1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/ModuleSlotTracker.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/LowLevelTypeImpl.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <cstring>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
78   if (const MachineBasicBlock *MBB = MI.getParent())
79     if (const MachineFunction *MF = MBB->getParent())
80       return MF;
81   return nullptr;
82 }
83 
84 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
85 // it.
86 static void tryToGetTargetInfo(const MachineInstr &MI,
87                                const TargetRegisterInfo *&TRI,
88                                const MachineRegisterInfo *&MRI,
89                                const TargetIntrinsicInfo *&IntrinsicInfo,
90                                const TargetInstrInfo *&TII) {
91 
92   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
93     TRI = MF->getSubtarget().getRegisterInfo();
94     MRI = &MF->getRegInfo();
95     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
96     TII = MF->getSubtarget().getInstrInfo();
97   }
98 }
99 
100 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
101   if (MCID->ImplicitDefs)
102     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
103            ++ImpDefs)
104       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
105   if (MCID->ImplicitUses)
106     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
107            ++ImpUses)
108       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
109 }
110 
111 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
112 /// implicit operands. It reserves space for the number of operands specified by
113 /// the MCInstrDesc.
114 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
115                            DebugLoc dl, bool NoImp)
116     : MCID(&tid), debugLoc(std::move(dl)) {
117   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
118 
119   // Reserve space for the expected number of operands.
120   if (unsigned NumOps = MCID->getNumOperands() +
121     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
122     CapOperands = OperandCapacity::get(NumOps);
123     Operands = MF.allocateOperandArray(CapOperands);
124   }
125 
126   if (!NoImp)
127     addImplicitDefUseOperands(MF);
128 }
129 
130 /// MachineInstr ctor - Copies MachineInstr arg exactly
131 ///
132 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
133     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
134       debugLoc(MI.getDebugLoc()) {
135   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
136 
137   CapOperands = OperandCapacity::get(MI.getNumOperands());
138   Operands = MF.allocateOperandArray(CapOperands);
139 
140   // Copy operands.
141   for (const MachineOperand &MO : MI.operands())
142     addOperand(MF, MO);
143 
144   // Copy all the sensible flags.
145   setFlags(MI.Flags);
146 }
147 
148 /// getRegInfo - If this instruction is embedded into a MachineFunction,
149 /// return the MachineRegisterInfo object for the current function, otherwise
150 /// return null.
151 MachineRegisterInfo *MachineInstr::getRegInfo() {
152   if (MachineBasicBlock *MBB = getParent())
153     return &MBB->getParent()->getRegInfo();
154   return nullptr;
155 }
156 
157 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
158 /// this instruction from their respective use lists.  This requires that the
159 /// operands already be on their use lists.
160 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 /// AddRegOperandsToUseLists - Add all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands not be on their use lists yet.
169 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.addRegOperandToUseList(&MO);
173 }
174 
175 void MachineInstr::addOperand(const MachineOperand &Op) {
176   MachineBasicBlock *MBB = getParent();
177   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
178   MachineFunction *MF = MBB->getParent();
179   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
180   addOperand(*MF, Op);
181 }
182 
183 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
184 /// ranges. If MRI is non-null also update use-def chains.
185 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
186                          unsigned NumOps, MachineRegisterInfo *MRI) {
187   if (MRI)
188     return MRI->moveOperands(Dst, Src, NumOps);
189 
190   // MachineOperand is a trivially copyable type so we can just use memmove.
191   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
192 }
193 
194 /// addOperand - Add the specified operand to the instruction.  If it is an
195 /// implicit operand, it is added to the end of the operand list.  If it is
196 /// an explicit operand it is added at the end of the explicit operand list
197 /// (before the first implicit operand).
198 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
199   assert(MCID && "Cannot add operands before providing an instr descriptor");
200 
201   // Check if we're adding one of our existing operands.
202   if (&Op >= Operands && &Op < Operands + NumOperands) {
203     // This is unusual: MI->addOperand(MI->getOperand(i)).
204     // If adding Op requires reallocating or moving existing operands around,
205     // the Op reference could go stale. Support it by copying Op.
206     MachineOperand CopyOp(Op);
207     return addOperand(MF, CopyOp);
208   }
209 
210   // Find the insert location for the new operand.  Implicit registers go at
211   // the end, everything else goes before the implicit regs.
212   //
213   // FIXME: Allow mixed explicit and implicit operands on inline asm.
214   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
215   // implicit-defs, but they must not be moved around.  See the FIXME in
216   // InstrEmitter.cpp.
217   unsigned OpNo = getNumOperands();
218   bool isImpReg = Op.isReg() && Op.isImplicit();
219   if (!isImpReg && !isInlineAsm()) {
220     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
221       --OpNo;
222       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
223     }
224   }
225 
226 #ifndef NDEBUG
227   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
228   // OpNo now points as the desired insertion point.  Unless this is a variadic
229   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
230   // RegMask operands go between the explicit and implicit operands.
231   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
232           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
233          "Trying to add an operand to a machine instr that is already done!");
234 #endif
235 
236   MachineRegisterInfo *MRI = getRegInfo();
237 
238   // Determine if the Operands array needs to be reallocated.
239   // Save the old capacity and operand array.
240   OperandCapacity OldCap = CapOperands;
241   MachineOperand *OldOperands = Operands;
242   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
243     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
244     Operands = MF.allocateOperandArray(CapOperands);
245     // Move the operands before the insertion point.
246     if (OpNo)
247       moveOperands(Operands, OldOperands, OpNo, MRI);
248   }
249 
250   // Move the operands following the insertion point.
251   if (OpNo != NumOperands)
252     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
253                  MRI);
254   ++NumOperands;
255 
256   // Deallocate the old operand array.
257   if (OldOperands != Operands && OldOperands)
258     MF.deallocateOperandArray(OldCap, OldOperands);
259 
260   // Copy Op into place. It still needs to be inserted into the MRI use lists.
261   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
262   NewMO->ParentMI = this;
263 
264   // When adding a register operand, tell MRI about it.
265   if (NewMO->isReg()) {
266     // Ensure isOnRegUseList() returns false, regardless of Op's status.
267     NewMO->Contents.Reg.Prev = nullptr;
268     // Ignore existing ties. This is not a property that can be copied.
269     NewMO->TiedTo = 0;
270     // Add the new operand to MRI, but only for instructions in an MBB.
271     if (MRI)
272       MRI->addRegOperandToUseList(NewMO);
273     // The MCID operand information isn't accurate until we start adding
274     // explicit operands. The implicit operands are added first, then the
275     // explicits are inserted before them.
276     if (!isImpReg) {
277       // Tie uses to defs as indicated in MCInstrDesc.
278       if (NewMO->isUse()) {
279         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
280         if (DefIdx != -1)
281           tieOperands(DefIdx, OpNo);
282       }
283       // If the register operand is flagged as early, mark the operand as such.
284       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
285         NewMO->setIsEarlyClobber(true);
286     }
287   }
288 }
289 
290 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
291 /// fewer operand than it started with.
292 ///
293 void MachineInstr::RemoveOperand(unsigned OpNo) {
294   assert(OpNo < getNumOperands() && "Invalid operand number");
295   untieRegOperand(OpNo);
296 
297 #ifndef NDEBUG
298   // Moving tied operands would break the ties.
299   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
300     if (Operands[i].isReg())
301       assert(!Operands[i].isTied() && "Cannot move tied operands");
302 #endif
303 
304   MachineRegisterInfo *MRI = getRegInfo();
305   if (MRI && Operands[OpNo].isReg())
306     MRI->removeRegOperandFromUseList(Operands + OpNo);
307 
308   // Don't call the MachineOperand destructor. A lot of this code depends on
309   // MachineOperand having a trivial destructor anyway, and adding a call here
310   // wouldn't make it 'destructor-correct'.
311 
312   if (unsigned N = NumOperands - 1 - OpNo)
313     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
314   --NumOperands;
315 }
316 
317 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
318 /// This function should be used only occasionally. The setMemRefs function
319 /// is the primary method for setting up a MachineInstr's MemRefs list.
320 void MachineInstr::addMemOperand(MachineFunction &MF,
321                                  MachineMemOperand *MO) {
322   mmo_iterator OldMemRefs = MemRefs;
323   unsigned OldNumMemRefs = NumMemRefs;
324 
325   unsigned NewNum = NumMemRefs + 1;
326   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
327 
328   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
329   NewMemRefs[NewNum - 1] = MO;
330   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
331 }
332 
333 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
334 /// identical.
335 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
336   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
337   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
338   if ((E1 - I1) != (E2 - I2))
339     return false;
340   for (; I1 != E1; ++I1, ++I2) {
341     if (**I1 != **I2)
342       return false;
343   }
344   return true;
345 }
346 
347 std::pair<MachineInstr::mmo_iterator, unsigned>
348 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
349 
350   // If either of the incoming memrefs are empty, we must be conservative and
351   // treat this as if we've exhausted our space for memrefs and dropped them.
352   if (memoperands_empty() || Other.memoperands_empty())
353     return std::make_pair(nullptr, 0);
354 
355   // If both instructions have identical memrefs, we don't need to merge them.
356   // Since many instructions have a single memref, and we tend to merge things
357   // like pairs of loads from the same location, this catches a large number of
358   // cases in practice.
359   if (hasIdenticalMMOs(*this, Other))
360     return std::make_pair(MemRefs, NumMemRefs);
361 
362   // TODO: consider uniquing elements within the operand lists to reduce
363   // space usage and fall back to conservative information less often.
364   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
365 
366   // If we don't have enough room to store this many memrefs, be conservative
367   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
368   // the new instruction.
369   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
370     return std::make_pair(nullptr, 0);
371 
372   MachineFunction *MF = getMF();
373   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
374   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
375                                   MemBegin);
376   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
377                      MemEnd);
378   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
379          "missing memrefs");
380 
381   return std::make_pair(MemBegin, CombinedNumMemRefs);
382 }
383 
384 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
385   assert(!isBundledWithPred() && "Must be called on bundle header");
386   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
387     if (MII->getDesc().getFlags() & Mask) {
388       if (Type == AnyInBundle)
389         return true;
390     } else {
391       if (Type == AllInBundle && !MII->isBundle())
392         return false;
393     }
394     // This was the last instruction in the bundle.
395     if (!MII->isBundledWithSucc())
396       return Type == AllInBundle;
397   }
398 }
399 
400 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
401                                  MICheckType Check) const {
402   // If opcodes or number of operands are not the same then the two
403   // instructions are obviously not identical.
404   if (Other.getOpcode() != getOpcode() ||
405       Other.getNumOperands() != getNumOperands())
406     return false;
407 
408   if (isBundle()) {
409     // We have passed the test above that both instructions have the same
410     // opcode, so we know that both instructions are bundles here. Let's compare
411     // MIs inside the bundle.
412     assert(Other.isBundle() && "Expected that both instructions are bundles.");
413     MachineBasicBlock::const_instr_iterator I1 = getIterator();
414     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
415     // Loop until we analysed the last intruction inside at least one of the
416     // bundles.
417     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
418       ++I1;
419       ++I2;
420       if (!I1->isIdenticalTo(*I2, Check))
421         return false;
422     }
423     // If we've reached the end of just one of the two bundles, but not both,
424     // the instructions are not identical.
425     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
426       return false;
427   }
428 
429   // Check operands to make sure they match.
430   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
431     const MachineOperand &MO = getOperand(i);
432     const MachineOperand &OMO = Other.getOperand(i);
433     if (!MO.isReg()) {
434       if (!MO.isIdenticalTo(OMO))
435         return false;
436       continue;
437     }
438 
439     // Clients may or may not want to ignore defs when testing for equality.
440     // For example, machine CSE pass only cares about finding common
441     // subexpressions, so it's safe to ignore virtual register defs.
442     if (MO.isDef()) {
443       if (Check == IgnoreDefs)
444         continue;
445       else if (Check == IgnoreVRegDefs) {
446         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
447             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
448           if (!MO.isIdenticalTo(OMO))
449             return false;
450       } else {
451         if (!MO.isIdenticalTo(OMO))
452           return false;
453         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
454           return false;
455       }
456     } else {
457       if (!MO.isIdenticalTo(OMO))
458         return false;
459       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
460         return false;
461     }
462   }
463   // If DebugLoc does not match then two dbg.values are not identical.
464   if (isDebugValue())
465     if (getDebugLoc() && Other.getDebugLoc() &&
466         getDebugLoc() != Other.getDebugLoc())
467       return false;
468   return true;
469 }
470 
471 const MachineFunction *MachineInstr::getMF() const {
472   return getParent()->getParent();
473 }
474 
475 MachineInstr *MachineInstr::removeFromParent() {
476   assert(getParent() && "Not embedded in a basic block!");
477   return getParent()->remove(this);
478 }
479 
480 MachineInstr *MachineInstr::removeFromBundle() {
481   assert(getParent() && "Not embedded in a basic block!");
482   return getParent()->remove_instr(this);
483 }
484 
485 void MachineInstr::eraseFromParent() {
486   assert(getParent() && "Not embedded in a basic block!");
487   getParent()->erase(this);
488 }
489 
490 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
491   assert(getParent() && "Not embedded in a basic block!");
492   MachineBasicBlock *MBB = getParent();
493   MachineFunction *MF = MBB->getParent();
494   assert(MF && "Not embedded in a function!");
495 
496   MachineInstr *MI = (MachineInstr *)this;
497   MachineRegisterInfo &MRI = MF->getRegInfo();
498 
499   for (const MachineOperand &MO : MI->operands()) {
500     if (!MO.isReg() || !MO.isDef())
501       continue;
502     unsigned Reg = MO.getReg();
503     if (!TargetRegisterInfo::isVirtualRegister(Reg))
504       continue;
505     MRI.markUsesInDebugValueAsUndef(Reg);
506   }
507   MI->eraseFromParent();
508 }
509 
510 void MachineInstr::eraseFromBundle() {
511   assert(getParent() && "Not embedded in a basic block!");
512   getParent()->erase_instr(this);
513 }
514 
515 /// getNumExplicitOperands - Returns the number of non-implicit operands.
516 ///
517 unsigned MachineInstr::getNumExplicitOperands() const {
518   unsigned NumOperands = MCID->getNumOperands();
519   if (!MCID->isVariadic())
520     return NumOperands;
521 
522   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
523     const MachineOperand &MO = getOperand(i);
524     if (!MO.isReg() || !MO.isImplicit())
525       NumOperands++;
526   }
527   return NumOperands;
528 }
529 
530 void MachineInstr::bundleWithPred() {
531   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
532   setFlag(BundledPred);
533   MachineBasicBlock::instr_iterator Pred = getIterator();
534   --Pred;
535   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
536   Pred->setFlag(BundledSucc);
537 }
538 
539 void MachineInstr::bundleWithSucc() {
540   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
541   setFlag(BundledSucc);
542   MachineBasicBlock::instr_iterator Succ = getIterator();
543   ++Succ;
544   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
545   Succ->setFlag(BundledPred);
546 }
547 
548 void MachineInstr::unbundleFromPred() {
549   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
550   clearFlag(BundledPred);
551   MachineBasicBlock::instr_iterator Pred = getIterator();
552   --Pred;
553   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
554   Pred->clearFlag(BundledSucc);
555 }
556 
557 void MachineInstr::unbundleFromSucc() {
558   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
559   clearFlag(BundledSucc);
560   MachineBasicBlock::instr_iterator Succ = getIterator();
561   ++Succ;
562   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
563   Succ->clearFlag(BundledPred);
564 }
565 
566 bool MachineInstr::isStackAligningInlineAsm() const {
567   if (isInlineAsm()) {
568     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
569     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
570       return true;
571   }
572   return false;
573 }
574 
575 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
576   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
577   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
578   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
579 }
580 
581 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
582                                        unsigned *GroupNo) const {
583   assert(isInlineAsm() && "Expected an inline asm instruction");
584   assert(OpIdx < getNumOperands() && "OpIdx out of range");
585 
586   // Ignore queries about the initial operands.
587   if (OpIdx < InlineAsm::MIOp_FirstOperand)
588     return -1;
589 
590   unsigned Group = 0;
591   unsigned NumOps;
592   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
593        i += NumOps) {
594     const MachineOperand &FlagMO = getOperand(i);
595     // If we reach the implicit register operands, stop looking.
596     if (!FlagMO.isImm())
597       return -1;
598     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
599     if (i + NumOps > OpIdx) {
600       if (GroupNo)
601         *GroupNo = Group;
602       return i;
603     }
604     ++Group;
605   }
606   return -1;
607 }
608 
609 const DILocalVariable *MachineInstr::getDebugVariable() const {
610   assert(isDebugValue() && "not a DBG_VALUE");
611   return cast<DILocalVariable>(getOperand(2).getMetadata());
612 }
613 
614 const DIExpression *MachineInstr::getDebugExpression() const {
615   assert(isDebugValue() && "not a DBG_VALUE");
616   return cast<DIExpression>(getOperand(3).getMetadata());
617 }
618 
619 const TargetRegisterClass*
620 MachineInstr::getRegClassConstraint(unsigned OpIdx,
621                                     const TargetInstrInfo *TII,
622                                     const TargetRegisterInfo *TRI) const {
623   assert(getParent() && "Can't have an MBB reference here!");
624   assert(getMF() && "Can't have an MF reference here!");
625   const MachineFunction &MF = *getMF();
626 
627   // Most opcodes have fixed constraints in their MCInstrDesc.
628   if (!isInlineAsm())
629     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
630 
631   if (!getOperand(OpIdx).isReg())
632     return nullptr;
633 
634   // For tied uses on inline asm, get the constraint from the def.
635   unsigned DefIdx;
636   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
637     OpIdx = DefIdx;
638 
639   // Inline asm stores register class constraints in the flag word.
640   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
641   if (FlagIdx < 0)
642     return nullptr;
643 
644   unsigned Flag = getOperand(FlagIdx).getImm();
645   unsigned RCID;
646   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
647        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
648        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
649       InlineAsm::hasRegClassConstraint(Flag, RCID))
650     return TRI->getRegClass(RCID);
651 
652   // Assume that all registers in a memory operand are pointers.
653   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
654     return TRI->getPointerRegClass(MF);
655 
656   return nullptr;
657 }
658 
659 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
660     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
661     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
662   // Check every operands inside the bundle if we have
663   // been asked to.
664   if (ExploreBundle)
665     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
666          ++OpndIt)
667       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
668           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
669   else
670     // Otherwise, just check the current operands.
671     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
672       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
673   return CurRC;
674 }
675 
676 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
677     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
678     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
679   assert(CurRC && "Invalid initial register class");
680   // Check if Reg is constrained by some of its use/def from MI.
681   const MachineOperand &MO = getOperand(OpIdx);
682   if (!MO.isReg() || MO.getReg() != Reg)
683     return CurRC;
684   // If yes, accumulate the constraints through the operand.
685   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
686 }
687 
688 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
689     unsigned OpIdx, const TargetRegisterClass *CurRC,
690     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
691   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
692   const MachineOperand &MO = getOperand(OpIdx);
693   assert(MO.isReg() &&
694          "Cannot get register constraints for non-register operand");
695   assert(CurRC && "Invalid initial register class");
696   if (unsigned SubIdx = MO.getSubReg()) {
697     if (OpRC)
698       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
699     else
700       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
701   } else if (OpRC)
702     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
703   return CurRC;
704 }
705 
706 /// Return the number of instructions inside the MI bundle, not counting the
707 /// header instruction.
708 unsigned MachineInstr::getBundleSize() const {
709   MachineBasicBlock::const_instr_iterator I = getIterator();
710   unsigned Size = 0;
711   while (I->isBundledWithSucc()) {
712     ++Size;
713     ++I;
714   }
715   return Size;
716 }
717 
718 /// Returns true if the MachineInstr has an implicit-use operand of exactly
719 /// the given register (not considering sub/super-registers).
720 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
721   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
722     const MachineOperand &MO = getOperand(i);
723     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
724       return true;
725   }
726   return false;
727 }
728 
729 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
730 /// the specific register or -1 if it is not found. It further tightens
731 /// the search criteria to a use that kills the register if isKill is true.
732 int MachineInstr::findRegisterUseOperandIdx(
733     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
734   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
735     const MachineOperand &MO = getOperand(i);
736     if (!MO.isReg() || !MO.isUse())
737       continue;
738     unsigned MOReg = MO.getReg();
739     if (!MOReg)
740       continue;
741     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
742                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
743                          TRI->isSubRegister(MOReg, Reg)))
744       if (!isKill || MO.isKill())
745         return i;
746   }
747   return -1;
748 }
749 
750 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
751 /// indicating if this instruction reads or writes Reg. This also considers
752 /// partial defines.
753 std::pair<bool,bool>
754 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
755                                          SmallVectorImpl<unsigned> *Ops) const {
756   bool PartDef = false; // Partial redefine.
757   bool FullDef = false; // Full define.
758   bool Use = false;
759 
760   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
761     const MachineOperand &MO = getOperand(i);
762     if (!MO.isReg() || MO.getReg() != Reg)
763       continue;
764     if (Ops)
765       Ops->push_back(i);
766     if (MO.isUse())
767       Use |= !MO.isUndef();
768     else if (MO.getSubReg() && !MO.isUndef())
769       // A partial def undef doesn't count as reading the register.
770       PartDef = true;
771     else
772       FullDef = true;
773   }
774   // A partial redefine uses Reg unless there is also a full define.
775   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
776 }
777 
778 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
779 /// the specified register or -1 if it is not found. If isDead is true, defs
780 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
781 /// also checks if there is a def of a super-register.
782 int
783 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
784                                         const TargetRegisterInfo *TRI) const {
785   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
786   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
787     const MachineOperand &MO = getOperand(i);
788     // Accept regmask operands when Overlap is set.
789     // Ignore them when looking for a specific def operand (Overlap == false).
790     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
791       return i;
792     if (!MO.isReg() || !MO.isDef())
793       continue;
794     unsigned MOReg = MO.getReg();
795     bool Found = (MOReg == Reg);
796     if (!Found && TRI && isPhys &&
797         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
798       if (Overlap)
799         Found = TRI->regsOverlap(MOReg, Reg);
800       else
801         Found = TRI->isSubRegister(MOReg, Reg);
802     }
803     if (Found && (!isDead || MO.isDead()))
804       return i;
805   }
806   return -1;
807 }
808 
809 /// findFirstPredOperandIdx() - Find the index of the first operand in the
810 /// operand list that is used to represent the predicate. It returns -1 if
811 /// none is found.
812 int MachineInstr::findFirstPredOperandIdx() const {
813   // Don't call MCID.findFirstPredOperandIdx() because this variant
814   // is sometimes called on an instruction that's not yet complete, and
815   // so the number of operands is less than the MCID indicates. In
816   // particular, the PTX target does this.
817   const MCInstrDesc &MCID = getDesc();
818   if (MCID.isPredicable()) {
819     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
820       if (MCID.OpInfo[i].isPredicate())
821         return i;
822   }
823 
824   return -1;
825 }
826 
827 // MachineOperand::TiedTo is 4 bits wide.
828 const unsigned TiedMax = 15;
829 
830 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
831 ///
832 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
833 /// field. TiedTo can have these values:
834 ///
835 /// 0:              Operand is not tied to anything.
836 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
837 /// TiedMax:        Tied to an operand >= TiedMax-1.
838 ///
839 /// The tied def must be one of the first TiedMax operands on a normal
840 /// instruction. INLINEASM instructions allow more tied defs.
841 ///
842 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
843   MachineOperand &DefMO = getOperand(DefIdx);
844   MachineOperand &UseMO = getOperand(UseIdx);
845   assert(DefMO.isDef() && "DefIdx must be a def operand");
846   assert(UseMO.isUse() && "UseIdx must be a use operand");
847   assert(!DefMO.isTied() && "Def is already tied to another use");
848   assert(!UseMO.isTied() && "Use is already tied to another def");
849 
850   if (DefIdx < TiedMax)
851     UseMO.TiedTo = DefIdx + 1;
852   else {
853     // Inline asm can use the group descriptors to find tied operands, but on
854     // normal instruction, the tied def must be within the first TiedMax
855     // operands.
856     assert(isInlineAsm() && "DefIdx out of range");
857     UseMO.TiedTo = TiedMax;
858   }
859 
860   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
861   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
862 }
863 
864 /// Given the index of a tied register operand, find the operand it is tied to.
865 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
866 /// which must exist.
867 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
868   const MachineOperand &MO = getOperand(OpIdx);
869   assert(MO.isTied() && "Operand isn't tied");
870 
871   // Normally TiedTo is in range.
872   if (MO.TiedTo < TiedMax)
873     return MO.TiedTo - 1;
874 
875   // Uses on normal instructions can be out of range.
876   if (!isInlineAsm()) {
877     // Normal tied defs must be in the 0..TiedMax-1 range.
878     if (MO.isUse())
879       return TiedMax - 1;
880     // MO is a def. Search for the tied use.
881     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
882       const MachineOperand &UseMO = getOperand(i);
883       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
884         return i;
885     }
886     llvm_unreachable("Can't find tied use");
887   }
888 
889   // Now deal with inline asm by parsing the operand group descriptor flags.
890   // Find the beginning of each operand group.
891   SmallVector<unsigned, 8> GroupIdx;
892   unsigned OpIdxGroup = ~0u;
893   unsigned NumOps;
894   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
895        i += NumOps) {
896     const MachineOperand &FlagMO = getOperand(i);
897     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
898     unsigned CurGroup = GroupIdx.size();
899     GroupIdx.push_back(i);
900     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
901     // OpIdx belongs to this operand group.
902     if (OpIdx > i && OpIdx < i + NumOps)
903       OpIdxGroup = CurGroup;
904     unsigned TiedGroup;
905     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
906       continue;
907     // Operands in this group are tied to operands in TiedGroup which must be
908     // earlier. Find the number of operands between the two groups.
909     unsigned Delta = i - GroupIdx[TiedGroup];
910 
911     // OpIdx is a use tied to TiedGroup.
912     if (OpIdxGroup == CurGroup)
913       return OpIdx - Delta;
914 
915     // OpIdx is a def tied to this use group.
916     if (OpIdxGroup == TiedGroup)
917       return OpIdx + Delta;
918   }
919   llvm_unreachable("Invalid tied operand on inline asm");
920 }
921 
922 /// clearKillInfo - Clears kill flags on all operands.
923 ///
924 void MachineInstr::clearKillInfo() {
925   for (MachineOperand &MO : operands()) {
926     if (MO.isReg() && MO.isUse())
927       MO.setIsKill(false);
928   }
929 }
930 
931 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
932                                       unsigned SubIdx,
933                                       const TargetRegisterInfo &RegInfo,
934                                       bool ClearIsRenamable) {
935   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
936     if (SubIdx)
937       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
938     for (MachineOperand &MO : operands()) {
939       if (!MO.isReg() || MO.getReg() != FromReg)
940         continue;
941       MO.substPhysReg(ToReg, RegInfo);
942       if (ClearIsRenamable)
943         MO.setIsRenamable(false);
944     }
945   } else {
946     assert(!ClearIsRenamable && "IsRenamable invalid for virtual registers");
947     for (MachineOperand &MO : operands()) {
948       if (!MO.isReg() || MO.getReg() != FromReg)
949         continue;
950       MO.substVirtReg(ToReg, SubIdx, RegInfo);
951     }
952   }
953 }
954 
955 /// isSafeToMove - Return true if it is safe to move this instruction. If
956 /// SawStore is set to true, it means that there is a store (or call) between
957 /// the instruction's location and its intended destination.
958 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
959   // Ignore stuff that we obviously can't move.
960   //
961   // Treat volatile loads as stores. This is not strictly necessary for
962   // volatiles, but it is required for atomic loads. It is not allowed to move
963   // a load across an atomic load with Ordering > Monotonic.
964   if (mayStore() || isCall() || isPHI() ||
965       (mayLoad() && hasOrderedMemoryRef())) {
966     SawStore = true;
967     return false;
968   }
969 
970   if (isPosition() || isDebugValue() || isTerminator() ||
971       hasUnmodeledSideEffects())
972     return false;
973 
974   // See if this instruction does a load.  If so, we have to guarantee that the
975   // loaded value doesn't change between the load and the its intended
976   // destination. The check for isInvariantLoad gives the targe the chance to
977   // classify the load as always returning a constant, e.g. a constant pool
978   // load.
979   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
980     // Otherwise, this is a real load.  If there is a store between the load and
981     // end of block, we can't move it.
982     return !SawStore;
983 
984   return true;
985 }
986 
987 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
988                             bool UseTBAA) {
989   const MachineFunction *MF = getMF();
990   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
991   const MachineFrameInfo &MFI = MF->getFrameInfo();
992 
993   // If neither instruction stores to memory, they can't alias in any
994   // meaningful way, even if they read from the same address.
995   if (!mayStore() && !Other.mayStore())
996     return false;
997 
998   // Let the target decide if memory accesses cannot possibly overlap.
999   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1000     return false;
1001 
1002   // FIXME: Need to handle multiple memory operands to support all targets.
1003   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1004     return true;
1005 
1006   MachineMemOperand *MMOa = *memoperands_begin();
1007   MachineMemOperand *MMOb = *Other.memoperands_begin();
1008 
1009   // The following interface to AA is fashioned after DAGCombiner::isAlias
1010   // and operates with MachineMemOperand offset with some important
1011   // assumptions:
1012   //   - LLVM fundamentally assumes flat address spaces.
1013   //   - MachineOperand offset can *only* result from legalization and
1014   //     cannot affect queries other than the trivial case of overlap
1015   //     checking.
1016   //   - These offsets never wrap and never step outside
1017   //     of allocated objects.
1018   //   - There should never be any negative offsets here.
1019   //
1020   // FIXME: Modify API to hide this math from "user"
1021   // Even before we go to AA we can reason locally about some
1022   // memory objects. It can save compile time, and possibly catch some
1023   // corner cases not currently covered.
1024 
1025   int64_t OffsetA = MMOa->getOffset();
1026   int64_t OffsetB = MMOb->getOffset();
1027 
1028   int64_t MinOffset = std::min(OffsetA, OffsetB);
1029   int64_t WidthA = MMOa->getSize();
1030   int64_t WidthB = MMOb->getSize();
1031   const Value *ValA = MMOa->getValue();
1032   const Value *ValB = MMOb->getValue();
1033   bool SameVal = (ValA && ValB && (ValA == ValB));
1034   if (!SameVal) {
1035     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1036     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1037     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1038       return false;
1039     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1040       return false;
1041     if (PSVa && PSVb && (PSVa == PSVb))
1042       SameVal = true;
1043   }
1044 
1045   if (SameVal) {
1046     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1047     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1048     return (MinOffset + LowWidth > MaxOffset);
1049   }
1050 
1051   if (!AA)
1052     return true;
1053 
1054   if (!ValA || !ValB)
1055     return true;
1056 
1057   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1058   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1059 
1060   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1061   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1062 
1063   AliasResult AAResult = AA->alias(
1064       MemoryLocation(ValA, Overlapa,
1065                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1066       MemoryLocation(ValB, Overlapb,
1067                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1068 
1069   return (AAResult != NoAlias);
1070 }
1071 
1072 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1073 /// or volatile memory reference, or if the information describing the memory
1074 /// reference is not available. Return false if it is known to have no ordered
1075 /// memory references.
1076 bool MachineInstr::hasOrderedMemoryRef() const {
1077   // An instruction known never to access memory won't have a volatile access.
1078   if (!mayStore() &&
1079       !mayLoad() &&
1080       !isCall() &&
1081       !hasUnmodeledSideEffects())
1082     return false;
1083 
1084   // Otherwise, if the instruction has no memory reference information,
1085   // conservatively assume it wasn't preserved.
1086   if (memoperands_empty())
1087     return true;
1088 
1089   // Check if any of our memory operands are ordered.
1090   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1091     return !MMO->isUnordered();
1092   });
1093 }
1094 
1095 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1096 /// trap and is loading from a location whose value is invariant across a run of
1097 /// this function.
1098 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1099   // If the instruction doesn't load at all, it isn't an invariant load.
1100   if (!mayLoad())
1101     return false;
1102 
1103   // If the instruction has lost its memoperands, conservatively assume that
1104   // it may not be an invariant load.
1105   if (memoperands_empty())
1106     return false;
1107 
1108   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1109 
1110   for (MachineMemOperand *MMO : memoperands()) {
1111     if (MMO->isVolatile()) return false;
1112     if (MMO->isStore()) return false;
1113     if (MMO->isInvariant() && MMO->isDereferenceable())
1114       continue;
1115 
1116     // A load from a constant PseudoSourceValue is invariant.
1117     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1118       if (PSV->isConstant(&MFI))
1119         continue;
1120 
1121     if (const Value *V = MMO->getValue()) {
1122       // If we have an AliasAnalysis, ask it whether the memory is constant.
1123       if (AA &&
1124           AA->pointsToConstantMemory(
1125               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1126         continue;
1127     }
1128 
1129     // Otherwise assume conservatively.
1130     return false;
1131   }
1132 
1133   // Everything checks out.
1134   return true;
1135 }
1136 
1137 /// isConstantValuePHI - If the specified instruction is a PHI that always
1138 /// merges together the same virtual register, return the register, otherwise
1139 /// return 0.
1140 unsigned MachineInstr::isConstantValuePHI() const {
1141   if (!isPHI())
1142     return 0;
1143   assert(getNumOperands() >= 3 &&
1144          "It's illegal to have a PHI without source operands");
1145 
1146   unsigned Reg = getOperand(1).getReg();
1147   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1148     if (getOperand(i).getReg() != Reg)
1149       return 0;
1150   return Reg;
1151 }
1152 
1153 bool MachineInstr::hasUnmodeledSideEffects() const {
1154   if (hasProperty(MCID::UnmodeledSideEffects))
1155     return true;
1156   if (isInlineAsm()) {
1157     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1158     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1159       return true;
1160   }
1161 
1162   return false;
1163 }
1164 
1165 bool MachineInstr::isLoadFoldBarrier() const {
1166   return mayStore() || isCall() || hasUnmodeledSideEffects();
1167 }
1168 
1169 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1170 ///
1171 bool MachineInstr::allDefsAreDead() const {
1172   for (const MachineOperand &MO : operands()) {
1173     if (!MO.isReg() || MO.isUse())
1174       continue;
1175     if (!MO.isDead())
1176       return false;
1177   }
1178   return true;
1179 }
1180 
1181 /// copyImplicitOps - Copy implicit register operands from specified
1182 /// instruction to this instruction.
1183 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1184                                    const MachineInstr &MI) {
1185   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1186        i != e; ++i) {
1187     const MachineOperand &MO = MI.getOperand(i);
1188     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1189       addOperand(MF, MO);
1190   }
1191 }
1192 
1193 bool MachineInstr::hasComplexRegisterTies() const {
1194   const MCInstrDesc &MCID = getDesc();
1195   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1196     const auto &Operand = getOperand(I);
1197     if (!Operand.isReg() || Operand.isDef())
1198       // Ignore the defined registers as MCID marks only the uses as tied.
1199       continue;
1200     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1201     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1202     if (ExpectedTiedIdx != TiedIdx)
1203       return true;
1204   }
1205   return false;
1206 }
1207 
1208 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1209                                  const MachineRegisterInfo &MRI) const {
1210   const MachineOperand &Op = getOperand(OpIdx);
1211   if (!Op.isReg())
1212     return LLT{};
1213 
1214   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1215     return MRI.getType(Op.getReg());
1216 
1217   auto &OpInfo = getDesc().OpInfo[OpIdx];
1218   if (!OpInfo.isGenericType())
1219     return MRI.getType(Op.getReg());
1220 
1221   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1222     return LLT{};
1223 
1224   PrintedTypes.set(OpInfo.getGenericTypeIndex());
1225   return MRI.getType(Op.getReg());
1226 }
1227 
1228 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1229 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1230   dbgs() << "  ";
1231   print(dbgs());
1232 }
1233 #endif
1234 
1235 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1236                          bool SkipDebugLoc, const TargetInstrInfo *TII) const {
1237   const Module *M = nullptr;
1238   const Function *F = nullptr;
1239   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1240     F = &MF->getFunction();
1241     M = F->getParent();
1242   }
1243 
1244   ModuleSlotTracker MST(M);
1245   if (F)
1246     MST.incorporateFunction(*F);
1247   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII);
1248 }
1249 
1250 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1251                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1252                          const TargetInstrInfo *TII) const {
1253   // We can be a bit tidier if we know the MachineFunction.
1254   const MachineFunction *MF = nullptr;
1255   const TargetRegisterInfo *TRI = nullptr;
1256   const MachineRegisterInfo *MRI = nullptr;
1257   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1258   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1259 
1260   if (isCFIInstruction())
1261     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1262 
1263   SmallBitVector PrintedTypes(8);
1264   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1265   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1266     if (!ShouldPrintRegisterTies)
1267       return 0U;
1268     const MachineOperand &MO = getOperand(OpIdx);
1269     if (MO.isReg() && MO.isTied() && !MO.isDef())
1270       return findTiedOperandIdx(OpIdx);
1271     return 0U;
1272   };
1273   unsigned StartOp = 0;
1274   unsigned e = getNumOperands();
1275 
1276   // Print explicitly defined operands on the left of an assignment syntax.
1277   while (StartOp < e) {
1278     const MachineOperand &MO = getOperand(StartOp);
1279     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1280       break;
1281 
1282     if (StartOp != 0)
1283       OS << ", ";
1284 
1285     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1286     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1287     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1288              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1289     ++StartOp;
1290   }
1291 
1292   if (StartOp != 0)
1293     OS << " = ";
1294 
1295   if (getFlag(MachineInstr::FrameSetup))
1296     OS << "frame-setup ";
1297   else if (getFlag(MachineInstr::FrameDestroy))
1298     OS << "frame-destroy ";
1299 
1300   // Print the opcode name.
1301   if (TII)
1302     OS << TII->getName(getOpcode());
1303   else
1304     OS << "UNKNOWN";
1305 
1306   if (SkipOpers)
1307     return;
1308 
1309   // Print the rest of the operands.
1310   bool FirstOp = true;
1311   unsigned AsmDescOp = ~0u;
1312   unsigned AsmOpCount = 0;
1313 
1314   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1315     // Print asm string.
1316     OS << " ";
1317     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1318     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1319     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1320     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1321                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1322                             IntrinsicInfo);
1323 
1324     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1325     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1326     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1327       OS << " [sideeffect]";
1328     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1329       OS << " [mayload]";
1330     if (ExtraInfo & InlineAsm::Extra_MayStore)
1331       OS << " [maystore]";
1332     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1333       OS << " [isconvergent]";
1334     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1335       OS << " [alignstack]";
1336     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1337       OS << " [attdialect]";
1338     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1339       OS << " [inteldialect]";
1340 
1341     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1342     FirstOp = false;
1343   }
1344 
1345   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1346     const MachineOperand &MO = getOperand(i);
1347 
1348     if (FirstOp) FirstOp = false; else OS << ",";
1349     OS << " ";
1350 
1351     if (isDebugValue() && MO.isMetadata()) {
1352       // Pretty print DBG_VALUE instructions.
1353       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1354       if (DIV && !DIV->getName().empty())
1355         OS << "!\"" << DIV->getName() << '\"';
1356       else {
1357         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1358         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1359         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1360                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1361       }
1362     } else if (i == AsmDescOp && MO.isImm()) {
1363       // Pretty print the inline asm operand descriptor.
1364       OS << '$' << AsmOpCount++;
1365       unsigned Flag = MO.getImm();
1366       switch (InlineAsm::getKind(Flag)) {
1367       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1368       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1369       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1370       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1371       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1372       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1373       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1374       }
1375 
1376       unsigned RCID = 0;
1377       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1378           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1379         if (TRI) {
1380           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1381         } else
1382           OS << ":RC" << RCID;
1383       }
1384 
1385       if (InlineAsm::isMemKind(Flag)) {
1386         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1387         switch (MCID) {
1388         case InlineAsm::Constraint_es: OS << ":es"; break;
1389         case InlineAsm::Constraint_i:  OS << ":i"; break;
1390         case InlineAsm::Constraint_m:  OS << ":m"; break;
1391         case InlineAsm::Constraint_o:  OS << ":o"; break;
1392         case InlineAsm::Constraint_v:  OS << ":v"; break;
1393         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1394         case InlineAsm::Constraint_R:  OS << ":R"; break;
1395         case InlineAsm::Constraint_S:  OS << ":S"; break;
1396         case InlineAsm::Constraint_T:  OS << ":T"; break;
1397         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1398         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1399         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1400         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1401         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1402         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1403         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1404         case InlineAsm::Constraint_X:  OS << ":X"; break;
1405         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1406         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1407         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1408         default: OS << ":?"; break;
1409         }
1410       }
1411 
1412       unsigned TiedTo = 0;
1413       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1414         OS << " tiedto:$" << TiedTo;
1415 
1416       OS << ']';
1417 
1418       // Compute the index of the next operand descriptor.
1419       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1420     } else {
1421       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1422       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1423       if (MO.isImm() && isOperandSubregIdx(i))
1424         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1425       else
1426         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1427                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1428     }
1429   }
1430 
1431   if (!SkipDebugLoc) {
1432     if (const DebugLoc &DL = getDebugLoc()) {
1433       if (!FirstOp)
1434         OS << ',';
1435       OS << " debug-location ";
1436       DL->printAsOperand(OS, MST);
1437     }
1438   }
1439 
1440   bool HaveSemi = false;
1441   if (!memoperands_empty()) {
1442     if (!HaveSemi) {
1443       OS << ";";
1444       HaveSemi = true;
1445     }
1446 
1447     OS << " mem:";
1448     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1449          i != e; ++i) {
1450       (*i)->print(OS, MST);
1451       if (std::next(i) != e)
1452         OS << " ";
1453     }
1454   }
1455 
1456   if (SkipDebugLoc)
1457     return;
1458 
1459   // Print debug location information.
1460   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1461     if (!HaveSemi)
1462       OS << ";";
1463     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1464     OS << " line no:" <<  DV->getLine();
1465     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1466       DebugLoc InlinedAtDL(InlinedAt);
1467       if (InlinedAtDL && MF) {
1468         OS << " inlined @[ ";
1469         InlinedAtDL.print(OS);
1470         OS << " ]";
1471       }
1472     }
1473     if (isIndirectDebugValue())
1474       OS << " indirect";
1475   }
1476 
1477   OS << '\n';
1478 }
1479 
1480 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1481                                      const TargetRegisterInfo *RegInfo,
1482                                      bool AddIfNotFound) {
1483   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1484   bool hasAliases = isPhysReg &&
1485     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1486   bool Found = false;
1487   SmallVector<unsigned,4> DeadOps;
1488   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1489     MachineOperand &MO = getOperand(i);
1490     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1491       continue;
1492 
1493     // DEBUG_VALUE nodes do not contribute to code generation and should
1494     // always be ignored. Failure to do so may result in trying to modify
1495     // KILL flags on DEBUG_VALUE nodes.
1496     if (MO.isDebug())
1497       continue;
1498 
1499     unsigned Reg = MO.getReg();
1500     if (!Reg)
1501       continue;
1502 
1503     if (Reg == IncomingReg) {
1504       if (!Found) {
1505         if (MO.isKill())
1506           // The register is already marked kill.
1507           return true;
1508         if (isPhysReg && isRegTiedToDefOperand(i))
1509           // Two-address uses of physregs must not be marked kill.
1510           return true;
1511         MO.setIsKill();
1512         Found = true;
1513       }
1514     } else if (hasAliases && MO.isKill() &&
1515                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1516       // A super-register kill already exists.
1517       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1518         return true;
1519       if (RegInfo->isSubRegister(IncomingReg, Reg))
1520         DeadOps.push_back(i);
1521     }
1522   }
1523 
1524   // Trim unneeded kill operands.
1525   while (!DeadOps.empty()) {
1526     unsigned OpIdx = DeadOps.back();
1527     if (getOperand(OpIdx).isImplicit())
1528       RemoveOperand(OpIdx);
1529     else
1530       getOperand(OpIdx).setIsKill(false);
1531     DeadOps.pop_back();
1532   }
1533 
1534   // If not found, this means an alias of one of the operands is killed. Add a
1535   // new implicit operand if required.
1536   if (!Found && AddIfNotFound) {
1537     addOperand(MachineOperand::CreateReg(IncomingReg,
1538                                          false /*IsDef*/,
1539                                          true  /*IsImp*/,
1540                                          true  /*IsKill*/));
1541     return true;
1542   }
1543   return Found;
1544 }
1545 
1546 void MachineInstr::clearRegisterKills(unsigned Reg,
1547                                       const TargetRegisterInfo *RegInfo) {
1548   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1549     RegInfo = nullptr;
1550   for (MachineOperand &MO : operands()) {
1551     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1552       continue;
1553     unsigned OpReg = MO.getReg();
1554     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1555       MO.setIsKill(false);
1556   }
1557 }
1558 
1559 bool MachineInstr::addRegisterDead(unsigned Reg,
1560                                    const TargetRegisterInfo *RegInfo,
1561                                    bool AddIfNotFound) {
1562   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1563   bool hasAliases = isPhysReg &&
1564     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1565   bool Found = false;
1566   SmallVector<unsigned,4> DeadOps;
1567   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1568     MachineOperand &MO = getOperand(i);
1569     if (!MO.isReg() || !MO.isDef())
1570       continue;
1571     unsigned MOReg = MO.getReg();
1572     if (!MOReg)
1573       continue;
1574 
1575     if (MOReg == Reg) {
1576       MO.setIsDead();
1577       Found = true;
1578     } else if (hasAliases && MO.isDead() &&
1579                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1580       // There exists a super-register that's marked dead.
1581       if (RegInfo->isSuperRegister(Reg, MOReg))
1582         return true;
1583       if (RegInfo->isSubRegister(Reg, MOReg))
1584         DeadOps.push_back(i);
1585     }
1586   }
1587 
1588   // Trim unneeded dead operands.
1589   while (!DeadOps.empty()) {
1590     unsigned OpIdx = DeadOps.back();
1591     if (getOperand(OpIdx).isImplicit())
1592       RemoveOperand(OpIdx);
1593     else
1594       getOperand(OpIdx).setIsDead(false);
1595     DeadOps.pop_back();
1596   }
1597 
1598   // If not found, this means an alias of one of the operands is dead. Add a
1599   // new implicit operand if required.
1600   if (Found || !AddIfNotFound)
1601     return Found;
1602 
1603   addOperand(MachineOperand::CreateReg(Reg,
1604                                        true  /*IsDef*/,
1605                                        true  /*IsImp*/,
1606                                        false /*IsKill*/,
1607                                        true  /*IsDead*/));
1608   return true;
1609 }
1610 
1611 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1612   for (MachineOperand &MO : operands()) {
1613     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1614       continue;
1615     MO.setIsDead(false);
1616   }
1617 }
1618 
1619 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1620   for (MachineOperand &MO : operands()) {
1621     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1622       continue;
1623     MO.setIsUndef(IsUndef);
1624   }
1625 }
1626 
1627 void MachineInstr::addRegisterDefined(unsigned Reg,
1628                                       const TargetRegisterInfo *RegInfo) {
1629   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1630     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1631     if (MO)
1632       return;
1633   } else {
1634     for (const MachineOperand &MO : operands()) {
1635       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1636           MO.getSubReg() == 0)
1637         return;
1638     }
1639   }
1640   addOperand(MachineOperand::CreateReg(Reg,
1641                                        true  /*IsDef*/,
1642                                        true  /*IsImp*/));
1643 }
1644 
1645 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1646                                          const TargetRegisterInfo &TRI) {
1647   bool HasRegMask = false;
1648   for (MachineOperand &MO : operands()) {
1649     if (MO.isRegMask()) {
1650       HasRegMask = true;
1651       continue;
1652     }
1653     if (!MO.isReg() || !MO.isDef()) continue;
1654     unsigned Reg = MO.getReg();
1655     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1656     // If there are no uses, including partial uses, the def is dead.
1657     if (llvm::none_of(UsedRegs,
1658                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1659       MO.setIsDead();
1660   }
1661 
1662   // This is a call with a register mask operand.
1663   // Mask clobbers are always dead, so add defs for the non-dead defines.
1664   if (HasRegMask)
1665     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1666          I != E; ++I)
1667       addRegisterDefined(*I, &TRI);
1668 }
1669 
1670 unsigned
1671 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1672   // Build up a buffer of hash code components.
1673   SmallVector<size_t, 8> HashComponents;
1674   HashComponents.reserve(MI->getNumOperands() + 1);
1675   HashComponents.push_back(MI->getOpcode());
1676   for (const MachineOperand &MO : MI->operands()) {
1677     if (MO.isReg() && MO.isDef() &&
1678         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1679       continue;  // Skip virtual register defs.
1680 
1681     HashComponents.push_back(hash_value(MO));
1682   }
1683   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1684 }
1685 
1686 void MachineInstr::emitError(StringRef Msg) const {
1687   // Find the source location cookie.
1688   unsigned LocCookie = 0;
1689   const MDNode *LocMD = nullptr;
1690   for (unsigned i = getNumOperands(); i != 0; --i) {
1691     if (getOperand(i-1).isMetadata() &&
1692         (LocMD = getOperand(i-1).getMetadata()) &&
1693         LocMD->getNumOperands() != 0) {
1694       if (const ConstantInt *CI =
1695               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1696         LocCookie = CI->getZExtValue();
1697         break;
1698       }
1699     }
1700   }
1701 
1702   if (const MachineBasicBlock *MBB = getParent())
1703     if (const MachineFunction *MF = MBB->getParent())
1704       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1705   report_fatal_error(Msg);
1706 }
1707 
1708 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1709                                   const MCInstrDesc &MCID, bool IsIndirect,
1710                                   unsigned Reg, const MDNode *Variable,
1711                                   const MDNode *Expr) {
1712   assert(isa<DILocalVariable>(Variable) && "not a variable");
1713   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1714   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1715          "Expected inlined-at fields to agree");
1716   if (IsIndirect)
1717     return BuildMI(MF, DL, MCID)
1718         .addReg(Reg, RegState::Debug)
1719         .addImm(0U)
1720         .addMetadata(Variable)
1721         .addMetadata(Expr);
1722   else
1723     return BuildMI(MF, DL, MCID)
1724         .addReg(Reg, RegState::Debug)
1725         .addReg(0U, RegState::Debug)
1726         .addMetadata(Variable)
1727         .addMetadata(Expr);
1728 }
1729 
1730 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1731                                   MachineBasicBlock::iterator I,
1732                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1733                                   bool IsIndirect, unsigned Reg,
1734                                   const MDNode *Variable, const MDNode *Expr) {
1735   assert(isa<DILocalVariable>(Variable) && "not a variable");
1736   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1737   MachineFunction &MF = *BB.getParent();
1738   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1739   BB.insert(I, MI);
1740   return MachineInstrBuilder(MF, MI);
1741 }
1742 
1743 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1744 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1745 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1746   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1747   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1748          "Expected inlined-at fields to agree");
1749 
1750   const DIExpression *Expr = MI.getDebugExpression();
1751   if (MI.isIndirectDebugValue()) {
1752     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1753     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1754   }
1755   return Expr;
1756 }
1757 
1758 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1759                                           MachineBasicBlock::iterator I,
1760                                           const MachineInstr &Orig,
1761                                           int FrameIndex) {
1762   const DIExpression *Expr = computeExprForSpill(Orig);
1763   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1764       .addFrameIndex(FrameIndex)
1765       .addImm(0U)
1766       .addMetadata(Orig.getDebugVariable())
1767       .addMetadata(Expr);
1768 }
1769 
1770 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1771   const DIExpression *Expr = computeExprForSpill(Orig);
1772   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1773   Orig.getOperand(1).ChangeToImmediate(0U);
1774   Orig.getOperand(3).setMetadata(Expr);
1775 }
1776