1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ModuleSlotTracker.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/MC/MCInstrDesc.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetInstrInfo.h" 62 #include "llvm/Target/TargetIntrinsicInfo.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetRegisterInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <iterator> 72 #include <utility> 73 74 using namespace llvm; 75 76 static cl::opt<int> PrintRegMaskNumRegs( 77 "print-regmask-num-regs", 78 cl::desc("Number of registers to limit to when " 79 "printing regmask operands in IR dumps. " 80 "unlimited = -1"), 81 cl::init(32), cl::Hidden); 82 83 //===----------------------------------------------------------------------===// 84 // MachineOperand Implementation 85 //===----------------------------------------------------------------------===// 86 87 void MachineOperand::setReg(unsigned Reg) { 88 if (getReg() == Reg) return; // No change. 89 90 // Otherwise, we have to change the register. If this operand is embedded 91 // into a machine function, we need to update the old and new register's 92 // use/def lists. 93 if (MachineInstr *MI = getParent()) 94 if (MachineBasicBlock *MBB = MI->getParent()) 95 if (MachineFunction *MF = MBB->getParent()) { 96 MachineRegisterInfo &MRI = MF->getRegInfo(); 97 MRI.removeRegOperandFromUseList(this); 98 SmallContents.RegNo = Reg; 99 MRI.addRegOperandToUseList(this); 100 return; 101 } 102 103 // Otherwise, just change the register, no problem. :) 104 SmallContents.RegNo = Reg; 105 } 106 107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 108 const TargetRegisterInfo &TRI) { 109 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 110 if (SubIdx && getSubReg()) 111 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 112 setReg(Reg); 113 if (SubIdx) 114 setSubReg(SubIdx); 115 } 116 117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 118 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 119 if (getSubReg()) { 120 Reg = TRI.getSubReg(Reg, getSubReg()); 121 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 122 // That won't happen in legal code. 123 setSubReg(0); 124 if (isDef()) 125 setIsUndef(false); 126 } 127 setReg(Reg); 128 } 129 130 /// Change a def to a use, or a use to a def. 131 void MachineOperand::setIsDef(bool Val) { 132 assert(isReg() && "Wrong MachineOperand accessor"); 133 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 134 if (IsDef == Val) 135 return; 136 // MRI may keep uses and defs in different list positions. 137 if (MachineInstr *MI = getParent()) 138 if (MachineBasicBlock *MBB = MI->getParent()) 139 if (MachineFunction *MF = MBB->getParent()) { 140 MachineRegisterInfo &MRI = MF->getRegInfo(); 141 MRI.removeRegOperandFromUseList(this); 142 IsDef = Val; 143 MRI.addRegOperandToUseList(this); 144 return; 145 } 146 IsDef = Val; 147 } 148 149 // If this operand is currently a register operand, and if this is in a 150 // function, deregister the operand from the register's use/def list. 151 void MachineOperand::removeRegFromUses() { 152 if (!isReg() || !isOnRegUseList()) 153 return; 154 155 if (MachineInstr *MI = getParent()) { 156 if (MachineBasicBlock *MBB = MI->getParent()) { 157 if (MachineFunction *MF = MBB->getParent()) 158 MF->getRegInfo().removeRegOperandFromUseList(this); 159 } 160 } 161 } 162 163 /// ChangeToImmediate - Replace this operand with a new immediate operand of 164 /// the specified value. If an operand is known to be an immediate already, 165 /// the setImm method should be used. 166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 167 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 168 169 removeRegFromUses(); 170 171 OpKind = MO_Immediate; 172 Contents.ImmVal = ImmVal; 173 } 174 175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 176 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 177 178 removeRegFromUses(); 179 180 OpKind = MO_FPImmediate; 181 Contents.CFP = FPImm; 182 } 183 184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 185 assert((!isReg() || !isTied()) && 186 "Cannot change a tied operand into an external symbol"); 187 188 removeRegFromUses(); 189 190 OpKind = MO_ExternalSymbol; 191 Contents.OffsetedInfo.Val.SymbolName = SymName; 192 setOffset(0); // Offset is always 0. 193 setTargetFlags(TargetFlags); 194 } 195 196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 197 assert((!isReg() || !isTied()) && 198 "Cannot change a tied operand into an MCSymbol"); 199 200 removeRegFromUses(); 201 202 OpKind = MO_MCSymbol; 203 Contents.Sym = Sym; 204 } 205 206 void MachineOperand::ChangeToFrameIndex(int Idx) { 207 assert((!isReg() || !isTied()) && 208 "Cannot change a tied operand into a FrameIndex"); 209 210 removeRegFromUses(); 211 212 OpKind = MO_FrameIndex; 213 setIndex(Idx); 214 } 215 216 void MachineOperand::ChangeToTargetIndex(unsigned Idx, int64_t Offset, 217 unsigned char TargetFlags) { 218 assert((!isReg() || !isTied()) && 219 "Cannot change a tied operand into a FrameIndex"); 220 221 removeRegFromUses(); 222 223 OpKind = MO_TargetIndex; 224 setIndex(Idx); 225 setOffset(Offset); 226 setTargetFlags(TargetFlags); 227 } 228 229 /// ChangeToRegister - Replace this operand with a new register operand of 230 /// the specified value. If an operand is known to be an register already, 231 /// the setReg method should be used. 232 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 233 bool isKill, bool isDead, bool isUndef, 234 bool isDebug) { 235 MachineRegisterInfo *RegInfo = nullptr; 236 if (MachineInstr *MI = getParent()) 237 if (MachineBasicBlock *MBB = MI->getParent()) 238 if (MachineFunction *MF = MBB->getParent()) 239 RegInfo = &MF->getRegInfo(); 240 // If this operand is already a register operand, remove it from the 241 // register's use/def lists. 242 bool WasReg = isReg(); 243 if (RegInfo && WasReg) 244 RegInfo->removeRegOperandFromUseList(this); 245 246 // Change this to a register and set the reg#. 247 OpKind = MO_Register; 248 SmallContents.RegNo = Reg; 249 SubReg_TargetFlags = 0; 250 IsDef = isDef; 251 IsImp = isImp; 252 IsKill = isKill; 253 IsDead = isDead; 254 IsUndef = isUndef; 255 IsInternalRead = false; 256 IsEarlyClobber = false; 257 IsDebug = isDebug; 258 // Ensure isOnRegUseList() returns false. 259 Contents.Reg.Prev = nullptr; 260 // Preserve the tie when the operand was already a register. 261 if (!WasReg) 262 TiedTo = 0; 263 264 // If this operand is embedded in a function, add the operand to the 265 // register's use/def list. 266 if (RegInfo) 267 RegInfo->addRegOperandToUseList(this); 268 } 269 270 /// isIdenticalTo - Return true if this operand is identical to the specified 271 /// operand. Note that this should stay in sync with the hash_value overload 272 /// below. 273 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 274 if (getType() != Other.getType() || 275 getTargetFlags() != Other.getTargetFlags()) 276 return false; 277 278 switch (getType()) { 279 case MachineOperand::MO_Register: 280 return getReg() == Other.getReg() && isDef() == Other.isDef() && 281 getSubReg() == Other.getSubReg(); 282 case MachineOperand::MO_Immediate: 283 return getImm() == Other.getImm(); 284 case MachineOperand::MO_CImmediate: 285 return getCImm() == Other.getCImm(); 286 case MachineOperand::MO_FPImmediate: 287 return getFPImm() == Other.getFPImm(); 288 case MachineOperand::MO_MachineBasicBlock: 289 return getMBB() == Other.getMBB(); 290 case MachineOperand::MO_FrameIndex: 291 return getIndex() == Other.getIndex(); 292 case MachineOperand::MO_ConstantPoolIndex: 293 case MachineOperand::MO_TargetIndex: 294 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 295 case MachineOperand::MO_JumpTableIndex: 296 return getIndex() == Other.getIndex(); 297 case MachineOperand::MO_GlobalAddress: 298 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 299 case MachineOperand::MO_ExternalSymbol: 300 return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && 301 getOffset() == Other.getOffset(); 302 case MachineOperand::MO_BlockAddress: 303 return getBlockAddress() == Other.getBlockAddress() && 304 getOffset() == Other.getOffset(); 305 case MachineOperand::MO_RegisterMask: 306 case MachineOperand::MO_RegisterLiveOut: { 307 // Shallow compare of the two RegMasks 308 const uint32_t *RegMask = getRegMask(); 309 const uint32_t *OtherRegMask = Other.getRegMask(); 310 if (RegMask == OtherRegMask) 311 return true; 312 313 // Calculate the size of the RegMask 314 const MachineFunction *MF = getParent()->getMF(); 315 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 316 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 317 318 // Deep compare of the two RegMasks 319 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 320 } 321 case MachineOperand::MO_MCSymbol: 322 return getMCSymbol() == Other.getMCSymbol(); 323 case MachineOperand::MO_CFIIndex: 324 return getCFIIndex() == Other.getCFIIndex(); 325 case MachineOperand::MO_Metadata: 326 return getMetadata() == Other.getMetadata(); 327 case MachineOperand::MO_IntrinsicID: 328 return getIntrinsicID() == Other.getIntrinsicID(); 329 case MachineOperand::MO_Predicate: 330 return getPredicate() == Other.getPredicate(); 331 } 332 llvm_unreachable("Invalid machine operand type"); 333 } 334 335 // Note: this must stay exactly in sync with isIdenticalTo above. 336 hash_code llvm::hash_value(const MachineOperand &MO) { 337 switch (MO.getType()) { 338 case MachineOperand::MO_Register: 339 // Register operands don't have target flags. 340 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 341 case MachineOperand::MO_Immediate: 342 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 343 case MachineOperand::MO_CImmediate: 344 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 345 case MachineOperand::MO_FPImmediate: 346 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 347 case MachineOperand::MO_MachineBasicBlock: 348 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 349 case MachineOperand::MO_FrameIndex: 350 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 351 case MachineOperand::MO_ConstantPoolIndex: 352 case MachineOperand::MO_TargetIndex: 353 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 354 MO.getOffset()); 355 case MachineOperand::MO_JumpTableIndex: 356 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 357 case MachineOperand::MO_ExternalSymbol: 358 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 359 MO.getSymbolName()); 360 case MachineOperand::MO_GlobalAddress: 361 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 362 MO.getOffset()); 363 case MachineOperand::MO_BlockAddress: 364 return hash_combine(MO.getType(), MO.getTargetFlags(), 365 MO.getBlockAddress(), MO.getOffset()); 366 case MachineOperand::MO_RegisterMask: 367 case MachineOperand::MO_RegisterLiveOut: 368 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 369 case MachineOperand::MO_Metadata: 370 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 371 case MachineOperand::MO_MCSymbol: 372 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 373 case MachineOperand::MO_CFIIndex: 374 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 375 case MachineOperand::MO_IntrinsicID: 376 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 377 case MachineOperand::MO_Predicate: 378 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 379 } 380 llvm_unreachable("Invalid machine operand type"); 381 } 382 383 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 384 const TargetIntrinsicInfo *IntrinsicInfo) const { 385 ModuleSlotTracker DummyMST(nullptr); 386 print(OS, DummyMST, TRI, IntrinsicInfo); 387 } 388 389 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 390 const TargetRegisterInfo *TRI, 391 const TargetIntrinsicInfo *IntrinsicInfo) const { 392 switch (getType()) { 393 case MachineOperand::MO_Register: 394 OS << PrintReg(getReg(), TRI, getSubReg()); 395 396 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 397 isInternalRead() || isEarlyClobber() || isTied()) { 398 OS << '<'; 399 bool NeedComma = false; 400 if (isDef()) { 401 if (NeedComma) OS << ','; 402 if (isEarlyClobber()) 403 OS << "earlyclobber,"; 404 if (isImplicit()) 405 OS << "imp-"; 406 OS << "def"; 407 NeedComma = true; 408 // <def,read-undef> only makes sense when getSubReg() is set. 409 // Don't clutter the output otherwise. 410 if (isUndef() && getSubReg()) 411 OS << ",read-undef"; 412 } else if (isImplicit()) { 413 OS << "imp-use"; 414 NeedComma = true; 415 } 416 417 if (isKill()) { 418 if (NeedComma) OS << ','; 419 OS << "kill"; 420 NeedComma = true; 421 } 422 if (isDead()) { 423 if (NeedComma) OS << ','; 424 OS << "dead"; 425 NeedComma = true; 426 } 427 if (isUndef() && isUse()) { 428 if (NeedComma) OS << ','; 429 OS << "undef"; 430 NeedComma = true; 431 } 432 if (isInternalRead()) { 433 if (NeedComma) OS << ','; 434 OS << "internal"; 435 NeedComma = true; 436 } 437 if (isTied()) { 438 if (NeedComma) OS << ','; 439 OS << "tied"; 440 if (TiedTo != 15) 441 OS << unsigned(TiedTo - 1); 442 } 443 OS << '>'; 444 } 445 break; 446 case MachineOperand::MO_Immediate: 447 OS << getImm(); 448 break; 449 case MachineOperand::MO_CImmediate: 450 getCImm()->getValue().print(OS, false); 451 break; 452 case MachineOperand::MO_FPImmediate: 453 if (getFPImm()->getType()->isFloatTy()) { 454 OS << getFPImm()->getValueAPF().convertToFloat(); 455 } else if (getFPImm()->getType()->isHalfTy()) { 456 APFloat APF = getFPImm()->getValueAPF(); 457 bool Unused; 458 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 459 OS << "half " << APF.convertToFloat(); 460 } else if (getFPImm()->getType()->isFP128Ty()) { 461 APFloat APF = getFPImm()->getValueAPF(); 462 SmallString<16> Str; 463 getFPImm()->getValueAPF().toString(Str); 464 OS << "quad " << Str; 465 } else if (getFPImm()->getType()->isX86_FP80Ty()) { 466 APFloat APF = getFPImm()->getValueAPF(); 467 OS << "x86_fp80 0xK"; 468 APInt API = APF.bitcastToAPInt(); 469 OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 470 /*Upper=*/true); 471 OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 472 /*Upper=*/true); 473 } else { 474 OS << getFPImm()->getValueAPF().convertToDouble(); 475 } 476 break; 477 case MachineOperand::MO_MachineBasicBlock: 478 OS << "<BB#" << getMBB()->getNumber() << ">"; 479 break; 480 case MachineOperand::MO_FrameIndex: 481 OS << "<fi#" << getIndex() << '>'; 482 break; 483 case MachineOperand::MO_ConstantPoolIndex: 484 OS << "<cp#" << getIndex(); 485 if (getOffset()) OS << "+" << getOffset(); 486 OS << '>'; 487 break; 488 case MachineOperand::MO_TargetIndex: 489 OS << "<ti#" << getIndex(); 490 if (getOffset()) OS << "+" << getOffset(); 491 OS << '>'; 492 break; 493 case MachineOperand::MO_JumpTableIndex: 494 OS << "<jt#" << getIndex() << '>'; 495 break; 496 case MachineOperand::MO_GlobalAddress: 497 OS << "<ga:"; 498 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 499 if (getOffset()) OS << "+" << getOffset(); 500 OS << '>'; 501 break; 502 case MachineOperand::MO_ExternalSymbol: 503 OS << "<es:" << getSymbolName(); 504 if (getOffset()) OS << "+" << getOffset(); 505 OS << '>'; 506 break; 507 case MachineOperand::MO_BlockAddress: 508 OS << '<'; 509 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 510 if (getOffset()) OS << "+" << getOffset(); 511 OS << '>'; 512 break; 513 case MachineOperand::MO_RegisterMask: { 514 unsigned NumRegsInMask = 0; 515 unsigned NumRegsEmitted = 0; 516 OS << "<regmask"; 517 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 518 unsigned MaskWord = i / 32; 519 unsigned MaskBit = i % 32; 520 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 521 if (PrintRegMaskNumRegs < 0 || 522 NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) { 523 OS << " " << PrintReg(i, TRI); 524 NumRegsEmitted++; 525 } 526 NumRegsInMask++; 527 } 528 } 529 if (NumRegsEmitted != NumRegsInMask) 530 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 531 OS << ">"; 532 break; 533 } 534 case MachineOperand::MO_RegisterLiveOut: 535 OS << "<regliveout>"; 536 break; 537 case MachineOperand::MO_Metadata: 538 OS << '<'; 539 getMetadata()->printAsOperand(OS, MST); 540 OS << '>'; 541 break; 542 case MachineOperand::MO_MCSymbol: 543 OS << "<MCSym=" << *getMCSymbol() << '>'; 544 break; 545 case MachineOperand::MO_CFIIndex: 546 OS << "<call frame instruction>"; 547 break; 548 case MachineOperand::MO_IntrinsicID: { 549 Intrinsic::ID ID = getIntrinsicID(); 550 if (ID < Intrinsic::num_intrinsics) 551 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 552 else if (IntrinsicInfo) 553 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 554 else 555 OS << "<intrinsic:" << ID << '>'; 556 break; 557 } 558 case MachineOperand::MO_Predicate: { 559 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 560 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 561 << CmpInst::getPredicateName(Pred) << '>'; 562 break; 563 } 564 } 565 if (unsigned TF = getTargetFlags()) 566 OS << "[TF=" << TF << ']'; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 LLVM_DUMP_METHOD void MachineOperand::dump() const { 571 dbgs() << *this << '\n'; 572 } 573 #endif 574 575 //===----------------------------------------------------------------------===// 576 // MachineMemOperand Implementation 577 //===----------------------------------------------------------------------===// 578 579 /// getAddrSpace - Return the LLVM IR address space number that this pointer 580 /// points into. 581 unsigned MachinePointerInfo::getAddrSpace() const { 582 if (V.isNull()) return 0; 583 584 if (V.is<const PseudoSourceValue*>()) 585 return V.get<const PseudoSourceValue*>()->getAddressSpace(); 586 587 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 588 } 589 590 /// isDereferenceable - Return true if V is always dereferenceable for 591 /// Offset + Size byte. 592 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, 593 const DataLayout &DL) const { 594 if (!V.is<const Value*>()) 595 return false; 596 597 const Value *BasePtr = V.get<const Value*>(); 598 if (BasePtr == nullptr) 599 return false; 600 601 return isDereferenceableAndAlignedPointer( 602 BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL); 603 } 604 605 /// getConstantPool - Return a MachinePointerInfo record that refers to the 606 /// constant pool. 607 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 608 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 609 } 610 611 /// getFixedStack - Return a MachinePointerInfo record that refers to the 612 /// the specified FrameIndex. 613 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 614 int FI, int64_t Offset) { 615 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 616 } 617 618 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 619 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 620 } 621 622 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 623 return MachinePointerInfo(MF.getPSVManager().getGOT()); 624 } 625 626 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 627 int64_t Offset, 628 uint8_t ID) { 629 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID); 630 } 631 632 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 633 uint64_t s, unsigned int a, 634 const AAMDNodes &AAInfo, 635 const MDNode *Ranges, 636 SyncScope::ID SSID, 637 AtomicOrdering Ordering, 638 AtomicOrdering FailureOrdering) 639 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 640 AAInfo(AAInfo), Ranges(Ranges) { 641 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 642 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 643 "invalid pointer value"); 644 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 645 assert((isLoad() || isStore()) && "Not a load/store!"); 646 647 AtomicInfo.SSID = static_cast<unsigned>(SSID); 648 assert(getSyncScopeID() == SSID && "Value truncated"); 649 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 650 assert(getOrdering() == Ordering && "Value truncated"); 651 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 652 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 653 } 654 655 /// Profile - Gather unique data for the object. 656 /// 657 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 658 ID.AddInteger(getOffset()); 659 ID.AddInteger(Size); 660 ID.AddPointer(getOpaqueValue()); 661 ID.AddInteger(getFlags()); 662 ID.AddInteger(getBaseAlignment()); 663 } 664 665 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 666 // The Value and Offset may differ due to CSE. But the flags and size 667 // should be the same. 668 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 669 assert(MMO->getSize() == getSize() && "Size mismatch!"); 670 671 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 672 // Update the alignment value. 673 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 674 // Also update the base and offset, because the new alignment may 675 // not be applicable with the old ones. 676 PtrInfo = MMO->PtrInfo; 677 } 678 } 679 680 /// getAlignment - Return the minimum known alignment in bytes of the 681 /// actual memory reference. 682 uint64_t MachineMemOperand::getAlignment() const { 683 return MinAlign(getBaseAlignment(), getOffset()); 684 } 685 686 void MachineMemOperand::print(raw_ostream &OS) const { 687 ModuleSlotTracker DummyMST(nullptr); 688 print(OS, DummyMST); 689 } 690 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 691 assert((isLoad() || isStore()) && 692 "SV has to be a load, store or both."); 693 694 if (isVolatile()) 695 OS << "Volatile "; 696 697 if (isLoad()) 698 OS << "LD"; 699 if (isStore()) 700 OS << "ST"; 701 OS << getSize(); 702 703 // Print the address information. 704 OS << "["; 705 if (const Value *V = getValue()) 706 V->printAsOperand(OS, /*PrintType=*/false, MST); 707 else if (const PseudoSourceValue *PSV = getPseudoValue()) 708 PSV->printCustom(OS); 709 else 710 OS << "<unknown>"; 711 712 unsigned AS = getAddrSpace(); 713 if (AS != 0) 714 OS << "(addrspace=" << AS << ')'; 715 716 // If the alignment of the memory reference itself differs from the alignment 717 // of the base pointer, print the base alignment explicitly, next to the base 718 // pointer. 719 if (getBaseAlignment() != getAlignment()) 720 OS << "(align=" << getBaseAlignment() << ")"; 721 722 if (getOffset() != 0) 723 OS << "+" << getOffset(); 724 OS << "]"; 725 726 // Print the alignment of the reference. 727 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 728 OS << "(align=" << getAlignment() << ")"; 729 730 // Print TBAA info. 731 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 732 OS << "(tbaa="; 733 if (TBAAInfo->getNumOperands() > 0) 734 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 735 else 736 OS << "<unknown>"; 737 OS << ")"; 738 } 739 740 // Print AA scope info. 741 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 742 OS << "(alias.scope="; 743 if (ScopeInfo->getNumOperands() > 0) 744 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 745 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 746 if (i != ie-1) 747 OS << ","; 748 } 749 else 750 OS << "<unknown>"; 751 OS << ")"; 752 } 753 754 // Print AA noalias scope info. 755 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 756 OS << "(noalias="; 757 if (NoAliasInfo->getNumOperands() > 0) 758 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 759 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 760 if (i != ie-1) 761 OS << ","; 762 } 763 else 764 OS << "<unknown>"; 765 OS << ")"; 766 } 767 768 if (isNonTemporal()) 769 OS << "(nontemporal)"; 770 if (isDereferenceable()) 771 OS << "(dereferenceable)"; 772 if (isInvariant()) 773 OS << "(invariant)"; 774 if (getFlags() & MOTargetFlag1) 775 OS << "(flag1)"; 776 if (getFlags() & MOTargetFlag2) 777 OS << "(flag2)"; 778 if (getFlags() & MOTargetFlag3) 779 OS << "(flag3)"; 780 } 781 782 //===----------------------------------------------------------------------===// 783 // MachineInstr Implementation 784 //===----------------------------------------------------------------------===// 785 786 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 787 if (MCID->ImplicitDefs) 788 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 789 ++ImpDefs) 790 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 791 if (MCID->ImplicitUses) 792 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 793 ++ImpUses) 794 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 795 } 796 797 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 798 /// implicit operands. It reserves space for the number of operands specified by 799 /// the MCInstrDesc. 800 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 801 DebugLoc dl, bool NoImp) 802 : MCID(&tid), debugLoc(std::move(dl)) { 803 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 804 805 // Reserve space for the expected number of operands. 806 if (unsigned NumOps = MCID->getNumOperands() + 807 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 808 CapOperands = OperandCapacity::get(NumOps); 809 Operands = MF.allocateOperandArray(CapOperands); 810 } 811 812 if (!NoImp) 813 addImplicitDefUseOperands(MF); 814 } 815 816 /// MachineInstr ctor - Copies MachineInstr arg exactly 817 /// 818 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 819 : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 820 debugLoc(MI.getDebugLoc()) { 821 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 822 823 CapOperands = OperandCapacity::get(MI.getNumOperands()); 824 Operands = MF.allocateOperandArray(CapOperands); 825 826 // Copy operands. 827 for (const MachineOperand &MO : MI.operands()) 828 addOperand(MF, MO); 829 830 // Copy all the sensible flags. 831 setFlags(MI.Flags); 832 } 833 834 /// getRegInfo - If this instruction is embedded into a MachineFunction, 835 /// return the MachineRegisterInfo object for the current function, otherwise 836 /// return null. 837 MachineRegisterInfo *MachineInstr::getRegInfo() { 838 if (MachineBasicBlock *MBB = getParent()) 839 return &MBB->getParent()->getRegInfo(); 840 return nullptr; 841 } 842 843 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 844 /// this instruction from their respective use lists. This requires that the 845 /// operands already be on their use lists. 846 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 847 for (MachineOperand &MO : operands()) 848 if (MO.isReg()) 849 MRI.removeRegOperandFromUseList(&MO); 850 } 851 852 /// AddRegOperandsToUseLists - Add all of the register operands in 853 /// this instruction from their respective use lists. This requires that the 854 /// operands not be on their use lists yet. 855 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 856 for (MachineOperand &MO : operands()) 857 if (MO.isReg()) 858 MRI.addRegOperandToUseList(&MO); 859 } 860 861 void MachineInstr::addOperand(const MachineOperand &Op) { 862 MachineBasicBlock *MBB = getParent(); 863 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 864 MachineFunction *MF = MBB->getParent(); 865 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 866 addOperand(*MF, Op); 867 } 868 869 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 870 /// ranges. If MRI is non-null also update use-def chains. 871 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 872 unsigned NumOps, MachineRegisterInfo *MRI) { 873 if (MRI) 874 return MRI->moveOperands(Dst, Src, NumOps); 875 876 // MachineOperand is a trivially copyable type so we can just use memmove. 877 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 878 } 879 880 /// addOperand - Add the specified operand to the instruction. If it is an 881 /// implicit operand, it is added to the end of the operand list. If it is 882 /// an explicit operand it is added at the end of the explicit operand list 883 /// (before the first implicit operand). 884 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 885 assert(MCID && "Cannot add operands before providing an instr descriptor"); 886 887 // Check if we're adding one of our existing operands. 888 if (&Op >= Operands && &Op < Operands + NumOperands) { 889 // This is unusual: MI->addOperand(MI->getOperand(i)). 890 // If adding Op requires reallocating or moving existing operands around, 891 // the Op reference could go stale. Support it by copying Op. 892 MachineOperand CopyOp(Op); 893 return addOperand(MF, CopyOp); 894 } 895 896 // Find the insert location for the new operand. Implicit registers go at 897 // the end, everything else goes before the implicit regs. 898 // 899 // FIXME: Allow mixed explicit and implicit operands on inline asm. 900 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 901 // implicit-defs, but they must not be moved around. See the FIXME in 902 // InstrEmitter.cpp. 903 unsigned OpNo = getNumOperands(); 904 bool isImpReg = Op.isReg() && Op.isImplicit(); 905 if (!isImpReg && !isInlineAsm()) { 906 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 907 --OpNo; 908 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 909 } 910 } 911 912 #ifndef NDEBUG 913 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 914 // OpNo now points as the desired insertion point. Unless this is a variadic 915 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 916 // RegMask operands go between the explicit and implicit operands. 917 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 918 OpNo < MCID->getNumOperands() || isMetaDataOp) && 919 "Trying to add an operand to a machine instr that is already done!"); 920 #endif 921 922 MachineRegisterInfo *MRI = getRegInfo(); 923 924 // Determine if the Operands array needs to be reallocated. 925 // Save the old capacity and operand array. 926 OperandCapacity OldCap = CapOperands; 927 MachineOperand *OldOperands = Operands; 928 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 929 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 930 Operands = MF.allocateOperandArray(CapOperands); 931 // Move the operands before the insertion point. 932 if (OpNo) 933 moveOperands(Operands, OldOperands, OpNo, MRI); 934 } 935 936 // Move the operands following the insertion point. 937 if (OpNo != NumOperands) 938 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 939 MRI); 940 ++NumOperands; 941 942 // Deallocate the old operand array. 943 if (OldOperands != Operands && OldOperands) 944 MF.deallocateOperandArray(OldCap, OldOperands); 945 946 // Copy Op into place. It still needs to be inserted into the MRI use lists. 947 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 948 NewMO->ParentMI = this; 949 950 // When adding a register operand, tell MRI about it. 951 if (NewMO->isReg()) { 952 // Ensure isOnRegUseList() returns false, regardless of Op's status. 953 NewMO->Contents.Reg.Prev = nullptr; 954 // Ignore existing ties. This is not a property that can be copied. 955 NewMO->TiedTo = 0; 956 // Add the new operand to MRI, but only for instructions in an MBB. 957 if (MRI) 958 MRI->addRegOperandToUseList(NewMO); 959 // The MCID operand information isn't accurate until we start adding 960 // explicit operands. The implicit operands are added first, then the 961 // explicits are inserted before them. 962 if (!isImpReg) { 963 // Tie uses to defs as indicated in MCInstrDesc. 964 if (NewMO->isUse()) { 965 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 966 if (DefIdx != -1) 967 tieOperands(DefIdx, OpNo); 968 } 969 // If the register operand is flagged as early, mark the operand as such. 970 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 971 NewMO->setIsEarlyClobber(true); 972 } 973 } 974 } 975 976 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 977 /// fewer operand than it started with. 978 /// 979 void MachineInstr::RemoveOperand(unsigned OpNo) { 980 assert(OpNo < getNumOperands() && "Invalid operand number"); 981 untieRegOperand(OpNo); 982 983 #ifndef NDEBUG 984 // Moving tied operands would break the ties. 985 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 986 if (Operands[i].isReg()) 987 assert(!Operands[i].isTied() && "Cannot move tied operands"); 988 #endif 989 990 MachineRegisterInfo *MRI = getRegInfo(); 991 if (MRI && Operands[OpNo].isReg()) 992 MRI->removeRegOperandFromUseList(Operands + OpNo); 993 994 // Don't call the MachineOperand destructor. A lot of this code depends on 995 // MachineOperand having a trivial destructor anyway, and adding a call here 996 // wouldn't make it 'destructor-correct'. 997 998 if (unsigned N = NumOperands - 1 - OpNo) 999 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 1000 --NumOperands; 1001 } 1002 1003 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 1004 /// This function should be used only occasionally. The setMemRefs function 1005 /// is the primary method for setting up a MachineInstr's MemRefs list. 1006 void MachineInstr::addMemOperand(MachineFunction &MF, 1007 MachineMemOperand *MO) { 1008 mmo_iterator OldMemRefs = MemRefs; 1009 unsigned OldNumMemRefs = NumMemRefs; 1010 1011 unsigned NewNum = NumMemRefs + 1; 1012 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 1013 1014 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 1015 NewMemRefs[NewNum - 1] = MO; 1016 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 1017 } 1018 1019 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 1020 /// identical. 1021 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 1022 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 1023 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 1024 if ((E1 - I1) != (E2 - I2)) 1025 return false; 1026 for (; I1 != E1; ++I1, ++I2) { 1027 if (**I1 != **I2) 1028 return false; 1029 } 1030 return true; 1031 } 1032 1033 std::pair<MachineInstr::mmo_iterator, unsigned> 1034 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 1035 1036 // If either of the incoming memrefs are empty, we must be conservative and 1037 // treat this as if we've exhausted our space for memrefs and dropped them. 1038 if (memoperands_empty() || Other.memoperands_empty()) 1039 return std::make_pair(nullptr, 0); 1040 1041 // If both instructions have identical memrefs, we don't need to merge them. 1042 // Since many instructions have a single memref, and we tend to merge things 1043 // like pairs of loads from the same location, this catches a large number of 1044 // cases in practice. 1045 if (hasIdenticalMMOs(*this, Other)) 1046 return std::make_pair(MemRefs, NumMemRefs); 1047 1048 // TODO: consider uniquing elements within the operand lists to reduce 1049 // space usage and fall back to conservative information less often. 1050 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 1051 1052 // If we don't have enough room to store this many memrefs, be conservative 1053 // and drop them. Otherwise, we'd fail asserts when trying to add them to 1054 // the new instruction. 1055 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 1056 return std::make_pair(nullptr, 0); 1057 1058 MachineFunction *MF = getMF(); 1059 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 1060 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 1061 MemBegin); 1062 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 1063 MemEnd); 1064 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 1065 "missing memrefs"); 1066 1067 return std::make_pair(MemBegin, CombinedNumMemRefs); 1068 } 1069 1070 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 1071 assert(!isBundledWithPred() && "Must be called on bundle header"); 1072 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1073 if (MII->getDesc().getFlags() & Mask) { 1074 if (Type == AnyInBundle) 1075 return true; 1076 } else { 1077 if (Type == AllInBundle && !MII->isBundle()) 1078 return false; 1079 } 1080 // This was the last instruction in the bundle. 1081 if (!MII->isBundledWithSucc()) 1082 return Type == AllInBundle; 1083 } 1084 } 1085 1086 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1087 MICheckType Check) const { 1088 // If opcodes or number of operands are not the same then the two 1089 // instructions are obviously not identical. 1090 if (Other.getOpcode() != getOpcode() || 1091 Other.getNumOperands() != getNumOperands()) 1092 return false; 1093 1094 if (isBundle()) { 1095 // We have passed the test above that both instructions have the same 1096 // opcode, so we know that both instructions are bundles here. Let's compare 1097 // MIs inside the bundle. 1098 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1099 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1100 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1101 // Loop until we analysed the last intruction inside at least one of the 1102 // bundles. 1103 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1104 ++I1; 1105 ++I2; 1106 if (!I1->isIdenticalTo(*I2, Check)) 1107 return false; 1108 } 1109 // If we've reached the end of just one of the two bundles, but not both, 1110 // the instructions are not identical. 1111 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1112 return false; 1113 } 1114 1115 // Check operands to make sure they match. 1116 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1117 const MachineOperand &MO = getOperand(i); 1118 const MachineOperand &OMO = Other.getOperand(i); 1119 if (!MO.isReg()) { 1120 if (!MO.isIdenticalTo(OMO)) 1121 return false; 1122 continue; 1123 } 1124 1125 // Clients may or may not want to ignore defs when testing for equality. 1126 // For example, machine CSE pass only cares about finding common 1127 // subexpressions, so it's safe to ignore virtual register defs. 1128 if (MO.isDef()) { 1129 if (Check == IgnoreDefs) 1130 continue; 1131 else if (Check == IgnoreVRegDefs) { 1132 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 1133 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 1134 if (!MO.isIdenticalTo(OMO)) 1135 return false; 1136 } else { 1137 if (!MO.isIdenticalTo(OMO)) 1138 return false; 1139 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1140 return false; 1141 } 1142 } else { 1143 if (!MO.isIdenticalTo(OMO)) 1144 return false; 1145 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1146 return false; 1147 } 1148 } 1149 // If DebugLoc does not match then two dbg.values are not identical. 1150 if (isDebugValue()) 1151 if (getDebugLoc() && Other.getDebugLoc() && 1152 getDebugLoc() != Other.getDebugLoc()) 1153 return false; 1154 return true; 1155 } 1156 1157 const MachineFunction *MachineInstr::getMF() const { 1158 return getParent()->getParent(); 1159 } 1160 1161 MachineInstr *MachineInstr::removeFromParent() { 1162 assert(getParent() && "Not embedded in a basic block!"); 1163 return getParent()->remove(this); 1164 } 1165 1166 MachineInstr *MachineInstr::removeFromBundle() { 1167 assert(getParent() && "Not embedded in a basic block!"); 1168 return getParent()->remove_instr(this); 1169 } 1170 1171 void MachineInstr::eraseFromParent() { 1172 assert(getParent() && "Not embedded in a basic block!"); 1173 getParent()->erase(this); 1174 } 1175 1176 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1177 assert(getParent() && "Not embedded in a basic block!"); 1178 MachineBasicBlock *MBB = getParent(); 1179 MachineFunction *MF = MBB->getParent(); 1180 assert(MF && "Not embedded in a function!"); 1181 1182 MachineInstr *MI = (MachineInstr *)this; 1183 MachineRegisterInfo &MRI = MF->getRegInfo(); 1184 1185 for (const MachineOperand &MO : MI->operands()) { 1186 if (!MO.isReg() || !MO.isDef()) 1187 continue; 1188 unsigned Reg = MO.getReg(); 1189 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1190 continue; 1191 MRI.markUsesInDebugValueAsUndef(Reg); 1192 } 1193 MI->eraseFromParent(); 1194 } 1195 1196 void MachineInstr::eraseFromBundle() { 1197 assert(getParent() && "Not embedded in a basic block!"); 1198 getParent()->erase_instr(this); 1199 } 1200 1201 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1202 /// 1203 unsigned MachineInstr::getNumExplicitOperands() const { 1204 unsigned NumOperands = MCID->getNumOperands(); 1205 if (!MCID->isVariadic()) 1206 return NumOperands; 1207 1208 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1209 const MachineOperand &MO = getOperand(i); 1210 if (!MO.isReg() || !MO.isImplicit()) 1211 NumOperands++; 1212 } 1213 return NumOperands; 1214 } 1215 1216 void MachineInstr::bundleWithPred() { 1217 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1218 setFlag(BundledPred); 1219 MachineBasicBlock::instr_iterator Pred = getIterator(); 1220 --Pred; 1221 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1222 Pred->setFlag(BundledSucc); 1223 } 1224 1225 void MachineInstr::bundleWithSucc() { 1226 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1227 setFlag(BundledSucc); 1228 MachineBasicBlock::instr_iterator Succ = getIterator(); 1229 ++Succ; 1230 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1231 Succ->setFlag(BundledPred); 1232 } 1233 1234 void MachineInstr::unbundleFromPred() { 1235 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1236 clearFlag(BundledPred); 1237 MachineBasicBlock::instr_iterator Pred = getIterator(); 1238 --Pred; 1239 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1240 Pred->clearFlag(BundledSucc); 1241 } 1242 1243 void MachineInstr::unbundleFromSucc() { 1244 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1245 clearFlag(BundledSucc); 1246 MachineBasicBlock::instr_iterator Succ = getIterator(); 1247 ++Succ; 1248 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1249 Succ->clearFlag(BundledPred); 1250 } 1251 1252 bool MachineInstr::isStackAligningInlineAsm() const { 1253 if (isInlineAsm()) { 1254 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1255 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1256 return true; 1257 } 1258 return false; 1259 } 1260 1261 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1262 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1263 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1264 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1265 } 1266 1267 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1268 unsigned *GroupNo) const { 1269 assert(isInlineAsm() && "Expected an inline asm instruction"); 1270 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1271 1272 // Ignore queries about the initial operands. 1273 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1274 return -1; 1275 1276 unsigned Group = 0; 1277 unsigned NumOps; 1278 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1279 i += NumOps) { 1280 const MachineOperand &FlagMO = getOperand(i); 1281 // If we reach the implicit register operands, stop looking. 1282 if (!FlagMO.isImm()) 1283 return -1; 1284 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1285 if (i + NumOps > OpIdx) { 1286 if (GroupNo) 1287 *GroupNo = Group; 1288 return i; 1289 } 1290 ++Group; 1291 } 1292 return -1; 1293 } 1294 1295 const DILocalVariable *MachineInstr::getDebugVariable() const { 1296 assert(isDebugValue() && "not a DBG_VALUE"); 1297 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1298 } 1299 1300 const DIExpression *MachineInstr::getDebugExpression() const { 1301 assert(isDebugValue() && "not a DBG_VALUE"); 1302 return cast<DIExpression>(getOperand(3).getMetadata()); 1303 } 1304 1305 const TargetRegisterClass* 1306 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1307 const TargetInstrInfo *TII, 1308 const TargetRegisterInfo *TRI) const { 1309 assert(getParent() && "Can't have an MBB reference here!"); 1310 assert(getMF() && "Can't have an MF reference here!"); 1311 const MachineFunction &MF = *getMF(); 1312 1313 // Most opcodes have fixed constraints in their MCInstrDesc. 1314 if (!isInlineAsm()) 1315 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1316 1317 if (!getOperand(OpIdx).isReg()) 1318 return nullptr; 1319 1320 // For tied uses on inline asm, get the constraint from the def. 1321 unsigned DefIdx; 1322 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1323 OpIdx = DefIdx; 1324 1325 // Inline asm stores register class constraints in the flag word. 1326 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1327 if (FlagIdx < 0) 1328 return nullptr; 1329 1330 unsigned Flag = getOperand(FlagIdx).getImm(); 1331 unsigned RCID; 1332 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1333 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1334 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1335 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1336 return TRI->getRegClass(RCID); 1337 1338 // Assume that all registers in a memory operand are pointers. 1339 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1340 return TRI->getPointerRegClass(MF); 1341 1342 return nullptr; 1343 } 1344 1345 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1346 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1347 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1348 // Check every operands inside the bundle if we have 1349 // been asked to. 1350 if (ExploreBundle) 1351 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1352 ++OpndIt) 1353 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1354 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1355 else 1356 // Otherwise, just check the current operands. 1357 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1358 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1359 return CurRC; 1360 } 1361 1362 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1363 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1364 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1365 assert(CurRC && "Invalid initial register class"); 1366 // Check if Reg is constrained by some of its use/def from MI. 1367 const MachineOperand &MO = getOperand(OpIdx); 1368 if (!MO.isReg() || MO.getReg() != Reg) 1369 return CurRC; 1370 // If yes, accumulate the constraints through the operand. 1371 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1372 } 1373 1374 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1375 unsigned OpIdx, const TargetRegisterClass *CurRC, 1376 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1377 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1378 const MachineOperand &MO = getOperand(OpIdx); 1379 assert(MO.isReg() && 1380 "Cannot get register constraints for non-register operand"); 1381 assert(CurRC && "Invalid initial register class"); 1382 if (unsigned SubIdx = MO.getSubReg()) { 1383 if (OpRC) 1384 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1385 else 1386 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1387 } else if (OpRC) 1388 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1389 return CurRC; 1390 } 1391 1392 /// Return the number of instructions inside the MI bundle, not counting the 1393 /// header instruction. 1394 unsigned MachineInstr::getBundleSize() const { 1395 MachineBasicBlock::const_instr_iterator I = getIterator(); 1396 unsigned Size = 0; 1397 while (I->isBundledWithSucc()) { 1398 ++Size; 1399 ++I; 1400 } 1401 return Size; 1402 } 1403 1404 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1405 /// the given register (not considering sub/super-registers). 1406 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1407 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1408 const MachineOperand &MO = getOperand(i); 1409 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1410 return true; 1411 } 1412 return false; 1413 } 1414 1415 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1416 /// the specific register or -1 if it is not found. It further tightens 1417 /// the search criteria to a use that kills the register if isKill is true. 1418 int MachineInstr::findRegisterUseOperandIdx( 1419 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1420 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1421 const MachineOperand &MO = getOperand(i); 1422 if (!MO.isReg() || !MO.isUse()) 1423 continue; 1424 unsigned MOReg = MO.getReg(); 1425 if (!MOReg) 1426 continue; 1427 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1428 TargetRegisterInfo::isPhysicalRegister(Reg) && 1429 TRI->isSubRegister(MOReg, Reg))) 1430 if (!isKill || MO.isKill()) 1431 return i; 1432 } 1433 return -1; 1434 } 1435 1436 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1437 /// indicating if this instruction reads or writes Reg. This also considers 1438 /// partial defines. 1439 std::pair<bool,bool> 1440 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1441 SmallVectorImpl<unsigned> *Ops) const { 1442 bool PartDef = false; // Partial redefine. 1443 bool FullDef = false; // Full define. 1444 bool Use = false; 1445 1446 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1447 const MachineOperand &MO = getOperand(i); 1448 if (!MO.isReg() || MO.getReg() != Reg) 1449 continue; 1450 if (Ops) 1451 Ops->push_back(i); 1452 if (MO.isUse()) 1453 Use |= !MO.isUndef(); 1454 else if (MO.getSubReg() && !MO.isUndef()) 1455 // A partial <def,undef> doesn't count as reading the register. 1456 PartDef = true; 1457 else 1458 FullDef = true; 1459 } 1460 // A partial redefine uses Reg unless there is also a full define. 1461 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1462 } 1463 1464 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1465 /// the specified register or -1 if it is not found. If isDead is true, defs 1466 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1467 /// also checks if there is a def of a super-register. 1468 int 1469 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1470 const TargetRegisterInfo *TRI) const { 1471 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1472 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1473 const MachineOperand &MO = getOperand(i); 1474 // Accept regmask operands when Overlap is set. 1475 // Ignore them when looking for a specific def operand (Overlap == false). 1476 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1477 return i; 1478 if (!MO.isReg() || !MO.isDef()) 1479 continue; 1480 unsigned MOReg = MO.getReg(); 1481 bool Found = (MOReg == Reg); 1482 if (!Found && TRI && isPhys && 1483 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1484 if (Overlap) 1485 Found = TRI->regsOverlap(MOReg, Reg); 1486 else 1487 Found = TRI->isSubRegister(MOReg, Reg); 1488 } 1489 if (Found && (!isDead || MO.isDead())) 1490 return i; 1491 } 1492 return -1; 1493 } 1494 1495 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1496 /// operand list that is used to represent the predicate. It returns -1 if 1497 /// none is found. 1498 int MachineInstr::findFirstPredOperandIdx() const { 1499 // Don't call MCID.findFirstPredOperandIdx() because this variant 1500 // is sometimes called on an instruction that's not yet complete, and 1501 // so the number of operands is less than the MCID indicates. In 1502 // particular, the PTX target does this. 1503 const MCInstrDesc &MCID = getDesc(); 1504 if (MCID.isPredicable()) { 1505 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1506 if (MCID.OpInfo[i].isPredicate()) 1507 return i; 1508 } 1509 1510 return -1; 1511 } 1512 1513 // MachineOperand::TiedTo is 4 bits wide. 1514 const unsigned TiedMax = 15; 1515 1516 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1517 /// 1518 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1519 /// field. TiedTo can have these values: 1520 /// 1521 /// 0: Operand is not tied to anything. 1522 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1523 /// TiedMax: Tied to an operand >= TiedMax-1. 1524 /// 1525 /// The tied def must be one of the first TiedMax operands on a normal 1526 /// instruction. INLINEASM instructions allow more tied defs. 1527 /// 1528 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1529 MachineOperand &DefMO = getOperand(DefIdx); 1530 MachineOperand &UseMO = getOperand(UseIdx); 1531 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1532 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1533 assert(!DefMO.isTied() && "Def is already tied to another use"); 1534 assert(!UseMO.isTied() && "Use is already tied to another def"); 1535 1536 if (DefIdx < TiedMax) 1537 UseMO.TiedTo = DefIdx + 1; 1538 else { 1539 // Inline asm can use the group descriptors to find tied operands, but on 1540 // normal instruction, the tied def must be within the first TiedMax 1541 // operands. 1542 assert(isInlineAsm() && "DefIdx out of range"); 1543 UseMO.TiedTo = TiedMax; 1544 } 1545 1546 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1547 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1548 } 1549 1550 /// Given the index of a tied register operand, find the operand it is tied to. 1551 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1552 /// which must exist. 1553 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1554 const MachineOperand &MO = getOperand(OpIdx); 1555 assert(MO.isTied() && "Operand isn't tied"); 1556 1557 // Normally TiedTo is in range. 1558 if (MO.TiedTo < TiedMax) 1559 return MO.TiedTo - 1; 1560 1561 // Uses on normal instructions can be out of range. 1562 if (!isInlineAsm()) { 1563 // Normal tied defs must be in the 0..TiedMax-1 range. 1564 if (MO.isUse()) 1565 return TiedMax - 1; 1566 // MO is a def. Search for the tied use. 1567 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1568 const MachineOperand &UseMO = getOperand(i); 1569 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1570 return i; 1571 } 1572 llvm_unreachable("Can't find tied use"); 1573 } 1574 1575 // Now deal with inline asm by parsing the operand group descriptor flags. 1576 // Find the beginning of each operand group. 1577 SmallVector<unsigned, 8> GroupIdx; 1578 unsigned OpIdxGroup = ~0u; 1579 unsigned NumOps; 1580 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1581 i += NumOps) { 1582 const MachineOperand &FlagMO = getOperand(i); 1583 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1584 unsigned CurGroup = GroupIdx.size(); 1585 GroupIdx.push_back(i); 1586 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1587 // OpIdx belongs to this operand group. 1588 if (OpIdx > i && OpIdx < i + NumOps) 1589 OpIdxGroup = CurGroup; 1590 unsigned TiedGroup; 1591 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1592 continue; 1593 // Operands in this group are tied to operands in TiedGroup which must be 1594 // earlier. Find the number of operands between the two groups. 1595 unsigned Delta = i - GroupIdx[TiedGroup]; 1596 1597 // OpIdx is a use tied to TiedGroup. 1598 if (OpIdxGroup == CurGroup) 1599 return OpIdx - Delta; 1600 1601 // OpIdx is a def tied to this use group. 1602 if (OpIdxGroup == TiedGroup) 1603 return OpIdx + Delta; 1604 } 1605 llvm_unreachable("Invalid tied operand on inline asm"); 1606 } 1607 1608 /// clearKillInfo - Clears kill flags on all operands. 1609 /// 1610 void MachineInstr::clearKillInfo() { 1611 for (MachineOperand &MO : operands()) { 1612 if (MO.isReg() && MO.isUse()) 1613 MO.setIsKill(false); 1614 } 1615 } 1616 1617 void MachineInstr::substituteRegister(unsigned FromReg, 1618 unsigned ToReg, 1619 unsigned SubIdx, 1620 const TargetRegisterInfo &RegInfo) { 1621 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1622 if (SubIdx) 1623 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1624 for (MachineOperand &MO : operands()) { 1625 if (!MO.isReg() || MO.getReg() != FromReg) 1626 continue; 1627 MO.substPhysReg(ToReg, RegInfo); 1628 } 1629 } else { 1630 for (MachineOperand &MO : operands()) { 1631 if (!MO.isReg() || MO.getReg() != FromReg) 1632 continue; 1633 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1634 } 1635 } 1636 } 1637 1638 /// isSafeToMove - Return true if it is safe to move this instruction. If 1639 /// SawStore is set to true, it means that there is a store (or call) between 1640 /// the instruction's location and its intended destination. 1641 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1642 // Ignore stuff that we obviously can't move. 1643 // 1644 // Treat volatile loads as stores. This is not strictly necessary for 1645 // volatiles, but it is required for atomic loads. It is not allowed to move 1646 // a load across an atomic load with Ordering > Monotonic. 1647 if (mayStore() || isCall() || 1648 (mayLoad() && hasOrderedMemoryRef())) { 1649 SawStore = true; 1650 return false; 1651 } 1652 1653 if (isPosition() || isDebugValue() || isTerminator() || 1654 hasUnmodeledSideEffects()) 1655 return false; 1656 1657 // See if this instruction does a load. If so, we have to guarantee that the 1658 // loaded value doesn't change between the load and the its intended 1659 // destination. The check for isInvariantLoad gives the targe the chance to 1660 // classify the load as always returning a constant, e.g. a constant pool 1661 // load. 1662 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1663 // Otherwise, this is a real load. If there is a store between the load and 1664 // end of block, we can't move it. 1665 return !SawStore; 1666 1667 return true; 1668 } 1669 1670 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1671 bool UseTBAA) { 1672 const MachineFunction *MF = getMF(); 1673 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1674 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1675 1676 // If neither instruction stores to memory, they can't alias in any 1677 // meaningful way, even if they read from the same address. 1678 if (!mayStore() && !Other.mayStore()) 1679 return false; 1680 1681 // Let the target decide if memory accesses cannot possibly overlap. 1682 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1683 return false; 1684 1685 // FIXME: Need to handle multiple memory operands to support all targets. 1686 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1687 return true; 1688 1689 MachineMemOperand *MMOa = *memoperands_begin(); 1690 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1691 1692 // The following interface to AA is fashioned after DAGCombiner::isAlias 1693 // and operates with MachineMemOperand offset with some important 1694 // assumptions: 1695 // - LLVM fundamentally assumes flat address spaces. 1696 // - MachineOperand offset can *only* result from legalization and 1697 // cannot affect queries other than the trivial case of overlap 1698 // checking. 1699 // - These offsets never wrap and never step outside 1700 // of allocated objects. 1701 // - There should never be any negative offsets here. 1702 // 1703 // FIXME: Modify API to hide this math from "user" 1704 // Even before we go to AA we can reason locally about some 1705 // memory objects. It can save compile time, and possibly catch some 1706 // corner cases not currently covered. 1707 1708 int64_t OffsetA = MMOa->getOffset(); 1709 int64_t OffsetB = MMOb->getOffset(); 1710 1711 int64_t MinOffset = std::min(OffsetA, OffsetB); 1712 int64_t WidthA = MMOa->getSize(); 1713 int64_t WidthB = MMOb->getSize(); 1714 const Value *ValA = MMOa->getValue(); 1715 const Value *ValB = MMOb->getValue(); 1716 bool SameVal = (ValA && ValB && (ValA == ValB)); 1717 if (!SameVal) { 1718 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1719 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1720 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1721 return false; 1722 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1723 return false; 1724 if (PSVa && PSVb && (PSVa == PSVb)) 1725 SameVal = true; 1726 } 1727 1728 if (SameVal) { 1729 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1730 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1731 return (MinOffset + LowWidth > MaxOffset); 1732 } 1733 1734 if (!AA) 1735 return true; 1736 1737 if (!ValA || !ValB) 1738 return true; 1739 1740 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1741 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1742 1743 int64_t Overlapa = WidthA + OffsetA - MinOffset; 1744 int64_t Overlapb = WidthB + OffsetB - MinOffset; 1745 1746 AliasResult AAResult = AA->alias( 1747 MemoryLocation(ValA, Overlapa, 1748 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1749 MemoryLocation(ValB, Overlapb, 1750 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1751 1752 return (AAResult != NoAlias); 1753 } 1754 1755 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1756 /// or volatile memory reference, or if the information describing the memory 1757 /// reference is not available. Return false if it is known to have no ordered 1758 /// memory references. 1759 bool MachineInstr::hasOrderedMemoryRef() const { 1760 // An instruction known never to access memory won't have a volatile access. 1761 if (!mayStore() && 1762 !mayLoad() && 1763 !isCall() && 1764 !hasUnmodeledSideEffects()) 1765 return false; 1766 1767 // Otherwise, if the instruction has no memory reference information, 1768 // conservatively assume it wasn't preserved. 1769 if (memoperands_empty()) 1770 return true; 1771 1772 // Check if any of our memory operands are ordered. 1773 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1774 return !MMO->isUnordered(); 1775 }); 1776 } 1777 1778 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1779 /// trap and is loading from a location whose value is invariant across a run of 1780 /// this function. 1781 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1782 // If the instruction doesn't load at all, it isn't an invariant load. 1783 if (!mayLoad()) 1784 return false; 1785 1786 // If the instruction has lost its memoperands, conservatively assume that 1787 // it may not be an invariant load. 1788 if (memoperands_empty()) 1789 return false; 1790 1791 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1792 1793 for (MachineMemOperand *MMO : memoperands()) { 1794 if (MMO->isVolatile()) return false; 1795 if (MMO->isStore()) return false; 1796 if (MMO->isInvariant() && MMO->isDereferenceable()) 1797 continue; 1798 1799 // A load from a constant PseudoSourceValue is invariant. 1800 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1801 if (PSV->isConstant(&MFI)) 1802 continue; 1803 1804 if (const Value *V = MMO->getValue()) { 1805 // If we have an AliasAnalysis, ask it whether the memory is constant. 1806 if (AA && 1807 AA->pointsToConstantMemory( 1808 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1809 continue; 1810 } 1811 1812 // Otherwise assume conservatively. 1813 return false; 1814 } 1815 1816 // Everything checks out. 1817 return true; 1818 } 1819 1820 /// isConstantValuePHI - If the specified instruction is a PHI that always 1821 /// merges together the same virtual register, return the register, otherwise 1822 /// return 0. 1823 unsigned MachineInstr::isConstantValuePHI() const { 1824 if (!isPHI()) 1825 return 0; 1826 assert(getNumOperands() >= 3 && 1827 "It's illegal to have a PHI without source operands"); 1828 1829 unsigned Reg = getOperand(1).getReg(); 1830 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1831 if (getOperand(i).getReg() != Reg) 1832 return 0; 1833 return Reg; 1834 } 1835 1836 bool MachineInstr::hasUnmodeledSideEffects() const { 1837 if (hasProperty(MCID::UnmodeledSideEffects)) 1838 return true; 1839 if (isInlineAsm()) { 1840 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1841 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1842 return true; 1843 } 1844 1845 return false; 1846 } 1847 1848 bool MachineInstr::isLoadFoldBarrier() const { 1849 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1850 } 1851 1852 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1853 /// 1854 bool MachineInstr::allDefsAreDead() const { 1855 for (const MachineOperand &MO : operands()) { 1856 if (!MO.isReg() || MO.isUse()) 1857 continue; 1858 if (!MO.isDead()) 1859 return false; 1860 } 1861 return true; 1862 } 1863 1864 /// copyImplicitOps - Copy implicit register operands from specified 1865 /// instruction to this instruction. 1866 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1867 const MachineInstr &MI) { 1868 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1869 i != e; ++i) { 1870 const MachineOperand &MO = MI.getOperand(i); 1871 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1872 addOperand(MF, MO); 1873 } 1874 } 1875 1876 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1877 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1878 dbgs() << " "; 1879 print(dbgs()); 1880 } 1881 #endif 1882 1883 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1884 const TargetInstrInfo *TII) const { 1885 const Module *M = nullptr; 1886 if (const MachineBasicBlock *MBB = getParent()) 1887 if (const MachineFunction *MF = MBB->getParent()) 1888 M = MF->getFunction()->getParent(); 1889 1890 ModuleSlotTracker MST(M); 1891 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1892 } 1893 1894 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1895 bool SkipOpers, bool SkipDebugLoc, 1896 const TargetInstrInfo *TII) const { 1897 // We can be a bit tidier if we know the MachineFunction. 1898 const MachineFunction *MF = nullptr; 1899 const TargetRegisterInfo *TRI = nullptr; 1900 const MachineRegisterInfo *MRI = nullptr; 1901 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1902 1903 if (const MachineBasicBlock *MBB = getParent()) { 1904 MF = MBB->getParent(); 1905 if (MF) { 1906 MRI = &MF->getRegInfo(); 1907 TRI = MF->getSubtarget().getRegisterInfo(); 1908 if (!TII) 1909 TII = MF->getSubtarget().getInstrInfo(); 1910 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1911 } 1912 } 1913 1914 // Save a list of virtual registers. 1915 SmallVector<unsigned, 8> VirtRegs; 1916 1917 // Print explicitly defined operands on the left of an assignment syntax. 1918 unsigned StartOp = 0, e = getNumOperands(); 1919 for (; StartOp < e && getOperand(StartOp).isReg() && 1920 getOperand(StartOp).isDef() && 1921 !getOperand(StartOp).isImplicit(); 1922 ++StartOp) { 1923 if (StartOp != 0) OS << ", "; 1924 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1925 unsigned Reg = getOperand(StartOp).getReg(); 1926 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1927 VirtRegs.push_back(Reg); 1928 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1929 if (Ty.isValid()) 1930 OS << '(' << Ty << ')'; 1931 } 1932 } 1933 1934 if (StartOp != 0) 1935 OS << " = "; 1936 1937 // Print the opcode name. 1938 if (TII) 1939 OS << TII->getName(getOpcode()); 1940 else 1941 OS << "UNKNOWN"; 1942 1943 if (SkipOpers) 1944 return; 1945 1946 // Print the rest of the operands. 1947 bool FirstOp = true; 1948 unsigned AsmDescOp = ~0u; 1949 unsigned AsmOpCount = 0; 1950 1951 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1952 // Print asm string. 1953 OS << " "; 1954 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1955 1956 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1957 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1958 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1959 OS << " [sideeffect]"; 1960 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1961 OS << " [mayload]"; 1962 if (ExtraInfo & InlineAsm::Extra_MayStore) 1963 OS << " [maystore]"; 1964 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1965 OS << " [isconvergent]"; 1966 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1967 OS << " [alignstack]"; 1968 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1969 OS << " [attdialect]"; 1970 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1971 OS << " [inteldialect]"; 1972 1973 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1974 FirstOp = false; 1975 } 1976 1977 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1978 const MachineOperand &MO = getOperand(i); 1979 1980 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1981 VirtRegs.push_back(MO.getReg()); 1982 1983 if (FirstOp) FirstOp = false; else OS << ","; 1984 OS << " "; 1985 if (i < getDesc().NumOperands) { 1986 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1987 if (MCOI.isPredicate()) 1988 OS << "pred:"; 1989 if (MCOI.isOptionalDef()) 1990 OS << "opt:"; 1991 } 1992 if (isDebugValue() && MO.isMetadata()) { 1993 // Pretty print DBG_VALUE instructions. 1994 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1995 if (DIV && !DIV->getName().empty()) 1996 OS << "!\"" << DIV->getName() << '\"'; 1997 else 1998 MO.print(OS, MST, TRI); 1999 } else if (TRI && (isInsertSubreg() || isRegSequence() || 2000 (isSubregToReg() && i == 3)) && MO.isImm()) { 2001 OS << TRI->getSubRegIndexName(MO.getImm()); 2002 } else if (i == AsmDescOp && MO.isImm()) { 2003 // Pretty print the inline asm operand descriptor. 2004 OS << '$' << AsmOpCount++; 2005 unsigned Flag = MO.getImm(); 2006 switch (InlineAsm::getKind(Flag)) { 2007 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 2008 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 2009 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 2010 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 2011 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 2012 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 2013 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 2014 } 2015 2016 unsigned RCID = 0; 2017 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 2018 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 2019 if (TRI) { 2020 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 2021 } else 2022 OS << ":RC" << RCID; 2023 } 2024 2025 if (InlineAsm::isMemKind(Flag)) { 2026 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 2027 switch (MCID) { 2028 case InlineAsm::Constraint_es: OS << ":es"; break; 2029 case InlineAsm::Constraint_i: OS << ":i"; break; 2030 case InlineAsm::Constraint_m: OS << ":m"; break; 2031 case InlineAsm::Constraint_o: OS << ":o"; break; 2032 case InlineAsm::Constraint_v: OS << ":v"; break; 2033 case InlineAsm::Constraint_Q: OS << ":Q"; break; 2034 case InlineAsm::Constraint_R: OS << ":R"; break; 2035 case InlineAsm::Constraint_S: OS << ":S"; break; 2036 case InlineAsm::Constraint_T: OS << ":T"; break; 2037 case InlineAsm::Constraint_Um: OS << ":Um"; break; 2038 case InlineAsm::Constraint_Un: OS << ":Un"; break; 2039 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 2040 case InlineAsm::Constraint_Us: OS << ":Us"; break; 2041 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 2042 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 2043 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 2044 case InlineAsm::Constraint_X: OS << ":X"; break; 2045 case InlineAsm::Constraint_Z: OS << ":Z"; break; 2046 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 2047 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 2048 default: OS << ":?"; break; 2049 } 2050 } 2051 2052 unsigned TiedTo = 0; 2053 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 2054 OS << " tiedto:$" << TiedTo; 2055 2056 OS << ']'; 2057 2058 // Compute the index of the next operand descriptor. 2059 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 2060 } else 2061 MO.print(OS, MST, TRI); 2062 } 2063 2064 bool HaveSemi = false; 2065 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 2066 if (Flags & PrintableFlags) { 2067 if (!HaveSemi) { 2068 OS << ";"; 2069 HaveSemi = true; 2070 } 2071 OS << " flags: "; 2072 2073 if (Flags & FrameSetup) 2074 OS << "FrameSetup"; 2075 2076 if (Flags & FrameDestroy) 2077 OS << "FrameDestroy"; 2078 } 2079 2080 if (!memoperands_empty()) { 2081 if (!HaveSemi) { 2082 OS << ";"; 2083 HaveSemi = true; 2084 } 2085 2086 OS << " mem:"; 2087 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2088 i != e; ++i) { 2089 (*i)->print(OS, MST); 2090 if (std::next(i) != e) 2091 OS << " "; 2092 } 2093 } 2094 2095 // Print the regclass of any virtual registers encountered. 2096 if (MRI && !VirtRegs.empty()) { 2097 if (!HaveSemi) { 2098 OS << ";"; 2099 HaveSemi = true; 2100 } 2101 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2102 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2103 if (!RC) 2104 continue; 2105 // Generic virtual registers do not have register classes. 2106 if (RC.is<const RegisterBank *>()) 2107 OS << " " << RC.get<const RegisterBank *>()->getName(); 2108 else 2109 OS << " " 2110 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2111 OS << ':' << PrintReg(VirtRegs[i]); 2112 for (unsigned j = i+1; j != VirtRegs.size();) { 2113 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2114 ++j; 2115 continue; 2116 } 2117 if (VirtRegs[i] != VirtRegs[j]) 2118 OS << "," << PrintReg(VirtRegs[j]); 2119 VirtRegs.erase(VirtRegs.begin()+j); 2120 } 2121 } 2122 } 2123 2124 // Print debug location information. 2125 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2126 if (!HaveSemi) 2127 OS << ";"; 2128 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2129 OS << " line no:" << DV->getLine(); 2130 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2131 DebugLoc InlinedAtDL(InlinedAt); 2132 if (InlinedAtDL && MF) { 2133 OS << " inlined @[ "; 2134 InlinedAtDL.print(OS); 2135 OS << " ]"; 2136 } 2137 } 2138 if (isIndirectDebugValue()) 2139 OS << " indirect"; 2140 } else if (SkipDebugLoc) { 2141 return; 2142 } else if (debugLoc && MF) { 2143 if (!HaveSemi) 2144 OS << ";"; 2145 OS << " dbg:"; 2146 debugLoc.print(OS); 2147 } 2148 2149 OS << '\n'; 2150 } 2151 2152 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2153 const TargetRegisterInfo *RegInfo, 2154 bool AddIfNotFound) { 2155 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2156 bool hasAliases = isPhysReg && 2157 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2158 bool Found = false; 2159 SmallVector<unsigned,4> DeadOps; 2160 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2161 MachineOperand &MO = getOperand(i); 2162 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2163 continue; 2164 2165 // DEBUG_VALUE nodes do not contribute to code generation and should 2166 // always be ignored. Failure to do so may result in trying to modify 2167 // KILL flags on DEBUG_VALUE nodes. 2168 if (MO.isDebug()) 2169 continue; 2170 2171 unsigned Reg = MO.getReg(); 2172 if (!Reg) 2173 continue; 2174 2175 if (Reg == IncomingReg) { 2176 if (!Found) { 2177 if (MO.isKill()) 2178 // The register is already marked kill. 2179 return true; 2180 if (isPhysReg && isRegTiedToDefOperand(i)) 2181 // Two-address uses of physregs must not be marked kill. 2182 return true; 2183 MO.setIsKill(); 2184 Found = true; 2185 } 2186 } else if (hasAliases && MO.isKill() && 2187 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2188 // A super-register kill already exists. 2189 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2190 return true; 2191 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2192 DeadOps.push_back(i); 2193 } 2194 } 2195 2196 // Trim unneeded kill operands. 2197 while (!DeadOps.empty()) { 2198 unsigned OpIdx = DeadOps.back(); 2199 if (getOperand(OpIdx).isImplicit()) 2200 RemoveOperand(OpIdx); 2201 else 2202 getOperand(OpIdx).setIsKill(false); 2203 DeadOps.pop_back(); 2204 } 2205 2206 // If not found, this means an alias of one of the operands is killed. Add a 2207 // new implicit operand if required. 2208 if (!Found && AddIfNotFound) { 2209 addOperand(MachineOperand::CreateReg(IncomingReg, 2210 false /*IsDef*/, 2211 true /*IsImp*/, 2212 true /*IsKill*/)); 2213 return true; 2214 } 2215 return Found; 2216 } 2217 2218 void MachineInstr::clearRegisterKills(unsigned Reg, 2219 const TargetRegisterInfo *RegInfo) { 2220 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2221 RegInfo = nullptr; 2222 for (MachineOperand &MO : operands()) { 2223 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2224 continue; 2225 unsigned OpReg = MO.getReg(); 2226 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2227 MO.setIsKill(false); 2228 } 2229 } 2230 2231 bool MachineInstr::addRegisterDead(unsigned Reg, 2232 const TargetRegisterInfo *RegInfo, 2233 bool AddIfNotFound) { 2234 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2235 bool hasAliases = isPhysReg && 2236 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2237 bool Found = false; 2238 SmallVector<unsigned,4> DeadOps; 2239 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2240 MachineOperand &MO = getOperand(i); 2241 if (!MO.isReg() || !MO.isDef()) 2242 continue; 2243 unsigned MOReg = MO.getReg(); 2244 if (!MOReg) 2245 continue; 2246 2247 if (MOReg == Reg) { 2248 MO.setIsDead(); 2249 Found = true; 2250 } else if (hasAliases && MO.isDead() && 2251 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2252 // There exists a super-register that's marked dead. 2253 if (RegInfo->isSuperRegister(Reg, MOReg)) 2254 return true; 2255 if (RegInfo->isSubRegister(Reg, MOReg)) 2256 DeadOps.push_back(i); 2257 } 2258 } 2259 2260 // Trim unneeded dead operands. 2261 while (!DeadOps.empty()) { 2262 unsigned OpIdx = DeadOps.back(); 2263 if (getOperand(OpIdx).isImplicit()) 2264 RemoveOperand(OpIdx); 2265 else 2266 getOperand(OpIdx).setIsDead(false); 2267 DeadOps.pop_back(); 2268 } 2269 2270 // If not found, this means an alias of one of the operands is dead. Add a 2271 // new implicit operand if required. 2272 if (Found || !AddIfNotFound) 2273 return Found; 2274 2275 addOperand(MachineOperand::CreateReg(Reg, 2276 true /*IsDef*/, 2277 true /*IsImp*/, 2278 false /*IsKill*/, 2279 true /*IsDead*/)); 2280 return true; 2281 } 2282 2283 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2284 for (MachineOperand &MO : operands()) { 2285 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2286 continue; 2287 MO.setIsDead(false); 2288 } 2289 } 2290 2291 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2292 for (MachineOperand &MO : operands()) { 2293 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2294 continue; 2295 MO.setIsUndef(IsUndef); 2296 } 2297 } 2298 2299 void MachineInstr::addRegisterDefined(unsigned Reg, 2300 const TargetRegisterInfo *RegInfo) { 2301 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2302 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2303 if (MO) 2304 return; 2305 } else { 2306 for (const MachineOperand &MO : operands()) { 2307 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2308 MO.getSubReg() == 0) 2309 return; 2310 } 2311 } 2312 addOperand(MachineOperand::CreateReg(Reg, 2313 true /*IsDef*/, 2314 true /*IsImp*/)); 2315 } 2316 2317 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2318 const TargetRegisterInfo &TRI) { 2319 bool HasRegMask = false; 2320 for (MachineOperand &MO : operands()) { 2321 if (MO.isRegMask()) { 2322 HasRegMask = true; 2323 continue; 2324 } 2325 if (!MO.isReg() || !MO.isDef()) continue; 2326 unsigned Reg = MO.getReg(); 2327 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2328 // If there are no uses, including partial uses, the def is dead. 2329 if (llvm::none_of(UsedRegs, 2330 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2331 MO.setIsDead(); 2332 } 2333 2334 // This is a call with a register mask operand. 2335 // Mask clobbers are always dead, so add defs for the non-dead defines. 2336 if (HasRegMask) 2337 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2338 I != E; ++I) 2339 addRegisterDefined(*I, &TRI); 2340 } 2341 2342 unsigned 2343 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2344 // Build up a buffer of hash code components. 2345 SmallVector<size_t, 8> HashComponents; 2346 HashComponents.reserve(MI->getNumOperands() + 1); 2347 HashComponents.push_back(MI->getOpcode()); 2348 for (const MachineOperand &MO : MI->operands()) { 2349 if (MO.isReg() && MO.isDef() && 2350 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2351 continue; // Skip virtual register defs. 2352 2353 HashComponents.push_back(hash_value(MO)); 2354 } 2355 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2356 } 2357 2358 void MachineInstr::emitError(StringRef Msg) const { 2359 // Find the source location cookie. 2360 unsigned LocCookie = 0; 2361 const MDNode *LocMD = nullptr; 2362 for (unsigned i = getNumOperands(); i != 0; --i) { 2363 if (getOperand(i-1).isMetadata() && 2364 (LocMD = getOperand(i-1).getMetadata()) && 2365 LocMD->getNumOperands() != 0) { 2366 if (const ConstantInt *CI = 2367 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2368 LocCookie = CI->getZExtValue(); 2369 break; 2370 } 2371 } 2372 } 2373 2374 if (const MachineBasicBlock *MBB = getParent()) 2375 if (const MachineFunction *MF = MBB->getParent()) 2376 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2377 report_fatal_error(Msg); 2378 } 2379 2380 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2381 const MCInstrDesc &MCID, bool IsIndirect, 2382 unsigned Reg, const MDNode *Variable, 2383 const MDNode *Expr) { 2384 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2385 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2386 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2387 "Expected inlined-at fields to agree"); 2388 if (IsIndirect) 2389 return BuildMI(MF, DL, MCID) 2390 .addReg(Reg, RegState::Debug) 2391 .addImm(0U) 2392 .addMetadata(Variable) 2393 .addMetadata(Expr); 2394 else 2395 return BuildMI(MF, DL, MCID) 2396 .addReg(Reg, RegState::Debug) 2397 .addReg(0U, RegState::Debug) 2398 .addMetadata(Variable) 2399 .addMetadata(Expr); 2400 } 2401 2402 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2403 MachineBasicBlock::iterator I, 2404 const DebugLoc &DL, const MCInstrDesc &MCID, 2405 bool IsIndirect, unsigned Reg, 2406 const MDNode *Variable, const MDNode *Expr) { 2407 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2408 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2409 MachineFunction &MF = *BB.getParent(); 2410 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2411 BB.insert(I, MI); 2412 return MachineInstrBuilder(MF, MI); 2413 } 2414 2415 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2416 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2417 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2418 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2419 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2420 "Expected inlined-at fields to agree"); 2421 2422 const DIExpression *Expr = MI.getDebugExpression(); 2423 if (MI.isIndirectDebugValue()) { 2424 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2425 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2426 } 2427 return Expr; 2428 } 2429 2430 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2431 MachineBasicBlock::iterator I, 2432 const MachineInstr &Orig, 2433 int FrameIndex) { 2434 const DIExpression *Expr = computeExprForSpill(Orig); 2435 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2436 .addFrameIndex(FrameIndex) 2437 .addImm(0U) 2438 .addMetadata(Orig.getDebugVariable()) 2439 .addMetadata(Expr); 2440 } 2441 2442 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2443 const DIExpression *Expr = computeExprForSpill(Orig); 2444 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2445 Orig.getOperand(1).ChangeToImmediate(0U); 2446 Orig.getOperand(3).setMetadata(Expr); 2447 } 2448