1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/ModuleSlotTracker.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/MC/MCRegisterInfo.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/LowLevelTypeImpl.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetIntrinsicInfo.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetRegisterInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <iterator> 72 #include <utility> 73 74 using namespace llvm; 75 76 static cl::opt<int> PrintRegMaskNumRegs( 77 "print-regmask-num-regs", 78 cl::desc("Number of registers to limit to when " 79 "printing regmask operands in IR dumps. " 80 "unlimited = -1"), 81 cl::init(32), cl::Hidden); 82 83 //===----------------------------------------------------------------------===// 84 // MachineOperand Implementation 85 //===----------------------------------------------------------------------===// 86 87 void MachineOperand::setReg(unsigned Reg) { 88 if (getReg() == Reg) return; // No change. 89 90 // Otherwise, we have to change the register. If this operand is embedded 91 // into a machine function, we need to update the old and new register's 92 // use/def lists. 93 if (MachineInstr *MI = getParent()) 94 if (MachineBasicBlock *MBB = MI->getParent()) 95 if (MachineFunction *MF = MBB->getParent()) { 96 MachineRegisterInfo &MRI = MF->getRegInfo(); 97 MRI.removeRegOperandFromUseList(this); 98 SmallContents.RegNo = Reg; 99 MRI.addRegOperandToUseList(this); 100 return; 101 } 102 103 // Otherwise, just change the register, no problem. :) 104 SmallContents.RegNo = Reg; 105 } 106 107 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 108 const TargetRegisterInfo &TRI) { 109 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 110 if (SubIdx && getSubReg()) 111 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 112 setReg(Reg); 113 if (SubIdx) 114 setSubReg(SubIdx); 115 } 116 117 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 118 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 119 if (getSubReg()) { 120 Reg = TRI.getSubReg(Reg, getSubReg()); 121 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 122 // That won't happen in legal code. 123 setSubReg(0); 124 if (isDef()) 125 setIsUndef(false); 126 } 127 setReg(Reg); 128 } 129 130 /// Change a def to a use, or a use to a def. 131 void MachineOperand::setIsDef(bool Val) { 132 assert(isReg() && "Wrong MachineOperand accessor"); 133 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 134 if (IsDef == Val) 135 return; 136 // MRI may keep uses and defs in different list positions. 137 if (MachineInstr *MI = getParent()) 138 if (MachineBasicBlock *MBB = MI->getParent()) 139 if (MachineFunction *MF = MBB->getParent()) { 140 MachineRegisterInfo &MRI = MF->getRegInfo(); 141 MRI.removeRegOperandFromUseList(this); 142 IsDef = Val; 143 MRI.addRegOperandToUseList(this); 144 return; 145 } 146 IsDef = Val; 147 } 148 149 // If this operand is currently a register operand, and if this is in a 150 // function, deregister the operand from the register's use/def list. 151 void MachineOperand::removeRegFromUses() { 152 if (!isReg() || !isOnRegUseList()) 153 return; 154 155 if (MachineInstr *MI = getParent()) { 156 if (MachineBasicBlock *MBB = MI->getParent()) { 157 if (MachineFunction *MF = MBB->getParent()) 158 MF->getRegInfo().removeRegOperandFromUseList(this); 159 } 160 } 161 } 162 163 /// ChangeToImmediate - Replace this operand with a new immediate operand of 164 /// the specified value. If an operand is known to be an immediate already, 165 /// the setImm method should be used. 166 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 167 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 168 169 removeRegFromUses(); 170 171 OpKind = MO_Immediate; 172 Contents.ImmVal = ImmVal; 173 } 174 175 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 176 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 177 178 removeRegFromUses(); 179 180 OpKind = MO_FPImmediate; 181 Contents.CFP = FPImm; 182 } 183 184 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 185 assert((!isReg() || !isTied()) && 186 "Cannot change a tied operand into an external symbol"); 187 188 removeRegFromUses(); 189 190 OpKind = MO_ExternalSymbol; 191 Contents.OffsetedInfo.Val.SymbolName = SymName; 192 setOffset(0); // Offset is always 0. 193 setTargetFlags(TargetFlags); 194 } 195 196 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 197 assert((!isReg() || !isTied()) && 198 "Cannot change a tied operand into an MCSymbol"); 199 200 removeRegFromUses(); 201 202 OpKind = MO_MCSymbol; 203 Contents.Sym = Sym; 204 } 205 206 void MachineOperand::ChangeToFrameIndex(int Idx) { 207 assert((!isReg() || !isTied()) && 208 "Cannot change a tied operand into a FrameIndex"); 209 210 removeRegFromUses(); 211 212 OpKind = MO_FrameIndex; 213 setIndex(Idx); 214 } 215 216 void MachineOperand::ChangeToTargetIndex(unsigned Idx, int64_t Offset, 217 unsigned char TargetFlags) { 218 assert((!isReg() || !isTied()) && 219 "Cannot change a tied operand into a FrameIndex"); 220 221 removeRegFromUses(); 222 223 OpKind = MO_TargetIndex; 224 setIndex(Idx); 225 setOffset(Offset); 226 setTargetFlags(TargetFlags); 227 } 228 229 /// ChangeToRegister - Replace this operand with a new register operand of 230 /// the specified value. If an operand is known to be an register already, 231 /// the setReg method should be used. 232 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 233 bool isKill, bool isDead, bool isUndef, 234 bool isDebug) { 235 MachineRegisterInfo *RegInfo = nullptr; 236 if (MachineInstr *MI = getParent()) 237 if (MachineBasicBlock *MBB = MI->getParent()) 238 if (MachineFunction *MF = MBB->getParent()) 239 RegInfo = &MF->getRegInfo(); 240 // If this operand is already a register operand, remove it from the 241 // register's use/def lists. 242 bool WasReg = isReg(); 243 if (RegInfo && WasReg) 244 RegInfo->removeRegOperandFromUseList(this); 245 246 // Change this to a register and set the reg#. 247 OpKind = MO_Register; 248 SmallContents.RegNo = Reg; 249 SubReg_TargetFlags = 0; 250 IsDef = isDef; 251 IsImp = isImp; 252 IsKill = isKill; 253 IsDead = isDead; 254 IsUndef = isUndef; 255 IsInternalRead = false; 256 IsEarlyClobber = false; 257 IsDebug = isDebug; 258 // Ensure isOnRegUseList() returns false. 259 Contents.Reg.Prev = nullptr; 260 // Preserve the tie when the operand was already a register. 261 if (!WasReg) 262 TiedTo = 0; 263 264 // If this operand is embedded in a function, add the operand to the 265 // register's use/def list. 266 if (RegInfo) 267 RegInfo->addRegOperandToUseList(this); 268 } 269 270 /// isIdenticalTo - Return true if this operand is identical to the specified 271 /// operand. Note that this should stay in sync with the hash_value overload 272 /// below. 273 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 274 if (getType() != Other.getType() || 275 getTargetFlags() != Other.getTargetFlags()) 276 return false; 277 278 switch (getType()) { 279 case MachineOperand::MO_Register: 280 return getReg() == Other.getReg() && isDef() == Other.isDef() && 281 getSubReg() == Other.getSubReg(); 282 case MachineOperand::MO_Immediate: 283 return getImm() == Other.getImm(); 284 case MachineOperand::MO_CImmediate: 285 return getCImm() == Other.getCImm(); 286 case MachineOperand::MO_FPImmediate: 287 return getFPImm() == Other.getFPImm(); 288 case MachineOperand::MO_MachineBasicBlock: 289 return getMBB() == Other.getMBB(); 290 case MachineOperand::MO_FrameIndex: 291 return getIndex() == Other.getIndex(); 292 case MachineOperand::MO_ConstantPoolIndex: 293 case MachineOperand::MO_TargetIndex: 294 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 295 case MachineOperand::MO_JumpTableIndex: 296 return getIndex() == Other.getIndex(); 297 case MachineOperand::MO_GlobalAddress: 298 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 299 case MachineOperand::MO_ExternalSymbol: 300 return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && 301 getOffset() == Other.getOffset(); 302 case MachineOperand::MO_BlockAddress: 303 return getBlockAddress() == Other.getBlockAddress() && 304 getOffset() == Other.getOffset(); 305 case MachineOperand::MO_RegisterMask: 306 case MachineOperand::MO_RegisterLiveOut: { 307 // Shallow compare of the two RegMasks 308 const uint32_t *RegMask = getRegMask(); 309 const uint32_t *OtherRegMask = Other.getRegMask(); 310 if (RegMask == OtherRegMask) 311 return true; 312 313 // Calculate the size of the RegMask 314 const MachineFunction *MF = getParent()->getMF(); 315 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 316 unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; 317 318 // Deep compare of the two RegMasks 319 return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); 320 } 321 case MachineOperand::MO_MCSymbol: 322 return getMCSymbol() == Other.getMCSymbol(); 323 case MachineOperand::MO_CFIIndex: 324 return getCFIIndex() == Other.getCFIIndex(); 325 case MachineOperand::MO_Metadata: 326 return getMetadata() == Other.getMetadata(); 327 case MachineOperand::MO_IntrinsicID: 328 return getIntrinsicID() == Other.getIntrinsicID(); 329 case MachineOperand::MO_Predicate: 330 return getPredicate() == Other.getPredicate(); 331 } 332 llvm_unreachable("Invalid machine operand type"); 333 } 334 335 // Note: this must stay exactly in sync with isIdenticalTo above. 336 hash_code llvm::hash_value(const MachineOperand &MO) { 337 switch (MO.getType()) { 338 case MachineOperand::MO_Register: 339 // Register operands don't have target flags. 340 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 341 case MachineOperand::MO_Immediate: 342 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 343 case MachineOperand::MO_CImmediate: 344 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 345 case MachineOperand::MO_FPImmediate: 346 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 347 case MachineOperand::MO_MachineBasicBlock: 348 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 349 case MachineOperand::MO_FrameIndex: 350 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 351 case MachineOperand::MO_ConstantPoolIndex: 352 case MachineOperand::MO_TargetIndex: 353 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 354 MO.getOffset()); 355 case MachineOperand::MO_JumpTableIndex: 356 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 357 case MachineOperand::MO_ExternalSymbol: 358 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 359 MO.getSymbolName()); 360 case MachineOperand::MO_GlobalAddress: 361 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 362 MO.getOffset()); 363 case MachineOperand::MO_BlockAddress: 364 return hash_combine(MO.getType(), MO.getTargetFlags(), 365 MO.getBlockAddress(), MO.getOffset()); 366 case MachineOperand::MO_RegisterMask: 367 case MachineOperand::MO_RegisterLiveOut: 368 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 369 case MachineOperand::MO_Metadata: 370 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 371 case MachineOperand::MO_MCSymbol: 372 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 373 case MachineOperand::MO_CFIIndex: 374 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 375 case MachineOperand::MO_IntrinsicID: 376 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 377 case MachineOperand::MO_Predicate: 378 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 379 } 380 llvm_unreachable("Invalid machine operand type"); 381 } 382 383 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 384 const TargetIntrinsicInfo *IntrinsicInfo) const { 385 ModuleSlotTracker DummyMST(nullptr); 386 print(OS, DummyMST, TRI, IntrinsicInfo); 387 } 388 389 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 390 const TargetRegisterInfo *TRI, 391 const TargetIntrinsicInfo *IntrinsicInfo) const { 392 switch (getType()) { 393 case MachineOperand::MO_Register: 394 OS << PrintReg(getReg(), TRI, getSubReg()); 395 396 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 397 isInternalRead() || isEarlyClobber() || isTied()) { 398 OS << '<'; 399 bool NeedComma = false; 400 if (isDef()) { 401 if (NeedComma) OS << ','; 402 if (isEarlyClobber()) 403 OS << "earlyclobber,"; 404 if (isImplicit()) 405 OS << "imp-"; 406 OS << "def"; 407 NeedComma = true; 408 // <def,read-undef> only makes sense when getSubReg() is set. 409 // Don't clutter the output otherwise. 410 if (isUndef() && getSubReg()) 411 OS << ",read-undef"; 412 } else if (isImplicit()) { 413 OS << "imp-use"; 414 NeedComma = true; 415 } 416 417 if (isKill()) { 418 if (NeedComma) OS << ','; 419 OS << "kill"; 420 NeedComma = true; 421 } 422 if (isDead()) { 423 if (NeedComma) OS << ','; 424 OS << "dead"; 425 NeedComma = true; 426 } 427 if (isUndef() && isUse()) { 428 if (NeedComma) OS << ','; 429 OS << "undef"; 430 NeedComma = true; 431 } 432 if (isInternalRead()) { 433 if (NeedComma) OS << ','; 434 OS << "internal"; 435 NeedComma = true; 436 } 437 if (isTied()) { 438 if (NeedComma) OS << ','; 439 OS << "tied"; 440 if (TiedTo != 15) 441 OS << unsigned(TiedTo - 1); 442 } 443 OS << '>'; 444 } 445 break; 446 case MachineOperand::MO_Immediate: 447 OS << getImm(); 448 break; 449 case MachineOperand::MO_CImmediate: 450 getCImm()->getValue().print(OS, false); 451 break; 452 case MachineOperand::MO_FPImmediate: 453 if (getFPImm()->getType()->isFloatTy()) { 454 OS << getFPImm()->getValueAPF().convertToFloat(); 455 } else if (getFPImm()->getType()->isHalfTy()) { 456 APFloat APF = getFPImm()->getValueAPF(); 457 bool Unused; 458 APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); 459 OS << "half " << APF.convertToFloat(); 460 } else if (getFPImm()->getType()->isFP128Ty()) { 461 APFloat APF = getFPImm()->getValueAPF(); 462 SmallString<16> Str; 463 getFPImm()->getValueAPF().toString(Str); 464 OS << "quad " << Str; 465 } else if (getFPImm()->getType()->isX86_FP80Ty()) { 466 APFloat APF = getFPImm()->getValueAPF(); 467 OS << "x86_fp80 0xK"; 468 APInt API = APF.bitcastToAPInt(); 469 OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 470 /*Upper=*/true); 471 OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 472 /*Upper=*/true); 473 } else { 474 OS << getFPImm()->getValueAPF().convertToDouble(); 475 } 476 break; 477 case MachineOperand::MO_MachineBasicBlock: 478 OS << "<BB#" << getMBB()->getNumber() << ">"; 479 break; 480 case MachineOperand::MO_FrameIndex: 481 OS << "<fi#" << getIndex() << '>'; 482 break; 483 case MachineOperand::MO_ConstantPoolIndex: 484 OS << "<cp#" << getIndex(); 485 if (getOffset()) OS << "+" << getOffset(); 486 OS << '>'; 487 break; 488 case MachineOperand::MO_TargetIndex: 489 OS << "<ti#" << getIndex(); 490 if (getOffset()) OS << "+" << getOffset(); 491 OS << '>'; 492 break; 493 case MachineOperand::MO_JumpTableIndex: 494 OS << "<jt#" << getIndex() << '>'; 495 break; 496 case MachineOperand::MO_GlobalAddress: 497 OS << "<ga:"; 498 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 499 if (getOffset()) OS << "+" << getOffset(); 500 OS << '>'; 501 break; 502 case MachineOperand::MO_ExternalSymbol: 503 OS << "<es:" << getSymbolName(); 504 if (getOffset()) OS << "+" << getOffset(); 505 OS << '>'; 506 break; 507 case MachineOperand::MO_BlockAddress: 508 OS << '<'; 509 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 510 if (getOffset()) OS << "+" << getOffset(); 511 OS << '>'; 512 break; 513 case MachineOperand::MO_RegisterMask: { 514 unsigned NumRegsInMask = 0; 515 unsigned NumRegsEmitted = 0; 516 OS << "<regmask"; 517 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 518 unsigned MaskWord = i / 32; 519 unsigned MaskBit = i % 32; 520 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 521 if (PrintRegMaskNumRegs < 0 || 522 NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) { 523 OS << " " << PrintReg(i, TRI); 524 NumRegsEmitted++; 525 } 526 NumRegsInMask++; 527 } 528 } 529 if (NumRegsEmitted != NumRegsInMask) 530 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 531 OS << ">"; 532 break; 533 } 534 case MachineOperand::MO_RegisterLiveOut: 535 OS << "<regliveout>"; 536 break; 537 case MachineOperand::MO_Metadata: 538 OS << '<'; 539 getMetadata()->printAsOperand(OS, MST); 540 OS << '>'; 541 break; 542 case MachineOperand::MO_MCSymbol: 543 OS << "<MCSym=" << *getMCSymbol() << '>'; 544 break; 545 case MachineOperand::MO_CFIIndex: 546 OS << "<call frame instruction>"; 547 break; 548 case MachineOperand::MO_IntrinsicID: { 549 Intrinsic::ID ID = getIntrinsicID(); 550 if (ID < Intrinsic::num_intrinsics) 551 OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; 552 else if (IntrinsicInfo) 553 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; 554 else 555 OS << "<intrinsic:" << ID << '>'; 556 break; 557 } 558 case MachineOperand::MO_Predicate: { 559 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 560 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 561 << CmpInst::getPredicateName(Pred) << '>'; 562 break; 563 } 564 } 565 if (unsigned TF = getTargetFlags()) 566 OS << "[TF=" << TF << ']'; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 LLVM_DUMP_METHOD void MachineOperand::dump() const { 571 dbgs() << *this << '\n'; 572 } 573 #endif 574 575 //===----------------------------------------------------------------------===// 576 // MachineMemOperand Implementation 577 //===----------------------------------------------------------------------===// 578 579 /// getAddrSpace - Return the LLVM IR address space number that this pointer 580 /// points into. 581 unsigned MachinePointerInfo::getAddrSpace() const { 582 if (V.isNull()) return 0; 583 584 if (V.is<const PseudoSourceValue*>()) 585 return V.get<const PseudoSourceValue*>()->getAddressSpace(); 586 587 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 588 } 589 590 /// isDereferenceable - Return true if V is always dereferenceable for 591 /// Offset + Size byte. 592 bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, 593 const DataLayout &DL) const { 594 if (!V.is<const Value*>()) 595 return false; 596 597 const Value *BasePtr = V.get<const Value*>(); 598 if (BasePtr == nullptr) 599 return false; 600 601 return isDereferenceableAndAlignedPointer( 602 BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL); 603 } 604 605 /// getConstantPool - Return a MachinePointerInfo record that refers to the 606 /// constant pool. 607 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 608 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 609 } 610 611 /// getFixedStack - Return a MachinePointerInfo record that refers to the 612 /// the specified FrameIndex. 613 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 614 int FI, int64_t Offset) { 615 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 616 } 617 618 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 619 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 620 } 621 622 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 623 return MachinePointerInfo(MF.getPSVManager().getGOT()); 624 } 625 626 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 627 int64_t Offset, 628 uint8_t ID) { 629 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset,ID); 630 } 631 632 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 633 uint64_t s, unsigned int a, 634 const AAMDNodes &AAInfo, 635 const MDNode *Ranges, 636 SyncScope::ID SSID, 637 AtomicOrdering Ordering, 638 AtomicOrdering FailureOrdering) 639 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 640 AAInfo(AAInfo), Ranges(Ranges) { 641 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 642 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 643 "invalid pointer value"); 644 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 645 assert((isLoad() || isStore()) && "Not a load/store!"); 646 647 AtomicInfo.SSID = static_cast<unsigned>(SSID); 648 assert(getSyncScopeID() == SSID && "Value truncated"); 649 AtomicInfo.Ordering = static_cast<unsigned>(Ordering); 650 assert(getOrdering() == Ordering && "Value truncated"); 651 AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); 652 assert(getFailureOrdering() == FailureOrdering && "Value truncated"); 653 } 654 655 /// Profile - Gather unique data for the object. 656 /// 657 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 658 ID.AddInteger(getOffset()); 659 ID.AddInteger(Size); 660 ID.AddPointer(getOpaqueValue()); 661 ID.AddInteger(getFlags()); 662 ID.AddInteger(getBaseAlignment()); 663 } 664 665 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 666 // The Value and Offset may differ due to CSE. But the flags and size 667 // should be the same. 668 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 669 assert(MMO->getSize() == getSize() && "Size mismatch!"); 670 671 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 672 // Update the alignment value. 673 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 674 // Also update the base and offset, because the new alignment may 675 // not be applicable with the old ones. 676 PtrInfo = MMO->PtrInfo; 677 } 678 } 679 680 /// getAlignment - Return the minimum known alignment in bytes of the 681 /// actual memory reference. 682 uint64_t MachineMemOperand::getAlignment() const { 683 return MinAlign(getBaseAlignment(), getOffset()); 684 } 685 686 void MachineMemOperand::print(raw_ostream &OS) const { 687 ModuleSlotTracker DummyMST(nullptr); 688 print(OS, DummyMST); 689 } 690 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 691 assert((isLoad() || isStore()) && 692 "SV has to be a load, store or both."); 693 694 if (isVolatile()) 695 OS << "Volatile "; 696 697 if (isLoad()) 698 OS << "LD"; 699 if (isStore()) 700 OS << "ST"; 701 OS << getSize(); 702 703 // Print the address information. 704 OS << "["; 705 if (const Value *V = getValue()) 706 V->printAsOperand(OS, /*PrintType=*/false, MST); 707 else if (const PseudoSourceValue *PSV = getPseudoValue()) 708 PSV->printCustom(OS); 709 else 710 OS << "<unknown>"; 711 712 unsigned AS = getAddrSpace(); 713 if (AS != 0) 714 OS << "(addrspace=" << AS << ')'; 715 716 // If the alignment of the memory reference itself differs from the alignment 717 // of the base pointer, print the base alignment explicitly, next to the base 718 // pointer. 719 if (getBaseAlignment() != getAlignment()) 720 OS << "(align=" << getBaseAlignment() << ")"; 721 722 if (getOffset() != 0) 723 OS << "+" << getOffset(); 724 OS << "]"; 725 726 // Print the alignment of the reference. 727 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 728 OS << "(align=" << getAlignment() << ")"; 729 730 // Print TBAA info. 731 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 732 OS << "(tbaa="; 733 if (TBAAInfo->getNumOperands() > 0) 734 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 735 else 736 OS << "<unknown>"; 737 OS << ")"; 738 } 739 740 // Print AA scope info. 741 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 742 OS << "(alias.scope="; 743 if (ScopeInfo->getNumOperands() > 0) 744 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 745 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 746 if (i != ie-1) 747 OS << ","; 748 } 749 else 750 OS << "<unknown>"; 751 OS << ")"; 752 } 753 754 // Print AA noalias scope info. 755 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 756 OS << "(noalias="; 757 if (NoAliasInfo->getNumOperands() > 0) 758 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 759 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 760 if (i != ie-1) 761 OS << ","; 762 } 763 else 764 OS << "<unknown>"; 765 OS << ")"; 766 } 767 768 if (const MDNode *Ranges = getRanges()) { 769 unsigned NumRanges = Ranges->getNumOperands(); 770 if (NumRanges != 0) { 771 OS << "(ranges="; 772 773 for (unsigned I = 0; I != NumRanges; ++I) { 774 Ranges->getOperand(I)->printAsOperand(OS, MST); 775 if (I != NumRanges - 1) 776 OS << ','; 777 } 778 779 OS << ')'; 780 } 781 } 782 783 if (isNonTemporal()) 784 OS << "(nontemporal)"; 785 if (isDereferenceable()) 786 OS << "(dereferenceable)"; 787 if (isInvariant()) 788 OS << "(invariant)"; 789 if (getFlags() & MOTargetFlag1) 790 OS << "(flag1)"; 791 if (getFlags() & MOTargetFlag2) 792 OS << "(flag2)"; 793 if (getFlags() & MOTargetFlag3) 794 OS << "(flag3)"; 795 } 796 797 //===----------------------------------------------------------------------===// 798 // MachineInstr Implementation 799 //===----------------------------------------------------------------------===// 800 801 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 802 if (MCID->ImplicitDefs) 803 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 804 ++ImpDefs) 805 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 806 if (MCID->ImplicitUses) 807 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 808 ++ImpUses) 809 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 810 } 811 812 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 813 /// implicit operands. It reserves space for the number of operands specified by 814 /// the MCInstrDesc. 815 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 816 DebugLoc dl, bool NoImp) 817 : MCID(&tid), debugLoc(std::move(dl)) { 818 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 819 820 // Reserve space for the expected number of operands. 821 if (unsigned NumOps = MCID->getNumOperands() + 822 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 823 CapOperands = OperandCapacity::get(NumOps); 824 Operands = MF.allocateOperandArray(CapOperands); 825 } 826 827 if (!NoImp) 828 addImplicitDefUseOperands(MF); 829 } 830 831 /// MachineInstr ctor - Copies MachineInstr arg exactly 832 /// 833 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 834 : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 835 debugLoc(MI.getDebugLoc()) { 836 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 837 838 CapOperands = OperandCapacity::get(MI.getNumOperands()); 839 Operands = MF.allocateOperandArray(CapOperands); 840 841 // Copy operands. 842 for (const MachineOperand &MO : MI.operands()) 843 addOperand(MF, MO); 844 845 // Copy all the sensible flags. 846 setFlags(MI.Flags); 847 } 848 849 /// getRegInfo - If this instruction is embedded into a MachineFunction, 850 /// return the MachineRegisterInfo object for the current function, otherwise 851 /// return null. 852 MachineRegisterInfo *MachineInstr::getRegInfo() { 853 if (MachineBasicBlock *MBB = getParent()) 854 return &MBB->getParent()->getRegInfo(); 855 return nullptr; 856 } 857 858 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 859 /// this instruction from their respective use lists. This requires that the 860 /// operands already be on their use lists. 861 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 862 for (MachineOperand &MO : operands()) 863 if (MO.isReg()) 864 MRI.removeRegOperandFromUseList(&MO); 865 } 866 867 /// AddRegOperandsToUseLists - Add all of the register operands in 868 /// this instruction from their respective use lists. This requires that the 869 /// operands not be on their use lists yet. 870 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 871 for (MachineOperand &MO : operands()) 872 if (MO.isReg()) 873 MRI.addRegOperandToUseList(&MO); 874 } 875 876 void MachineInstr::addOperand(const MachineOperand &Op) { 877 MachineBasicBlock *MBB = getParent(); 878 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 879 MachineFunction *MF = MBB->getParent(); 880 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 881 addOperand(*MF, Op); 882 } 883 884 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 885 /// ranges. If MRI is non-null also update use-def chains. 886 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 887 unsigned NumOps, MachineRegisterInfo *MRI) { 888 if (MRI) 889 return MRI->moveOperands(Dst, Src, NumOps); 890 891 // MachineOperand is a trivially copyable type so we can just use memmove. 892 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 893 } 894 895 /// addOperand - Add the specified operand to the instruction. If it is an 896 /// implicit operand, it is added to the end of the operand list. If it is 897 /// an explicit operand it is added at the end of the explicit operand list 898 /// (before the first implicit operand). 899 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 900 assert(MCID && "Cannot add operands before providing an instr descriptor"); 901 902 // Check if we're adding one of our existing operands. 903 if (&Op >= Operands && &Op < Operands + NumOperands) { 904 // This is unusual: MI->addOperand(MI->getOperand(i)). 905 // If adding Op requires reallocating or moving existing operands around, 906 // the Op reference could go stale. Support it by copying Op. 907 MachineOperand CopyOp(Op); 908 return addOperand(MF, CopyOp); 909 } 910 911 // Find the insert location for the new operand. Implicit registers go at 912 // the end, everything else goes before the implicit regs. 913 // 914 // FIXME: Allow mixed explicit and implicit operands on inline asm. 915 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 916 // implicit-defs, but they must not be moved around. See the FIXME in 917 // InstrEmitter.cpp. 918 unsigned OpNo = getNumOperands(); 919 bool isImpReg = Op.isReg() && Op.isImplicit(); 920 if (!isImpReg && !isInlineAsm()) { 921 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 922 --OpNo; 923 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 924 } 925 } 926 927 #ifndef NDEBUG 928 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 929 // OpNo now points as the desired insertion point. Unless this is a variadic 930 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 931 // RegMask operands go between the explicit and implicit operands. 932 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 933 OpNo < MCID->getNumOperands() || isMetaDataOp) && 934 "Trying to add an operand to a machine instr that is already done!"); 935 #endif 936 937 MachineRegisterInfo *MRI = getRegInfo(); 938 939 // Determine if the Operands array needs to be reallocated. 940 // Save the old capacity and operand array. 941 OperandCapacity OldCap = CapOperands; 942 MachineOperand *OldOperands = Operands; 943 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 944 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 945 Operands = MF.allocateOperandArray(CapOperands); 946 // Move the operands before the insertion point. 947 if (OpNo) 948 moveOperands(Operands, OldOperands, OpNo, MRI); 949 } 950 951 // Move the operands following the insertion point. 952 if (OpNo != NumOperands) 953 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 954 MRI); 955 ++NumOperands; 956 957 // Deallocate the old operand array. 958 if (OldOperands != Operands && OldOperands) 959 MF.deallocateOperandArray(OldCap, OldOperands); 960 961 // Copy Op into place. It still needs to be inserted into the MRI use lists. 962 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 963 NewMO->ParentMI = this; 964 965 // When adding a register operand, tell MRI about it. 966 if (NewMO->isReg()) { 967 // Ensure isOnRegUseList() returns false, regardless of Op's status. 968 NewMO->Contents.Reg.Prev = nullptr; 969 // Ignore existing ties. This is not a property that can be copied. 970 NewMO->TiedTo = 0; 971 // Add the new operand to MRI, but only for instructions in an MBB. 972 if (MRI) 973 MRI->addRegOperandToUseList(NewMO); 974 // The MCID operand information isn't accurate until we start adding 975 // explicit operands. The implicit operands are added first, then the 976 // explicits are inserted before them. 977 if (!isImpReg) { 978 // Tie uses to defs as indicated in MCInstrDesc. 979 if (NewMO->isUse()) { 980 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 981 if (DefIdx != -1) 982 tieOperands(DefIdx, OpNo); 983 } 984 // If the register operand is flagged as early, mark the operand as such. 985 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 986 NewMO->setIsEarlyClobber(true); 987 } 988 } 989 } 990 991 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 992 /// fewer operand than it started with. 993 /// 994 void MachineInstr::RemoveOperand(unsigned OpNo) { 995 assert(OpNo < getNumOperands() && "Invalid operand number"); 996 untieRegOperand(OpNo); 997 998 #ifndef NDEBUG 999 // Moving tied operands would break the ties. 1000 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 1001 if (Operands[i].isReg()) 1002 assert(!Operands[i].isTied() && "Cannot move tied operands"); 1003 #endif 1004 1005 MachineRegisterInfo *MRI = getRegInfo(); 1006 if (MRI && Operands[OpNo].isReg()) 1007 MRI->removeRegOperandFromUseList(Operands + OpNo); 1008 1009 // Don't call the MachineOperand destructor. A lot of this code depends on 1010 // MachineOperand having a trivial destructor anyway, and adding a call here 1011 // wouldn't make it 'destructor-correct'. 1012 1013 if (unsigned N = NumOperands - 1 - OpNo) 1014 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 1015 --NumOperands; 1016 } 1017 1018 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 1019 /// This function should be used only occasionally. The setMemRefs function 1020 /// is the primary method for setting up a MachineInstr's MemRefs list. 1021 void MachineInstr::addMemOperand(MachineFunction &MF, 1022 MachineMemOperand *MO) { 1023 mmo_iterator OldMemRefs = MemRefs; 1024 unsigned OldNumMemRefs = NumMemRefs; 1025 1026 unsigned NewNum = NumMemRefs + 1; 1027 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 1028 1029 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 1030 NewMemRefs[NewNum - 1] = MO; 1031 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 1032 } 1033 1034 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 1035 /// identical. 1036 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 1037 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 1038 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 1039 if ((E1 - I1) != (E2 - I2)) 1040 return false; 1041 for (; I1 != E1; ++I1, ++I2) { 1042 if (**I1 != **I2) 1043 return false; 1044 } 1045 return true; 1046 } 1047 1048 std::pair<MachineInstr::mmo_iterator, unsigned> 1049 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 1050 1051 // If either of the incoming memrefs are empty, we must be conservative and 1052 // treat this as if we've exhausted our space for memrefs and dropped them. 1053 if (memoperands_empty() || Other.memoperands_empty()) 1054 return std::make_pair(nullptr, 0); 1055 1056 // If both instructions have identical memrefs, we don't need to merge them. 1057 // Since many instructions have a single memref, and we tend to merge things 1058 // like pairs of loads from the same location, this catches a large number of 1059 // cases in practice. 1060 if (hasIdenticalMMOs(*this, Other)) 1061 return std::make_pair(MemRefs, NumMemRefs); 1062 1063 // TODO: consider uniquing elements within the operand lists to reduce 1064 // space usage and fall back to conservative information less often. 1065 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 1066 1067 // If we don't have enough room to store this many memrefs, be conservative 1068 // and drop them. Otherwise, we'd fail asserts when trying to add them to 1069 // the new instruction. 1070 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 1071 return std::make_pair(nullptr, 0); 1072 1073 MachineFunction *MF = getMF(); 1074 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 1075 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 1076 MemBegin); 1077 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 1078 MemEnd); 1079 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 1080 "missing memrefs"); 1081 1082 return std::make_pair(MemBegin, CombinedNumMemRefs); 1083 } 1084 1085 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 1086 assert(!isBundledWithPred() && "Must be called on bundle header"); 1087 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 1088 if (MII->getDesc().getFlags() & Mask) { 1089 if (Type == AnyInBundle) 1090 return true; 1091 } else { 1092 if (Type == AllInBundle && !MII->isBundle()) 1093 return false; 1094 } 1095 // This was the last instruction in the bundle. 1096 if (!MII->isBundledWithSucc()) 1097 return Type == AllInBundle; 1098 } 1099 } 1100 1101 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1102 MICheckType Check) const { 1103 // If opcodes or number of operands are not the same then the two 1104 // instructions are obviously not identical. 1105 if (Other.getOpcode() != getOpcode() || 1106 Other.getNumOperands() != getNumOperands()) 1107 return false; 1108 1109 if (isBundle()) { 1110 // We have passed the test above that both instructions have the same 1111 // opcode, so we know that both instructions are bundles here. Let's compare 1112 // MIs inside the bundle. 1113 assert(Other.isBundle() && "Expected that both instructions are bundles."); 1114 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1115 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1116 // Loop until we analysed the last intruction inside at least one of the 1117 // bundles. 1118 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 1119 ++I1; 1120 ++I2; 1121 if (!I1->isIdenticalTo(*I2, Check)) 1122 return false; 1123 } 1124 // If we've reached the end of just one of the two bundles, but not both, 1125 // the instructions are not identical. 1126 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 1127 return false; 1128 } 1129 1130 // Check operands to make sure they match. 1131 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1132 const MachineOperand &MO = getOperand(i); 1133 const MachineOperand &OMO = Other.getOperand(i); 1134 if (!MO.isReg()) { 1135 if (!MO.isIdenticalTo(OMO)) 1136 return false; 1137 continue; 1138 } 1139 1140 // Clients may or may not want to ignore defs when testing for equality. 1141 // For example, machine CSE pass only cares about finding common 1142 // subexpressions, so it's safe to ignore virtual register defs. 1143 if (MO.isDef()) { 1144 if (Check == IgnoreDefs) 1145 continue; 1146 else if (Check == IgnoreVRegDefs) { 1147 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 1148 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 1149 if (!MO.isIdenticalTo(OMO)) 1150 return false; 1151 } else { 1152 if (!MO.isIdenticalTo(OMO)) 1153 return false; 1154 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1155 return false; 1156 } 1157 } else { 1158 if (!MO.isIdenticalTo(OMO)) 1159 return false; 1160 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1161 return false; 1162 } 1163 } 1164 // If DebugLoc does not match then two dbg.values are not identical. 1165 if (isDebugValue()) 1166 if (getDebugLoc() && Other.getDebugLoc() && 1167 getDebugLoc() != Other.getDebugLoc()) 1168 return false; 1169 return true; 1170 } 1171 1172 const MachineFunction *MachineInstr::getMF() const { 1173 return getParent()->getParent(); 1174 } 1175 1176 MachineInstr *MachineInstr::removeFromParent() { 1177 assert(getParent() && "Not embedded in a basic block!"); 1178 return getParent()->remove(this); 1179 } 1180 1181 MachineInstr *MachineInstr::removeFromBundle() { 1182 assert(getParent() && "Not embedded in a basic block!"); 1183 return getParent()->remove_instr(this); 1184 } 1185 1186 void MachineInstr::eraseFromParent() { 1187 assert(getParent() && "Not embedded in a basic block!"); 1188 getParent()->erase(this); 1189 } 1190 1191 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1192 assert(getParent() && "Not embedded in a basic block!"); 1193 MachineBasicBlock *MBB = getParent(); 1194 MachineFunction *MF = MBB->getParent(); 1195 assert(MF && "Not embedded in a function!"); 1196 1197 MachineInstr *MI = (MachineInstr *)this; 1198 MachineRegisterInfo &MRI = MF->getRegInfo(); 1199 1200 for (const MachineOperand &MO : MI->operands()) { 1201 if (!MO.isReg() || !MO.isDef()) 1202 continue; 1203 unsigned Reg = MO.getReg(); 1204 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1205 continue; 1206 MRI.markUsesInDebugValueAsUndef(Reg); 1207 } 1208 MI->eraseFromParent(); 1209 } 1210 1211 void MachineInstr::eraseFromBundle() { 1212 assert(getParent() && "Not embedded in a basic block!"); 1213 getParent()->erase_instr(this); 1214 } 1215 1216 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1217 /// 1218 unsigned MachineInstr::getNumExplicitOperands() const { 1219 unsigned NumOperands = MCID->getNumOperands(); 1220 if (!MCID->isVariadic()) 1221 return NumOperands; 1222 1223 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1224 const MachineOperand &MO = getOperand(i); 1225 if (!MO.isReg() || !MO.isImplicit()) 1226 NumOperands++; 1227 } 1228 return NumOperands; 1229 } 1230 1231 void MachineInstr::bundleWithPred() { 1232 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1233 setFlag(BundledPred); 1234 MachineBasicBlock::instr_iterator Pred = getIterator(); 1235 --Pred; 1236 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1237 Pred->setFlag(BundledSucc); 1238 } 1239 1240 void MachineInstr::bundleWithSucc() { 1241 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1242 setFlag(BundledSucc); 1243 MachineBasicBlock::instr_iterator Succ = getIterator(); 1244 ++Succ; 1245 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1246 Succ->setFlag(BundledPred); 1247 } 1248 1249 void MachineInstr::unbundleFromPred() { 1250 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1251 clearFlag(BundledPred); 1252 MachineBasicBlock::instr_iterator Pred = getIterator(); 1253 --Pred; 1254 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1255 Pred->clearFlag(BundledSucc); 1256 } 1257 1258 void MachineInstr::unbundleFromSucc() { 1259 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1260 clearFlag(BundledSucc); 1261 MachineBasicBlock::instr_iterator Succ = getIterator(); 1262 ++Succ; 1263 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1264 Succ->clearFlag(BundledPred); 1265 } 1266 1267 bool MachineInstr::isStackAligningInlineAsm() const { 1268 if (isInlineAsm()) { 1269 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1270 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1271 return true; 1272 } 1273 return false; 1274 } 1275 1276 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1277 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1278 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1279 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1280 } 1281 1282 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1283 unsigned *GroupNo) const { 1284 assert(isInlineAsm() && "Expected an inline asm instruction"); 1285 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1286 1287 // Ignore queries about the initial operands. 1288 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1289 return -1; 1290 1291 unsigned Group = 0; 1292 unsigned NumOps; 1293 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1294 i += NumOps) { 1295 const MachineOperand &FlagMO = getOperand(i); 1296 // If we reach the implicit register operands, stop looking. 1297 if (!FlagMO.isImm()) 1298 return -1; 1299 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1300 if (i + NumOps > OpIdx) { 1301 if (GroupNo) 1302 *GroupNo = Group; 1303 return i; 1304 } 1305 ++Group; 1306 } 1307 return -1; 1308 } 1309 1310 const DILocalVariable *MachineInstr::getDebugVariable() const { 1311 assert(isDebugValue() && "not a DBG_VALUE"); 1312 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1313 } 1314 1315 const DIExpression *MachineInstr::getDebugExpression() const { 1316 assert(isDebugValue() && "not a DBG_VALUE"); 1317 return cast<DIExpression>(getOperand(3).getMetadata()); 1318 } 1319 1320 const TargetRegisterClass* 1321 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1322 const TargetInstrInfo *TII, 1323 const TargetRegisterInfo *TRI) const { 1324 assert(getParent() && "Can't have an MBB reference here!"); 1325 assert(getMF() && "Can't have an MF reference here!"); 1326 const MachineFunction &MF = *getMF(); 1327 1328 // Most opcodes have fixed constraints in their MCInstrDesc. 1329 if (!isInlineAsm()) 1330 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1331 1332 if (!getOperand(OpIdx).isReg()) 1333 return nullptr; 1334 1335 // For tied uses on inline asm, get the constraint from the def. 1336 unsigned DefIdx; 1337 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1338 OpIdx = DefIdx; 1339 1340 // Inline asm stores register class constraints in the flag word. 1341 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1342 if (FlagIdx < 0) 1343 return nullptr; 1344 1345 unsigned Flag = getOperand(FlagIdx).getImm(); 1346 unsigned RCID; 1347 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1348 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1349 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1350 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1351 return TRI->getRegClass(RCID); 1352 1353 // Assume that all registers in a memory operand are pointers. 1354 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1355 return TRI->getPointerRegClass(MF); 1356 1357 return nullptr; 1358 } 1359 1360 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1361 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1362 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1363 // Check every operands inside the bundle if we have 1364 // been asked to. 1365 if (ExploreBundle) 1366 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1367 ++OpndIt) 1368 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1369 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1370 else 1371 // Otherwise, just check the current operands. 1372 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1373 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1374 return CurRC; 1375 } 1376 1377 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1378 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1379 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1380 assert(CurRC && "Invalid initial register class"); 1381 // Check if Reg is constrained by some of its use/def from MI. 1382 const MachineOperand &MO = getOperand(OpIdx); 1383 if (!MO.isReg() || MO.getReg() != Reg) 1384 return CurRC; 1385 // If yes, accumulate the constraints through the operand. 1386 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1387 } 1388 1389 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1390 unsigned OpIdx, const TargetRegisterClass *CurRC, 1391 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1392 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1393 const MachineOperand &MO = getOperand(OpIdx); 1394 assert(MO.isReg() && 1395 "Cannot get register constraints for non-register operand"); 1396 assert(CurRC && "Invalid initial register class"); 1397 if (unsigned SubIdx = MO.getSubReg()) { 1398 if (OpRC) 1399 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1400 else 1401 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1402 } else if (OpRC) 1403 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1404 return CurRC; 1405 } 1406 1407 /// Return the number of instructions inside the MI bundle, not counting the 1408 /// header instruction. 1409 unsigned MachineInstr::getBundleSize() const { 1410 MachineBasicBlock::const_instr_iterator I = getIterator(); 1411 unsigned Size = 0; 1412 while (I->isBundledWithSucc()) { 1413 ++Size; 1414 ++I; 1415 } 1416 return Size; 1417 } 1418 1419 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1420 /// the given register (not considering sub/super-registers). 1421 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1422 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1423 const MachineOperand &MO = getOperand(i); 1424 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1425 return true; 1426 } 1427 return false; 1428 } 1429 1430 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1431 /// the specific register or -1 if it is not found. It further tightens 1432 /// the search criteria to a use that kills the register if isKill is true. 1433 int MachineInstr::findRegisterUseOperandIdx( 1434 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1435 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1436 const MachineOperand &MO = getOperand(i); 1437 if (!MO.isReg() || !MO.isUse()) 1438 continue; 1439 unsigned MOReg = MO.getReg(); 1440 if (!MOReg) 1441 continue; 1442 if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && 1443 TargetRegisterInfo::isPhysicalRegister(Reg) && 1444 TRI->isSubRegister(MOReg, Reg))) 1445 if (!isKill || MO.isKill()) 1446 return i; 1447 } 1448 return -1; 1449 } 1450 1451 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1452 /// indicating if this instruction reads or writes Reg. This also considers 1453 /// partial defines. 1454 std::pair<bool,bool> 1455 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1456 SmallVectorImpl<unsigned> *Ops) const { 1457 bool PartDef = false; // Partial redefine. 1458 bool FullDef = false; // Full define. 1459 bool Use = false; 1460 1461 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1462 const MachineOperand &MO = getOperand(i); 1463 if (!MO.isReg() || MO.getReg() != Reg) 1464 continue; 1465 if (Ops) 1466 Ops->push_back(i); 1467 if (MO.isUse()) 1468 Use |= !MO.isUndef(); 1469 else if (MO.getSubReg() && !MO.isUndef()) 1470 // A partial <def,undef> doesn't count as reading the register. 1471 PartDef = true; 1472 else 1473 FullDef = true; 1474 } 1475 // A partial redefine uses Reg unless there is also a full define. 1476 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1477 } 1478 1479 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1480 /// the specified register or -1 if it is not found. If isDead is true, defs 1481 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1482 /// also checks if there is a def of a super-register. 1483 int 1484 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1485 const TargetRegisterInfo *TRI) const { 1486 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1487 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1488 const MachineOperand &MO = getOperand(i); 1489 // Accept regmask operands when Overlap is set. 1490 // Ignore them when looking for a specific def operand (Overlap == false). 1491 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1492 return i; 1493 if (!MO.isReg() || !MO.isDef()) 1494 continue; 1495 unsigned MOReg = MO.getReg(); 1496 bool Found = (MOReg == Reg); 1497 if (!Found && TRI && isPhys && 1498 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1499 if (Overlap) 1500 Found = TRI->regsOverlap(MOReg, Reg); 1501 else 1502 Found = TRI->isSubRegister(MOReg, Reg); 1503 } 1504 if (Found && (!isDead || MO.isDead())) 1505 return i; 1506 } 1507 return -1; 1508 } 1509 1510 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1511 /// operand list that is used to represent the predicate. It returns -1 if 1512 /// none is found. 1513 int MachineInstr::findFirstPredOperandIdx() const { 1514 // Don't call MCID.findFirstPredOperandIdx() because this variant 1515 // is sometimes called on an instruction that's not yet complete, and 1516 // so the number of operands is less than the MCID indicates. In 1517 // particular, the PTX target does this. 1518 const MCInstrDesc &MCID = getDesc(); 1519 if (MCID.isPredicable()) { 1520 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1521 if (MCID.OpInfo[i].isPredicate()) 1522 return i; 1523 } 1524 1525 return -1; 1526 } 1527 1528 // MachineOperand::TiedTo is 4 bits wide. 1529 const unsigned TiedMax = 15; 1530 1531 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1532 /// 1533 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1534 /// field. TiedTo can have these values: 1535 /// 1536 /// 0: Operand is not tied to anything. 1537 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1538 /// TiedMax: Tied to an operand >= TiedMax-1. 1539 /// 1540 /// The tied def must be one of the first TiedMax operands on a normal 1541 /// instruction. INLINEASM instructions allow more tied defs. 1542 /// 1543 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1544 MachineOperand &DefMO = getOperand(DefIdx); 1545 MachineOperand &UseMO = getOperand(UseIdx); 1546 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1547 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1548 assert(!DefMO.isTied() && "Def is already tied to another use"); 1549 assert(!UseMO.isTied() && "Use is already tied to another def"); 1550 1551 if (DefIdx < TiedMax) 1552 UseMO.TiedTo = DefIdx + 1; 1553 else { 1554 // Inline asm can use the group descriptors to find tied operands, but on 1555 // normal instruction, the tied def must be within the first TiedMax 1556 // operands. 1557 assert(isInlineAsm() && "DefIdx out of range"); 1558 UseMO.TiedTo = TiedMax; 1559 } 1560 1561 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1562 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1563 } 1564 1565 /// Given the index of a tied register operand, find the operand it is tied to. 1566 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1567 /// which must exist. 1568 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1569 const MachineOperand &MO = getOperand(OpIdx); 1570 assert(MO.isTied() && "Operand isn't tied"); 1571 1572 // Normally TiedTo is in range. 1573 if (MO.TiedTo < TiedMax) 1574 return MO.TiedTo - 1; 1575 1576 // Uses on normal instructions can be out of range. 1577 if (!isInlineAsm()) { 1578 // Normal tied defs must be in the 0..TiedMax-1 range. 1579 if (MO.isUse()) 1580 return TiedMax - 1; 1581 // MO is a def. Search for the tied use. 1582 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1583 const MachineOperand &UseMO = getOperand(i); 1584 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1585 return i; 1586 } 1587 llvm_unreachable("Can't find tied use"); 1588 } 1589 1590 // Now deal with inline asm by parsing the operand group descriptor flags. 1591 // Find the beginning of each operand group. 1592 SmallVector<unsigned, 8> GroupIdx; 1593 unsigned OpIdxGroup = ~0u; 1594 unsigned NumOps; 1595 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1596 i += NumOps) { 1597 const MachineOperand &FlagMO = getOperand(i); 1598 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1599 unsigned CurGroup = GroupIdx.size(); 1600 GroupIdx.push_back(i); 1601 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1602 // OpIdx belongs to this operand group. 1603 if (OpIdx > i && OpIdx < i + NumOps) 1604 OpIdxGroup = CurGroup; 1605 unsigned TiedGroup; 1606 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1607 continue; 1608 // Operands in this group are tied to operands in TiedGroup which must be 1609 // earlier. Find the number of operands between the two groups. 1610 unsigned Delta = i - GroupIdx[TiedGroup]; 1611 1612 // OpIdx is a use tied to TiedGroup. 1613 if (OpIdxGroup == CurGroup) 1614 return OpIdx - Delta; 1615 1616 // OpIdx is a def tied to this use group. 1617 if (OpIdxGroup == TiedGroup) 1618 return OpIdx + Delta; 1619 } 1620 llvm_unreachable("Invalid tied operand on inline asm"); 1621 } 1622 1623 /// clearKillInfo - Clears kill flags on all operands. 1624 /// 1625 void MachineInstr::clearKillInfo() { 1626 for (MachineOperand &MO : operands()) { 1627 if (MO.isReg() && MO.isUse()) 1628 MO.setIsKill(false); 1629 } 1630 } 1631 1632 void MachineInstr::substituteRegister(unsigned FromReg, 1633 unsigned ToReg, 1634 unsigned SubIdx, 1635 const TargetRegisterInfo &RegInfo) { 1636 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1637 if (SubIdx) 1638 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1639 for (MachineOperand &MO : operands()) { 1640 if (!MO.isReg() || MO.getReg() != FromReg) 1641 continue; 1642 MO.substPhysReg(ToReg, RegInfo); 1643 } 1644 } else { 1645 for (MachineOperand &MO : operands()) { 1646 if (!MO.isReg() || MO.getReg() != FromReg) 1647 continue; 1648 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1649 } 1650 } 1651 } 1652 1653 /// isSafeToMove - Return true if it is safe to move this instruction. If 1654 /// SawStore is set to true, it means that there is a store (or call) between 1655 /// the instruction's location and its intended destination. 1656 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1657 // Ignore stuff that we obviously can't move. 1658 // 1659 // Treat volatile loads as stores. This is not strictly necessary for 1660 // volatiles, but it is required for atomic loads. It is not allowed to move 1661 // a load across an atomic load with Ordering > Monotonic. 1662 if (mayStore() || isCall() || isPHI() || 1663 (mayLoad() && hasOrderedMemoryRef())) { 1664 SawStore = true; 1665 return false; 1666 } 1667 1668 if (isPosition() || isDebugValue() || isTerminator() || 1669 hasUnmodeledSideEffects()) 1670 return false; 1671 1672 // See if this instruction does a load. If so, we have to guarantee that the 1673 // loaded value doesn't change between the load and the its intended 1674 // destination. The check for isInvariantLoad gives the targe the chance to 1675 // classify the load as always returning a constant, e.g. a constant pool 1676 // load. 1677 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1678 // Otherwise, this is a real load. If there is a store between the load and 1679 // end of block, we can't move it. 1680 return !SawStore; 1681 1682 return true; 1683 } 1684 1685 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, 1686 bool UseTBAA) { 1687 const MachineFunction *MF = getMF(); 1688 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1689 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1690 1691 // If neither instruction stores to memory, they can't alias in any 1692 // meaningful way, even if they read from the same address. 1693 if (!mayStore() && !Other.mayStore()) 1694 return false; 1695 1696 // Let the target decide if memory accesses cannot possibly overlap. 1697 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1698 return false; 1699 1700 // FIXME: Need to handle multiple memory operands to support all targets. 1701 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1702 return true; 1703 1704 MachineMemOperand *MMOa = *memoperands_begin(); 1705 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1706 1707 // The following interface to AA is fashioned after DAGCombiner::isAlias 1708 // and operates with MachineMemOperand offset with some important 1709 // assumptions: 1710 // - LLVM fundamentally assumes flat address spaces. 1711 // - MachineOperand offset can *only* result from legalization and 1712 // cannot affect queries other than the trivial case of overlap 1713 // checking. 1714 // - These offsets never wrap and never step outside 1715 // of allocated objects. 1716 // - There should never be any negative offsets here. 1717 // 1718 // FIXME: Modify API to hide this math from "user" 1719 // Even before we go to AA we can reason locally about some 1720 // memory objects. It can save compile time, and possibly catch some 1721 // corner cases not currently covered. 1722 1723 int64_t OffsetA = MMOa->getOffset(); 1724 int64_t OffsetB = MMOb->getOffset(); 1725 1726 int64_t MinOffset = std::min(OffsetA, OffsetB); 1727 int64_t WidthA = MMOa->getSize(); 1728 int64_t WidthB = MMOb->getSize(); 1729 const Value *ValA = MMOa->getValue(); 1730 const Value *ValB = MMOb->getValue(); 1731 bool SameVal = (ValA && ValB && (ValA == ValB)); 1732 if (!SameVal) { 1733 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1734 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1735 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1736 return false; 1737 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1738 return false; 1739 if (PSVa && PSVb && (PSVa == PSVb)) 1740 SameVal = true; 1741 } 1742 1743 if (SameVal) { 1744 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1745 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1746 return (MinOffset + LowWidth > MaxOffset); 1747 } 1748 1749 if (!AA) 1750 return true; 1751 1752 if (!ValA || !ValB) 1753 return true; 1754 1755 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1756 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1757 1758 int64_t Overlapa = WidthA + OffsetA - MinOffset; 1759 int64_t Overlapb = WidthB + OffsetB - MinOffset; 1760 1761 AliasResult AAResult = AA->alias( 1762 MemoryLocation(ValA, Overlapa, 1763 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1764 MemoryLocation(ValB, Overlapb, 1765 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1766 1767 return (AAResult != NoAlias); 1768 } 1769 1770 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1771 /// or volatile memory reference, or if the information describing the memory 1772 /// reference is not available. Return false if it is known to have no ordered 1773 /// memory references. 1774 bool MachineInstr::hasOrderedMemoryRef() const { 1775 // An instruction known never to access memory won't have a volatile access. 1776 if (!mayStore() && 1777 !mayLoad() && 1778 !isCall() && 1779 !hasUnmodeledSideEffects()) 1780 return false; 1781 1782 // Otherwise, if the instruction has no memory reference information, 1783 // conservatively assume it wasn't preserved. 1784 if (memoperands_empty()) 1785 return true; 1786 1787 // Check if any of our memory operands are ordered. 1788 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1789 return !MMO->isUnordered(); 1790 }); 1791 } 1792 1793 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1794 /// trap and is loading from a location whose value is invariant across a run of 1795 /// this function. 1796 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1797 // If the instruction doesn't load at all, it isn't an invariant load. 1798 if (!mayLoad()) 1799 return false; 1800 1801 // If the instruction has lost its memoperands, conservatively assume that 1802 // it may not be an invariant load. 1803 if (memoperands_empty()) 1804 return false; 1805 1806 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1807 1808 for (MachineMemOperand *MMO : memoperands()) { 1809 if (MMO->isVolatile()) return false; 1810 if (MMO->isStore()) return false; 1811 if (MMO->isInvariant() && MMO->isDereferenceable()) 1812 continue; 1813 1814 // A load from a constant PseudoSourceValue is invariant. 1815 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1816 if (PSV->isConstant(&MFI)) 1817 continue; 1818 1819 if (const Value *V = MMO->getValue()) { 1820 // If we have an AliasAnalysis, ask it whether the memory is constant. 1821 if (AA && 1822 AA->pointsToConstantMemory( 1823 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1824 continue; 1825 } 1826 1827 // Otherwise assume conservatively. 1828 return false; 1829 } 1830 1831 // Everything checks out. 1832 return true; 1833 } 1834 1835 /// isConstantValuePHI - If the specified instruction is a PHI that always 1836 /// merges together the same virtual register, return the register, otherwise 1837 /// return 0. 1838 unsigned MachineInstr::isConstantValuePHI() const { 1839 if (!isPHI()) 1840 return 0; 1841 assert(getNumOperands() >= 3 && 1842 "It's illegal to have a PHI without source operands"); 1843 1844 unsigned Reg = getOperand(1).getReg(); 1845 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1846 if (getOperand(i).getReg() != Reg) 1847 return 0; 1848 return Reg; 1849 } 1850 1851 bool MachineInstr::hasUnmodeledSideEffects() const { 1852 if (hasProperty(MCID::UnmodeledSideEffects)) 1853 return true; 1854 if (isInlineAsm()) { 1855 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1856 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1857 return true; 1858 } 1859 1860 return false; 1861 } 1862 1863 bool MachineInstr::isLoadFoldBarrier() const { 1864 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1865 } 1866 1867 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1868 /// 1869 bool MachineInstr::allDefsAreDead() const { 1870 for (const MachineOperand &MO : operands()) { 1871 if (!MO.isReg() || MO.isUse()) 1872 continue; 1873 if (!MO.isDead()) 1874 return false; 1875 } 1876 return true; 1877 } 1878 1879 /// copyImplicitOps - Copy implicit register operands from specified 1880 /// instruction to this instruction. 1881 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1882 const MachineInstr &MI) { 1883 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1884 i != e; ++i) { 1885 const MachineOperand &MO = MI.getOperand(i); 1886 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1887 addOperand(MF, MO); 1888 } 1889 } 1890 1891 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1892 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1893 dbgs() << " "; 1894 print(dbgs()); 1895 } 1896 #endif 1897 1898 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, 1899 const TargetInstrInfo *TII) const { 1900 const Module *M = nullptr; 1901 if (const MachineBasicBlock *MBB = getParent()) 1902 if (const MachineFunction *MF = MBB->getParent()) 1903 M = MF->getFunction()->getParent(); 1904 1905 ModuleSlotTracker MST(M); 1906 print(OS, MST, SkipOpers, SkipDebugLoc, TII); 1907 } 1908 1909 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1910 bool SkipOpers, bool SkipDebugLoc, 1911 const TargetInstrInfo *TII) const { 1912 // We can be a bit tidier if we know the MachineFunction. 1913 const MachineFunction *MF = nullptr; 1914 const TargetRegisterInfo *TRI = nullptr; 1915 const MachineRegisterInfo *MRI = nullptr; 1916 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1917 1918 if (const MachineBasicBlock *MBB = getParent()) { 1919 MF = MBB->getParent(); 1920 if (MF) { 1921 MRI = &MF->getRegInfo(); 1922 TRI = MF->getSubtarget().getRegisterInfo(); 1923 if (!TII) 1924 TII = MF->getSubtarget().getInstrInfo(); 1925 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1926 } 1927 } 1928 1929 // Save a list of virtual registers. 1930 SmallVector<unsigned, 8> VirtRegs; 1931 1932 // Print explicitly defined operands on the left of an assignment syntax. 1933 unsigned StartOp = 0, e = getNumOperands(); 1934 for (; StartOp < e && getOperand(StartOp).isReg() && 1935 getOperand(StartOp).isDef() && 1936 !getOperand(StartOp).isImplicit(); 1937 ++StartOp) { 1938 if (StartOp != 0) OS << ", "; 1939 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1940 unsigned Reg = getOperand(StartOp).getReg(); 1941 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1942 VirtRegs.push_back(Reg); 1943 LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; 1944 if (Ty.isValid()) 1945 OS << '(' << Ty << ')'; 1946 } 1947 } 1948 1949 if (StartOp != 0) 1950 OS << " = "; 1951 1952 // Print the opcode name. 1953 if (TII) 1954 OS << TII->getName(getOpcode()); 1955 else 1956 OS << "UNKNOWN"; 1957 1958 if (SkipOpers) 1959 return; 1960 1961 // Print the rest of the operands. 1962 bool FirstOp = true; 1963 unsigned AsmDescOp = ~0u; 1964 unsigned AsmOpCount = 0; 1965 1966 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1967 // Print asm string. 1968 OS << " "; 1969 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1970 1971 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1972 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1973 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1974 OS << " [sideeffect]"; 1975 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1976 OS << " [mayload]"; 1977 if (ExtraInfo & InlineAsm::Extra_MayStore) 1978 OS << " [maystore]"; 1979 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1980 OS << " [isconvergent]"; 1981 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1982 OS << " [alignstack]"; 1983 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1984 OS << " [attdialect]"; 1985 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1986 OS << " [inteldialect]"; 1987 1988 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1989 FirstOp = false; 1990 } 1991 1992 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1993 const MachineOperand &MO = getOperand(i); 1994 1995 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1996 VirtRegs.push_back(MO.getReg()); 1997 1998 if (FirstOp) FirstOp = false; else OS << ","; 1999 OS << " "; 2000 if (i < getDesc().NumOperands) { 2001 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 2002 if (MCOI.isPredicate()) 2003 OS << "pred:"; 2004 if (MCOI.isOptionalDef()) 2005 OS << "opt:"; 2006 } 2007 if (isDebugValue() && MO.isMetadata()) { 2008 // Pretty print DBG_VALUE instructions. 2009 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 2010 if (DIV && !DIV->getName().empty()) 2011 OS << "!\"" << DIV->getName() << '\"'; 2012 else 2013 MO.print(OS, MST, TRI); 2014 } else if (TRI && (isInsertSubreg() || isRegSequence() || 2015 (isSubregToReg() && i == 3)) && MO.isImm()) { 2016 OS << TRI->getSubRegIndexName(MO.getImm()); 2017 } else if (i == AsmDescOp && MO.isImm()) { 2018 // Pretty print the inline asm operand descriptor. 2019 OS << '$' << AsmOpCount++; 2020 unsigned Flag = MO.getImm(); 2021 switch (InlineAsm::getKind(Flag)) { 2022 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 2023 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 2024 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 2025 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 2026 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 2027 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 2028 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 2029 } 2030 2031 unsigned RCID = 0; 2032 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 2033 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 2034 if (TRI) { 2035 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 2036 } else 2037 OS << ":RC" << RCID; 2038 } 2039 2040 if (InlineAsm::isMemKind(Flag)) { 2041 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 2042 switch (MCID) { 2043 case InlineAsm::Constraint_es: OS << ":es"; break; 2044 case InlineAsm::Constraint_i: OS << ":i"; break; 2045 case InlineAsm::Constraint_m: OS << ":m"; break; 2046 case InlineAsm::Constraint_o: OS << ":o"; break; 2047 case InlineAsm::Constraint_v: OS << ":v"; break; 2048 case InlineAsm::Constraint_Q: OS << ":Q"; break; 2049 case InlineAsm::Constraint_R: OS << ":R"; break; 2050 case InlineAsm::Constraint_S: OS << ":S"; break; 2051 case InlineAsm::Constraint_T: OS << ":T"; break; 2052 case InlineAsm::Constraint_Um: OS << ":Um"; break; 2053 case InlineAsm::Constraint_Un: OS << ":Un"; break; 2054 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 2055 case InlineAsm::Constraint_Us: OS << ":Us"; break; 2056 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 2057 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 2058 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 2059 case InlineAsm::Constraint_X: OS << ":X"; break; 2060 case InlineAsm::Constraint_Z: OS << ":Z"; break; 2061 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 2062 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 2063 default: OS << ":?"; break; 2064 } 2065 } 2066 2067 unsigned TiedTo = 0; 2068 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 2069 OS << " tiedto:$" << TiedTo; 2070 2071 OS << ']'; 2072 2073 // Compute the index of the next operand descriptor. 2074 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 2075 } else 2076 MO.print(OS, MST, TRI); 2077 } 2078 2079 bool HaveSemi = false; 2080 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 2081 if (Flags & PrintableFlags) { 2082 if (!HaveSemi) { 2083 OS << ";"; 2084 HaveSemi = true; 2085 } 2086 OS << " flags: "; 2087 2088 if (Flags & FrameSetup) 2089 OS << "FrameSetup"; 2090 2091 if (Flags & FrameDestroy) 2092 OS << "FrameDestroy"; 2093 } 2094 2095 if (!memoperands_empty()) { 2096 if (!HaveSemi) { 2097 OS << ";"; 2098 HaveSemi = true; 2099 } 2100 2101 OS << " mem:"; 2102 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 2103 i != e; ++i) { 2104 (*i)->print(OS, MST); 2105 if (std::next(i) != e) 2106 OS << " "; 2107 } 2108 } 2109 2110 // Print the regclass of any virtual registers encountered. 2111 if (MRI && !VirtRegs.empty()) { 2112 if (!HaveSemi) { 2113 OS << ";"; 2114 HaveSemi = true; 2115 } 2116 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 2117 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 2118 if (!RC) 2119 continue; 2120 // Generic virtual registers do not have register classes. 2121 if (RC.is<const RegisterBank *>()) 2122 OS << " " << RC.get<const RegisterBank *>()->getName(); 2123 else 2124 OS << " " 2125 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 2126 OS << ':' << PrintReg(VirtRegs[i]); 2127 for (unsigned j = i+1; j != VirtRegs.size();) { 2128 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 2129 ++j; 2130 continue; 2131 } 2132 if (VirtRegs[i] != VirtRegs[j]) 2133 OS << "," << PrintReg(VirtRegs[j]); 2134 VirtRegs.erase(VirtRegs.begin()+j); 2135 } 2136 } 2137 } 2138 2139 // Print debug location information. 2140 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 2141 if (!HaveSemi) 2142 OS << ";"; 2143 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 2144 OS << " line no:" << DV->getLine(); 2145 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 2146 DebugLoc InlinedAtDL(InlinedAt); 2147 if (InlinedAtDL && MF) { 2148 OS << " inlined @[ "; 2149 InlinedAtDL.print(OS); 2150 OS << " ]"; 2151 } 2152 } 2153 if (isIndirectDebugValue()) 2154 OS << " indirect"; 2155 } else if (SkipDebugLoc) { 2156 return; 2157 } else if (debugLoc && MF) { 2158 if (!HaveSemi) 2159 OS << ";"; 2160 OS << " dbg:"; 2161 debugLoc.print(OS); 2162 } 2163 2164 OS << '\n'; 2165 } 2166 2167 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2168 const TargetRegisterInfo *RegInfo, 2169 bool AddIfNotFound) { 2170 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2171 bool hasAliases = isPhysReg && 2172 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2173 bool Found = false; 2174 SmallVector<unsigned,4> DeadOps; 2175 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2176 MachineOperand &MO = getOperand(i); 2177 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2178 continue; 2179 2180 // DEBUG_VALUE nodes do not contribute to code generation and should 2181 // always be ignored. Failure to do so may result in trying to modify 2182 // KILL flags on DEBUG_VALUE nodes. 2183 if (MO.isDebug()) 2184 continue; 2185 2186 unsigned Reg = MO.getReg(); 2187 if (!Reg) 2188 continue; 2189 2190 if (Reg == IncomingReg) { 2191 if (!Found) { 2192 if (MO.isKill()) 2193 // The register is already marked kill. 2194 return true; 2195 if (isPhysReg && isRegTiedToDefOperand(i)) 2196 // Two-address uses of physregs must not be marked kill. 2197 return true; 2198 MO.setIsKill(); 2199 Found = true; 2200 } 2201 } else if (hasAliases && MO.isKill() && 2202 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2203 // A super-register kill already exists. 2204 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2205 return true; 2206 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2207 DeadOps.push_back(i); 2208 } 2209 } 2210 2211 // Trim unneeded kill operands. 2212 while (!DeadOps.empty()) { 2213 unsigned OpIdx = DeadOps.back(); 2214 if (getOperand(OpIdx).isImplicit()) 2215 RemoveOperand(OpIdx); 2216 else 2217 getOperand(OpIdx).setIsKill(false); 2218 DeadOps.pop_back(); 2219 } 2220 2221 // If not found, this means an alias of one of the operands is killed. Add a 2222 // new implicit operand if required. 2223 if (!Found && AddIfNotFound) { 2224 addOperand(MachineOperand::CreateReg(IncomingReg, 2225 false /*IsDef*/, 2226 true /*IsImp*/, 2227 true /*IsKill*/)); 2228 return true; 2229 } 2230 return Found; 2231 } 2232 2233 void MachineInstr::clearRegisterKills(unsigned Reg, 2234 const TargetRegisterInfo *RegInfo) { 2235 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2236 RegInfo = nullptr; 2237 for (MachineOperand &MO : operands()) { 2238 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2239 continue; 2240 unsigned OpReg = MO.getReg(); 2241 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2242 MO.setIsKill(false); 2243 } 2244 } 2245 2246 bool MachineInstr::addRegisterDead(unsigned Reg, 2247 const TargetRegisterInfo *RegInfo, 2248 bool AddIfNotFound) { 2249 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2250 bool hasAliases = isPhysReg && 2251 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2252 bool Found = false; 2253 SmallVector<unsigned,4> DeadOps; 2254 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2255 MachineOperand &MO = getOperand(i); 2256 if (!MO.isReg() || !MO.isDef()) 2257 continue; 2258 unsigned MOReg = MO.getReg(); 2259 if (!MOReg) 2260 continue; 2261 2262 if (MOReg == Reg) { 2263 MO.setIsDead(); 2264 Found = true; 2265 } else if (hasAliases && MO.isDead() && 2266 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2267 // There exists a super-register that's marked dead. 2268 if (RegInfo->isSuperRegister(Reg, MOReg)) 2269 return true; 2270 if (RegInfo->isSubRegister(Reg, MOReg)) 2271 DeadOps.push_back(i); 2272 } 2273 } 2274 2275 // Trim unneeded dead operands. 2276 while (!DeadOps.empty()) { 2277 unsigned OpIdx = DeadOps.back(); 2278 if (getOperand(OpIdx).isImplicit()) 2279 RemoveOperand(OpIdx); 2280 else 2281 getOperand(OpIdx).setIsDead(false); 2282 DeadOps.pop_back(); 2283 } 2284 2285 // If not found, this means an alias of one of the operands is dead. Add a 2286 // new implicit operand if required. 2287 if (Found || !AddIfNotFound) 2288 return Found; 2289 2290 addOperand(MachineOperand::CreateReg(Reg, 2291 true /*IsDef*/, 2292 true /*IsImp*/, 2293 false /*IsKill*/, 2294 true /*IsDead*/)); 2295 return true; 2296 } 2297 2298 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2299 for (MachineOperand &MO : operands()) { 2300 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2301 continue; 2302 MO.setIsDead(false); 2303 } 2304 } 2305 2306 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2307 for (MachineOperand &MO : operands()) { 2308 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2309 continue; 2310 MO.setIsUndef(IsUndef); 2311 } 2312 } 2313 2314 void MachineInstr::addRegisterDefined(unsigned Reg, 2315 const TargetRegisterInfo *RegInfo) { 2316 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2317 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2318 if (MO) 2319 return; 2320 } else { 2321 for (const MachineOperand &MO : operands()) { 2322 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2323 MO.getSubReg() == 0) 2324 return; 2325 } 2326 } 2327 addOperand(MachineOperand::CreateReg(Reg, 2328 true /*IsDef*/, 2329 true /*IsImp*/)); 2330 } 2331 2332 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2333 const TargetRegisterInfo &TRI) { 2334 bool HasRegMask = false; 2335 for (MachineOperand &MO : operands()) { 2336 if (MO.isRegMask()) { 2337 HasRegMask = true; 2338 continue; 2339 } 2340 if (!MO.isReg() || !MO.isDef()) continue; 2341 unsigned Reg = MO.getReg(); 2342 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2343 // If there are no uses, including partial uses, the def is dead. 2344 if (llvm::none_of(UsedRegs, 2345 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2346 MO.setIsDead(); 2347 } 2348 2349 // This is a call with a register mask operand. 2350 // Mask clobbers are always dead, so add defs for the non-dead defines. 2351 if (HasRegMask) 2352 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2353 I != E; ++I) 2354 addRegisterDefined(*I, &TRI); 2355 } 2356 2357 unsigned 2358 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2359 // Build up a buffer of hash code components. 2360 SmallVector<size_t, 8> HashComponents; 2361 HashComponents.reserve(MI->getNumOperands() + 1); 2362 HashComponents.push_back(MI->getOpcode()); 2363 for (const MachineOperand &MO : MI->operands()) { 2364 if (MO.isReg() && MO.isDef() && 2365 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2366 continue; // Skip virtual register defs. 2367 2368 HashComponents.push_back(hash_value(MO)); 2369 } 2370 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2371 } 2372 2373 void MachineInstr::emitError(StringRef Msg) const { 2374 // Find the source location cookie. 2375 unsigned LocCookie = 0; 2376 const MDNode *LocMD = nullptr; 2377 for (unsigned i = getNumOperands(); i != 0; --i) { 2378 if (getOperand(i-1).isMetadata() && 2379 (LocMD = getOperand(i-1).getMetadata()) && 2380 LocMD->getNumOperands() != 0) { 2381 if (const ConstantInt *CI = 2382 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2383 LocCookie = CI->getZExtValue(); 2384 break; 2385 } 2386 } 2387 } 2388 2389 if (const MachineBasicBlock *MBB = getParent()) 2390 if (const MachineFunction *MF = MBB->getParent()) 2391 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2392 report_fatal_error(Msg); 2393 } 2394 2395 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2396 const MCInstrDesc &MCID, bool IsIndirect, 2397 unsigned Reg, const MDNode *Variable, 2398 const MDNode *Expr) { 2399 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2400 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2401 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2402 "Expected inlined-at fields to agree"); 2403 if (IsIndirect) 2404 return BuildMI(MF, DL, MCID) 2405 .addReg(Reg, RegState::Debug) 2406 .addImm(0U) 2407 .addMetadata(Variable) 2408 .addMetadata(Expr); 2409 else 2410 return BuildMI(MF, DL, MCID) 2411 .addReg(Reg, RegState::Debug) 2412 .addReg(0U, RegState::Debug) 2413 .addMetadata(Variable) 2414 .addMetadata(Expr); 2415 } 2416 2417 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2418 MachineBasicBlock::iterator I, 2419 const DebugLoc &DL, const MCInstrDesc &MCID, 2420 bool IsIndirect, unsigned Reg, 2421 const MDNode *Variable, const MDNode *Expr) { 2422 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2423 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2424 MachineFunction &MF = *BB.getParent(); 2425 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2426 BB.insert(I, MI); 2427 return MachineInstrBuilder(MF, MI); 2428 } 2429 2430 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2431 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2432 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2433 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2434 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2435 "Expected inlined-at fields to agree"); 2436 2437 const DIExpression *Expr = MI.getDebugExpression(); 2438 if (MI.isIndirectDebugValue()) { 2439 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2440 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 2441 } 2442 return Expr; 2443 } 2444 2445 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2446 MachineBasicBlock::iterator I, 2447 const MachineInstr &Orig, 2448 int FrameIndex) { 2449 const DIExpression *Expr = computeExprForSpill(Orig); 2450 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2451 .addFrameIndex(FrameIndex) 2452 .addImm(0U) 2453 .addMetadata(Orig.getDebugVariable()) 2454 .addMetadata(Expr); 2455 } 2456 2457 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2458 const DIExpression *Expr = computeExprForSpill(Orig); 2459 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2460 Orig.getOperand(1).ChangeToImmediate(0U); 2461 Orig.getOperand(3).setMetadata(Expr); 2462 } 2463