409 } 410 411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 412 /// identical. 413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 414 ArrayRef<MachineMemOperand *> RHS) { 415 if (LHS.size() != RHS.size()) 416 return false; 417 418 auto LHSPointees = make_pointee_range(LHS); 419 auto RHSPointees = make_pointee_range(RHS); 420 return std::equal(LHSPointees.begin(), LHSPointees.end(), 421 RHSPointees.begin()); 422 } 423 424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 425 ArrayRef<const MachineInstr *> MIs) { 426 // Try handling easy numbers of MIs with simpler mechanisms. 427 if (MIs.empty()) { 428 dropMemRefs(MF); 429 return; 430 } 431 if (MIs.size() == 1) { 432 cloneMemRefs(MF, *MIs[0]); 433 return; 434 } 435 // Because an empty memoperands list provides *no* information and must be 436 // handled conservatively (assuming the instruction can do anything), the only 437 // way to merge with it is to drop all other memoperands. 438 if (MIs[0]->memoperands_empty()) { 439 dropMemRefs(MF); 440 return; 441 } 442 443 // Handle the general case. 444 SmallVector<MachineMemOperand *, 2> MergedMMOs; 445 // Start with the first instruction. 446 assert(&MF == MIs[0]->getMF() && 447 "Invalid machine functions when cloning memory references!"); 448 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 449 // Now walk all the other instructions and accumulate any different MMOs. 450 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 451 assert(&MF == MI.getMF() && 452 "Invalid machine functions when cloning memory references!"); 453 454 // Skip MIs with identical operands to the first. This is a somewhat 455 // arbitrary hack but will catch common cases without being quadratic. 456 // TODO: We could fully implement merge semantics here if needed. 457 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 458 continue; 459 460 // Because an empty memoperands list provides *no* information and must be 461 // handled conservatively (assuming the instruction can do anything), the 462 // only way to merge with it is to drop all other memoperands. 463 if (MI.memoperands_empty()) { 464 dropMemRefs(MF); 465 return; 466 } 467 468 // Otherwise accumulate these into our temporary buffer of the merged state. 469 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 470 } 471 472 setMemRefs(MF, MergedMMOs); 473 } 474 475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 476 // Do nothing if old and new symbols are the same. 477 if (Symbol == getPreInstrSymbol()) 478 return; 479 480 // If there was only one symbol and we're removing it, just clear info. 481 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 482 Info.clear(); 483 return; 484 } 485 486 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 487 getHeapAllocMarker()); 488 } 489 490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 491 // Do nothing if old and new symbols are the same. 492 if (Symbol == getPostInstrSymbol()) 493 return; 494 495 // If there was only one symbol and we're removing it, just clear info. 496 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 497 Info.clear(); 498 return; 499 } 500 501 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 502 getHeapAllocMarker()); 503 } 504 505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 506 // Do nothing if old and new symbols are the same. 507 if (Marker == getHeapAllocMarker()) 508 return; 509 510 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 511 Marker); 512 } 513 514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 515 const MachineInstr &MI) { 516 if (this == &MI) 517 // Nothing to do for a self-clone! 518 return; 519 520 assert(&MF == MI.getMF() && 521 "Invalid machine functions when cloning instruction symbols!"); 522 523 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 524 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 525 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 526 } 527 528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 529 // For now, the just return the union of the flags. If the flags get more 530 // complicated over time, we might need more logic here. 531 return getFlags() | Other.getFlags(); 532 } 533 534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 535 uint16_t MIFlags = 0; 536 // Copy the wrapping flags. 537 if (const OverflowingBinaryOperator *OB = 538 dyn_cast<OverflowingBinaryOperator>(&I)) { 539 if (OB->hasNoSignedWrap()) 540 MIFlags |= MachineInstr::MIFlag::NoSWrap; 541 if (OB->hasNoUnsignedWrap()) 542 MIFlags |= MachineInstr::MIFlag::NoUWrap; 543 } 544 545 // Copy the exact flag. 546 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 547 if (PE->isExact()) 548 MIFlags |= MachineInstr::MIFlag::IsExact; 549 550 // Copy the fast-math flags. 551 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 552 const FastMathFlags Flags = FP->getFastMathFlags(); 553 if (Flags.noNaNs()) 554 MIFlags |= MachineInstr::MIFlag::FmNoNans; 555 if (Flags.noInfs()) 556 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 557 if (Flags.noSignedZeros()) 558 MIFlags |= MachineInstr::MIFlag::FmNsz; 559 if (Flags.allowReciprocal()) 560 MIFlags |= MachineInstr::MIFlag::FmArcp; 561 if (Flags.allowContract()) 562 MIFlags |= MachineInstr::MIFlag::FmContract; 563 if (Flags.approxFunc()) 564 MIFlags |= MachineInstr::MIFlag::FmAfn; 565 if (Flags.allowReassoc()) 566 MIFlags |= MachineInstr::MIFlag::FmReassoc; 567 } 568 569 return MIFlags; 570 } 571 572 void MachineInstr::copyIRFlags(const Instruction &I) { 573 Flags = copyFlagsFromInstruction(I); 574 } 575 576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 577 assert(!isBundledWithPred() && "Must be called on bundle header"); 578 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 579 if (MII->getDesc().getFlags() & Mask) { 580 if (Type == AnyInBundle) 581 return true; 582 } else { 583 if (Type == AllInBundle && !MII->isBundle()) 584 return false; 585 } 586 // This was the last instruction in the bundle. 587 if (!MII->isBundledWithSucc()) 588 return Type == AllInBundle; 589 } 590 } 591 592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 593 MICheckType Check) const { 594 // If opcodes or number of operands are not the same then the two 595 // instructions are obviously not identical. 596 if (Other.getOpcode() != getOpcode() || 597 Other.getNumOperands() != getNumOperands()) 598 return false; 599 600 if (isBundle()) { 601 // We have passed the test above that both instructions have the same 602 // opcode, so we know that both instructions are bundles here. Let's compare 603 // MIs inside the bundle. 604 assert(Other.isBundle() && "Expected that both instructions are bundles."); 605 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 606 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 607 // Loop until we analysed the last intruction inside at least one of the 608 // bundles. 609 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 610 ++I1; 611 ++I2; 612 if (!I1->isIdenticalTo(*I2, Check)) 613 return false; 614 } 615 // If we've reached the end of just one of the two bundles, but not both, 616 // the instructions are not identical. 617 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 618 return false; 619 } 620 621 // Check operands to make sure they match. 622 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 623 const MachineOperand &MO = getOperand(i); 624 const MachineOperand &OMO = Other.getOperand(i); 625 if (!MO.isReg()) { 626 if (!MO.isIdenticalTo(OMO)) 627 return false; 628 continue; 629 } 630 631 // Clients may or may not want to ignore defs when testing for equality. 632 // For example, machine CSE pass only cares about finding common 633 // subexpressions, so it's safe to ignore virtual register defs. 634 if (MO.isDef()) { 635 if (Check == IgnoreDefs) 636 continue; 637 else if (Check == IgnoreVRegDefs) { 638 if (!Register::isVirtualRegister(MO.getReg()) || 639 !Register::isVirtualRegister(OMO.getReg())) 640 if (!MO.isIdenticalTo(OMO)) 641 return false; 642 } else { 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 646 return false; 647 } 648 } else { 649 if (!MO.isIdenticalTo(OMO)) 650 return false; 651 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 652 return false; 653 } 654 } 655 // If DebugLoc does not match then two debug instructions are not identical. 656 if (isDebugInstr()) 657 if (getDebugLoc() && Other.getDebugLoc() && 658 getDebugLoc() != Other.getDebugLoc()) 659 return false; 660 return true; 661 } 662 663 const MachineFunction *MachineInstr::getMF() const { 664 return getParent()->getParent(); 665 } 666 667 MachineInstr *MachineInstr::removeFromParent() { 668 assert(getParent() && "Not embedded in a basic block!"); 669 return getParent()->remove(this); 670 } 671 672 MachineInstr *MachineInstr::removeFromBundle() { 673 assert(getParent() && "Not embedded in a basic block!"); 674 return getParent()->remove_instr(this); 675 } 676 677 void MachineInstr::eraseFromParent() { 678 assert(getParent() && "Not embedded in a basic block!"); 679 getParent()->erase(this); 680 } 681 682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 683 assert(getParent() && "Not embedded in a basic block!"); 684 MachineBasicBlock *MBB = getParent(); 685 MachineFunction *MF = MBB->getParent(); 686 assert(MF && "Not embedded in a function!"); 687 688 MachineInstr *MI = (MachineInstr *)this; 689 MachineRegisterInfo &MRI = MF->getRegInfo(); 690 691 for (const MachineOperand &MO : MI->operands()) { 692 if (!MO.isReg() || !MO.isDef()) 693 continue; 694 Register Reg = MO.getReg(); 695 if (!Reg.isVirtual()) 696 continue; 697 MRI.markUsesInDebugValueAsUndef(Reg); 698 } 699 MI->eraseFromParent(); 700 } 701 702 void MachineInstr::eraseFromBundle() { 703 assert(getParent() && "Not embedded in a basic block!"); 704 getParent()->erase_instr(this); 705 } 706 707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 708 if (!isCall(Type)) 709 return false; 710 switch (getOpcode()) { 711 case TargetOpcode::PATCHABLE_EVENT_CALL: 712 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: 713 case TargetOpcode::PATCHPOINT: 714 case TargetOpcode::STACKMAP: 715 case TargetOpcode::STATEPOINT: 716 case TargetOpcode::FENTRY_CALL: 717 return false; 718 } 719 return true; 720 } 721 722 bool MachineInstr::shouldUpdateCallSiteInfo() const { 723 if (isBundle()) 724 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 725 return isCandidateForCallSiteEntry(); 726 } 727 728 unsigned MachineInstr::getNumExplicitOperands() const { 729 unsigned NumOperands = MCID->getNumOperands(); 730 if (!MCID->isVariadic()) 731 return NumOperands; 732 733 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 734 const MachineOperand &MO = getOperand(I); 735 // The operands must always be in the following order: 736 // - explicit reg defs, 737 // - other explicit operands (reg uses, immediates, etc.), 738 // - implicit reg defs 739 // - implicit reg uses 740 if (MO.isReg() && MO.isImplicit()) 741 break; 742 ++NumOperands; 743 } 744 return NumOperands; 745 } 746 747 unsigned MachineInstr::getNumExplicitDefs() const { 748 unsigned NumDefs = MCID->getNumDefs(); 749 if (!MCID->isVariadic()) 750 return NumDefs; 751 752 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 753 const MachineOperand &MO = getOperand(I); 754 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 755 break; 756 ++NumDefs; 757 } 758 return NumDefs; 759 } 760 761 void MachineInstr::bundleWithPred() { 762 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 763 setFlag(BundledPred); 764 MachineBasicBlock::instr_iterator Pred = getIterator(); 765 --Pred; 766 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 767 Pred->setFlag(BundledSucc); 768 } 769 770 void MachineInstr::bundleWithSucc() { 771 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 772 setFlag(BundledSucc); 773 MachineBasicBlock::instr_iterator Succ = getIterator(); 774 ++Succ; 775 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 776 Succ->setFlag(BundledPred); 777 } 778 779 void MachineInstr::unbundleFromPred() { 780 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 781 clearFlag(BundledPred); 782 MachineBasicBlock::instr_iterator Pred = getIterator(); 783 --Pred; 784 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 785 Pred->clearFlag(BundledSucc); 786 } 787 788 void MachineInstr::unbundleFromSucc() { 789 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 790 clearFlag(BundledSucc); 791 MachineBasicBlock::instr_iterator Succ = getIterator(); 792 ++Succ; 793 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 794 Succ->clearFlag(BundledPred); 795 } 796 797 bool MachineInstr::isStackAligningInlineAsm() const { 798 if (isInlineAsm()) { 799 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 800 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 801 return true; 802 } 803 return false; 804 } 805 806 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 807 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 808 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 809 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 810 } 811 812 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 813 unsigned *GroupNo) const { 814 assert(isInlineAsm() && "Expected an inline asm instruction"); 815 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 816 817 // Ignore queries about the initial operands. 818 if (OpIdx < InlineAsm::MIOp_FirstOperand) 819 return -1; 820 821 unsigned Group = 0; 822 unsigned NumOps; 823 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 824 i += NumOps) { 825 const MachineOperand &FlagMO = getOperand(i); 826 // If we reach the implicit register operands, stop looking. 827 if (!FlagMO.isImm()) 828 return -1; 829 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 830 if (i + NumOps > OpIdx) { 831 if (GroupNo) 832 *GroupNo = Group; 833 return i; 834 } 835 ++Group; 836 } 837 return -1; 838 } 839 840 const DILabel *MachineInstr::getDebugLabel() const { 841 assert(isDebugLabel() && "not a DBG_LABEL"); 842 return cast<DILabel>(getOperand(0).getMetadata()); 843 } 844 845 const MachineOperand &MachineInstr::getDebugVariableOp() const { 846 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 847 return getOperand(2); 848 } 849 850 MachineOperand &MachineInstr::getDebugVariableOp() { 851 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 852 return getOperand(2); 853 } 854 855 const DILocalVariable *MachineInstr::getDebugVariable() const { 856 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 857 return cast<DILocalVariable>(getOperand(2).getMetadata()); 858 } 859 860 MachineOperand &MachineInstr::getDebugExpressionOp() { 861 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 862 return getOperand(3); 863 } 864 865 const DIExpression *MachineInstr::getDebugExpression() const { 866 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 867 return cast<DIExpression>(getOperand(3).getMetadata()); 868 } 869 870 bool MachineInstr::isDebugEntryValue() const { 871 return isDebugValue() && getDebugExpression()->isEntryValue(); 872 } 873 874 const TargetRegisterClass* 875 MachineInstr::getRegClassConstraint(unsigned OpIdx, 876 const TargetInstrInfo *TII, 877 const TargetRegisterInfo *TRI) const { 878 assert(getParent() && "Can't have an MBB reference here!"); 879 assert(getMF() && "Can't have an MF reference here!"); 880 const MachineFunction &MF = *getMF(); 881 882 // Most opcodes have fixed constraints in their MCInstrDesc. 883 if (!isInlineAsm()) 884 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 885 886 if (!getOperand(OpIdx).isReg()) 887 return nullptr; 888 889 // For tied uses on inline asm, get the constraint from the def. 890 unsigned DefIdx; 891 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 892 OpIdx = DefIdx; 893 894 // Inline asm stores register class constraints in the flag word. 895 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 896 if (FlagIdx < 0) 897 return nullptr; 898 899 unsigned Flag = getOperand(FlagIdx).getImm(); 900 unsigned RCID; 901 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 902 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 903 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 904 InlineAsm::hasRegClassConstraint(Flag, RCID)) 905 return TRI->getRegClass(RCID); 906 907 // Assume that all registers in a memory operand are pointers. 908 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 909 return TRI->getPointerRegClass(MF); 910 911 return nullptr; 912 } 913 914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 915 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 916 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 917 // Check every operands inside the bundle if we have 918 // been asked to. 919 if (ExploreBundle) 920 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 921 ++OpndIt) 922 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 923 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 924 else 925 // Otherwise, just check the current operands. 926 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 927 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 928 return CurRC; 929 } 930 931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 932 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 933 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 934 assert(CurRC && "Invalid initial register class"); 935 // Check if Reg is constrained by some of its use/def from MI. 936 const MachineOperand &MO = getOperand(OpIdx); 937 if (!MO.isReg() || MO.getReg() != Reg) 938 return CurRC; 939 // If yes, accumulate the constraints through the operand. 940 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 941 } 942 943 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 944 unsigned OpIdx, const TargetRegisterClass *CurRC, 945 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 946 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 947 const MachineOperand &MO = getOperand(OpIdx); 948 assert(MO.isReg() && 949 "Cannot get register constraints for non-register operand"); 950 assert(CurRC && "Invalid initial register class"); 951 if (unsigned SubIdx = MO.getSubReg()) { 952 if (OpRC) 953 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 954 else 955 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 956 } else if (OpRC) 957 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 958 return CurRC; 959 } 960 961 /// Return the number of instructions inside the MI bundle, not counting the 962 /// header instruction. 963 unsigned MachineInstr::getBundleSize() const { 964 MachineBasicBlock::const_instr_iterator I = getIterator(); 965 unsigned Size = 0; 966 while (I->isBundledWithSucc()) { 967 ++Size; 968 ++I; 969 } 970 return Size; 971 } 972 973 /// Returns true if the MachineInstr has an implicit-use operand of exactly 974 /// the given register (not considering sub/super-registers). 975 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 976 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 977 const MachineOperand &MO = getOperand(i); 978 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 979 return true; 980 } 981 return false; 982 } 983 984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 985 /// the specific register or -1 if it is not found. It further tightens 986 /// the search criteria to a use that kills the register if isKill is true. 987 int MachineInstr::findRegisterUseOperandIdx( 988 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 990 const MachineOperand &MO = getOperand(i); 991 if (!MO.isReg() || !MO.isUse()) 992 continue; 993 Register MOReg = MO.getReg(); 994 if (!MOReg) 995 continue; 996 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 997 if (!isKill || MO.isKill()) 998 return i; 999 } 1000 return -1; 1001 } 1002 1003 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1004 /// indicating if this instruction reads or writes Reg. This also considers 1005 /// partial defines. 1006 std::pair<bool,bool> 1007 MachineInstr::readsWritesVirtualRegister(Register Reg, 1008 SmallVectorImpl<unsigned> *Ops) const { 1009 bool PartDef = false; // Partial redefine. 1010 bool FullDef = false; // Full define. 1011 bool Use = false; 1012 1013 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1014 const MachineOperand &MO = getOperand(i); 1015 if (!MO.isReg() || MO.getReg() != Reg) 1016 continue; 1017 if (Ops) 1018 Ops->push_back(i); 1019 if (MO.isUse()) 1020 Use |= !MO.isUndef(); 1021 else if (MO.getSubReg() && !MO.isUndef()) 1022 // A partial def undef doesn't count as reading the register. 1023 PartDef = true; 1024 else 1025 FullDef = true; 1026 } 1027 // A partial redefine uses Reg unless there is also a full define. 1028 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1029 } 1030 1031 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1032 /// the specified register or -1 if it is not found. If isDead is true, defs 1033 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1034 /// also checks if there is a def of a super-register. 1035 int 1036 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1037 const TargetRegisterInfo *TRI) const { 1038 bool isPhys = Register::isPhysicalRegister(Reg); 1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1040 const MachineOperand &MO = getOperand(i); 1041 // Accept regmask operands when Overlap is set. 1042 // Ignore them when looking for a specific def operand (Overlap == false). 1043 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1044 return i; 1045 if (!MO.isReg() || !MO.isDef()) 1046 continue; 1047 Register MOReg = MO.getReg(); 1048 bool Found = (MOReg == Reg); 1049 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1050 if (Overlap) 1051 Found = TRI->regsOverlap(MOReg, Reg); 1052 else 1053 Found = TRI->isSubRegister(MOReg, Reg); 1054 } 1055 if (Found && (!isDead || MO.isDead())) 1056 return i; 1057 } 1058 return -1; 1059 } 1060 1061 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1062 /// operand list that is used to represent the predicate. It returns -1 if 1063 /// none is found. 1064 int MachineInstr::findFirstPredOperandIdx() const { 1065 // Don't call MCID.findFirstPredOperandIdx() because this variant 1066 // is sometimes called on an instruction that's not yet complete, and 1067 // so the number of operands is less than the MCID indicates. In 1068 // particular, the PTX target does this. 1069 const MCInstrDesc &MCID = getDesc(); 1070 if (MCID.isPredicable()) { 1071 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1072 if (MCID.OpInfo[i].isPredicate()) 1073 return i; 1074 } 1075 1076 return -1; 1077 } 1078 1079 // MachineOperand::TiedTo is 4 bits wide. 1080 const unsigned TiedMax = 15; 1081 1082 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1083 /// 1084 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1085 /// field. TiedTo can have these values: 1086 /// 1087 /// 0: Operand is not tied to anything. 1088 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1089 /// TiedMax: Tied to an operand >= TiedMax-1. 1090 /// 1091 /// The tied def must be one of the first TiedMax operands on a normal 1092 /// instruction. INLINEASM instructions allow more tied defs. 1093 /// 1094 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1095 MachineOperand &DefMO = getOperand(DefIdx); 1096 MachineOperand &UseMO = getOperand(UseIdx); 1097 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1098 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1099 assert(!DefMO.isTied() && "Def is already tied to another use"); 1100 assert(!UseMO.isTied() && "Use is already tied to another def"); 1101 1102 if (DefIdx < TiedMax) 1103 UseMO.TiedTo = DefIdx + 1; 1104 else { 1105 // Inline asm can use the group descriptors to find tied operands, 1106 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1107 // but on normal instruction, the tied def must be within the first TiedMax 1108 // operands. 1109 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1110 "DefIdx out of range"); 1111 UseMO.TiedTo = TiedMax; 1112 } 1113 1114 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1115 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1116 } 1117 1118 /// Given the index of a tied register operand, find the operand it is tied to. 1119 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1120 /// which must exist. 1121 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1122 const MachineOperand &MO = getOperand(OpIdx); 1123 assert(MO.isTied() && "Operand isn't tied"); 1124 1125 // Normally TiedTo is in range. 1126 if (MO.TiedTo < TiedMax) 1127 return MO.TiedTo - 1; 1128 1129 // Uses on normal instructions can be out of range. 1130 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1131 // Normal tied defs must be in the 0..TiedMax-1 range. 1132 if (MO.isUse()) 1133 return TiedMax - 1; 1134 // MO is a def. Search for the tied use. 1135 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1136 const MachineOperand &UseMO = getOperand(i); 1137 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1138 return i; 1139 } 1140 llvm_unreachable("Can't find tied use"); 1141 } 1142 1143 if (getOpcode() == TargetOpcode::STATEPOINT) { 1144 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1145 // on registers. 1146 StatepointOpers SO(this); 1147 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1148 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1149 unsigned NumDefs = getNumDefs(); 1150 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1151 while (!getOperand(CurUseIdx).isReg()) 1152 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1153 if (OpIdx == CurDefIdx) 1154 return CurUseIdx; 1155 if (OpIdx == CurUseIdx) 1156 return CurDefIdx; 1157 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1158 } 1159 llvm_unreachable("Can't find tied use"); 1160 } 1161 1162 // Now deal with inline asm by parsing the operand group descriptor flags. 1163 // Find the beginning of each operand group. 1164 SmallVector<unsigned, 8> GroupIdx; 1165 unsigned OpIdxGroup = ~0u; 1166 unsigned NumOps; 1167 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1168 i += NumOps) { 1169 const MachineOperand &FlagMO = getOperand(i); 1170 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1171 unsigned CurGroup = GroupIdx.size(); 1172 GroupIdx.push_back(i); 1173 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1174 // OpIdx belongs to this operand group. 1175 if (OpIdx > i && OpIdx < i + NumOps) 1176 OpIdxGroup = CurGroup; 1177 unsigned TiedGroup; 1178 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1179 continue; 1180 // Operands in this group are tied to operands in TiedGroup which must be 1181 // earlier. Find the number of operands between the two groups. 1182 unsigned Delta = i - GroupIdx[TiedGroup]; 1183 1184 // OpIdx is a use tied to TiedGroup. 1185 if (OpIdxGroup == CurGroup) 1186 return OpIdx - Delta; 1187 1188 // OpIdx is a def tied to this use group. 1189 if (OpIdxGroup == TiedGroup) 1190 return OpIdx + Delta; 1191 } 1192 llvm_unreachable("Invalid tied operand on inline asm"); 1193 } 1194 1195 /// clearKillInfo - Clears kill flags on all operands. 1196 /// 1197 void MachineInstr::clearKillInfo() { 1198 for (MachineOperand &MO : operands()) { 1199 if (MO.isReg() && MO.isUse()) 1200 MO.setIsKill(false); 1201 } 1202 } 1203 1204 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1205 unsigned SubIdx, 1206 const TargetRegisterInfo &RegInfo) { 1207 if (Register::isPhysicalRegister(ToReg)) { 1208 if (SubIdx) 1209 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1210 for (MachineOperand &MO : operands()) { 1211 if (!MO.isReg() || MO.getReg() != FromReg) 1212 continue; 1213 MO.substPhysReg(ToReg, RegInfo); 1214 } 1215 } else { 1216 for (MachineOperand &MO : operands()) { 1217 if (!MO.isReg() || MO.getReg() != FromReg) 1218 continue; 1219 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1220 } 1221 } 1222 } 1223 1224 /// isSafeToMove - Return true if it is safe to move this instruction. If 1225 /// SawStore is set to true, it means that there is a store (or call) between 1226 /// the instruction's location and its intended destination. 1227 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1228 // Ignore stuff that we obviously can't move. 1229 // 1230 // Treat volatile loads as stores. This is not strictly necessary for 1231 // volatiles, but it is required for atomic loads. It is not allowed to move 1232 // a load across an atomic load with Ordering > Monotonic. 1233 if (mayStore() || isCall() || isPHI() || 1234 (mayLoad() && hasOrderedMemoryRef())) { 1235 SawStore = true; 1236 return false; 1237 } 1238 1239 if (isPosition() || isDebugInstr() || isTerminator() || 1240 mayRaiseFPException() || hasUnmodeledSideEffects()) 1241 return false; 1242 1243 // See if this instruction does a load. If so, we have to guarantee that the 1244 // loaded value doesn't change between the load and the its intended 1245 // destination. The check for isInvariantLoad gives the target the chance to 1246 // classify the load as always returning a constant, e.g. a constant pool 1247 // load. 1248 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1249 // Otherwise, this is a real load. If there is a store between the load and 1250 // end of block, we can't move it. 1251 return !SawStore; 1252 1253 return true; 1254 } 1255 1256 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1257 bool UseTBAA, const MachineMemOperand *MMOa, 1258 const MachineMemOperand *MMOb) { 1259 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1260 // operates with MachineMemOperand offset with some important assumptions: 1261 // - LLVM fundamentally assumes flat address spaces. 1262 // - MachineOperand offset can *only* result from legalization and cannot 1263 // affect queries other than the trivial case of overlap checking. 1264 // - These offsets never wrap and never step outside of allocated objects. 1265 // - There should never be any negative offsets here. 1266 // 1267 // FIXME: Modify API to hide this math from "user" 1268 // Even before we go to AA we can reason locally about some memory objects. It 1269 // can save compile time, and possibly catch some corner cases not currently 1270 // covered. 1271 1272 int64_t OffsetA = MMOa->getOffset(); 1273 int64_t OffsetB = MMOb->getOffset(); 1274 int64_t MinOffset = std::min(OffsetA, OffsetB); 1275 1276 uint64_t WidthA = MMOa->getSize(); 1277 uint64_t WidthB = MMOb->getSize(); 1278 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1279 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1280 1281 const Value *ValA = MMOa->getValue(); 1282 const Value *ValB = MMOb->getValue(); 1283 bool SameVal = (ValA && ValB && (ValA == ValB)); 1284 if (!SameVal) { 1285 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1286 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1287 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1288 return false; 1289 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1290 return false; 1291 if (PSVa && PSVb && (PSVa == PSVb)) 1292 SameVal = true; 1293 } 1294 1295 if (SameVal) { 1296 if (!KnownWidthA || !KnownWidthB) 1297 return true; 1298 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1299 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1300 return (MinOffset + LowWidth > MaxOffset); 1301 } 1302 1303 if (!AA) 1304 return true; 1305 1306 if (!ValA || !ValB) 1307 return true; 1308 1309 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1310 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1311 1312 int64_t OverlapA = 1313 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1314 int64_t OverlapB = 1315 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1316 1317 AliasResult AAResult = AA->alias( 1318 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1319 MemoryLocation(ValB, OverlapB, 1320 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1321 1322 return (AAResult != NoAlias); 1323 } 1324 1325 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1326 bool UseTBAA) const { 1327 const MachineFunction *MF = getMF(); 1328 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1329 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1330 1331 // Exclude call instruction which may alter the memory but can not be handled 1332 // by this function. 1333 if (isCall() || Other.isCall()) 1334 return true; 1335 1336 // If neither instruction stores to memory, they can't alias in any 1337 // meaningful way, even if they read from the same address. 1338 if (!mayStore() && !Other.mayStore()) 1339 return false; 1340 1341 // Both instructions must be memory operations to be able to alias. 1342 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1343 return false; 1344 1345 // Let the target decide if memory accesses cannot possibly overlap. 1346 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1347 return false; 1348 1349 // Memory operations without memory operands may access anything. Be 1350 // conservative and assume `MayAlias`. 1351 if (memoperands_empty() || Other.memoperands_empty()) 1352 return true; 1353 1354 // Skip if there are too many memory operands. 1355 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1356 if (NumChecks > TII->getMemOperandAACheckLimit()) 1357 return true; 1358 1359 // Check each pair of memory operands from both instructions, which can't 1360 // alias only if all pairs won't alias. 1361 for (auto *MMOa : memoperands()) 1362 for (auto *MMOb : Other.memoperands()) 1363 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1364 return true; 1365 1366 return false; 1367 } 1368 1369 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1370 /// or volatile memory reference, or if the information describing the memory 1371 /// reference is not available. Return false if it is known to have no ordered 1372 /// memory references. 1373 bool MachineInstr::hasOrderedMemoryRef() const { 1374 // An instruction known never to access memory won't have a volatile access. 1375 if (!mayStore() && 1376 !mayLoad() && 1377 !isCall() && 1378 !hasUnmodeledSideEffects()) 1379 return false; 1380 1381 // Otherwise, if the instruction has no memory reference information, 1382 // conservatively assume it wasn't preserved. 1383 if (memoperands_empty()) 1384 return true; 1385 1386 // Check if any of our memory operands are ordered. 1387 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1388 return !MMO->isUnordered(); 1389 }); 1390 } 1391 1392 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1393 /// trap and is loading from a location whose value is invariant across a run of 1394 /// this function. 1395 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1396 // If the instruction doesn't load at all, it isn't an invariant load. 1397 if (!mayLoad()) 1398 return false; 1399 1400 // If the instruction has lost its memoperands, conservatively assume that 1401 // it may not be an invariant load. 1402 if (memoperands_empty()) 1403 return false; 1404 1405 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1406 1407 for (MachineMemOperand *MMO : memoperands()) { 1408 if (!MMO->isUnordered()) 1409 // If the memory operand has ordering side effects, we can't move the 1410 // instruction. Such an instruction is technically an invariant load, 1411 // but the caller code would need updated to expect that. 1412 return false; 1413 if (MMO->isStore()) return false; 1414 if (MMO->isInvariant() && MMO->isDereferenceable()) 1415 continue; 1416 1417 // A load from a constant PseudoSourceValue is invariant. 1418 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1419 if (PSV->isConstant(&MFI)) 1420 continue; 1421 1422 if (const Value *V = MMO->getValue()) { 1423 // If we have an AliasAnalysis, ask it whether the memory is constant. 1424 if (AA && 1425 AA->pointsToConstantMemory( 1426 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1427 continue; 1428 } 1429 1430 // Otherwise assume conservatively. 1431 return false; 1432 } 1433 1434 // Everything checks out. 1435 return true; 1436 } 1437 1438 /// isConstantValuePHI - If the specified instruction is a PHI that always 1439 /// merges together the same virtual register, return the register, otherwise 1440 /// return 0. 1441 unsigned MachineInstr::isConstantValuePHI() const { 1442 if (!isPHI()) 1443 return 0; 1444 assert(getNumOperands() >= 3 && 1445 "It's illegal to have a PHI without source operands"); 1446 1447 Register Reg = getOperand(1).getReg(); 1448 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1449 if (getOperand(i).getReg() != Reg) 1450 return 0; 1451 return Reg; 1452 } 1453 1454 bool MachineInstr::hasUnmodeledSideEffects() const { 1455 if (hasProperty(MCID::UnmodeledSideEffects)) 1456 return true; 1457 if (isInlineAsm()) { 1458 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1459 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1460 return true; 1461 } 1462 1463 return false; 1464 } 1465 1466 bool MachineInstr::isLoadFoldBarrier() const { 1467 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1468 } 1469 1470 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1471 /// 1472 bool MachineInstr::allDefsAreDead() const { 1473 for (const MachineOperand &MO : operands()) { 1474 if (!MO.isReg() || MO.isUse()) 1475 continue; 1476 if (!MO.isDead()) 1477 return false; 1478 } 1479 return true; 1480 } 1481 1482 /// copyImplicitOps - Copy implicit register operands from specified 1483 /// instruction to this instruction. 1484 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1485 const MachineInstr &MI) { 1486 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1487 i != e; ++i) { 1488 const MachineOperand &MO = MI.getOperand(i); 1489 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1490 addOperand(MF, MO); 1491 } 1492 } 1493 1494 bool MachineInstr::hasComplexRegisterTies() const { 1495 const MCInstrDesc &MCID = getDesc(); 1496 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1497 return true; 1498 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1499 const auto &Operand = getOperand(I); 1500 if (!Operand.isReg() || Operand.isDef()) 1501 // Ignore the defined registers as MCID marks only the uses as tied. 1502 continue; 1503 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1504 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1505 if (ExpectedTiedIdx != TiedIdx) 1506 return true; 1507 } 1508 return false; 1509 } 1510 1511 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1512 const MachineRegisterInfo &MRI) const { 1513 const MachineOperand &Op = getOperand(OpIdx); 1514 if (!Op.isReg()) 1515 return LLT{}; 1516 1517 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1518 return MRI.getType(Op.getReg()); 1519 1520 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1521 if (!OpInfo.isGenericType()) 1522 return MRI.getType(Op.getReg()); 1523 1524 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1525 return LLT{}; 1526 1527 LLT TypeToPrint = MRI.getType(Op.getReg()); 1528 // Don't mark the type index printed if it wasn't actually printed: maybe 1529 // another operand with the same type index has an actual type attached: 1530 if (TypeToPrint.isValid()) 1531 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1532 return TypeToPrint; 1533 } 1534 1535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1536 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1537 dbgs() << " "; 1538 print(dbgs()); 1539 } 1540 1541 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1542 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1543 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1544 if (Depth >= MaxDepth) 1545 return; 1546 if (!AlreadySeenInstrs.insert(this).second) 1547 return; 1548 // PadToColumn always inserts at least one space. 1549 // Don't mess up the alignment if we don't want any space. 1550 if (Depth) 1551 fdbgs().PadToColumn(Depth * 2); 1552 print(fdbgs()); 1553 for (const MachineOperand &MO : operands()) { 1554 if (!MO.isReg() || MO.isDef()) 1555 continue; 1556 Register Reg = MO.getReg(); 1557 if (Reg.isPhysical()) 1558 continue; 1559 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1560 if (NewMI == nullptr) 1561 continue; 1562 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1563 } 1564 } 1565 1566 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1567 unsigned MaxDepth) const { 1568 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1569 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1570 } 1571 #endif 1572 1573 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1574 bool SkipDebugLoc, bool AddNewLine, 1575 const TargetInstrInfo *TII) const { 1576 const Module *M = nullptr; 1577 const Function *F = nullptr; 1578 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1579 F = &MF->getFunction(); 1580 M = F->getParent(); 1581 if (!TII) 1582 TII = MF->getSubtarget().getInstrInfo(); 1583 } 1584 1585 ModuleSlotTracker MST(M); 1586 if (F) 1587 MST.incorporateFunction(*F); 1588 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1589 } 1590 1591 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1592 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1593 bool AddNewLine, const TargetInstrInfo *TII) const { 1594 // We can be a bit tidier if we know the MachineFunction. 1595 const TargetRegisterInfo *TRI = nullptr; 1596 const MachineRegisterInfo *MRI = nullptr; 1597 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1598 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1599 1600 if (isCFIInstruction()) 1601 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1602 1603 SmallBitVector PrintedTypes(8); 1604 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1605 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1606 if (!ShouldPrintRegisterTies) 1607 return 0U; 1608 const MachineOperand &MO = getOperand(OpIdx); 1609 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1610 return findTiedOperandIdx(OpIdx); 1611 return 0U; 1612 }; 1613 unsigned StartOp = 0; 1614 unsigned e = getNumOperands(); 1615 1616 // Print explicitly defined operands on the left of an assignment syntax. 1617 while (StartOp < e) { 1618 const MachineOperand &MO = getOperand(StartOp); 1619 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1620 break; 1621 1622 if (StartOp != 0) 1623 OS << ", "; 1624 1625 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1626 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1627 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1628 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1629 ++StartOp; 1630 } 1631 1632 if (StartOp != 0) 1633 OS << " = "; 1634 1635 if (getFlag(MachineInstr::FrameSetup)) 1636 OS << "frame-setup "; 1637 if (getFlag(MachineInstr::FrameDestroy)) 1638 OS << "frame-destroy "; 1639 if (getFlag(MachineInstr::FmNoNans)) 1640 OS << "nnan "; 1641 if (getFlag(MachineInstr::FmNoInfs)) 1642 OS << "ninf "; 1643 if (getFlag(MachineInstr::FmNsz)) 1644 OS << "nsz "; 1645 if (getFlag(MachineInstr::FmArcp)) 1646 OS << "arcp "; 1647 if (getFlag(MachineInstr::FmContract)) 1648 OS << "contract "; 1649 if (getFlag(MachineInstr::FmAfn)) 1650 OS << "afn "; 1651 if (getFlag(MachineInstr::FmReassoc)) 1652 OS << "reassoc "; 1653 if (getFlag(MachineInstr::NoUWrap)) 1654 OS << "nuw "; 1655 if (getFlag(MachineInstr::NoSWrap)) 1656 OS << "nsw "; 1657 if (getFlag(MachineInstr::IsExact)) 1658 OS << "exact "; 1659 if (getFlag(MachineInstr::NoFPExcept)) 1660 OS << "nofpexcept "; 1661 if (getFlag(MachineInstr::NoMerge)) 1662 OS << "nomerge "; 1663 1664 // Print the opcode name. 1665 if (TII) 1666 OS << TII->getName(getOpcode()); 1667 else 1668 OS << "UNKNOWN"; 1669 1670 if (SkipOpers) 1671 return; 1672 1673 // Print the rest of the operands. 1674 bool FirstOp = true; 1675 unsigned AsmDescOp = ~0u; 1676 unsigned AsmOpCount = 0; 1677 1678 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1679 // Print asm string. 1680 OS << " "; 1681 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1682 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1683 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1684 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1685 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1686 IntrinsicInfo); 1687 1688 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1689 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1690 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1691 OS << " [sideeffect]"; 1692 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1693 OS << " [mayload]"; 1694 if (ExtraInfo & InlineAsm::Extra_MayStore) 1695 OS << " [maystore]"; 1696 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1697 OS << " [isconvergent]"; 1698 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1699 OS << " [alignstack]"; 1700 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1701 OS << " [attdialect]"; 1702 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1703 OS << " [inteldialect]"; 1704 1705 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1706 FirstOp = false; 1707 } 1708 1709 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1710 const MachineOperand &MO = getOperand(i); 1711 1712 if (FirstOp) FirstOp = false; else OS << ","; 1713 OS << " "; 1714 1715 if (isDebugValue() && MO.isMetadata()) { 1716 // Pretty print DBG_VALUE instructions. 1717 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1718 if (DIV && !DIV->getName().empty()) 1719 OS << "!\"" << DIV->getName() << '\"'; 1720 else { 1721 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1722 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1723 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1724 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1725 } 1726 } else if (isDebugLabel() && MO.isMetadata()) { 1727 // Pretty print DBG_LABEL instructions. 1728 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1729 if (DIL && !DIL->getName().empty()) 1730 OS << "\"" << DIL->getName() << '\"'; 1731 else { 1732 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1733 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1734 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1735 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1736 } 1737 } else if (i == AsmDescOp && MO.isImm()) { 1738 // Pretty print the inline asm operand descriptor. 1739 OS << '$' << AsmOpCount++; 1740 unsigned Flag = MO.getImm(); 1741 OS << ":["; 1742 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1743 1744 unsigned RCID = 0; 1745 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1746 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1747 if (TRI) { 1748 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1749 } else 1750 OS << ":RC" << RCID; 1751 } 1752 1753 if (InlineAsm::isMemKind(Flag)) { 1754 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1755 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1756 } 1757 1758 unsigned TiedTo = 0; 1759 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1760 OS << " tiedto:$" << TiedTo; 1761 1762 OS << ']'; 1763 1764 // Compute the index of the next operand descriptor. 1765 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1766 } else { 1767 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1768 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1769 if (MO.isImm() && isOperandSubregIdx(i)) 1770 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1771 else 1772 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1773 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1774 } 1775 } 1776 1777 // Print any optional symbols attached to this instruction as-if they were 1778 // operands. 1779 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1780 if (!FirstOp) { 1781 FirstOp = false; 1782 OS << ','; 1783 } 1784 OS << " pre-instr-symbol "; 1785 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1786 } 1787 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1788 if (!FirstOp) { 1789 FirstOp = false; 1790 OS << ','; 1791 } 1792 OS << " post-instr-symbol "; 1793 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1794 } 1795 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1796 if (!FirstOp) { 1797 FirstOp = false; 1798 OS << ','; 1799 } 1800 OS << " heap-alloc-marker "; 1801 HeapAllocMarker->printAsOperand(OS, MST); 1802 } 1803 1804 if (DebugInstrNum) { 1805 if (!FirstOp) 1806 OS << ","; 1807 OS << " debug-instr-number " << DebugInstrNum; 1808 } 1809 1810 if (!SkipDebugLoc) { 1811 if (const DebugLoc &DL = getDebugLoc()) { 1812 if (!FirstOp) 1813 OS << ','; 1814 OS << " debug-location "; 1815 DL->printAsOperand(OS, MST); 1816 } 1817 } 1818 1819 if (!memoperands_empty()) { 1820 SmallVector<StringRef, 0> SSNs; 1821 const LLVMContext *Context = nullptr; 1822 std::unique_ptr<LLVMContext> CtxPtr; 1823 const MachineFrameInfo *MFI = nullptr; 1824 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1825 MFI = &MF->getFrameInfo(); 1826 Context = &MF->getFunction().getContext(); 1827 } else { 1828 CtxPtr = std::make_unique<LLVMContext>(); 1829 Context = CtxPtr.get(); 1830 } 1831 1832 OS << " :: "; 1833 bool NeedComma = false; 1834 for (const MachineMemOperand *Op : memoperands()) { 1835 if (NeedComma) 1836 OS << ", "; 1837 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1838 NeedComma = true; 1839 } 1840 } 1841 1842 if (SkipDebugLoc) 1843 return; 1844 1845 bool HaveSemi = false; 1846 1847 // Print debug location information. 1848 if (const DebugLoc &DL = getDebugLoc()) { 1849 if (!HaveSemi) { 1850 OS << ';'; 1851 HaveSemi = true; 1852 } 1853 OS << ' '; 1854 DL.print(OS); 1855 } 1856 1857 // Print extra comments for DEBUG_VALUE. 1858 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1859 if (!HaveSemi) { 1860 OS << ";"; 1861 HaveSemi = true; 1862 } 1863 auto *DV = getDebugVariable(); 1864 OS << " line no:" << DV->getLine(); 1865 if (isIndirectDebugValue()) 1866 OS << " indirect"; 1867 } 1868 // TODO: DBG_LABEL 1869 1870 if (AddNewLine) 1871 OS << '\n'; 1872 } 1873 1874 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1875 const TargetRegisterInfo *RegInfo, 1876 bool AddIfNotFound) { 1877 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1878 bool hasAliases = isPhysReg && 1879 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1880 bool Found = false; 1881 SmallVector<unsigned,4> DeadOps; 1882 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1883 MachineOperand &MO = getOperand(i); 1884 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1885 continue; 1886 1887 // DEBUG_VALUE nodes do not contribute to code generation and should 1888 // always be ignored. Failure to do so may result in trying to modify 1889 // KILL flags on DEBUG_VALUE nodes. 1890 if (MO.isDebug()) 1891 continue; 1892 1893 Register Reg = MO.getReg(); 1894 if (!Reg) 1895 continue; 1896 1897 if (Reg == IncomingReg) { 1898 if (!Found) { 1899 if (MO.isKill()) 1900 // The register is already marked kill. 1901 return true; 1902 if (isPhysReg && isRegTiedToDefOperand(i)) 1903 // Two-address uses of physregs must not be marked kill. 1904 return true; 1905 MO.setIsKill(); 1906 Found = true; 1907 } 1908 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1909 // A super-register kill already exists. 1910 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1911 return true; 1912 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1913 DeadOps.push_back(i); 1914 } 1915 } 1916 1917 // Trim unneeded kill operands. 1918 while (!DeadOps.empty()) { 1919 unsigned OpIdx = DeadOps.back(); 1920 if (getOperand(OpIdx).isImplicit() && 1921 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1922 RemoveOperand(OpIdx); 1923 else 1924 getOperand(OpIdx).setIsKill(false); 1925 DeadOps.pop_back(); 1926 } 1927 1928 // If not found, this means an alias of one of the operands is killed. Add a 1929 // new implicit operand if required. 1930 if (!Found && AddIfNotFound) { 1931 addOperand(MachineOperand::CreateReg(IncomingReg, 1932 false /*IsDef*/, 1933 true /*IsImp*/, 1934 true /*IsKill*/)); 1935 return true; 1936 } 1937 return Found; 1938 } 1939 1940 void MachineInstr::clearRegisterKills(Register Reg, 1941 const TargetRegisterInfo *RegInfo) { 1942 if (!Register::isPhysicalRegister(Reg)) 1943 RegInfo = nullptr; 1944 for (MachineOperand &MO : operands()) { 1945 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1946 continue; 1947 Register OpReg = MO.getReg(); 1948 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1949 MO.setIsKill(false); 1950 } 1951 } 1952 1953 bool MachineInstr::addRegisterDead(Register Reg, 1954 const TargetRegisterInfo *RegInfo, 1955 bool AddIfNotFound) { 1956 bool isPhysReg = Register::isPhysicalRegister(Reg); 1957 bool hasAliases = isPhysReg && 1958 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1959 bool Found = false; 1960 SmallVector<unsigned,4> DeadOps; 1961 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1962 MachineOperand &MO = getOperand(i); 1963 if (!MO.isReg() || !MO.isDef()) 1964 continue; 1965 Register MOReg = MO.getReg(); 1966 if (!MOReg) 1967 continue; 1968 1969 if (MOReg == Reg) { 1970 MO.setIsDead(); 1971 Found = true; 1972 } else if (hasAliases && MO.isDead() && 1973 Register::isPhysicalRegister(MOReg)) { 1974 // There exists a super-register that's marked dead. 1975 if (RegInfo->isSuperRegister(Reg, MOReg)) 1976 return true; 1977 if (RegInfo->isSubRegister(Reg, MOReg)) 1978 DeadOps.push_back(i); 1979 } 1980 } 1981 1982 // Trim unneeded dead operands. 1983 while (!DeadOps.empty()) { 1984 unsigned OpIdx = DeadOps.back(); 1985 if (getOperand(OpIdx).isImplicit() && 1986 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1987 RemoveOperand(OpIdx); 1988 else 1989 getOperand(OpIdx).setIsDead(false); 1990 DeadOps.pop_back(); 1991 } 1992 1993 // If not found, this means an alias of one of the operands is dead. Add a 1994 // new implicit operand if required. 1995 if (Found || !AddIfNotFound) 1996 return Found; 1997 1998 addOperand(MachineOperand::CreateReg(Reg, 1999 true /*IsDef*/, 2000 true /*IsImp*/, 2001 false /*IsKill*/, 2002 true /*IsDead*/)); 2003 return true; 2004 } 2005 2006 void MachineInstr::clearRegisterDeads(Register Reg) { 2007 for (MachineOperand &MO : operands()) { 2008 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2009 continue; 2010 MO.setIsDead(false); 2011 } 2012 } 2013 2014 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2015 for (MachineOperand &MO : operands()) { 2016 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2017 continue; 2018 MO.setIsUndef(IsUndef); 2019 } 2020 } 2021 2022 void MachineInstr::addRegisterDefined(Register Reg, 2023 const TargetRegisterInfo *RegInfo) { 2024 if (Register::isPhysicalRegister(Reg)) { 2025 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2026 if (MO) 2027 return; 2028 } else { 2029 for (const MachineOperand &MO : operands()) { 2030 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2031 MO.getSubReg() == 0) 2032 return; 2033 } 2034 } 2035 addOperand(MachineOperand::CreateReg(Reg, 2036 true /*IsDef*/, 2037 true /*IsImp*/)); 2038 } 2039 2040 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2041 const TargetRegisterInfo &TRI) { 2042 bool HasRegMask = false; 2043 for (MachineOperand &MO : operands()) { 2044 if (MO.isRegMask()) { 2045 HasRegMask = true; 2046 continue; 2047 } 2048 if (!MO.isReg() || !MO.isDef()) continue; 2049 Register Reg = MO.getReg(); 2050 if (!Reg.isPhysical()) 2051 continue; 2052 // If there are no uses, including partial uses, the def is dead. 2053 if (llvm::none_of(UsedRegs, 2054 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2055 MO.setIsDead(); 2056 } 2057 2058 // This is a call with a register mask operand. 2059 // Mask clobbers are always dead, so add defs for the non-dead defines. 2060 if (HasRegMask) 2061 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2062 I != E; ++I) 2063 addRegisterDefined(*I, &TRI); 2064 } 2065 2066 unsigned 2067 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2068 // Build up a buffer of hash code components. 2069 SmallVector<size_t, 16> HashComponents; 2070 HashComponents.reserve(MI->getNumOperands() + 1); 2071 HashComponents.push_back(MI->getOpcode()); 2072 for (const MachineOperand &MO : MI->operands()) { 2073 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2074 continue; // Skip virtual register defs. 2075 2076 HashComponents.push_back(hash_value(MO)); 2077 } 2078 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2079 } 2080 2081 void MachineInstr::emitError(StringRef Msg) const { 2082 // Find the source location cookie. 2083 unsigned LocCookie = 0; 2084 const MDNode *LocMD = nullptr; 2085 for (unsigned i = getNumOperands(); i != 0; --i) { 2086 if (getOperand(i-1).isMetadata() && 2087 (LocMD = getOperand(i-1).getMetadata()) && 2088 LocMD->getNumOperands() != 0) { 2089 if (const ConstantInt *CI = 2090 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2091 LocCookie = CI->getZExtValue(); 2092 break; 2093 } 2094 } 2095 } 2096 2097 if (const MachineBasicBlock *MBB = getParent()) 2098 if (const MachineFunction *MF = MBB->getParent()) 2099 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2100 report_fatal_error(Msg); 2101 } 2102 2103 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2104 const MCInstrDesc &MCID, bool IsIndirect, 2105 Register Reg, const MDNode *Variable, 2106 const MDNode *Expr) { 2107 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2108 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2109 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2110 "Expected inlined-at fields to agree"); 2111 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2112 if (IsIndirect) 2113 MIB.addImm(0U); 2114 else 2115 MIB.addReg(0U, RegState::Debug); 2116 return MIB.addMetadata(Variable).addMetadata(Expr); 2117 } 2118 2119 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2120 const MCInstrDesc &MCID, bool IsIndirect, 2121 MachineOperand &MO, const MDNode *Variable, 2122 const MDNode *Expr) { 2123 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2124 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2125 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2126 "Expected inlined-at fields to agree"); 2127 if (MO.isReg()) 2128 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2129 2130 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2131 if (IsIndirect) 2132 MIB.addImm(0U); 2133 else 2134 MIB.addReg(0U, RegState::Debug); 2135 return MIB.addMetadata(Variable).addMetadata(Expr); 2136 } 2137 2138 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2139 MachineBasicBlock::iterator I, 2140 const DebugLoc &DL, const MCInstrDesc &MCID, 2141 bool IsIndirect, Register Reg, 2142 const MDNode *Variable, const MDNode *Expr) { 2143 MachineFunction &MF = *BB.getParent(); 2144 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2145 BB.insert(I, MI); 2146 return MachineInstrBuilder(MF, MI); 2147 } 2148 2149 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2150 MachineBasicBlock::iterator I, 2151 const DebugLoc &DL, const MCInstrDesc &MCID, 2152 bool IsIndirect, MachineOperand &MO, 2153 const MDNode *Variable, const MDNode *Expr) { 2154 MachineFunction &MF = *BB.getParent(); 2155 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2156 BB.insert(I, MI); 2157 return MachineInstrBuilder(MF, *MI); 2158 } 2159 2160 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2161 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2162 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2163 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2164 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2165 "Expected inlined-at fields to agree"); 2166 2167 const DIExpression *Expr = MI.getDebugExpression(); 2168 if (MI.isIndirectDebugValue()) { 2169 assert(MI.getDebugOffset().getImm() == 0 && 2170 "DBG_VALUE with nonzero offset"); 2171 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2172 } 2173 return Expr; 2174 } 2175 2176 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2177 MachineBasicBlock::iterator I, 2178 const MachineInstr &Orig, 2179 int FrameIndex) { 2180 const DIExpression *Expr = computeExprForSpill(Orig); 2181 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2182 .addFrameIndex(FrameIndex) 2183 .addImm(0U) 2184 .addMetadata(Orig.getDebugVariable()) 2185 .addMetadata(Expr); 2186 } 2187 2188 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2189 const DIExpression *Expr = computeExprForSpill(Orig); 2190 Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex); 2191 Orig.getDebugOffset().ChangeToImmediate(0U); 2192 Orig.getDebugExpressionOp().setMetadata(Expr); 2193 } 2194 2195 void MachineInstr::collectDebugValues( 2196 SmallVectorImpl<MachineInstr *> &DbgValues) { 2197 MachineInstr &MI = *this; 2198 if (!MI.getOperand(0).isReg()) 2199 return; 2200 2201 MachineBasicBlock::iterator DI = MI; ++DI; 2202 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2203 DI != DE; ++DI) { 2204 if (!DI->isDebugValue()) 2205 return; 2206 if (DI->getDebugOperandForReg(MI.getOperand(0).getReg())) 2207 DbgValues.push_back(&*DI); 2208 } 2209 } 2210 2211 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2212 // Collect matching debug values. 2213 SmallVector<MachineInstr *, 2> DbgValues; 2214 2215 if (!getOperand(0).isReg()) 2216 return; 2217 2218 Register DefReg = getOperand(0).getReg(); 2219 auto *MRI = getRegInfo(); 2220 for (auto &MO : MRI->use_operands(DefReg)) { 2221 auto *DI = MO.getParent(); 2222 if (!DI->isDebugValue()) 2223 continue; 2224 if (DI->getDebugOperandForReg(DefReg)) { 2225 DbgValues.push_back(DI); 2226 } 2227 } 2228 2229 // Propagate Reg to debug value instructions. 2230 for (auto *DBI : DbgValues) 2231 DBI->getDebugOperandForReg(DefReg)->setReg(Reg); 2232 } 2233 2234 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2235 2236 static unsigned getSpillSlotSize(const MMOList &Accesses, 2237 const MachineFrameInfo &MFI) { 2238 unsigned Size = 0; 2239 for (auto A : Accesses) 2240 if (MFI.isSpillSlotObjectIndex( 2241 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2242 ->getFrameIndex())) 2243 Size += A->getSize(); 2244 return Size; 2245 } 2246 2247 Optional<unsigned> 2248 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2249 int FI; 2250 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2251 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2252 if (MFI.isSpillSlotObjectIndex(FI)) 2253 return (*memoperands_begin())->getSize(); 2254 } 2255 return None; 2256 } 2257 2258 Optional<unsigned> 2259 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2260 MMOList Accesses; 2261 if (TII->hasStoreToStackSlot(*this, Accesses)) 2262 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2263 return None; 2264 } 2265 2266 Optional<unsigned> 2267 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2268 int FI; 2269 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2270 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2271 if (MFI.isSpillSlotObjectIndex(FI)) 2272 return (*memoperands_begin())->getSize(); 2273 } 2274 return None; 2275 } 2276 2277 Optional<unsigned> 2278 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2279 MMOList Accesses; 2280 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2281 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2282 return None; 2283 } 2284 2285 unsigned MachineInstr::getDebugInstrNum() { 2286 if (DebugInstrNum == 0) 2287 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2288 return DebugInstrNum; 2289 } 2290