1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/FormattedStream.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetIntrinsicInfo.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <cstring> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 81 if (const MachineBasicBlock *MBB = MI.getParent()) 82 if (const MachineFunction *MF = MBB->getParent()) 83 return MF; 84 return nullptr; 85 } 86 87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 88 // it. 89 static void tryToGetTargetInfo(const MachineInstr &MI, 90 const TargetRegisterInfo *&TRI, 91 const MachineRegisterInfo *&MRI, 92 const TargetIntrinsicInfo *&IntrinsicInfo, 93 const TargetInstrInfo *&TII) { 94 95 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 96 TRI = MF->getSubtarget().getRegisterInfo(); 97 MRI = &MF->getRegInfo(); 98 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 99 TII = MF->getSubtarget().getInstrInfo(); 100 } 101 } 102 103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 104 if (MCID->ImplicitDefs) 105 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 106 ++ImpDefs) 107 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 108 if (MCID->ImplicitUses) 109 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 110 ++ImpUses) 111 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 112 } 113 114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 115 /// implicit operands. It reserves space for the number of operands specified by 116 /// the MCInstrDesc. 117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 118 DebugLoc dl, bool NoImp) 119 : MCID(&tid), debugLoc(std::move(dl)) { 120 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 121 122 // Reserve space for the expected number of operands. 123 if (unsigned NumOps = MCID->getNumOperands() + 124 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 125 CapOperands = OperandCapacity::get(NumOps); 126 Operands = MF.allocateOperandArray(CapOperands); 127 } 128 129 if (!NoImp) 130 addImplicitDefUseOperands(MF); 131 } 132 133 /// MachineInstr ctor - Copies MachineInstr arg exactly 134 /// 135 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 136 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 137 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 138 139 CapOperands = OperandCapacity::get(MI.getNumOperands()); 140 Operands = MF.allocateOperandArray(CapOperands); 141 142 // Copy operands. 143 for (const MachineOperand &MO : MI.operands()) 144 addOperand(MF, MO); 145 146 // Copy all the sensible flags. 147 setFlags(MI.Flags); 148 } 149 150 /// getRegInfo - If this instruction is embedded into a MachineFunction, 151 /// return the MachineRegisterInfo object for the current function, otherwise 152 /// return null. 153 MachineRegisterInfo *MachineInstr::getRegInfo() { 154 if (MachineBasicBlock *MBB = getParent()) 155 return &MBB->getParent()->getRegInfo(); 156 return nullptr; 157 } 158 159 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 160 /// this instruction from their respective use lists. This requires that the 161 /// operands already be on their use lists. 162 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 163 for (MachineOperand &MO : operands()) 164 if (MO.isReg()) 165 MRI.removeRegOperandFromUseList(&MO); 166 } 167 168 /// AddRegOperandsToUseLists - Add all of the register operands in 169 /// this instruction from their respective use lists. This requires that the 170 /// operands not be on their use lists yet. 171 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 172 for (MachineOperand &MO : operands()) 173 if (MO.isReg()) 174 MRI.addRegOperandToUseList(&MO); 175 } 176 177 void MachineInstr::addOperand(const MachineOperand &Op) { 178 MachineBasicBlock *MBB = getParent(); 179 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 180 MachineFunction *MF = MBB->getParent(); 181 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 182 addOperand(*MF, Op); 183 } 184 185 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 186 /// ranges. If MRI is non-null also update use-def chains. 187 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 188 unsigned NumOps, MachineRegisterInfo *MRI) { 189 if (MRI) 190 return MRI->moveOperands(Dst, Src, NumOps); 191 // MachineOperand is a trivially copyable type so we can just use memmove. 192 assert(Dst && Src && "Unknown operands"); 193 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 194 } 195 196 /// addOperand - Add the specified operand to the instruction. If it is an 197 /// implicit operand, it is added to the end of the operand list. If it is 198 /// an explicit operand it is added at the end of the explicit operand list 199 /// (before the first implicit operand). 200 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 201 assert(MCID && "Cannot add operands before providing an instr descriptor"); 202 203 // Check if we're adding one of our existing operands. 204 if (&Op >= Operands && &Op < Operands + NumOperands) { 205 // This is unusual: MI->addOperand(MI->getOperand(i)). 206 // If adding Op requires reallocating or moving existing operands around, 207 // the Op reference could go stale. Support it by copying Op. 208 MachineOperand CopyOp(Op); 209 return addOperand(MF, CopyOp); 210 } 211 212 // Find the insert location for the new operand. Implicit registers go at 213 // the end, everything else goes before the implicit regs. 214 // 215 // FIXME: Allow mixed explicit and implicit operands on inline asm. 216 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 217 // implicit-defs, but they must not be moved around. See the FIXME in 218 // InstrEmitter.cpp. 219 unsigned OpNo = getNumOperands(); 220 bool isImpReg = Op.isReg() && Op.isImplicit(); 221 if (!isImpReg && !isInlineAsm()) { 222 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 223 --OpNo; 224 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 225 } 226 } 227 228 #ifndef NDEBUG 229 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 230 Op.getType() == MachineOperand::MO_MCSymbol; 231 // OpNo now points as the desired insertion point. Unless this is a variadic 232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 233 // RegMask operands go between the explicit and implicit operands. 234 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 235 OpNo < MCID->getNumOperands() || isDebugOp) && 236 "Trying to add an operand to a machine instr that is already done!"); 237 #endif 238 239 MachineRegisterInfo *MRI = getRegInfo(); 240 241 // Determine if the Operands array needs to be reallocated. 242 // Save the old capacity and operand array. 243 OperandCapacity OldCap = CapOperands; 244 MachineOperand *OldOperands = Operands; 245 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 246 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 247 Operands = MF.allocateOperandArray(CapOperands); 248 // Move the operands before the insertion point. 249 if (OpNo) 250 moveOperands(Operands, OldOperands, OpNo, MRI); 251 } 252 253 // Move the operands following the insertion point. 254 if (OpNo != NumOperands) 255 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 256 MRI); 257 ++NumOperands; 258 259 // Deallocate the old operand array. 260 if (OldOperands != Operands && OldOperands) 261 MF.deallocateOperandArray(OldCap, OldOperands); 262 263 // Copy Op into place. It still needs to be inserted into the MRI use lists. 264 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 265 NewMO->ParentMI = this; 266 267 // When adding a register operand, tell MRI about it. 268 if (NewMO->isReg()) { 269 // Ensure isOnRegUseList() returns false, regardless of Op's status. 270 NewMO->Contents.Reg.Prev = nullptr; 271 // Ignore existing ties. This is not a property that can be copied. 272 NewMO->TiedTo = 0; 273 // Add the new operand to MRI, but only for instructions in an MBB. 274 if (MRI) 275 MRI->addRegOperandToUseList(NewMO); 276 // The MCID operand information isn't accurate until we start adding 277 // explicit operands. The implicit operands are added first, then the 278 // explicits are inserted before them. 279 if (!isImpReg) { 280 // Tie uses to defs as indicated in MCInstrDesc. 281 if (NewMO->isUse()) { 282 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 283 if (DefIdx != -1) 284 tieOperands(DefIdx, OpNo); 285 } 286 // If the register operand is flagged as early, mark the operand as such. 287 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 288 NewMO->setIsEarlyClobber(true); 289 } 290 } 291 } 292 293 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 294 /// fewer operand than it started with. 295 /// 296 void MachineInstr::RemoveOperand(unsigned OpNo) { 297 assert(OpNo < getNumOperands() && "Invalid operand number"); 298 untieRegOperand(OpNo); 299 300 #ifndef NDEBUG 301 // Moving tied operands would break the ties. 302 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 303 if (Operands[i].isReg()) 304 assert(!Operands[i].isTied() && "Cannot move tied operands"); 305 #endif 306 307 MachineRegisterInfo *MRI = getRegInfo(); 308 if (MRI && Operands[OpNo].isReg()) 309 MRI->removeRegOperandFromUseList(Operands + OpNo); 310 311 // Don't call the MachineOperand destructor. A lot of this code depends on 312 // MachineOperand having a trivial destructor anyway, and adding a call here 313 // wouldn't make it 'destructor-correct'. 314 315 if (unsigned N = NumOperands - 1 - OpNo) 316 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 317 --NumOperands; 318 } 319 320 void MachineInstr::setExtraInfo(MachineFunction &MF, 321 ArrayRef<MachineMemOperand *> MMOs, 322 MCSymbol *PreInstrSymbol, 323 MCSymbol *PostInstrSymbol, 324 MDNode *HeapAllocMarker) { 325 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 326 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 327 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 328 int NumPointers = 329 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 330 331 // Drop all extra info if there is none. 332 if (NumPointers <= 0) { 333 Info.clear(); 334 return; 335 } 336 337 // If more than one pointer, then store out of line. Store heap alloc markers 338 // out of line because PointerSumType cannot hold more than 4 tag types with 339 // 32-bit pointers. 340 // FIXME: Maybe we should make the symbols in the extra info mutable? 341 else if (NumPointers > 1 || HasHeapAllocMarker) { 342 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 343 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 344 return; 345 } 346 347 // Otherwise store the single pointer inline. 348 if (HasPreInstrSymbol) 349 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 350 else if (HasPostInstrSymbol) 351 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 352 else 353 Info.set<EIIK_MMO>(MMOs[0]); 354 } 355 356 void MachineInstr::dropMemRefs(MachineFunction &MF) { 357 if (memoperands_empty()) 358 return; 359 360 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 361 getHeapAllocMarker()); 362 } 363 364 void MachineInstr::setMemRefs(MachineFunction &MF, 365 ArrayRef<MachineMemOperand *> MMOs) { 366 if (MMOs.empty()) { 367 dropMemRefs(MF); 368 return; 369 } 370 371 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 372 getHeapAllocMarker()); 373 } 374 375 void MachineInstr::addMemOperand(MachineFunction &MF, 376 MachineMemOperand *MO) { 377 SmallVector<MachineMemOperand *, 2> MMOs; 378 MMOs.append(memoperands_begin(), memoperands_end()); 379 MMOs.push_back(MO); 380 setMemRefs(MF, MMOs); 381 } 382 383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 384 if (this == &MI) 385 // Nothing to do for a self-clone! 386 return; 387 388 assert(&MF == MI.getMF() && 389 "Invalid machine functions when cloning memory refrences!"); 390 // See if we can just steal the extra info already allocated for the 391 // instruction. We can do this whenever the pre- and post-instruction symbols 392 // are the same (including null). 393 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 394 getPostInstrSymbol() == MI.getPostInstrSymbol() && 395 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 396 Info = MI.Info; 397 return; 398 } 399 400 // Otherwise, fall back on a copy-based clone. 401 setMemRefs(MF, MI.memoperands()); 402 } 403 404 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 405 /// identical. 406 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 407 ArrayRef<MachineMemOperand *> RHS) { 408 if (LHS.size() != RHS.size()) 409 return false; 410 411 auto LHSPointees = make_pointee_range(LHS); 412 auto RHSPointees = make_pointee_range(RHS); 413 return std::equal(LHSPointees.begin(), LHSPointees.end(), 414 RHSPointees.begin()); 415 } 416 417 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 418 ArrayRef<const MachineInstr *> MIs) { 419 // Try handling easy numbers of MIs with simpler mechanisms. 420 if (MIs.empty()) { 421 dropMemRefs(MF); 422 return; 423 } 424 if (MIs.size() == 1) { 425 cloneMemRefs(MF, *MIs[0]); 426 return; 427 } 428 // Because an empty memoperands list provides *no* information and must be 429 // handled conservatively (assuming the instruction can do anything), the only 430 // way to merge with it is to drop all other memoperands. 431 if (MIs[0]->memoperands_empty()) { 432 dropMemRefs(MF); 433 return; 434 } 435 436 // Handle the general case. 437 SmallVector<MachineMemOperand *, 2> MergedMMOs; 438 // Start with the first instruction. 439 assert(&MF == MIs[0]->getMF() && 440 "Invalid machine functions when cloning memory references!"); 441 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 442 // Now walk all the other instructions and accumulate any different MMOs. 443 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 444 assert(&MF == MI.getMF() && 445 "Invalid machine functions when cloning memory references!"); 446 447 // Skip MIs with identical operands to the first. This is a somewhat 448 // arbitrary hack but will catch common cases without being quadratic. 449 // TODO: We could fully implement merge semantics here if needed. 450 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 451 continue; 452 453 // Because an empty memoperands list provides *no* information and must be 454 // handled conservatively (assuming the instruction can do anything), the 455 // only way to merge with it is to drop all other memoperands. 456 if (MI.memoperands_empty()) { 457 dropMemRefs(MF); 458 return; 459 } 460 461 // Otherwise accumulate these into our temporary buffer of the merged state. 462 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 463 } 464 465 setMemRefs(MF, MergedMMOs); 466 } 467 468 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 469 // Do nothing if old and new symbols are the same. 470 if (Symbol == getPreInstrSymbol()) 471 return; 472 473 // If there was only one symbol and we're removing it, just clear info. 474 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 475 Info.clear(); 476 return; 477 } 478 479 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 480 getHeapAllocMarker()); 481 } 482 483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 484 // Do nothing if old and new symbols are the same. 485 if (Symbol == getPostInstrSymbol()) 486 return; 487 488 // If there was only one symbol and we're removing it, just clear info. 489 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 490 Info.clear(); 491 return; 492 } 493 494 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 495 getHeapAllocMarker()); 496 } 497 498 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 499 // Do nothing if old and new symbols are the same. 500 if (Marker == getHeapAllocMarker()) 501 return; 502 503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 504 Marker); 505 } 506 507 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 508 const MachineInstr &MI) { 509 if (this == &MI) 510 // Nothing to do for a self-clone! 511 return; 512 513 assert(&MF == MI.getMF() && 514 "Invalid machine functions when cloning instruction symbols!"); 515 516 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 517 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 518 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 519 } 520 521 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 522 // For now, the just return the union of the flags. If the flags get more 523 // complicated over time, we might need more logic here. 524 return getFlags() | Other.getFlags(); 525 } 526 527 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 528 uint16_t MIFlags = 0; 529 // Copy the wrapping flags. 530 if (const OverflowingBinaryOperator *OB = 531 dyn_cast<OverflowingBinaryOperator>(&I)) { 532 if (OB->hasNoSignedWrap()) 533 MIFlags |= MachineInstr::MIFlag::NoSWrap; 534 if (OB->hasNoUnsignedWrap()) 535 MIFlags |= MachineInstr::MIFlag::NoUWrap; 536 } 537 538 // Copy the exact flag. 539 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 540 if (PE->isExact()) 541 MIFlags |= MachineInstr::MIFlag::IsExact; 542 543 // Copy the fast-math flags. 544 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 545 const FastMathFlags Flags = FP->getFastMathFlags(); 546 if (Flags.noNaNs()) 547 MIFlags |= MachineInstr::MIFlag::FmNoNans; 548 if (Flags.noInfs()) 549 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 550 if (Flags.noSignedZeros()) 551 MIFlags |= MachineInstr::MIFlag::FmNsz; 552 if (Flags.allowReciprocal()) 553 MIFlags |= MachineInstr::MIFlag::FmArcp; 554 if (Flags.allowContract()) 555 MIFlags |= MachineInstr::MIFlag::FmContract; 556 if (Flags.approxFunc()) 557 MIFlags |= MachineInstr::MIFlag::FmAfn; 558 if (Flags.allowReassoc()) 559 MIFlags |= MachineInstr::MIFlag::FmReassoc; 560 } 561 562 return MIFlags; 563 } 564 565 void MachineInstr::copyIRFlags(const Instruction &I) { 566 Flags = copyFlagsFromInstruction(I); 567 } 568 569 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 570 assert(!isBundledWithPred() && "Must be called on bundle header"); 571 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 572 if (MII->getDesc().getFlags() & Mask) { 573 if (Type == AnyInBundle) 574 return true; 575 } else { 576 if (Type == AllInBundle && !MII->isBundle()) 577 return false; 578 } 579 // This was the last instruction in the bundle. 580 if (!MII->isBundledWithSucc()) 581 return Type == AllInBundle; 582 } 583 } 584 585 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 586 MICheckType Check) const { 587 // If opcodes or number of operands are not the same then the two 588 // instructions are obviously not identical. 589 if (Other.getOpcode() != getOpcode() || 590 Other.getNumOperands() != getNumOperands()) 591 return false; 592 593 if (isBundle()) { 594 // We have passed the test above that both instructions have the same 595 // opcode, so we know that both instructions are bundles here. Let's compare 596 // MIs inside the bundle. 597 assert(Other.isBundle() && "Expected that both instructions are bundles."); 598 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 599 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 600 // Loop until we analysed the last intruction inside at least one of the 601 // bundles. 602 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 603 ++I1; 604 ++I2; 605 if (!I1->isIdenticalTo(*I2, Check)) 606 return false; 607 } 608 // If we've reached the end of just one of the two bundles, but not both, 609 // the instructions are not identical. 610 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 611 return false; 612 } 613 614 // Check operands to make sure they match. 615 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 616 const MachineOperand &MO = getOperand(i); 617 const MachineOperand &OMO = Other.getOperand(i); 618 if (!MO.isReg()) { 619 if (!MO.isIdenticalTo(OMO)) 620 return false; 621 continue; 622 } 623 624 // Clients may or may not want to ignore defs when testing for equality. 625 // For example, machine CSE pass only cares about finding common 626 // subexpressions, so it's safe to ignore virtual register defs. 627 if (MO.isDef()) { 628 if (Check == IgnoreDefs) 629 continue; 630 else if (Check == IgnoreVRegDefs) { 631 if (!Register::isVirtualRegister(MO.getReg()) || 632 !Register::isVirtualRegister(OMO.getReg())) 633 if (!MO.isIdenticalTo(OMO)) 634 return false; 635 } else { 636 if (!MO.isIdenticalTo(OMO)) 637 return false; 638 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 639 return false; 640 } 641 } else { 642 if (!MO.isIdenticalTo(OMO)) 643 return false; 644 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 645 return false; 646 } 647 } 648 // If DebugLoc does not match then two debug instructions are not identical. 649 if (isDebugInstr()) 650 if (getDebugLoc() && Other.getDebugLoc() && 651 getDebugLoc() != Other.getDebugLoc()) 652 return false; 653 return true; 654 } 655 656 const MachineFunction *MachineInstr::getMF() const { 657 return getParent()->getParent(); 658 } 659 660 MachineInstr *MachineInstr::removeFromParent() { 661 assert(getParent() && "Not embedded in a basic block!"); 662 return getParent()->remove(this); 663 } 664 665 MachineInstr *MachineInstr::removeFromBundle() { 666 assert(getParent() && "Not embedded in a basic block!"); 667 return getParent()->remove_instr(this); 668 } 669 670 void MachineInstr::eraseFromParent() { 671 assert(getParent() && "Not embedded in a basic block!"); 672 getParent()->erase(this); 673 } 674 675 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 676 assert(getParent() && "Not embedded in a basic block!"); 677 MachineBasicBlock *MBB = getParent(); 678 MachineFunction *MF = MBB->getParent(); 679 assert(MF && "Not embedded in a function!"); 680 681 MachineInstr *MI = (MachineInstr *)this; 682 MachineRegisterInfo &MRI = MF->getRegInfo(); 683 684 for (const MachineOperand &MO : MI->operands()) { 685 if (!MO.isReg() || !MO.isDef()) 686 continue; 687 Register Reg = MO.getReg(); 688 if (!Reg.isVirtual()) 689 continue; 690 MRI.markUsesInDebugValueAsUndef(Reg); 691 } 692 MI->eraseFromParent(); 693 } 694 695 void MachineInstr::eraseFromBundle() { 696 assert(getParent() && "Not embedded in a basic block!"); 697 getParent()->erase_instr(this); 698 } 699 700 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 701 if (!isCall(Type)) 702 return false; 703 switch (getOpcode()) { 704 case TargetOpcode::PATCHABLE_EVENT_CALL: 705 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: 706 case TargetOpcode::PATCHPOINT: 707 case TargetOpcode::STACKMAP: 708 case TargetOpcode::STATEPOINT: 709 return false; 710 } 711 return true; 712 } 713 714 bool MachineInstr::shouldUpdateCallSiteInfo() const { 715 if (isBundle()) 716 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 717 return isCandidateForCallSiteEntry(); 718 } 719 720 unsigned MachineInstr::getNumExplicitOperands() const { 721 unsigned NumOperands = MCID->getNumOperands(); 722 if (!MCID->isVariadic()) 723 return NumOperands; 724 725 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 726 const MachineOperand &MO = getOperand(I); 727 // The operands must always be in the following order: 728 // - explicit reg defs, 729 // - other explicit operands (reg uses, immediates, etc.), 730 // - implicit reg defs 731 // - implicit reg uses 732 if (MO.isReg() && MO.isImplicit()) 733 break; 734 ++NumOperands; 735 } 736 return NumOperands; 737 } 738 739 unsigned MachineInstr::getNumExplicitDefs() const { 740 unsigned NumDefs = MCID->getNumDefs(); 741 if (!MCID->isVariadic()) 742 return NumDefs; 743 744 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 745 const MachineOperand &MO = getOperand(I); 746 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 747 break; 748 ++NumDefs; 749 } 750 return NumDefs; 751 } 752 753 void MachineInstr::bundleWithPred() { 754 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 755 setFlag(BundledPred); 756 MachineBasicBlock::instr_iterator Pred = getIterator(); 757 --Pred; 758 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 759 Pred->setFlag(BundledSucc); 760 } 761 762 void MachineInstr::bundleWithSucc() { 763 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 764 setFlag(BundledSucc); 765 MachineBasicBlock::instr_iterator Succ = getIterator(); 766 ++Succ; 767 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 768 Succ->setFlag(BundledPred); 769 } 770 771 void MachineInstr::unbundleFromPred() { 772 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 773 clearFlag(BundledPred); 774 MachineBasicBlock::instr_iterator Pred = getIterator(); 775 --Pred; 776 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 777 Pred->clearFlag(BundledSucc); 778 } 779 780 void MachineInstr::unbundleFromSucc() { 781 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 782 clearFlag(BundledSucc); 783 MachineBasicBlock::instr_iterator Succ = getIterator(); 784 ++Succ; 785 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 786 Succ->clearFlag(BundledPred); 787 } 788 789 bool MachineInstr::isStackAligningInlineAsm() const { 790 if (isInlineAsm()) { 791 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 792 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 793 return true; 794 } 795 return false; 796 } 797 798 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 799 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 800 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 801 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 802 } 803 804 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 805 unsigned *GroupNo) const { 806 assert(isInlineAsm() && "Expected an inline asm instruction"); 807 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 808 809 // Ignore queries about the initial operands. 810 if (OpIdx < InlineAsm::MIOp_FirstOperand) 811 return -1; 812 813 unsigned Group = 0; 814 unsigned NumOps; 815 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 816 i += NumOps) { 817 const MachineOperand &FlagMO = getOperand(i); 818 // If we reach the implicit register operands, stop looking. 819 if (!FlagMO.isImm()) 820 return -1; 821 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 822 if (i + NumOps > OpIdx) { 823 if (GroupNo) 824 *GroupNo = Group; 825 return i; 826 } 827 ++Group; 828 } 829 return -1; 830 } 831 832 const DILabel *MachineInstr::getDebugLabel() const { 833 assert(isDebugLabel() && "not a DBG_LABEL"); 834 return cast<DILabel>(getOperand(0).getMetadata()); 835 } 836 837 const DILocalVariable *MachineInstr::getDebugVariable() const { 838 assert(isDebugValue() && "not a DBG_VALUE"); 839 return cast<DILocalVariable>(getOperand(2).getMetadata()); 840 } 841 842 const DIExpression *MachineInstr::getDebugExpression() const { 843 assert(isDebugValue() && "not a DBG_VALUE"); 844 return cast<DIExpression>(getOperand(3).getMetadata()); 845 } 846 847 bool MachineInstr::isDebugEntryValue() const { 848 return isDebugValue() && getDebugExpression()->isEntryValue(); 849 } 850 851 const TargetRegisterClass* 852 MachineInstr::getRegClassConstraint(unsigned OpIdx, 853 const TargetInstrInfo *TII, 854 const TargetRegisterInfo *TRI) const { 855 assert(getParent() && "Can't have an MBB reference here!"); 856 assert(getMF() && "Can't have an MF reference here!"); 857 const MachineFunction &MF = *getMF(); 858 859 // Most opcodes have fixed constraints in their MCInstrDesc. 860 if (!isInlineAsm()) 861 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 862 863 if (!getOperand(OpIdx).isReg()) 864 return nullptr; 865 866 // For tied uses on inline asm, get the constraint from the def. 867 unsigned DefIdx; 868 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 869 OpIdx = DefIdx; 870 871 // Inline asm stores register class constraints in the flag word. 872 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 873 if (FlagIdx < 0) 874 return nullptr; 875 876 unsigned Flag = getOperand(FlagIdx).getImm(); 877 unsigned RCID; 878 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 879 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 880 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 881 InlineAsm::hasRegClassConstraint(Flag, RCID)) 882 return TRI->getRegClass(RCID); 883 884 // Assume that all registers in a memory operand are pointers. 885 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 886 return TRI->getPointerRegClass(MF); 887 888 return nullptr; 889 } 890 891 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 892 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 893 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 894 // Check every operands inside the bundle if we have 895 // been asked to. 896 if (ExploreBundle) 897 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 898 ++OpndIt) 899 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 900 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 901 else 902 // Otherwise, just check the current operands. 903 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 904 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 905 return CurRC; 906 } 907 908 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 909 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 910 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 911 assert(CurRC && "Invalid initial register class"); 912 // Check if Reg is constrained by some of its use/def from MI. 913 const MachineOperand &MO = getOperand(OpIdx); 914 if (!MO.isReg() || MO.getReg() != Reg) 915 return CurRC; 916 // If yes, accumulate the constraints through the operand. 917 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 918 } 919 920 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 921 unsigned OpIdx, const TargetRegisterClass *CurRC, 922 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 923 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 924 const MachineOperand &MO = getOperand(OpIdx); 925 assert(MO.isReg() && 926 "Cannot get register constraints for non-register operand"); 927 assert(CurRC && "Invalid initial register class"); 928 if (unsigned SubIdx = MO.getSubReg()) { 929 if (OpRC) 930 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 931 else 932 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 933 } else if (OpRC) 934 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 935 return CurRC; 936 } 937 938 /// Return the number of instructions inside the MI bundle, not counting the 939 /// header instruction. 940 unsigned MachineInstr::getBundleSize() const { 941 MachineBasicBlock::const_instr_iterator I = getIterator(); 942 unsigned Size = 0; 943 while (I->isBundledWithSucc()) { 944 ++Size; 945 ++I; 946 } 947 return Size; 948 } 949 950 /// Returns true if the MachineInstr has an implicit-use operand of exactly 951 /// the given register (not considering sub/super-registers). 952 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 953 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 954 const MachineOperand &MO = getOperand(i); 955 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 956 return true; 957 } 958 return false; 959 } 960 961 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 962 /// the specific register or -1 if it is not found. It further tightens 963 /// the search criteria to a use that kills the register if isKill is true. 964 int MachineInstr::findRegisterUseOperandIdx( 965 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 966 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 967 const MachineOperand &MO = getOperand(i); 968 if (!MO.isReg() || !MO.isUse()) 969 continue; 970 Register MOReg = MO.getReg(); 971 if (!MOReg) 972 continue; 973 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 974 if (!isKill || MO.isKill()) 975 return i; 976 } 977 return -1; 978 } 979 980 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 981 /// indicating if this instruction reads or writes Reg. This also considers 982 /// partial defines. 983 std::pair<bool,bool> 984 MachineInstr::readsWritesVirtualRegister(Register Reg, 985 SmallVectorImpl<unsigned> *Ops) const { 986 bool PartDef = false; // Partial redefine. 987 bool FullDef = false; // Full define. 988 bool Use = false; 989 990 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 991 const MachineOperand &MO = getOperand(i); 992 if (!MO.isReg() || MO.getReg() != Reg) 993 continue; 994 if (Ops) 995 Ops->push_back(i); 996 if (MO.isUse()) 997 Use |= !MO.isUndef(); 998 else if (MO.getSubReg() && !MO.isUndef()) 999 // A partial def undef doesn't count as reading the register. 1000 PartDef = true; 1001 else 1002 FullDef = true; 1003 } 1004 // A partial redefine uses Reg unless there is also a full define. 1005 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1006 } 1007 1008 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1009 /// the specified register or -1 if it is not found. If isDead is true, defs 1010 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1011 /// also checks if there is a def of a super-register. 1012 int 1013 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1014 const TargetRegisterInfo *TRI) const { 1015 bool isPhys = Register::isPhysicalRegister(Reg); 1016 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1017 const MachineOperand &MO = getOperand(i); 1018 // Accept regmask operands when Overlap is set. 1019 // Ignore them when looking for a specific def operand (Overlap == false). 1020 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1021 return i; 1022 if (!MO.isReg() || !MO.isDef()) 1023 continue; 1024 Register MOReg = MO.getReg(); 1025 bool Found = (MOReg == Reg); 1026 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1027 if (Overlap) 1028 Found = TRI->regsOverlap(MOReg, Reg); 1029 else 1030 Found = TRI->isSubRegister(MOReg, Reg); 1031 } 1032 if (Found && (!isDead || MO.isDead())) 1033 return i; 1034 } 1035 return -1; 1036 } 1037 1038 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1039 /// operand list that is used to represent the predicate. It returns -1 if 1040 /// none is found. 1041 int MachineInstr::findFirstPredOperandIdx() const { 1042 // Don't call MCID.findFirstPredOperandIdx() because this variant 1043 // is sometimes called on an instruction that's not yet complete, and 1044 // so the number of operands is less than the MCID indicates. In 1045 // particular, the PTX target does this. 1046 const MCInstrDesc &MCID = getDesc(); 1047 if (MCID.isPredicable()) { 1048 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1049 if (MCID.OpInfo[i].isPredicate()) 1050 return i; 1051 } 1052 1053 return -1; 1054 } 1055 1056 // MachineOperand::TiedTo is 4 bits wide. 1057 const unsigned TiedMax = 15; 1058 1059 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1060 /// 1061 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1062 /// field. TiedTo can have these values: 1063 /// 1064 /// 0: Operand is not tied to anything. 1065 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1066 /// TiedMax: Tied to an operand >= TiedMax-1. 1067 /// 1068 /// The tied def must be one of the first TiedMax operands on a normal 1069 /// instruction. INLINEASM instructions allow more tied defs. 1070 /// 1071 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1072 MachineOperand &DefMO = getOperand(DefIdx); 1073 MachineOperand &UseMO = getOperand(UseIdx); 1074 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1075 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1076 assert(!DefMO.isTied() && "Def is already tied to another use"); 1077 assert(!UseMO.isTied() && "Use is already tied to another def"); 1078 1079 if (DefIdx < TiedMax) 1080 UseMO.TiedTo = DefIdx + 1; 1081 else { 1082 // Inline asm can use the group descriptors to find tied operands, but on 1083 // normal instruction, the tied def must be within the first TiedMax 1084 // operands. 1085 assert(isInlineAsm() && "DefIdx out of range"); 1086 UseMO.TiedTo = TiedMax; 1087 } 1088 1089 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1090 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1091 } 1092 1093 /// Given the index of a tied register operand, find the operand it is tied to. 1094 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1095 /// which must exist. 1096 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1097 const MachineOperand &MO = getOperand(OpIdx); 1098 assert(MO.isTied() && "Operand isn't tied"); 1099 1100 // Normally TiedTo is in range. 1101 if (MO.TiedTo < TiedMax) 1102 return MO.TiedTo - 1; 1103 1104 // Uses on normal instructions can be out of range. 1105 if (!isInlineAsm()) { 1106 // Normal tied defs must be in the 0..TiedMax-1 range. 1107 if (MO.isUse()) 1108 return TiedMax - 1; 1109 // MO is a def. Search for the tied use. 1110 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1111 const MachineOperand &UseMO = getOperand(i); 1112 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1113 return i; 1114 } 1115 llvm_unreachable("Can't find tied use"); 1116 } 1117 1118 // Now deal with inline asm by parsing the operand group descriptor flags. 1119 // Find the beginning of each operand group. 1120 SmallVector<unsigned, 8> GroupIdx; 1121 unsigned OpIdxGroup = ~0u; 1122 unsigned NumOps; 1123 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1124 i += NumOps) { 1125 const MachineOperand &FlagMO = getOperand(i); 1126 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1127 unsigned CurGroup = GroupIdx.size(); 1128 GroupIdx.push_back(i); 1129 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1130 // OpIdx belongs to this operand group. 1131 if (OpIdx > i && OpIdx < i + NumOps) 1132 OpIdxGroup = CurGroup; 1133 unsigned TiedGroup; 1134 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1135 continue; 1136 // Operands in this group are tied to operands in TiedGroup which must be 1137 // earlier. Find the number of operands between the two groups. 1138 unsigned Delta = i - GroupIdx[TiedGroup]; 1139 1140 // OpIdx is a use tied to TiedGroup. 1141 if (OpIdxGroup == CurGroup) 1142 return OpIdx - Delta; 1143 1144 // OpIdx is a def tied to this use group. 1145 if (OpIdxGroup == TiedGroup) 1146 return OpIdx + Delta; 1147 } 1148 llvm_unreachable("Invalid tied operand on inline asm"); 1149 } 1150 1151 /// clearKillInfo - Clears kill flags on all operands. 1152 /// 1153 void MachineInstr::clearKillInfo() { 1154 for (MachineOperand &MO : operands()) { 1155 if (MO.isReg() && MO.isUse()) 1156 MO.setIsKill(false); 1157 } 1158 } 1159 1160 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1161 unsigned SubIdx, 1162 const TargetRegisterInfo &RegInfo) { 1163 if (Register::isPhysicalRegister(ToReg)) { 1164 if (SubIdx) 1165 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1166 for (MachineOperand &MO : operands()) { 1167 if (!MO.isReg() || MO.getReg() != FromReg) 1168 continue; 1169 MO.substPhysReg(ToReg, RegInfo); 1170 } 1171 } else { 1172 for (MachineOperand &MO : operands()) { 1173 if (!MO.isReg() || MO.getReg() != FromReg) 1174 continue; 1175 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1176 } 1177 } 1178 } 1179 1180 /// isSafeToMove - Return true if it is safe to move this instruction. If 1181 /// SawStore is set to true, it means that there is a store (or call) between 1182 /// the instruction's location and its intended destination. 1183 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1184 // Ignore stuff that we obviously can't move. 1185 // 1186 // Treat volatile loads as stores. This is not strictly necessary for 1187 // volatiles, but it is required for atomic loads. It is not allowed to move 1188 // a load across an atomic load with Ordering > Monotonic. 1189 if (mayStore() || isCall() || isPHI() || 1190 (mayLoad() && hasOrderedMemoryRef())) { 1191 SawStore = true; 1192 return false; 1193 } 1194 1195 if (isPosition() || isDebugInstr() || isTerminator() || 1196 mayRaiseFPException() || hasUnmodeledSideEffects()) 1197 return false; 1198 1199 // See if this instruction does a load. If so, we have to guarantee that the 1200 // loaded value doesn't change between the load and the its intended 1201 // destination. The check for isInvariantLoad gives the targe the chance to 1202 // classify the load as always returning a constant, e.g. a constant pool 1203 // load. 1204 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1205 // Otherwise, this is a real load. If there is a store between the load and 1206 // end of block, we can't move it. 1207 return !SawStore; 1208 1209 return true; 1210 } 1211 1212 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1213 bool UseTBAA) const { 1214 const MachineFunction *MF = getMF(); 1215 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1216 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1217 1218 // If neither instruction stores to memory, they can't alias in any 1219 // meaningful way, even if they read from the same address. 1220 if (!mayStore() && !Other.mayStore()) 1221 return false; 1222 1223 // Both instructions must be memory operations to be able to alias. 1224 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1225 return false; 1226 1227 // Let the target decide if memory accesses cannot possibly overlap. 1228 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1229 return false; 1230 1231 if (memoperands_empty() || Other.memoperands_empty()) 1232 return true; 1233 1234 auto HasAlias = [&](const MachineMemOperand &MMOa, 1235 const MachineMemOperand &MMOb) { 1236 // The following interface to AA is fashioned after DAGCombiner::isAlias 1237 // and operates with MachineMemOperand offset with some important 1238 // assumptions: 1239 // - LLVM fundamentally assumes flat address spaces. 1240 // - MachineOperand offset can *only* result from legalization and 1241 // cannot affect queries other than the trivial case of overlap 1242 // checking. 1243 // - These offsets never wrap and never step outside 1244 // of allocated objects. 1245 // - There should never be any negative offsets here. 1246 // 1247 // FIXME: Modify API to hide this math from "user" 1248 // Even before we go to AA we can reason locally about some 1249 // memory objects. It can save compile time, and possibly catch some 1250 // corner cases not currently covered. 1251 1252 int64_t OffsetA = MMOa.getOffset(); 1253 int64_t OffsetB = MMOb.getOffset(); 1254 int64_t MinOffset = std::min(OffsetA, OffsetB); 1255 1256 uint64_t WidthA = MMOa.getSize(); 1257 uint64_t WidthB = MMOb.getSize(); 1258 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1259 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1260 1261 const Value *ValA = MMOa.getValue(); 1262 const Value *ValB = MMOb.getValue(); 1263 bool SameVal = (ValA && ValB && (ValA == ValB)); 1264 if (!SameVal) { 1265 const PseudoSourceValue *PSVa = MMOa.getPseudoValue(); 1266 const PseudoSourceValue *PSVb = MMOb.getPseudoValue(); 1267 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1268 return false; 1269 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1270 return false; 1271 if (PSVa && PSVb && (PSVa == PSVb)) 1272 SameVal = true; 1273 } 1274 1275 if (SameVal) { 1276 if (!KnownWidthA || !KnownWidthB) 1277 return true; 1278 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1279 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1280 return (MinOffset + LowWidth > MaxOffset); 1281 } 1282 1283 if (!AA) 1284 return true; 1285 1286 if (!ValA || !ValB) 1287 return true; 1288 1289 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1290 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1291 1292 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1293 : MemoryLocation::UnknownSize; 1294 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1295 : MemoryLocation::UnknownSize; 1296 1297 AliasResult AAResult = 1298 AA->alias(MemoryLocation(ValA, OverlapA, 1299 UseTBAA ? MMOa.getAAInfo() : AAMDNodes()), 1300 MemoryLocation(ValB, OverlapB, 1301 UseTBAA ? MMOb.getAAInfo() : AAMDNodes())); 1302 1303 return (AAResult != NoAlias); 1304 }; 1305 1306 for (auto &&MMOa : memoperands()) { 1307 for (auto &&MMOb : Other.memoperands()) { 1308 if (HasAlias(*MMOa, *MMOb)) 1309 return true; 1310 } 1311 } 1312 return false; 1313 } 1314 1315 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1316 /// or volatile memory reference, or if the information describing the memory 1317 /// reference is not available. Return false if it is known to have no ordered 1318 /// memory references. 1319 bool MachineInstr::hasOrderedMemoryRef() const { 1320 // An instruction known never to access memory won't have a volatile access. 1321 if (!mayStore() && 1322 !mayLoad() && 1323 !isCall() && 1324 !hasUnmodeledSideEffects()) 1325 return false; 1326 1327 // Otherwise, if the instruction has no memory reference information, 1328 // conservatively assume it wasn't preserved. 1329 if (memoperands_empty()) 1330 return true; 1331 1332 // Check if any of our memory operands are ordered. 1333 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1334 return !MMO->isUnordered(); 1335 }); 1336 } 1337 1338 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1339 /// trap and is loading from a location whose value is invariant across a run of 1340 /// this function. 1341 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1342 // If the instruction doesn't load at all, it isn't an invariant load. 1343 if (!mayLoad()) 1344 return false; 1345 1346 // If the instruction has lost its memoperands, conservatively assume that 1347 // it may not be an invariant load. 1348 if (memoperands_empty()) 1349 return false; 1350 1351 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1352 1353 for (MachineMemOperand *MMO : memoperands()) { 1354 if (!MMO->isUnordered()) 1355 // If the memory operand has ordering side effects, we can't move the 1356 // instruction. Such an instruction is technically an invariant load, 1357 // but the caller code would need updated to expect that. 1358 return false; 1359 if (MMO->isStore()) return false; 1360 if (MMO->isInvariant() && MMO->isDereferenceable()) 1361 continue; 1362 1363 // A load from a constant PseudoSourceValue is invariant. 1364 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1365 if (PSV->isConstant(&MFI)) 1366 continue; 1367 1368 if (const Value *V = MMO->getValue()) { 1369 // If we have an AliasAnalysis, ask it whether the memory is constant. 1370 if (AA && 1371 AA->pointsToConstantMemory( 1372 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1373 continue; 1374 } 1375 1376 // Otherwise assume conservatively. 1377 return false; 1378 } 1379 1380 // Everything checks out. 1381 return true; 1382 } 1383 1384 /// isConstantValuePHI - If the specified instruction is a PHI that always 1385 /// merges together the same virtual register, return the register, otherwise 1386 /// return 0. 1387 unsigned MachineInstr::isConstantValuePHI() const { 1388 if (!isPHI()) 1389 return 0; 1390 assert(getNumOperands() >= 3 && 1391 "It's illegal to have a PHI without source operands"); 1392 1393 Register Reg = getOperand(1).getReg(); 1394 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1395 if (getOperand(i).getReg() != Reg) 1396 return 0; 1397 return Reg; 1398 } 1399 1400 bool MachineInstr::hasUnmodeledSideEffects() const { 1401 if (hasProperty(MCID::UnmodeledSideEffects)) 1402 return true; 1403 if (isInlineAsm()) { 1404 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1405 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1406 return true; 1407 } 1408 1409 return false; 1410 } 1411 1412 bool MachineInstr::isLoadFoldBarrier() const { 1413 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1414 } 1415 1416 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1417 /// 1418 bool MachineInstr::allDefsAreDead() const { 1419 for (const MachineOperand &MO : operands()) { 1420 if (!MO.isReg() || MO.isUse()) 1421 continue; 1422 if (!MO.isDead()) 1423 return false; 1424 } 1425 return true; 1426 } 1427 1428 /// copyImplicitOps - Copy implicit register operands from specified 1429 /// instruction to this instruction. 1430 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1431 const MachineInstr &MI) { 1432 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1433 i != e; ++i) { 1434 const MachineOperand &MO = MI.getOperand(i); 1435 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1436 addOperand(MF, MO); 1437 } 1438 } 1439 1440 bool MachineInstr::hasComplexRegisterTies() const { 1441 const MCInstrDesc &MCID = getDesc(); 1442 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1443 const auto &Operand = getOperand(I); 1444 if (!Operand.isReg() || Operand.isDef()) 1445 // Ignore the defined registers as MCID marks only the uses as tied. 1446 continue; 1447 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1448 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1449 if (ExpectedTiedIdx != TiedIdx) 1450 return true; 1451 } 1452 return false; 1453 } 1454 1455 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1456 const MachineRegisterInfo &MRI) const { 1457 const MachineOperand &Op = getOperand(OpIdx); 1458 if (!Op.isReg()) 1459 return LLT{}; 1460 1461 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1462 return MRI.getType(Op.getReg()); 1463 1464 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1465 if (!OpInfo.isGenericType()) 1466 return MRI.getType(Op.getReg()); 1467 1468 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1469 return LLT{}; 1470 1471 LLT TypeToPrint = MRI.getType(Op.getReg()); 1472 // Don't mark the type index printed if it wasn't actually printed: maybe 1473 // another operand with the same type index has an actual type attached: 1474 if (TypeToPrint.isValid()) 1475 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1476 return TypeToPrint; 1477 } 1478 1479 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1480 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1481 dbgs() << " "; 1482 print(dbgs()); 1483 } 1484 1485 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1486 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1487 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1488 if (Depth >= MaxDepth) 1489 return; 1490 if (!AlreadySeenInstrs.insert(this).second) 1491 return; 1492 // PadToColumn always inserts at least one space. 1493 // Don't mess up the alignment if we don't want any space. 1494 if (Depth) 1495 fdbgs().PadToColumn(Depth * 2); 1496 print(fdbgs()); 1497 for (const MachineOperand &MO : operands()) { 1498 if (!MO.isReg() || MO.isDef()) 1499 continue; 1500 Register Reg = MO.getReg(); 1501 if (Reg.isPhysical()) 1502 continue; 1503 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1504 if (NewMI == nullptr) 1505 continue; 1506 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1507 } 1508 } 1509 1510 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1511 unsigned MaxDepth) const { 1512 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1513 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1514 } 1515 #endif 1516 1517 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1518 bool SkipDebugLoc, bool AddNewLine, 1519 const TargetInstrInfo *TII) const { 1520 const Module *M = nullptr; 1521 const Function *F = nullptr; 1522 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1523 F = &MF->getFunction(); 1524 M = F->getParent(); 1525 if (!TII) 1526 TII = MF->getSubtarget().getInstrInfo(); 1527 } 1528 1529 ModuleSlotTracker MST(M); 1530 if (F) 1531 MST.incorporateFunction(*F); 1532 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1533 } 1534 1535 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1536 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1537 bool AddNewLine, const TargetInstrInfo *TII) const { 1538 // We can be a bit tidier if we know the MachineFunction. 1539 const TargetRegisterInfo *TRI = nullptr; 1540 const MachineRegisterInfo *MRI = nullptr; 1541 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1542 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1543 1544 if (isCFIInstruction()) 1545 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1546 1547 SmallBitVector PrintedTypes(8); 1548 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1549 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1550 if (!ShouldPrintRegisterTies) 1551 return 0U; 1552 const MachineOperand &MO = getOperand(OpIdx); 1553 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1554 return findTiedOperandIdx(OpIdx); 1555 return 0U; 1556 }; 1557 unsigned StartOp = 0; 1558 unsigned e = getNumOperands(); 1559 1560 // Print explicitly defined operands on the left of an assignment syntax. 1561 while (StartOp < e) { 1562 const MachineOperand &MO = getOperand(StartOp); 1563 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1564 break; 1565 1566 if (StartOp != 0) 1567 OS << ", "; 1568 1569 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1570 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1571 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1572 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1573 ++StartOp; 1574 } 1575 1576 if (StartOp != 0) 1577 OS << " = "; 1578 1579 if (getFlag(MachineInstr::FrameSetup)) 1580 OS << "frame-setup "; 1581 if (getFlag(MachineInstr::FrameDestroy)) 1582 OS << "frame-destroy "; 1583 if (getFlag(MachineInstr::FmNoNans)) 1584 OS << "nnan "; 1585 if (getFlag(MachineInstr::FmNoInfs)) 1586 OS << "ninf "; 1587 if (getFlag(MachineInstr::FmNsz)) 1588 OS << "nsz "; 1589 if (getFlag(MachineInstr::FmArcp)) 1590 OS << "arcp "; 1591 if (getFlag(MachineInstr::FmContract)) 1592 OS << "contract "; 1593 if (getFlag(MachineInstr::FmAfn)) 1594 OS << "afn "; 1595 if (getFlag(MachineInstr::FmReassoc)) 1596 OS << "reassoc "; 1597 if (getFlag(MachineInstr::NoUWrap)) 1598 OS << "nuw "; 1599 if (getFlag(MachineInstr::NoSWrap)) 1600 OS << "nsw "; 1601 if (getFlag(MachineInstr::IsExact)) 1602 OS << "exact "; 1603 if (getFlag(MachineInstr::NoFPExcept)) 1604 OS << "nofpexcept "; 1605 1606 // Print the opcode name. 1607 if (TII) 1608 OS << TII->getName(getOpcode()); 1609 else 1610 OS << "UNKNOWN"; 1611 1612 if (SkipOpers) 1613 return; 1614 1615 // Print the rest of the operands. 1616 bool FirstOp = true; 1617 unsigned AsmDescOp = ~0u; 1618 unsigned AsmOpCount = 0; 1619 1620 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1621 // Print asm string. 1622 OS << " "; 1623 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1624 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1625 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1626 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1627 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1628 IntrinsicInfo); 1629 1630 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1631 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1632 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1633 OS << " [sideeffect]"; 1634 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1635 OS << " [mayload]"; 1636 if (ExtraInfo & InlineAsm::Extra_MayStore) 1637 OS << " [maystore]"; 1638 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1639 OS << " [isconvergent]"; 1640 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1641 OS << " [alignstack]"; 1642 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1643 OS << " [attdialect]"; 1644 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1645 OS << " [inteldialect]"; 1646 1647 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1648 FirstOp = false; 1649 } 1650 1651 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1652 const MachineOperand &MO = getOperand(i); 1653 1654 if (FirstOp) FirstOp = false; else OS << ","; 1655 OS << " "; 1656 1657 if (isDebugValue() && MO.isMetadata()) { 1658 // Pretty print DBG_VALUE instructions. 1659 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1660 if (DIV && !DIV->getName().empty()) 1661 OS << "!\"" << DIV->getName() << '\"'; 1662 else { 1663 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1664 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1665 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1666 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1667 } 1668 } else if (isDebugLabel() && MO.isMetadata()) { 1669 // Pretty print DBG_LABEL instructions. 1670 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1671 if (DIL && !DIL->getName().empty()) 1672 OS << "\"" << DIL->getName() << '\"'; 1673 else { 1674 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1675 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1676 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1677 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1678 } 1679 } else if (i == AsmDescOp && MO.isImm()) { 1680 // Pretty print the inline asm operand descriptor. 1681 OS << '$' << AsmOpCount++; 1682 unsigned Flag = MO.getImm(); 1683 OS << ":["; 1684 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1685 1686 unsigned RCID = 0; 1687 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1688 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1689 if (TRI) { 1690 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1691 } else 1692 OS << ":RC" << RCID; 1693 } 1694 1695 if (InlineAsm::isMemKind(Flag)) { 1696 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1697 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1698 } 1699 1700 unsigned TiedTo = 0; 1701 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1702 OS << " tiedto:$" << TiedTo; 1703 1704 OS << ']'; 1705 1706 // Compute the index of the next operand descriptor. 1707 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1708 } else { 1709 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1710 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1711 if (MO.isImm() && isOperandSubregIdx(i)) 1712 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1713 else 1714 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1715 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1716 } 1717 } 1718 1719 // Print any optional symbols attached to this instruction as-if they were 1720 // operands. 1721 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1722 if (!FirstOp) { 1723 FirstOp = false; 1724 OS << ','; 1725 } 1726 OS << " pre-instr-symbol "; 1727 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1728 } 1729 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1730 if (!FirstOp) { 1731 FirstOp = false; 1732 OS << ','; 1733 } 1734 OS << " post-instr-symbol "; 1735 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1736 } 1737 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1738 if (!FirstOp) { 1739 FirstOp = false; 1740 OS << ','; 1741 } 1742 OS << " heap-alloc-marker "; 1743 HeapAllocMarker->printAsOperand(OS, MST); 1744 } 1745 1746 if (!SkipDebugLoc) { 1747 if (const DebugLoc &DL = getDebugLoc()) { 1748 if (!FirstOp) 1749 OS << ','; 1750 OS << " debug-location "; 1751 DL->printAsOperand(OS, MST); 1752 } 1753 } 1754 1755 if (!memoperands_empty()) { 1756 SmallVector<StringRef, 0> SSNs; 1757 const LLVMContext *Context = nullptr; 1758 std::unique_ptr<LLVMContext> CtxPtr; 1759 const MachineFrameInfo *MFI = nullptr; 1760 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1761 MFI = &MF->getFrameInfo(); 1762 Context = &MF->getFunction().getContext(); 1763 } else { 1764 CtxPtr = std::make_unique<LLVMContext>(); 1765 Context = CtxPtr.get(); 1766 } 1767 1768 OS << " :: "; 1769 bool NeedComma = false; 1770 for (const MachineMemOperand *Op : memoperands()) { 1771 if (NeedComma) 1772 OS << ", "; 1773 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1774 NeedComma = true; 1775 } 1776 } 1777 1778 if (SkipDebugLoc) 1779 return; 1780 1781 bool HaveSemi = false; 1782 1783 // Print debug location information. 1784 if (const DebugLoc &DL = getDebugLoc()) { 1785 if (!HaveSemi) { 1786 OS << ';'; 1787 HaveSemi = true; 1788 } 1789 OS << ' '; 1790 DL.print(OS); 1791 } 1792 1793 // Print extra comments for DEBUG_VALUE. 1794 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1795 if (!HaveSemi) { 1796 OS << ";"; 1797 HaveSemi = true; 1798 } 1799 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1800 OS << " line no:" << DV->getLine(); 1801 if (isIndirectDebugValue()) 1802 OS << " indirect"; 1803 } 1804 // TODO: DBG_LABEL 1805 1806 if (AddNewLine) 1807 OS << '\n'; 1808 } 1809 1810 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1811 const TargetRegisterInfo *RegInfo, 1812 bool AddIfNotFound) { 1813 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1814 bool hasAliases = isPhysReg && 1815 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1816 bool Found = false; 1817 SmallVector<unsigned,4> DeadOps; 1818 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1819 MachineOperand &MO = getOperand(i); 1820 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1821 continue; 1822 1823 // DEBUG_VALUE nodes do not contribute to code generation and should 1824 // always be ignored. Failure to do so may result in trying to modify 1825 // KILL flags on DEBUG_VALUE nodes. 1826 if (MO.isDebug()) 1827 continue; 1828 1829 Register Reg = MO.getReg(); 1830 if (!Reg) 1831 continue; 1832 1833 if (Reg == IncomingReg) { 1834 if (!Found) { 1835 if (MO.isKill()) 1836 // The register is already marked kill. 1837 return true; 1838 if (isPhysReg && isRegTiedToDefOperand(i)) 1839 // Two-address uses of physregs must not be marked kill. 1840 return true; 1841 MO.setIsKill(); 1842 Found = true; 1843 } 1844 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1845 // A super-register kill already exists. 1846 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1847 return true; 1848 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1849 DeadOps.push_back(i); 1850 } 1851 } 1852 1853 // Trim unneeded kill operands. 1854 while (!DeadOps.empty()) { 1855 unsigned OpIdx = DeadOps.back(); 1856 if (getOperand(OpIdx).isImplicit() && 1857 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1858 RemoveOperand(OpIdx); 1859 else 1860 getOperand(OpIdx).setIsKill(false); 1861 DeadOps.pop_back(); 1862 } 1863 1864 // If not found, this means an alias of one of the operands is killed. Add a 1865 // new implicit operand if required. 1866 if (!Found && AddIfNotFound) { 1867 addOperand(MachineOperand::CreateReg(IncomingReg, 1868 false /*IsDef*/, 1869 true /*IsImp*/, 1870 true /*IsKill*/)); 1871 return true; 1872 } 1873 return Found; 1874 } 1875 1876 void MachineInstr::clearRegisterKills(Register Reg, 1877 const TargetRegisterInfo *RegInfo) { 1878 if (!Register::isPhysicalRegister(Reg)) 1879 RegInfo = nullptr; 1880 for (MachineOperand &MO : operands()) { 1881 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1882 continue; 1883 Register OpReg = MO.getReg(); 1884 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1885 MO.setIsKill(false); 1886 } 1887 } 1888 1889 bool MachineInstr::addRegisterDead(Register Reg, 1890 const TargetRegisterInfo *RegInfo, 1891 bool AddIfNotFound) { 1892 bool isPhysReg = Register::isPhysicalRegister(Reg); 1893 bool hasAliases = isPhysReg && 1894 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1895 bool Found = false; 1896 SmallVector<unsigned,4> DeadOps; 1897 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1898 MachineOperand &MO = getOperand(i); 1899 if (!MO.isReg() || !MO.isDef()) 1900 continue; 1901 Register MOReg = MO.getReg(); 1902 if (!MOReg) 1903 continue; 1904 1905 if (MOReg == Reg) { 1906 MO.setIsDead(); 1907 Found = true; 1908 } else if (hasAliases && MO.isDead() && 1909 Register::isPhysicalRegister(MOReg)) { 1910 // There exists a super-register that's marked dead. 1911 if (RegInfo->isSuperRegister(Reg, MOReg)) 1912 return true; 1913 if (RegInfo->isSubRegister(Reg, MOReg)) 1914 DeadOps.push_back(i); 1915 } 1916 } 1917 1918 // Trim unneeded dead operands. 1919 while (!DeadOps.empty()) { 1920 unsigned OpIdx = DeadOps.back(); 1921 if (getOperand(OpIdx).isImplicit() && 1922 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1923 RemoveOperand(OpIdx); 1924 else 1925 getOperand(OpIdx).setIsDead(false); 1926 DeadOps.pop_back(); 1927 } 1928 1929 // If not found, this means an alias of one of the operands is dead. Add a 1930 // new implicit operand if required. 1931 if (Found || !AddIfNotFound) 1932 return Found; 1933 1934 addOperand(MachineOperand::CreateReg(Reg, 1935 true /*IsDef*/, 1936 true /*IsImp*/, 1937 false /*IsKill*/, 1938 true /*IsDead*/)); 1939 return true; 1940 } 1941 1942 void MachineInstr::clearRegisterDeads(Register Reg) { 1943 for (MachineOperand &MO : operands()) { 1944 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1945 continue; 1946 MO.setIsDead(false); 1947 } 1948 } 1949 1950 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 1951 for (MachineOperand &MO : operands()) { 1952 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1953 continue; 1954 MO.setIsUndef(IsUndef); 1955 } 1956 } 1957 1958 void MachineInstr::addRegisterDefined(Register Reg, 1959 const TargetRegisterInfo *RegInfo) { 1960 if (Register::isPhysicalRegister(Reg)) { 1961 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1962 if (MO) 1963 return; 1964 } else { 1965 for (const MachineOperand &MO : operands()) { 1966 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1967 MO.getSubReg() == 0) 1968 return; 1969 } 1970 } 1971 addOperand(MachineOperand::CreateReg(Reg, 1972 true /*IsDef*/, 1973 true /*IsImp*/)); 1974 } 1975 1976 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1977 const TargetRegisterInfo &TRI) { 1978 bool HasRegMask = false; 1979 for (MachineOperand &MO : operands()) { 1980 if (MO.isRegMask()) { 1981 HasRegMask = true; 1982 continue; 1983 } 1984 if (!MO.isReg() || !MO.isDef()) continue; 1985 Register Reg = MO.getReg(); 1986 if (!Reg.isPhysical()) 1987 continue; 1988 // If there are no uses, including partial uses, the def is dead. 1989 if (llvm::none_of(UsedRegs, 1990 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 1991 MO.setIsDead(); 1992 } 1993 1994 // This is a call with a register mask operand. 1995 // Mask clobbers are always dead, so add defs for the non-dead defines. 1996 if (HasRegMask) 1997 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1998 I != E; ++I) 1999 addRegisterDefined(*I, &TRI); 2000 } 2001 2002 unsigned 2003 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2004 // Build up a buffer of hash code components. 2005 SmallVector<size_t, 16> HashComponents; 2006 HashComponents.reserve(MI->getNumOperands() + 1); 2007 HashComponents.push_back(MI->getOpcode()); 2008 for (const MachineOperand &MO : MI->operands()) { 2009 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2010 continue; // Skip virtual register defs. 2011 2012 HashComponents.push_back(hash_value(MO)); 2013 } 2014 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2015 } 2016 2017 void MachineInstr::emitError(StringRef Msg) const { 2018 // Find the source location cookie. 2019 unsigned LocCookie = 0; 2020 const MDNode *LocMD = nullptr; 2021 for (unsigned i = getNumOperands(); i != 0; --i) { 2022 if (getOperand(i-1).isMetadata() && 2023 (LocMD = getOperand(i-1).getMetadata()) && 2024 LocMD->getNumOperands() != 0) { 2025 if (const ConstantInt *CI = 2026 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2027 LocCookie = CI->getZExtValue(); 2028 break; 2029 } 2030 } 2031 } 2032 2033 if (const MachineBasicBlock *MBB = getParent()) 2034 if (const MachineFunction *MF = MBB->getParent()) 2035 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2036 report_fatal_error(Msg); 2037 } 2038 2039 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2040 const MCInstrDesc &MCID, bool IsIndirect, 2041 Register Reg, const MDNode *Variable, 2042 const MDNode *Expr) { 2043 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2044 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2045 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2046 "Expected inlined-at fields to agree"); 2047 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2048 if (IsIndirect) 2049 MIB.addImm(0U); 2050 else 2051 MIB.addReg(0U, RegState::Debug); 2052 return MIB.addMetadata(Variable).addMetadata(Expr); 2053 } 2054 2055 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2056 const MCInstrDesc &MCID, bool IsIndirect, 2057 MachineOperand &MO, const MDNode *Variable, 2058 const MDNode *Expr) { 2059 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2060 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2061 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2062 "Expected inlined-at fields to agree"); 2063 if (MO.isReg()) 2064 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2065 2066 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2067 if (IsIndirect) 2068 MIB.addImm(0U); 2069 else 2070 MIB.addReg(0U, RegState::Debug); 2071 return MIB.addMetadata(Variable).addMetadata(Expr); 2072 } 2073 2074 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2075 MachineBasicBlock::iterator I, 2076 const DebugLoc &DL, const MCInstrDesc &MCID, 2077 bool IsIndirect, Register Reg, 2078 const MDNode *Variable, const MDNode *Expr) { 2079 MachineFunction &MF = *BB.getParent(); 2080 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2081 BB.insert(I, MI); 2082 return MachineInstrBuilder(MF, MI); 2083 } 2084 2085 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2086 MachineBasicBlock::iterator I, 2087 const DebugLoc &DL, const MCInstrDesc &MCID, 2088 bool IsIndirect, MachineOperand &MO, 2089 const MDNode *Variable, const MDNode *Expr) { 2090 MachineFunction &MF = *BB.getParent(); 2091 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2092 BB.insert(I, MI); 2093 return MachineInstrBuilder(MF, *MI); 2094 } 2095 2096 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2097 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2098 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2099 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2100 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2101 "Expected inlined-at fields to agree"); 2102 2103 const DIExpression *Expr = MI.getDebugExpression(); 2104 if (MI.isIndirectDebugValue()) { 2105 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2106 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2107 } 2108 return Expr; 2109 } 2110 2111 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2112 MachineBasicBlock::iterator I, 2113 const MachineInstr &Orig, 2114 int FrameIndex) { 2115 const DIExpression *Expr = computeExprForSpill(Orig); 2116 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2117 .addFrameIndex(FrameIndex) 2118 .addImm(0U) 2119 .addMetadata(Orig.getDebugVariable()) 2120 .addMetadata(Expr); 2121 } 2122 2123 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2124 const DIExpression *Expr = computeExprForSpill(Orig); 2125 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2126 Orig.getOperand(1).ChangeToImmediate(0U); 2127 Orig.getOperand(3).setMetadata(Expr); 2128 } 2129 2130 void MachineInstr::collectDebugValues( 2131 SmallVectorImpl<MachineInstr *> &DbgValues) { 2132 MachineInstr &MI = *this; 2133 if (!MI.getOperand(0).isReg()) 2134 return; 2135 2136 MachineBasicBlock::iterator DI = MI; ++DI; 2137 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2138 DI != DE; ++DI) { 2139 if (!DI->isDebugValue()) 2140 return; 2141 if (DI->getOperand(0).isReg() && 2142 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2143 DbgValues.push_back(&*DI); 2144 } 2145 } 2146 2147 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2148 // Collect matching debug values. 2149 SmallVector<MachineInstr *, 2> DbgValues; 2150 2151 if (!getOperand(0).isReg()) 2152 return; 2153 2154 unsigned DefReg = getOperand(0).getReg(); 2155 auto *MRI = getRegInfo(); 2156 for (auto &MO : MRI->use_operands(DefReg)) { 2157 auto *DI = MO.getParent(); 2158 if (!DI->isDebugValue()) 2159 continue; 2160 if (DI->getOperand(0).isReg() && 2161 DI->getOperand(0).getReg() == DefReg){ 2162 DbgValues.push_back(DI); 2163 } 2164 } 2165 2166 // Propagate Reg to debug value instructions. 2167 for (auto *DBI : DbgValues) 2168 DBI->getOperand(0).setReg(Reg); 2169 } 2170 2171 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2172 2173 static unsigned getSpillSlotSize(const MMOList &Accesses, 2174 const MachineFrameInfo &MFI) { 2175 unsigned Size = 0; 2176 for (auto A : Accesses) 2177 if (MFI.isSpillSlotObjectIndex( 2178 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2179 ->getFrameIndex())) 2180 Size += A->getSize(); 2181 return Size; 2182 } 2183 2184 Optional<unsigned> 2185 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2186 int FI; 2187 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2188 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2189 if (MFI.isSpillSlotObjectIndex(FI)) 2190 return (*memoperands_begin())->getSize(); 2191 } 2192 return None; 2193 } 2194 2195 Optional<unsigned> 2196 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2197 MMOList Accesses; 2198 if (TII->hasStoreToStackSlot(*this, Accesses)) 2199 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2200 return None; 2201 } 2202 2203 Optional<unsigned> 2204 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2205 int FI; 2206 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2207 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2208 if (MFI.isSpillSlotObjectIndex(FI)) 2209 return (*memoperands_begin())->getSize(); 2210 } 2211 return None; 2212 } 2213 2214 Optional<unsigned> 2215 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2216 MMOList Accesses; 2217 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2218 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2219 return None; 2220 } 2221