1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/MC/MCInstrDesc.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 using namespace llvm; 49 50 static cl::opt<bool> PrintWholeRegMask( 51 "print-whole-regmask", 52 cl::desc("Print the full contents of regmask operands in IR dumps"), 53 cl::init(true), cl::Hidden); 54 55 //===----------------------------------------------------------------------===// 56 // MachineOperand Implementation 57 //===----------------------------------------------------------------------===// 58 59 void MachineOperand::setReg(unsigned Reg) { 60 if (getReg() == Reg) return; // No change. 61 62 // Otherwise, we have to change the register. If this operand is embedded 63 // into a machine function, we need to update the old and new register's 64 // use/def lists. 65 if (MachineInstr *MI = getParent()) 66 if (MachineBasicBlock *MBB = MI->getParent()) 67 if (MachineFunction *MF = MBB->getParent()) { 68 MachineRegisterInfo &MRI = MF->getRegInfo(); 69 MRI.removeRegOperandFromUseList(this); 70 SmallContents.RegNo = Reg; 71 MRI.addRegOperandToUseList(this); 72 return; 73 } 74 75 // Otherwise, just change the register, no problem. :) 76 SmallContents.RegNo = Reg; 77 } 78 79 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 80 const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 82 if (SubIdx && getSubReg()) 83 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 84 setReg(Reg); 85 if (SubIdx) 86 setSubReg(SubIdx); 87 } 88 89 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 90 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 91 if (getSubReg()) { 92 Reg = TRI.getSubReg(Reg, getSubReg()); 93 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 94 // That won't happen in legal code. 95 setSubReg(0); 96 } 97 setReg(Reg); 98 } 99 100 /// Change a def to a use, or a use to a def. 101 void MachineOperand::setIsDef(bool Val) { 102 assert(isReg() && "Wrong MachineOperand accessor"); 103 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 104 if (IsDef == Val) 105 return; 106 // MRI may keep uses and defs in different list positions. 107 if (MachineInstr *MI = getParent()) 108 if (MachineBasicBlock *MBB = MI->getParent()) 109 if (MachineFunction *MF = MBB->getParent()) { 110 MachineRegisterInfo &MRI = MF->getRegInfo(); 111 MRI.removeRegOperandFromUseList(this); 112 IsDef = Val; 113 MRI.addRegOperandToUseList(this); 114 return; 115 } 116 IsDef = Val; 117 } 118 119 // If this operand is currently a register operand, and if this is in a 120 // function, deregister the operand from the register's use/def list. 121 void MachineOperand::removeRegFromUses() { 122 if (!isReg() || !isOnRegUseList()) 123 return; 124 125 if (MachineInstr *MI = getParent()) { 126 if (MachineBasicBlock *MBB = MI->getParent()) { 127 if (MachineFunction *MF = MBB->getParent()) 128 MF->getRegInfo().removeRegOperandFromUseList(this); 129 } 130 } 131 } 132 133 /// ChangeToImmediate - Replace this operand with a new immediate operand of 134 /// the specified value. If an operand is known to be an immediate already, 135 /// the setImm method should be used. 136 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 137 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 138 139 removeRegFromUses(); 140 141 OpKind = MO_Immediate; 142 Contents.ImmVal = ImmVal; 143 } 144 145 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 146 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 147 148 removeRegFromUses(); 149 150 OpKind = MO_FPImmediate; 151 Contents.CFP = FPImm; 152 } 153 154 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 155 assert((!isReg() || !isTied()) && 156 "Cannot change a tied operand into an external symbol"); 157 158 removeRegFromUses(); 159 160 OpKind = MO_ExternalSymbol; 161 Contents.OffsetedInfo.Val.SymbolName = SymName; 162 setOffset(0); // Offset is always 0. 163 setTargetFlags(TargetFlags); 164 } 165 166 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 167 assert((!isReg() || !isTied()) && 168 "Cannot change a tied operand into an MCSymbol"); 169 170 removeRegFromUses(); 171 172 OpKind = MO_MCSymbol; 173 Contents.Sym = Sym; 174 } 175 176 /// ChangeToRegister - Replace this operand with a new register operand of 177 /// the specified value. If an operand is known to be an register already, 178 /// the setReg method should be used. 179 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 180 bool isKill, bool isDead, bool isUndef, 181 bool isDebug) { 182 MachineRegisterInfo *RegInfo = nullptr; 183 if (MachineInstr *MI = getParent()) 184 if (MachineBasicBlock *MBB = MI->getParent()) 185 if (MachineFunction *MF = MBB->getParent()) 186 RegInfo = &MF->getRegInfo(); 187 // If this operand is already a register operand, remove it from the 188 // register's use/def lists. 189 bool WasReg = isReg(); 190 if (RegInfo && WasReg) 191 RegInfo->removeRegOperandFromUseList(this); 192 193 // Change this to a register and set the reg#. 194 OpKind = MO_Register; 195 SmallContents.RegNo = Reg; 196 SubReg_TargetFlags = 0; 197 IsDef = isDef; 198 IsImp = isImp; 199 IsKill = isKill; 200 IsDead = isDead; 201 IsUndef = isUndef; 202 IsInternalRead = false; 203 IsEarlyClobber = false; 204 IsDebug = isDebug; 205 // Ensure isOnRegUseList() returns false. 206 Contents.Reg.Prev = nullptr; 207 // Preserve the tie when the operand was already a register. 208 if (!WasReg) 209 TiedTo = 0; 210 211 // If this operand is embedded in a function, add the operand to the 212 // register's use/def list. 213 if (RegInfo) 214 RegInfo->addRegOperandToUseList(this); 215 } 216 217 /// isIdenticalTo - Return true if this operand is identical to the specified 218 /// operand. Note that this should stay in sync with the hash_value overload 219 /// below. 220 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 221 if (getType() != Other.getType() || 222 getTargetFlags() != Other.getTargetFlags()) 223 return false; 224 225 switch (getType()) { 226 case MachineOperand::MO_Register: 227 return getReg() == Other.getReg() && isDef() == Other.isDef() && 228 getSubReg() == Other.getSubReg(); 229 case MachineOperand::MO_Immediate: 230 return getImm() == Other.getImm(); 231 case MachineOperand::MO_CImmediate: 232 return getCImm() == Other.getCImm(); 233 case MachineOperand::MO_FPImmediate: 234 return getFPImm() == Other.getFPImm(); 235 case MachineOperand::MO_MachineBasicBlock: 236 return getMBB() == Other.getMBB(); 237 case MachineOperand::MO_FrameIndex: 238 return getIndex() == Other.getIndex(); 239 case MachineOperand::MO_ConstantPoolIndex: 240 case MachineOperand::MO_TargetIndex: 241 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 242 case MachineOperand::MO_JumpTableIndex: 243 return getIndex() == Other.getIndex(); 244 case MachineOperand::MO_GlobalAddress: 245 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 246 case MachineOperand::MO_ExternalSymbol: 247 return !strcmp(getSymbolName(), Other.getSymbolName()) && 248 getOffset() == Other.getOffset(); 249 case MachineOperand::MO_BlockAddress: 250 return getBlockAddress() == Other.getBlockAddress() && 251 getOffset() == Other.getOffset(); 252 case MachineOperand::MO_RegisterMask: 253 case MachineOperand::MO_RegisterLiveOut: 254 return getRegMask() == Other.getRegMask(); 255 case MachineOperand::MO_MCSymbol: 256 return getMCSymbol() == Other.getMCSymbol(); 257 case MachineOperand::MO_CFIIndex: 258 return getCFIIndex() == Other.getCFIIndex(); 259 case MachineOperand::MO_Metadata: 260 return getMetadata() == Other.getMetadata(); 261 case MachineOperand::MO_IntrinsicID: 262 return getIntrinsicID() == Other.getIntrinsicID(); 263 case MachineOperand::MO_Predicate: 264 return getPredicate() == Other.getPredicate(); 265 } 266 llvm_unreachable("Invalid machine operand type"); 267 } 268 269 // Note: this must stay exactly in sync with isIdenticalTo above. 270 hash_code llvm::hash_value(const MachineOperand &MO) { 271 switch (MO.getType()) { 272 case MachineOperand::MO_Register: 273 // Register operands don't have target flags. 274 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 275 case MachineOperand::MO_Immediate: 276 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 277 case MachineOperand::MO_CImmediate: 278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 279 case MachineOperand::MO_FPImmediate: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 281 case MachineOperand::MO_MachineBasicBlock: 282 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 283 case MachineOperand::MO_FrameIndex: 284 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 285 case MachineOperand::MO_ConstantPoolIndex: 286 case MachineOperand::MO_TargetIndex: 287 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 288 MO.getOffset()); 289 case MachineOperand::MO_JumpTableIndex: 290 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 291 case MachineOperand::MO_ExternalSymbol: 292 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 293 MO.getSymbolName()); 294 case MachineOperand::MO_GlobalAddress: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 296 MO.getOffset()); 297 case MachineOperand::MO_BlockAddress: 298 return hash_combine(MO.getType(), MO.getTargetFlags(), 299 MO.getBlockAddress(), MO.getOffset()); 300 case MachineOperand::MO_RegisterMask: 301 case MachineOperand::MO_RegisterLiveOut: 302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 303 case MachineOperand::MO_Metadata: 304 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 305 case MachineOperand::MO_MCSymbol: 306 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 307 case MachineOperand::MO_CFIIndex: 308 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 309 case MachineOperand::MO_IntrinsicID: 310 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); 311 case MachineOperand::MO_Predicate: 312 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); 313 } 314 llvm_unreachable("Invalid machine operand type"); 315 } 316 317 void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, 318 const TargetIntrinsicInfo *IntrinsicInfo) const { 319 ModuleSlotTracker DummyMST(nullptr); 320 print(OS, DummyMST, TRI, IntrinsicInfo); 321 } 322 323 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 324 const TargetRegisterInfo *TRI, 325 const TargetIntrinsicInfo *IntrinsicInfo) const { 326 switch (getType()) { 327 case MachineOperand::MO_Register: 328 OS << PrintReg(getReg(), TRI, getSubReg()); 329 330 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 331 isInternalRead() || isEarlyClobber() || isTied()) { 332 OS << '<'; 333 bool NeedComma = false; 334 if (isDef()) { 335 if (NeedComma) OS << ','; 336 if (isEarlyClobber()) 337 OS << "earlyclobber,"; 338 if (isImplicit()) 339 OS << "imp-"; 340 OS << "def"; 341 NeedComma = true; 342 // <def,read-undef> only makes sense when getSubReg() is set. 343 // Don't clutter the output otherwise. 344 if (isUndef() && getSubReg()) 345 OS << ",read-undef"; 346 } else if (isImplicit()) { 347 OS << "imp-use"; 348 NeedComma = true; 349 } 350 351 if (isKill()) { 352 if (NeedComma) OS << ','; 353 OS << "kill"; 354 NeedComma = true; 355 } 356 if (isDead()) { 357 if (NeedComma) OS << ','; 358 OS << "dead"; 359 NeedComma = true; 360 } 361 if (isUndef() && isUse()) { 362 if (NeedComma) OS << ','; 363 OS << "undef"; 364 NeedComma = true; 365 } 366 if (isInternalRead()) { 367 if (NeedComma) OS << ','; 368 OS << "internal"; 369 NeedComma = true; 370 } 371 if (isTied()) { 372 if (NeedComma) OS << ','; 373 OS << "tied"; 374 if (TiedTo != 15) 375 OS << unsigned(TiedTo - 1); 376 } 377 OS << '>'; 378 } 379 break; 380 case MachineOperand::MO_Immediate: 381 OS << getImm(); 382 break; 383 case MachineOperand::MO_CImmediate: 384 getCImm()->getValue().print(OS, false); 385 break; 386 case MachineOperand::MO_FPImmediate: 387 if (getFPImm()->getType()->isFloatTy()) { 388 OS << getFPImm()->getValueAPF().convertToFloat(); 389 } else if (getFPImm()->getType()->isHalfTy()) { 390 APFloat APF = getFPImm()->getValueAPF(); 391 bool Unused; 392 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused); 393 OS << "half " << APF.convertToFloat(); 394 } else { 395 OS << getFPImm()->getValueAPF().convertToDouble(); 396 } 397 break; 398 case MachineOperand::MO_MachineBasicBlock: 399 OS << "<BB#" << getMBB()->getNumber() << ">"; 400 break; 401 case MachineOperand::MO_FrameIndex: 402 OS << "<fi#" << getIndex() << '>'; 403 break; 404 case MachineOperand::MO_ConstantPoolIndex: 405 OS << "<cp#" << getIndex(); 406 if (getOffset()) OS << "+" << getOffset(); 407 OS << '>'; 408 break; 409 case MachineOperand::MO_TargetIndex: 410 OS << "<ti#" << getIndex(); 411 if (getOffset()) OS << "+" << getOffset(); 412 OS << '>'; 413 break; 414 case MachineOperand::MO_JumpTableIndex: 415 OS << "<jt#" << getIndex() << '>'; 416 break; 417 case MachineOperand::MO_GlobalAddress: 418 OS << "<ga:"; 419 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 420 if (getOffset()) OS << "+" << getOffset(); 421 OS << '>'; 422 break; 423 case MachineOperand::MO_ExternalSymbol: 424 OS << "<es:" << getSymbolName(); 425 if (getOffset()) OS << "+" << getOffset(); 426 OS << '>'; 427 break; 428 case MachineOperand::MO_BlockAddress: 429 OS << '<'; 430 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 431 if (getOffset()) OS << "+" << getOffset(); 432 OS << '>'; 433 break; 434 case MachineOperand::MO_RegisterMask: { 435 unsigned NumRegsInMask = 0; 436 unsigned NumRegsEmitted = 0; 437 OS << "<regmask"; 438 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 439 unsigned MaskWord = i / 32; 440 unsigned MaskBit = i % 32; 441 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 442 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 443 OS << " " << PrintReg(i, TRI); 444 NumRegsEmitted++; 445 } 446 NumRegsInMask++; 447 } 448 } 449 if (NumRegsEmitted != NumRegsInMask) 450 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 451 OS << ">"; 452 break; 453 } 454 case MachineOperand::MO_RegisterLiveOut: 455 OS << "<regliveout>"; 456 break; 457 case MachineOperand::MO_Metadata: 458 OS << '<'; 459 getMetadata()->printAsOperand(OS, MST); 460 OS << '>'; 461 break; 462 case MachineOperand::MO_MCSymbol: 463 OS << "<MCSym=" << *getMCSymbol() << '>'; 464 break; 465 case MachineOperand::MO_CFIIndex: 466 OS << "<call frame instruction>"; 467 break; 468 case MachineOperand::MO_IntrinsicID: { 469 Intrinsic::ID ID = getIntrinsicID(); 470 if (ID < Intrinsic::num_intrinsics) 471 OS << "<intrinsic:@" << Intrinsic::getName(ID) << ')'; 472 else if (IntrinsicInfo) 473 OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << ')'; 474 else 475 OS << "<intrinsic:" << ID << '>'; 476 break; 477 } 478 case MachineOperand::MO_Predicate: { 479 auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); 480 OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") 481 << CmpInst::getPredicateName(Pred) << '>'; 482 } 483 } 484 if (unsigned TF = getTargetFlags()) 485 OS << "[TF=" << TF << ']'; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // MachineMemOperand Implementation 490 //===----------------------------------------------------------------------===// 491 492 /// getAddrSpace - Return the LLVM IR address space number that this pointer 493 /// points into. 494 unsigned MachinePointerInfo::getAddrSpace() const { 495 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 496 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 497 } 498 499 /// getConstantPool - Return a MachinePointerInfo record that refers to the 500 /// constant pool. 501 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 502 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 503 } 504 505 /// getFixedStack - Return a MachinePointerInfo record that refers to the 506 /// the specified FrameIndex. 507 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 508 int FI, int64_t Offset) { 509 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 510 } 511 512 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 513 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 514 } 515 516 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 517 return MachinePointerInfo(MF.getPSVManager().getGOT()); 518 } 519 520 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 521 int64_t Offset) { 522 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 523 } 524 525 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, 526 uint64_t s, unsigned int a, 527 const AAMDNodes &AAInfo, 528 const MDNode *Ranges) 529 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), 530 AAInfo(AAInfo), Ranges(Ranges) { 531 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 532 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 533 "invalid pointer value"); 534 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 535 assert((isLoad() || isStore()) && "Not a load/store!"); 536 } 537 538 /// Profile - Gather unique data for the object. 539 /// 540 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 541 ID.AddInteger(getOffset()); 542 ID.AddInteger(Size); 543 ID.AddPointer(getOpaqueValue()); 544 ID.AddInteger(getFlags()); 545 ID.AddInteger(getBaseAlignment()); 546 } 547 548 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 549 // The Value and Offset may differ due to CSE. But the flags and size 550 // should be the same. 551 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 552 assert(MMO->getSize() == getSize() && "Size mismatch!"); 553 554 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 555 // Update the alignment value. 556 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; 557 // Also update the base and offset, because the new alignment may 558 // not be applicable with the old ones. 559 PtrInfo = MMO->PtrInfo; 560 } 561 } 562 563 /// getAlignment - Return the minimum known alignment in bytes of the 564 /// actual memory reference. 565 uint64_t MachineMemOperand::getAlignment() const { 566 return MinAlign(getBaseAlignment(), getOffset()); 567 } 568 569 void MachineMemOperand::print(raw_ostream &OS) const { 570 ModuleSlotTracker DummyMST(nullptr); 571 print(OS, DummyMST); 572 } 573 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 574 assert((isLoad() || isStore()) && 575 "SV has to be a load, store or both."); 576 577 if (isVolatile()) 578 OS << "Volatile "; 579 580 if (isLoad()) 581 OS << "LD"; 582 if (isStore()) 583 OS << "ST"; 584 OS << getSize(); 585 586 // Print the address information. 587 OS << "["; 588 if (const Value *V = getValue()) 589 V->printAsOperand(OS, /*PrintType=*/false, MST); 590 else if (const PseudoSourceValue *PSV = getPseudoValue()) 591 PSV->printCustom(OS); 592 else 593 OS << "<unknown>"; 594 595 unsigned AS = getAddrSpace(); 596 if (AS != 0) 597 OS << "(addrspace=" << AS << ')'; 598 599 // If the alignment of the memory reference itself differs from the alignment 600 // of the base pointer, print the base alignment explicitly, next to the base 601 // pointer. 602 if (getBaseAlignment() != getAlignment()) 603 OS << "(align=" << getBaseAlignment() << ")"; 604 605 if (getOffset() != 0) 606 OS << "+" << getOffset(); 607 OS << "]"; 608 609 // Print the alignment of the reference. 610 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 611 OS << "(align=" << getAlignment() << ")"; 612 613 // Print TBAA info. 614 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 615 OS << "(tbaa="; 616 if (TBAAInfo->getNumOperands() > 0) 617 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 618 else 619 OS << "<unknown>"; 620 OS << ")"; 621 } 622 623 // Print AA scope info. 624 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 625 OS << "(alias.scope="; 626 if (ScopeInfo->getNumOperands() > 0) 627 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 628 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 629 if (i != ie-1) 630 OS << ","; 631 } 632 else 633 OS << "<unknown>"; 634 OS << ")"; 635 } 636 637 // Print AA noalias scope info. 638 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 639 OS << "(noalias="; 640 if (NoAliasInfo->getNumOperands() > 0) 641 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 642 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 643 if (i != ie-1) 644 OS << ","; 645 } 646 else 647 OS << "<unknown>"; 648 OS << ")"; 649 } 650 651 // Print nontemporal info. 652 if (isNonTemporal()) 653 OS << "(nontemporal)"; 654 655 if (isInvariant()) 656 OS << "(invariant)"; 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MachineInstr Implementation 661 //===----------------------------------------------------------------------===// 662 663 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 664 if (MCID->ImplicitDefs) 665 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 666 ++ImpDefs) 667 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 668 if (MCID->ImplicitUses) 669 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 670 ++ImpUses) 671 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 672 } 673 674 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 675 /// implicit operands. It reserves space for the number of operands specified by 676 /// the MCInstrDesc. 677 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 678 DebugLoc dl, bool NoImp) 679 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 680 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 681 debugLoc(std::move(dl)) 682 #ifdef LLVM_BUILD_GLOBAL_ISEL 683 , 684 Tys(0) 685 #endif 686 { 687 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 688 689 // Reserve space for the expected number of operands. 690 if (unsigned NumOps = MCID->getNumOperands() + 691 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 692 CapOperands = OperandCapacity::get(NumOps); 693 Operands = MF.allocateOperandArray(CapOperands); 694 } 695 696 if (!NoImp) 697 addImplicitDefUseOperands(MF); 698 } 699 700 /// MachineInstr ctor - Copies MachineInstr arg exactly 701 /// 702 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 703 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 704 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), 705 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) 706 #ifdef LLVM_BUILD_GLOBAL_ISEL 707 , 708 Tys(0) 709 #endif 710 { 711 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 712 713 CapOperands = OperandCapacity::get(MI.getNumOperands()); 714 Operands = MF.allocateOperandArray(CapOperands); 715 716 // Copy operands. 717 for (const MachineOperand &MO : MI.operands()) 718 addOperand(MF, MO); 719 720 // Copy all the sensible flags. 721 setFlags(MI.Flags); 722 } 723 724 /// getRegInfo - If this instruction is embedded into a MachineFunction, 725 /// return the MachineRegisterInfo object for the current function, otherwise 726 /// return null. 727 MachineRegisterInfo *MachineInstr::getRegInfo() { 728 if (MachineBasicBlock *MBB = getParent()) 729 return &MBB->getParent()->getRegInfo(); 730 return nullptr; 731 } 732 733 // Implement dummy setter and getter for type when 734 // global-isel is not built. 735 // The proper implementation is WIP and is tracked here: 736 // PR26576. 737 #ifndef LLVM_BUILD_GLOBAL_ISEL 738 unsigned MachineInstr::getNumTypes() const { return 0; } 739 740 void MachineInstr::setType(LLT Ty, unsigned Idx) {} 741 742 LLT MachineInstr::getType(unsigned Idx) const { return LLT{}; } 743 744 void MachineInstr::removeTypes() {} 745 746 #else 747 unsigned MachineInstr::getNumTypes() const { return Tys.size(); } 748 749 void MachineInstr::setType(LLT Ty, unsigned Idx) { 750 assert((!Ty.isValid() || isPreISelGenericOpcode(getOpcode())) && 751 "Non generic instructions are not supposed to be typed"); 752 if (Tys.size() < Idx + 1) 753 Tys.resize(Idx+1); 754 Tys[Idx] = Ty; 755 } 756 757 LLT MachineInstr::getType(unsigned Idx) const { return Tys[Idx]; } 758 759 void MachineInstr::removeTypes() { 760 Tys.clear(); 761 } 762 #endif // LLVM_BUILD_GLOBAL_ISEL 763 764 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 765 /// this instruction from their respective use lists. This requires that the 766 /// operands already be on their use lists. 767 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 768 for (MachineOperand &MO : operands()) 769 if (MO.isReg()) 770 MRI.removeRegOperandFromUseList(&MO); 771 } 772 773 /// AddRegOperandsToUseLists - Add all of the register operands in 774 /// this instruction from their respective use lists. This requires that the 775 /// operands not be on their use lists yet. 776 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 777 for (MachineOperand &MO : operands()) 778 if (MO.isReg()) 779 MRI.addRegOperandToUseList(&MO); 780 } 781 782 void MachineInstr::addOperand(const MachineOperand &Op) { 783 MachineBasicBlock *MBB = getParent(); 784 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 785 MachineFunction *MF = MBB->getParent(); 786 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 787 addOperand(*MF, Op); 788 } 789 790 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 791 /// ranges. If MRI is non-null also update use-def chains. 792 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 793 unsigned NumOps, MachineRegisterInfo *MRI) { 794 if (MRI) 795 return MRI->moveOperands(Dst, Src, NumOps); 796 797 // MachineOperand is a trivially copyable type so we can just use memmove. 798 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 799 } 800 801 /// addOperand - Add the specified operand to the instruction. If it is an 802 /// implicit operand, it is added to the end of the operand list. If it is 803 /// an explicit operand it is added at the end of the explicit operand list 804 /// (before the first implicit operand). 805 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 806 assert(MCID && "Cannot add operands before providing an instr descriptor"); 807 808 // Check if we're adding one of our existing operands. 809 if (&Op >= Operands && &Op < Operands + NumOperands) { 810 // This is unusual: MI->addOperand(MI->getOperand(i)). 811 // If adding Op requires reallocating or moving existing operands around, 812 // the Op reference could go stale. Support it by copying Op. 813 MachineOperand CopyOp(Op); 814 return addOperand(MF, CopyOp); 815 } 816 817 // Find the insert location for the new operand. Implicit registers go at 818 // the end, everything else goes before the implicit regs. 819 // 820 // FIXME: Allow mixed explicit and implicit operands on inline asm. 821 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 822 // implicit-defs, but they must not be moved around. See the FIXME in 823 // InstrEmitter.cpp. 824 unsigned OpNo = getNumOperands(); 825 bool isImpReg = Op.isReg() && Op.isImplicit(); 826 if (!isImpReg && !isInlineAsm()) { 827 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 828 --OpNo; 829 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 830 } 831 } 832 833 #ifndef NDEBUG 834 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 835 // OpNo now points as the desired insertion point. Unless this is a variadic 836 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 837 // RegMask operands go between the explicit and implicit operands. 838 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 839 OpNo < MCID->getNumOperands() || isMetaDataOp) && 840 "Trying to add an operand to a machine instr that is already done!"); 841 #endif 842 843 MachineRegisterInfo *MRI = getRegInfo(); 844 845 // Determine if the Operands array needs to be reallocated. 846 // Save the old capacity and operand array. 847 OperandCapacity OldCap = CapOperands; 848 MachineOperand *OldOperands = Operands; 849 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 850 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 851 Operands = MF.allocateOperandArray(CapOperands); 852 // Move the operands before the insertion point. 853 if (OpNo) 854 moveOperands(Operands, OldOperands, OpNo, MRI); 855 } 856 857 // Move the operands following the insertion point. 858 if (OpNo != NumOperands) 859 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 860 MRI); 861 ++NumOperands; 862 863 // Deallocate the old operand array. 864 if (OldOperands != Operands && OldOperands) 865 MF.deallocateOperandArray(OldCap, OldOperands); 866 867 // Copy Op into place. It still needs to be inserted into the MRI use lists. 868 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 869 NewMO->ParentMI = this; 870 871 // When adding a register operand, tell MRI about it. 872 if (NewMO->isReg()) { 873 // Ensure isOnRegUseList() returns false, regardless of Op's status. 874 NewMO->Contents.Reg.Prev = nullptr; 875 // Ignore existing ties. This is not a property that can be copied. 876 NewMO->TiedTo = 0; 877 // Add the new operand to MRI, but only for instructions in an MBB. 878 if (MRI) 879 MRI->addRegOperandToUseList(NewMO); 880 // The MCID operand information isn't accurate until we start adding 881 // explicit operands. The implicit operands are added first, then the 882 // explicits are inserted before them. 883 if (!isImpReg) { 884 // Tie uses to defs as indicated in MCInstrDesc. 885 if (NewMO->isUse()) { 886 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 887 if (DefIdx != -1) 888 tieOperands(DefIdx, OpNo); 889 } 890 // If the register operand is flagged as early, mark the operand as such. 891 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 892 NewMO->setIsEarlyClobber(true); 893 } 894 } 895 } 896 897 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 898 /// fewer operand than it started with. 899 /// 900 void MachineInstr::RemoveOperand(unsigned OpNo) { 901 assert(OpNo < getNumOperands() && "Invalid operand number"); 902 untieRegOperand(OpNo); 903 904 #ifndef NDEBUG 905 // Moving tied operands would break the ties. 906 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 907 if (Operands[i].isReg()) 908 assert(!Operands[i].isTied() && "Cannot move tied operands"); 909 #endif 910 911 MachineRegisterInfo *MRI = getRegInfo(); 912 if (MRI && Operands[OpNo].isReg()) 913 MRI->removeRegOperandFromUseList(Operands + OpNo); 914 915 // Don't call the MachineOperand destructor. A lot of this code depends on 916 // MachineOperand having a trivial destructor anyway, and adding a call here 917 // wouldn't make it 'destructor-correct'. 918 919 if (unsigned N = NumOperands - 1 - OpNo) 920 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 921 --NumOperands; 922 } 923 924 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 925 /// This function should be used only occasionally. The setMemRefs function 926 /// is the primary method for setting up a MachineInstr's MemRefs list. 927 void MachineInstr::addMemOperand(MachineFunction &MF, 928 MachineMemOperand *MO) { 929 mmo_iterator OldMemRefs = MemRefs; 930 unsigned OldNumMemRefs = NumMemRefs; 931 932 unsigned NewNum = NumMemRefs + 1; 933 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 934 935 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 936 NewMemRefs[NewNum - 1] = MO; 937 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 938 } 939 940 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 941 /// identical. 942 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { 943 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); 944 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); 945 if ((E1 - I1) != (E2 - I2)) 946 return false; 947 for (; I1 != E1; ++I1, ++I2) { 948 if (**I1 != **I2) 949 return false; 950 } 951 return true; 952 } 953 954 std::pair<MachineInstr::mmo_iterator, unsigned> 955 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { 956 957 // If either of the incoming memrefs are empty, we must be conservative and 958 // treat this as if we've exhausted our space for memrefs and dropped them. 959 if (memoperands_empty() || Other.memoperands_empty()) 960 return std::make_pair(nullptr, 0); 961 962 // If both instructions have identical memrefs, we don't need to merge them. 963 // Since many instructions have a single memref, and we tend to merge things 964 // like pairs of loads from the same location, this catches a large number of 965 // cases in practice. 966 if (hasIdenticalMMOs(*this, Other)) 967 return std::make_pair(MemRefs, NumMemRefs); 968 969 // TODO: consider uniquing elements within the operand lists to reduce 970 // space usage and fall back to conservative information less often. 971 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; 972 973 // If we don't have enough room to store this many memrefs, be conservative 974 // and drop them. Otherwise, we'd fail asserts when trying to add them to 975 // the new instruction. 976 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) 977 return std::make_pair(nullptr, 0); 978 979 MachineFunction *MF = getParent()->getParent(); 980 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); 981 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), 982 MemBegin); 983 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), 984 MemEnd); 985 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && 986 "missing memrefs"); 987 988 return std::make_pair(MemBegin, CombinedNumMemRefs); 989 } 990 991 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 992 assert(!isBundledWithPred() && "Must be called on bundle header"); 993 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 994 if (MII->getDesc().getFlags() & Mask) { 995 if (Type == AnyInBundle) 996 return true; 997 } else { 998 if (Type == AllInBundle && !MII->isBundle()) 999 return false; 1000 } 1001 // This was the last instruction in the bundle. 1002 if (!MII->isBundledWithSucc()) 1003 return Type == AllInBundle; 1004 } 1005 } 1006 1007 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 1008 MICheckType Check) const { 1009 // If opcodes or number of operands are not the same then the two 1010 // instructions are obviously not identical. 1011 if (Other.getOpcode() != getOpcode() || 1012 Other.getNumOperands() != getNumOperands()) 1013 return false; 1014 1015 if (isBundle()) { 1016 // Both instructions are bundles, compare MIs inside the bundle. 1017 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 1018 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 1019 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 1020 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end(); 1021 while (++I1 != E1 && I1->isInsideBundle()) { 1022 ++I2; 1023 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check)) 1024 return false; 1025 } 1026 } 1027 1028 // Check operands to make sure they match. 1029 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1030 const MachineOperand &MO = getOperand(i); 1031 const MachineOperand &OMO = Other.getOperand(i); 1032 if (!MO.isReg()) { 1033 if (!MO.isIdenticalTo(OMO)) 1034 return false; 1035 continue; 1036 } 1037 1038 // Clients may or may not want to ignore defs when testing for equality. 1039 // For example, machine CSE pass only cares about finding common 1040 // subexpressions, so it's safe to ignore virtual register defs. 1041 if (MO.isDef()) { 1042 if (Check == IgnoreDefs) 1043 continue; 1044 else if (Check == IgnoreVRegDefs) { 1045 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1046 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 1047 if (MO.getReg() != OMO.getReg()) 1048 return false; 1049 } else { 1050 if (!MO.isIdenticalTo(OMO)) 1051 return false; 1052 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 1053 return false; 1054 } 1055 } else { 1056 if (!MO.isIdenticalTo(OMO)) 1057 return false; 1058 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 1059 return false; 1060 } 1061 } 1062 // If DebugLoc does not match then two dbg.values are not identical. 1063 if (isDebugValue()) 1064 if (getDebugLoc() && Other.getDebugLoc() && 1065 getDebugLoc() != Other.getDebugLoc()) 1066 return false; 1067 return true; 1068 } 1069 1070 MachineInstr *MachineInstr::removeFromParent() { 1071 assert(getParent() && "Not embedded in a basic block!"); 1072 return getParent()->remove(this); 1073 } 1074 1075 MachineInstr *MachineInstr::removeFromBundle() { 1076 assert(getParent() && "Not embedded in a basic block!"); 1077 return getParent()->remove_instr(this); 1078 } 1079 1080 void MachineInstr::eraseFromParent() { 1081 assert(getParent() && "Not embedded in a basic block!"); 1082 getParent()->erase(this); 1083 } 1084 1085 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 1086 assert(getParent() && "Not embedded in a basic block!"); 1087 MachineBasicBlock *MBB = getParent(); 1088 MachineFunction *MF = MBB->getParent(); 1089 assert(MF && "Not embedded in a function!"); 1090 1091 MachineInstr *MI = (MachineInstr *)this; 1092 MachineRegisterInfo &MRI = MF->getRegInfo(); 1093 1094 for (const MachineOperand &MO : MI->operands()) { 1095 if (!MO.isReg() || !MO.isDef()) 1096 continue; 1097 unsigned Reg = MO.getReg(); 1098 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1099 continue; 1100 MRI.markUsesInDebugValueAsUndef(Reg); 1101 } 1102 MI->eraseFromParent(); 1103 } 1104 1105 void MachineInstr::eraseFromBundle() { 1106 assert(getParent() && "Not embedded in a basic block!"); 1107 getParent()->erase_instr(this); 1108 } 1109 1110 /// getNumExplicitOperands - Returns the number of non-implicit operands. 1111 /// 1112 unsigned MachineInstr::getNumExplicitOperands() const { 1113 unsigned NumOperands = MCID->getNumOperands(); 1114 if (!MCID->isVariadic()) 1115 return NumOperands; 1116 1117 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 1118 const MachineOperand &MO = getOperand(i); 1119 if (!MO.isReg() || !MO.isImplicit()) 1120 NumOperands++; 1121 } 1122 return NumOperands; 1123 } 1124 1125 void MachineInstr::bundleWithPred() { 1126 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1127 setFlag(BundledPred); 1128 MachineBasicBlock::instr_iterator Pred = getIterator(); 1129 --Pred; 1130 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1131 Pred->setFlag(BundledSucc); 1132 } 1133 1134 void MachineInstr::bundleWithSucc() { 1135 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1136 setFlag(BundledSucc); 1137 MachineBasicBlock::instr_iterator Succ = getIterator(); 1138 ++Succ; 1139 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1140 Succ->setFlag(BundledPred); 1141 } 1142 1143 void MachineInstr::unbundleFromPred() { 1144 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1145 clearFlag(BundledPred); 1146 MachineBasicBlock::instr_iterator Pred = getIterator(); 1147 --Pred; 1148 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1149 Pred->clearFlag(BundledSucc); 1150 } 1151 1152 void MachineInstr::unbundleFromSucc() { 1153 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1154 clearFlag(BundledSucc); 1155 MachineBasicBlock::instr_iterator Succ = getIterator(); 1156 ++Succ; 1157 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1158 Succ->clearFlag(BundledPred); 1159 } 1160 1161 bool MachineInstr::isStackAligningInlineAsm() const { 1162 if (isInlineAsm()) { 1163 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1164 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1165 return true; 1166 } 1167 return false; 1168 } 1169 1170 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1171 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1172 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1173 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1174 } 1175 1176 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1177 unsigned *GroupNo) const { 1178 assert(isInlineAsm() && "Expected an inline asm instruction"); 1179 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1180 1181 // Ignore queries about the initial operands. 1182 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1183 return -1; 1184 1185 unsigned Group = 0; 1186 unsigned NumOps; 1187 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1188 i += NumOps) { 1189 const MachineOperand &FlagMO = getOperand(i); 1190 // If we reach the implicit register operands, stop looking. 1191 if (!FlagMO.isImm()) 1192 return -1; 1193 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1194 if (i + NumOps > OpIdx) { 1195 if (GroupNo) 1196 *GroupNo = Group; 1197 return i; 1198 } 1199 ++Group; 1200 } 1201 return -1; 1202 } 1203 1204 const DILocalVariable *MachineInstr::getDebugVariable() const { 1205 assert(isDebugValue() && "not a DBG_VALUE"); 1206 return cast<DILocalVariable>(getOperand(2).getMetadata()); 1207 } 1208 1209 const DIExpression *MachineInstr::getDebugExpression() const { 1210 assert(isDebugValue() && "not a DBG_VALUE"); 1211 return cast<DIExpression>(getOperand(3).getMetadata()); 1212 } 1213 1214 const TargetRegisterClass* 1215 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1216 const TargetInstrInfo *TII, 1217 const TargetRegisterInfo *TRI) const { 1218 assert(getParent() && "Can't have an MBB reference here!"); 1219 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1220 const MachineFunction &MF = *getParent()->getParent(); 1221 1222 // Most opcodes have fixed constraints in their MCInstrDesc. 1223 if (!isInlineAsm()) 1224 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1225 1226 if (!getOperand(OpIdx).isReg()) 1227 return nullptr; 1228 1229 // For tied uses on inline asm, get the constraint from the def. 1230 unsigned DefIdx; 1231 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1232 OpIdx = DefIdx; 1233 1234 // Inline asm stores register class constraints in the flag word. 1235 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1236 if (FlagIdx < 0) 1237 return nullptr; 1238 1239 unsigned Flag = getOperand(FlagIdx).getImm(); 1240 unsigned RCID; 1241 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 1242 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 1243 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 1244 InlineAsm::hasRegClassConstraint(Flag, RCID)) 1245 return TRI->getRegClass(RCID); 1246 1247 // Assume that all registers in a memory operand are pointers. 1248 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1249 return TRI->getPointerRegClass(MF); 1250 1251 return nullptr; 1252 } 1253 1254 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1255 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1256 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1257 // Check every operands inside the bundle if we have 1258 // been asked to. 1259 if (ExploreBundle) 1260 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 1261 ++OpndIt) 1262 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1263 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1264 else 1265 // Otherwise, just check the current operands. 1266 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1267 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1268 return CurRC; 1269 } 1270 1271 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1272 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1273 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1274 assert(CurRC && "Invalid initial register class"); 1275 // Check if Reg is constrained by some of its use/def from MI. 1276 const MachineOperand &MO = getOperand(OpIdx); 1277 if (!MO.isReg() || MO.getReg() != Reg) 1278 return CurRC; 1279 // If yes, accumulate the constraints through the operand. 1280 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1281 } 1282 1283 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1284 unsigned OpIdx, const TargetRegisterClass *CurRC, 1285 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1286 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1287 const MachineOperand &MO = getOperand(OpIdx); 1288 assert(MO.isReg() && 1289 "Cannot get register constraints for non-register operand"); 1290 assert(CurRC && "Invalid initial register class"); 1291 if (unsigned SubIdx = MO.getSubReg()) { 1292 if (OpRC) 1293 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1294 else 1295 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1296 } else if (OpRC) 1297 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1298 return CurRC; 1299 } 1300 1301 /// Return the number of instructions inside the MI bundle, not counting the 1302 /// header instruction. 1303 unsigned MachineInstr::getBundleSize() const { 1304 MachineBasicBlock::const_instr_iterator I = getIterator(); 1305 unsigned Size = 0; 1306 while (I->isBundledWithSucc()) { 1307 ++Size; 1308 ++I; 1309 } 1310 return Size; 1311 } 1312 1313 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1314 /// the given register (not considering sub/super-registers). 1315 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 1316 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1317 const MachineOperand &MO = getOperand(i); 1318 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1319 return true; 1320 } 1321 return false; 1322 } 1323 1324 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1325 /// the specific register or -1 if it is not found. It further tightens 1326 /// the search criteria to a use that kills the register if isKill is true. 1327 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1328 const TargetRegisterInfo *TRI) const { 1329 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1330 const MachineOperand &MO = getOperand(i); 1331 if (!MO.isReg() || !MO.isUse()) 1332 continue; 1333 unsigned MOReg = MO.getReg(); 1334 if (!MOReg) 1335 continue; 1336 if (MOReg == Reg || 1337 (TRI && 1338 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1339 TargetRegisterInfo::isPhysicalRegister(Reg) && 1340 TRI->isSubRegister(MOReg, Reg))) 1341 if (!isKill || MO.isKill()) 1342 return i; 1343 } 1344 return -1; 1345 } 1346 1347 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1348 /// indicating if this instruction reads or writes Reg. This also considers 1349 /// partial defines. 1350 std::pair<bool,bool> 1351 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1352 SmallVectorImpl<unsigned> *Ops) const { 1353 bool PartDef = false; // Partial redefine. 1354 bool FullDef = false; // Full define. 1355 bool Use = false; 1356 1357 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1358 const MachineOperand &MO = getOperand(i); 1359 if (!MO.isReg() || MO.getReg() != Reg) 1360 continue; 1361 if (Ops) 1362 Ops->push_back(i); 1363 if (MO.isUse()) 1364 Use |= !MO.isUndef(); 1365 else if (MO.getSubReg() && !MO.isUndef()) 1366 // A partial <def,undef> doesn't count as reading the register. 1367 PartDef = true; 1368 else 1369 FullDef = true; 1370 } 1371 // A partial redefine uses Reg unless there is also a full define. 1372 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1373 } 1374 1375 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1376 /// the specified register or -1 if it is not found. If isDead is true, defs 1377 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1378 /// also checks if there is a def of a super-register. 1379 int 1380 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1381 const TargetRegisterInfo *TRI) const { 1382 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1383 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1384 const MachineOperand &MO = getOperand(i); 1385 // Accept regmask operands when Overlap is set. 1386 // Ignore them when looking for a specific def operand (Overlap == false). 1387 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1388 return i; 1389 if (!MO.isReg() || !MO.isDef()) 1390 continue; 1391 unsigned MOReg = MO.getReg(); 1392 bool Found = (MOReg == Reg); 1393 if (!Found && TRI && isPhys && 1394 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1395 if (Overlap) 1396 Found = TRI->regsOverlap(MOReg, Reg); 1397 else 1398 Found = TRI->isSubRegister(MOReg, Reg); 1399 } 1400 if (Found && (!isDead || MO.isDead())) 1401 return i; 1402 } 1403 return -1; 1404 } 1405 1406 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1407 /// operand list that is used to represent the predicate. It returns -1 if 1408 /// none is found. 1409 int MachineInstr::findFirstPredOperandIdx() const { 1410 // Don't call MCID.findFirstPredOperandIdx() because this variant 1411 // is sometimes called on an instruction that's not yet complete, and 1412 // so the number of operands is less than the MCID indicates. In 1413 // particular, the PTX target does this. 1414 const MCInstrDesc &MCID = getDesc(); 1415 if (MCID.isPredicable()) { 1416 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1417 if (MCID.OpInfo[i].isPredicate()) 1418 return i; 1419 } 1420 1421 return -1; 1422 } 1423 1424 // MachineOperand::TiedTo is 4 bits wide. 1425 const unsigned TiedMax = 15; 1426 1427 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1428 /// 1429 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1430 /// field. TiedTo can have these values: 1431 /// 1432 /// 0: Operand is not tied to anything. 1433 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1434 /// TiedMax: Tied to an operand >= TiedMax-1. 1435 /// 1436 /// The tied def must be one of the first TiedMax operands on a normal 1437 /// instruction. INLINEASM instructions allow more tied defs. 1438 /// 1439 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1440 MachineOperand &DefMO = getOperand(DefIdx); 1441 MachineOperand &UseMO = getOperand(UseIdx); 1442 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1443 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1444 assert(!DefMO.isTied() && "Def is already tied to another use"); 1445 assert(!UseMO.isTied() && "Use is already tied to another def"); 1446 1447 if (DefIdx < TiedMax) 1448 UseMO.TiedTo = DefIdx + 1; 1449 else { 1450 // Inline asm can use the group descriptors to find tied operands, but on 1451 // normal instruction, the tied def must be within the first TiedMax 1452 // operands. 1453 assert(isInlineAsm() && "DefIdx out of range"); 1454 UseMO.TiedTo = TiedMax; 1455 } 1456 1457 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1458 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1459 } 1460 1461 /// Given the index of a tied register operand, find the operand it is tied to. 1462 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1463 /// which must exist. 1464 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1465 const MachineOperand &MO = getOperand(OpIdx); 1466 assert(MO.isTied() && "Operand isn't tied"); 1467 1468 // Normally TiedTo is in range. 1469 if (MO.TiedTo < TiedMax) 1470 return MO.TiedTo - 1; 1471 1472 // Uses on normal instructions can be out of range. 1473 if (!isInlineAsm()) { 1474 // Normal tied defs must be in the 0..TiedMax-1 range. 1475 if (MO.isUse()) 1476 return TiedMax - 1; 1477 // MO is a def. Search for the tied use. 1478 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1479 const MachineOperand &UseMO = getOperand(i); 1480 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1481 return i; 1482 } 1483 llvm_unreachable("Can't find tied use"); 1484 } 1485 1486 // Now deal with inline asm by parsing the operand group descriptor flags. 1487 // Find the beginning of each operand group. 1488 SmallVector<unsigned, 8> GroupIdx; 1489 unsigned OpIdxGroup = ~0u; 1490 unsigned NumOps; 1491 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1492 i += NumOps) { 1493 const MachineOperand &FlagMO = getOperand(i); 1494 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1495 unsigned CurGroup = GroupIdx.size(); 1496 GroupIdx.push_back(i); 1497 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1498 // OpIdx belongs to this operand group. 1499 if (OpIdx > i && OpIdx < i + NumOps) 1500 OpIdxGroup = CurGroup; 1501 unsigned TiedGroup; 1502 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1503 continue; 1504 // Operands in this group are tied to operands in TiedGroup which must be 1505 // earlier. Find the number of operands between the two groups. 1506 unsigned Delta = i - GroupIdx[TiedGroup]; 1507 1508 // OpIdx is a use tied to TiedGroup. 1509 if (OpIdxGroup == CurGroup) 1510 return OpIdx - Delta; 1511 1512 // OpIdx is a def tied to this use group. 1513 if (OpIdxGroup == TiedGroup) 1514 return OpIdx + Delta; 1515 } 1516 llvm_unreachable("Invalid tied operand on inline asm"); 1517 } 1518 1519 /// clearKillInfo - Clears kill flags on all operands. 1520 /// 1521 void MachineInstr::clearKillInfo() { 1522 for (MachineOperand &MO : operands()) { 1523 if (MO.isReg() && MO.isUse()) 1524 MO.setIsKill(false); 1525 } 1526 } 1527 1528 void MachineInstr::substituteRegister(unsigned FromReg, 1529 unsigned ToReg, 1530 unsigned SubIdx, 1531 const TargetRegisterInfo &RegInfo) { 1532 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1533 if (SubIdx) 1534 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1535 for (MachineOperand &MO : operands()) { 1536 if (!MO.isReg() || MO.getReg() != FromReg) 1537 continue; 1538 MO.substPhysReg(ToReg, RegInfo); 1539 } 1540 } else { 1541 for (MachineOperand &MO : operands()) { 1542 if (!MO.isReg() || MO.getReg() != FromReg) 1543 continue; 1544 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1545 } 1546 } 1547 } 1548 1549 /// isSafeToMove - Return true if it is safe to move this instruction. If 1550 /// SawStore is set to true, it means that there is a store (or call) between 1551 /// the instruction's location and its intended destination. 1552 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1553 // Ignore stuff that we obviously can't move. 1554 // 1555 // Treat volatile loads as stores. This is not strictly necessary for 1556 // volatiles, but it is required for atomic loads. It is not allowed to move 1557 // a load across an atomic load with Ordering > Monotonic. 1558 if (mayStore() || isCall() || 1559 (mayLoad() && hasOrderedMemoryRef())) { 1560 SawStore = true; 1561 return false; 1562 } 1563 1564 if (isPosition() || isDebugValue() || isTerminator() || 1565 hasUnmodeledSideEffects()) 1566 return false; 1567 1568 // See if this instruction does a load. If so, we have to guarantee that the 1569 // loaded value doesn't change between the load and the its intended 1570 // destination. The check for isInvariantLoad gives the targe the chance to 1571 // classify the load as always returning a constant, e.g. a constant pool 1572 // load. 1573 if (mayLoad() && !isInvariantLoad(AA)) 1574 // Otherwise, this is a real load. If there is a store between the load and 1575 // end of block, we can't move it. 1576 return !SawStore; 1577 1578 return true; 1579 } 1580 1581 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1582 /// or volatile memory reference, or if the information describing the memory 1583 /// reference is not available. Return false if it is known to have no ordered 1584 /// memory references. 1585 bool MachineInstr::hasOrderedMemoryRef() const { 1586 // An instruction known never to access memory won't have a volatile access. 1587 if (!mayStore() && 1588 !mayLoad() && 1589 !isCall() && 1590 !hasUnmodeledSideEffects()) 1591 return false; 1592 1593 // Otherwise, if the instruction has no memory reference information, 1594 // conservatively assume it wasn't preserved. 1595 if (memoperands_empty()) 1596 return true; 1597 1598 // Check if any of our memory operands are ordered. 1599 return any_of(memoperands(), [](const MachineMemOperand *MMO) { 1600 return !MMO->isUnordered(); 1601 }); 1602 } 1603 1604 /// isInvariantLoad - Return true if this instruction is loading from a 1605 /// location whose value is invariant across the function. For example, 1606 /// loading a value from the constant pool or from the argument area 1607 /// of a function if it does not change. This should only return true of 1608 /// *all* loads the instruction does are invariant (if it does multiple loads). 1609 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1610 // If the instruction doesn't load at all, it isn't an invariant load. 1611 if (!mayLoad()) 1612 return false; 1613 1614 // If the instruction has lost its memoperands, conservatively assume that 1615 // it may not be an invariant load. 1616 if (memoperands_empty()) 1617 return false; 1618 1619 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1620 1621 for (MachineMemOperand *MMO : memoperands()) { 1622 if (MMO->isVolatile()) return false; 1623 if (MMO->isStore()) return false; 1624 if (MMO->isInvariant()) continue; 1625 1626 // A load from a constant PseudoSourceValue is invariant. 1627 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1628 if (PSV->isConstant(&MFI)) 1629 continue; 1630 1631 if (const Value *V = MMO->getValue()) { 1632 // If we have an AliasAnalysis, ask it whether the memory is constant. 1633 if (AA && 1634 AA->pointsToConstantMemory( 1635 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1636 continue; 1637 } 1638 1639 // Otherwise assume conservatively. 1640 return false; 1641 } 1642 1643 // Everything checks out. 1644 return true; 1645 } 1646 1647 /// isConstantValuePHI - If the specified instruction is a PHI that always 1648 /// merges together the same virtual register, return the register, otherwise 1649 /// return 0. 1650 unsigned MachineInstr::isConstantValuePHI() const { 1651 if (!isPHI()) 1652 return 0; 1653 assert(getNumOperands() >= 3 && 1654 "It's illegal to have a PHI without source operands"); 1655 1656 unsigned Reg = getOperand(1).getReg(); 1657 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1658 if (getOperand(i).getReg() != Reg) 1659 return 0; 1660 return Reg; 1661 } 1662 1663 bool MachineInstr::hasUnmodeledSideEffects() const { 1664 if (hasProperty(MCID::UnmodeledSideEffects)) 1665 return true; 1666 if (isInlineAsm()) { 1667 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1668 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1669 return true; 1670 } 1671 1672 return false; 1673 } 1674 1675 bool MachineInstr::isLoadFoldBarrier() const { 1676 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1677 } 1678 1679 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1680 /// 1681 bool MachineInstr::allDefsAreDead() const { 1682 for (const MachineOperand &MO : operands()) { 1683 if (!MO.isReg() || MO.isUse()) 1684 continue; 1685 if (!MO.isDead()) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 /// copyImplicitOps - Copy implicit register operands from specified 1692 /// instruction to this instruction. 1693 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1694 const MachineInstr &MI) { 1695 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1696 i != e; ++i) { 1697 const MachineOperand &MO = MI.getOperand(i); 1698 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1699 addOperand(MF, MO); 1700 } 1701 } 1702 1703 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1705 dbgs() << " " << *this; 1706 #endif 1707 } 1708 1709 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1710 const Module *M = nullptr; 1711 if (const MachineBasicBlock *MBB = getParent()) 1712 if (const MachineFunction *MF = MBB->getParent()) 1713 M = MF->getFunction()->getParent(); 1714 1715 ModuleSlotTracker MST(M); 1716 print(OS, MST, SkipOpers); 1717 } 1718 1719 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1720 bool SkipOpers) const { 1721 // We can be a bit tidier if we know the MachineFunction. 1722 const MachineFunction *MF = nullptr; 1723 const TargetRegisterInfo *TRI = nullptr; 1724 const MachineRegisterInfo *MRI = nullptr; 1725 const TargetInstrInfo *TII = nullptr; 1726 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1727 1728 if (const MachineBasicBlock *MBB = getParent()) { 1729 MF = MBB->getParent(); 1730 if (MF) { 1731 MRI = &MF->getRegInfo(); 1732 TRI = MF->getSubtarget().getRegisterInfo(); 1733 TII = MF->getSubtarget().getInstrInfo(); 1734 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 1735 } 1736 } 1737 1738 // Save a list of virtual registers. 1739 SmallVector<unsigned, 8> VirtRegs; 1740 1741 // Print explicitly defined operands on the left of an assignment syntax. 1742 unsigned StartOp = 0, e = getNumOperands(); 1743 for (; StartOp < e && getOperand(StartOp).isReg() && 1744 getOperand(StartOp).isDef() && 1745 !getOperand(StartOp).isImplicit(); 1746 ++StartOp) { 1747 if (StartOp != 0) OS << ", "; 1748 getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); 1749 unsigned Reg = getOperand(StartOp).getReg(); 1750 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1751 VirtRegs.push_back(Reg); 1752 unsigned Size; 1753 if (MRI && (Size = MRI->getSize(Reg))) 1754 OS << '(' << Size << ')'; 1755 } 1756 } 1757 1758 if (StartOp != 0) 1759 OS << " = "; 1760 1761 // Print the opcode name. 1762 if (TII) 1763 OS << TII->getName(getOpcode()); 1764 else 1765 OS << "UNKNOWN"; 1766 1767 if (getNumTypes() > 0) { 1768 OS << " { "; 1769 for (unsigned i = 0; i < getNumTypes(); ++i) { 1770 getType(i).print(OS); 1771 if (i + 1 != getNumTypes()) 1772 OS << ", "; 1773 } 1774 OS << " } "; 1775 } 1776 1777 if (SkipOpers) 1778 return; 1779 1780 // Print the rest of the operands. 1781 bool OmittedAnyCallClobbers = false; 1782 bool FirstOp = true; 1783 unsigned AsmDescOp = ~0u; 1784 unsigned AsmOpCount = 0; 1785 1786 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1787 // Print asm string. 1788 OS << " "; 1789 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1790 1791 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1792 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1793 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1794 OS << " [sideeffect]"; 1795 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1796 OS << " [mayload]"; 1797 if (ExtraInfo & InlineAsm::Extra_MayStore) 1798 OS << " [maystore]"; 1799 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1800 OS << " [isconvergent]"; 1801 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1802 OS << " [alignstack]"; 1803 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1804 OS << " [attdialect]"; 1805 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1806 OS << " [inteldialect]"; 1807 1808 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1809 FirstOp = false; 1810 } 1811 1812 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1813 const MachineOperand &MO = getOperand(i); 1814 1815 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1816 VirtRegs.push_back(MO.getReg()); 1817 1818 // Omit call-clobbered registers which aren't used anywhere. This makes 1819 // call instructions much less noisy on targets where calls clobber lots 1820 // of registers. Don't rely on MO.isDead() because we may be called before 1821 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1822 if (MRI && isCall() && 1823 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1824 unsigned Reg = MO.getReg(); 1825 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1826 if (MRI->use_empty(Reg)) { 1827 bool HasAliasLive = false; 1828 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1829 unsigned AliasReg = *AI; 1830 if (!MRI->use_empty(AliasReg)) { 1831 HasAliasLive = true; 1832 break; 1833 } 1834 } 1835 if (!HasAliasLive) { 1836 OmittedAnyCallClobbers = true; 1837 continue; 1838 } 1839 } 1840 } 1841 } 1842 1843 if (FirstOp) FirstOp = false; else OS << ","; 1844 OS << " "; 1845 if (i < getDesc().NumOperands) { 1846 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1847 if (MCOI.isPredicate()) 1848 OS << "pred:"; 1849 if (MCOI.isOptionalDef()) 1850 OS << "opt:"; 1851 } 1852 if (isDebugValue() && MO.isMetadata()) { 1853 // Pretty print DBG_VALUE instructions. 1854 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1855 if (DIV && !DIV->getName().empty()) 1856 OS << "!\"" << DIV->getName() << '\"'; 1857 else 1858 MO.print(OS, MST, TRI); 1859 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1860 OS << TRI->getSubRegIndexName(MO.getImm()); 1861 } else if (i == AsmDescOp && MO.isImm()) { 1862 // Pretty print the inline asm operand descriptor. 1863 OS << '$' << AsmOpCount++; 1864 unsigned Flag = MO.getImm(); 1865 switch (InlineAsm::getKind(Flag)) { 1866 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1867 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1868 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1869 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1870 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1871 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1872 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1873 } 1874 1875 unsigned RCID = 0; 1876 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1877 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1878 if (TRI) { 1879 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1880 } else 1881 OS << ":RC" << RCID; 1882 } 1883 1884 if (InlineAsm::isMemKind(Flag)) { 1885 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1886 switch (MCID) { 1887 case InlineAsm::Constraint_es: OS << ":es"; break; 1888 case InlineAsm::Constraint_i: OS << ":i"; break; 1889 case InlineAsm::Constraint_m: OS << ":m"; break; 1890 case InlineAsm::Constraint_o: OS << ":o"; break; 1891 case InlineAsm::Constraint_v: OS << ":v"; break; 1892 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1893 case InlineAsm::Constraint_R: OS << ":R"; break; 1894 case InlineAsm::Constraint_S: OS << ":S"; break; 1895 case InlineAsm::Constraint_T: OS << ":T"; break; 1896 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1897 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1898 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1899 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1900 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1901 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1902 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1903 case InlineAsm::Constraint_X: OS << ":X"; break; 1904 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1905 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1906 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1907 default: OS << ":?"; break; 1908 } 1909 } 1910 1911 unsigned TiedTo = 0; 1912 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1913 OS << " tiedto:$" << TiedTo; 1914 1915 OS << ']'; 1916 1917 // Compute the index of the next operand descriptor. 1918 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1919 } else 1920 MO.print(OS, MST, TRI); 1921 } 1922 1923 // Briefly indicate whether any call clobbers were omitted. 1924 if (OmittedAnyCallClobbers) { 1925 if (!FirstOp) OS << ","; 1926 OS << " ..."; 1927 } 1928 1929 bool HaveSemi = false; 1930 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1931 if (Flags & PrintableFlags) { 1932 if (!HaveSemi) { 1933 OS << ";"; 1934 HaveSemi = true; 1935 } 1936 OS << " flags: "; 1937 1938 if (Flags & FrameSetup) 1939 OS << "FrameSetup"; 1940 1941 if (Flags & FrameDestroy) 1942 OS << "FrameDestroy"; 1943 } 1944 1945 if (!memoperands_empty()) { 1946 if (!HaveSemi) { 1947 OS << ";"; 1948 HaveSemi = true; 1949 } 1950 1951 OS << " mem:"; 1952 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1953 i != e; ++i) { 1954 (*i)->print(OS, MST); 1955 if (std::next(i) != e) 1956 OS << " "; 1957 } 1958 } 1959 1960 // Print the regclass of any virtual registers encountered. 1961 if (MRI && !VirtRegs.empty()) { 1962 if (!HaveSemi) { 1963 OS << ";"; 1964 HaveSemi = true; 1965 } 1966 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1967 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); 1968 if (!RC) 1969 continue; 1970 // Generic virtual registers do not have register classes. 1971 if (RC.is<const RegisterBank *>()) 1972 OS << " " << RC.get<const RegisterBank *>()->getName(); 1973 else 1974 OS << " " 1975 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); 1976 OS << ':' << PrintReg(VirtRegs[i]); 1977 for (unsigned j = i+1; j != VirtRegs.size();) { 1978 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { 1979 ++j; 1980 continue; 1981 } 1982 if (VirtRegs[i] != VirtRegs[j]) 1983 OS << "," << PrintReg(VirtRegs[j]); 1984 VirtRegs.erase(VirtRegs.begin()+j); 1985 } 1986 } 1987 } 1988 1989 // Print debug location information. 1990 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1991 if (!HaveSemi) 1992 OS << ";"; 1993 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1994 OS << " line no:" << DV->getLine(); 1995 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1996 DebugLoc InlinedAtDL(InlinedAt); 1997 if (InlinedAtDL && MF) { 1998 OS << " inlined @[ "; 1999 InlinedAtDL.print(OS); 2000 OS << " ]"; 2001 } 2002 } 2003 if (isIndirectDebugValue()) 2004 OS << " indirect"; 2005 } else if (debugLoc && MF) { 2006 if (!HaveSemi) 2007 OS << ";"; 2008 OS << " dbg:"; 2009 debugLoc.print(OS); 2010 } 2011 2012 OS << '\n'; 2013 } 2014 2015 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 2016 const TargetRegisterInfo *RegInfo, 2017 bool AddIfNotFound) { 2018 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 2019 bool hasAliases = isPhysReg && 2020 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2021 bool Found = false; 2022 SmallVector<unsigned,4> DeadOps; 2023 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2024 MachineOperand &MO = getOperand(i); 2025 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2026 continue; 2027 2028 // DEBUG_VALUE nodes do not contribute to code generation and should 2029 // always be ignored. Failure to do so may result in trying to modify 2030 // KILL flags on DEBUG_VALUE nodes. 2031 if (MO.isDebug()) 2032 continue; 2033 2034 unsigned Reg = MO.getReg(); 2035 if (!Reg) 2036 continue; 2037 2038 if (Reg == IncomingReg) { 2039 if (!Found) { 2040 if (MO.isKill()) 2041 // The register is already marked kill. 2042 return true; 2043 if (isPhysReg && isRegTiedToDefOperand(i)) 2044 // Two-address uses of physregs must not be marked kill. 2045 return true; 2046 MO.setIsKill(); 2047 Found = true; 2048 } 2049 } else if (hasAliases && MO.isKill() && 2050 TargetRegisterInfo::isPhysicalRegister(Reg)) { 2051 // A super-register kill already exists. 2052 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2053 return true; 2054 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2055 DeadOps.push_back(i); 2056 } 2057 } 2058 2059 // Trim unneeded kill operands. 2060 while (!DeadOps.empty()) { 2061 unsigned OpIdx = DeadOps.back(); 2062 if (getOperand(OpIdx).isImplicit()) 2063 RemoveOperand(OpIdx); 2064 else 2065 getOperand(OpIdx).setIsKill(false); 2066 DeadOps.pop_back(); 2067 } 2068 2069 // If not found, this means an alias of one of the operands is killed. Add a 2070 // new implicit operand if required. 2071 if (!Found && AddIfNotFound) { 2072 addOperand(MachineOperand::CreateReg(IncomingReg, 2073 false /*IsDef*/, 2074 true /*IsImp*/, 2075 true /*IsKill*/)); 2076 return true; 2077 } 2078 return Found; 2079 } 2080 2081 void MachineInstr::clearRegisterKills(unsigned Reg, 2082 const TargetRegisterInfo *RegInfo) { 2083 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 2084 RegInfo = nullptr; 2085 for (MachineOperand &MO : operands()) { 2086 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2087 continue; 2088 unsigned OpReg = MO.getReg(); 2089 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2090 MO.setIsKill(false); 2091 } 2092 } 2093 2094 bool MachineInstr::addRegisterDead(unsigned Reg, 2095 const TargetRegisterInfo *RegInfo, 2096 bool AddIfNotFound) { 2097 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 2098 bool hasAliases = isPhysReg && 2099 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2100 bool Found = false; 2101 SmallVector<unsigned,4> DeadOps; 2102 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2103 MachineOperand &MO = getOperand(i); 2104 if (!MO.isReg() || !MO.isDef()) 2105 continue; 2106 unsigned MOReg = MO.getReg(); 2107 if (!MOReg) 2108 continue; 2109 2110 if (MOReg == Reg) { 2111 MO.setIsDead(); 2112 Found = true; 2113 } else if (hasAliases && MO.isDead() && 2114 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 2115 // There exists a super-register that's marked dead. 2116 if (RegInfo->isSuperRegister(Reg, MOReg)) 2117 return true; 2118 if (RegInfo->isSubRegister(Reg, MOReg)) 2119 DeadOps.push_back(i); 2120 } 2121 } 2122 2123 // Trim unneeded dead operands. 2124 while (!DeadOps.empty()) { 2125 unsigned OpIdx = DeadOps.back(); 2126 if (getOperand(OpIdx).isImplicit()) 2127 RemoveOperand(OpIdx); 2128 else 2129 getOperand(OpIdx).setIsDead(false); 2130 DeadOps.pop_back(); 2131 } 2132 2133 // If not found, this means an alias of one of the operands is dead. Add a 2134 // new implicit operand if required. 2135 if (Found || !AddIfNotFound) 2136 return Found; 2137 2138 addOperand(MachineOperand::CreateReg(Reg, 2139 true /*IsDef*/, 2140 true /*IsImp*/, 2141 false /*IsKill*/, 2142 true /*IsDead*/)); 2143 return true; 2144 } 2145 2146 void MachineInstr::clearRegisterDeads(unsigned Reg) { 2147 for (MachineOperand &MO : operands()) { 2148 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2149 continue; 2150 MO.setIsDead(false); 2151 } 2152 } 2153 2154 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 2155 for (MachineOperand &MO : operands()) { 2156 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2157 continue; 2158 MO.setIsUndef(IsUndef); 2159 } 2160 } 2161 2162 void MachineInstr::addRegisterDefined(unsigned Reg, 2163 const TargetRegisterInfo *RegInfo) { 2164 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2165 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 2166 if (MO) 2167 return; 2168 } else { 2169 for (const MachineOperand &MO : operands()) { 2170 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2171 MO.getSubReg() == 0) 2172 return; 2173 } 2174 } 2175 addOperand(MachineOperand::CreateReg(Reg, 2176 true /*IsDef*/, 2177 true /*IsImp*/)); 2178 } 2179 2180 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 2181 const TargetRegisterInfo &TRI) { 2182 bool HasRegMask = false; 2183 for (MachineOperand &MO : operands()) { 2184 if (MO.isRegMask()) { 2185 HasRegMask = true; 2186 continue; 2187 } 2188 if (!MO.isReg() || !MO.isDef()) continue; 2189 unsigned Reg = MO.getReg(); 2190 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 2191 // If there are no uses, including partial uses, the def is dead. 2192 if (none_of(UsedRegs, 2193 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 2194 MO.setIsDead(); 2195 } 2196 2197 // This is a call with a register mask operand. 2198 // Mask clobbers are always dead, so add defs for the non-dead defines. 2199 if (HasRegMask) 2200 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2201 I != E; ++I) 2202 addRegisterDefined(*I, &TRI); 2203 } 2204 2205 unsigned 2206 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2207 // Build up a buffer of hash code components. 2208 SmallVector<size_t, 8> HashComponents; 2209 HashComponents.reserve(MI->getNumOperands() + 1); 2210 HashComponents.push_back(MI->getOpcode()); 2211 for (const MachineOperand &MO : MI->operands()) { 2212 if (MO.isReg() && MO.isDef() && 2213 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2214 continue; // Skip virtual register defs. 2215 2216 HashComponents.push_back(hash_value(MO)); 2217 } 2218 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2219 } 2220 2221 void MachineInstr::emitError(StringRef Msg) const { 2222 // Find the source location cookie. 2223 unsigned LocCookie = 0; 2224 const MDNode *LocMD = nullptr; 2225 for (unsigned i = getNumOperands(); i != 0; --i) { 2226 if (getOperand(i-1).isMetadata() && 2227 (LocMD = getOperand(i-1).getMetadata()) && 2228 LocMD->getNumOperands() != 0) { 2229 if (const ConstantInt *CI = 2230 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2231 LocCookie = CI->getZExtValue(); 2232 break; 2233 } 2234 } 2235 } 2236 2237 if (const MachineBasicBlock *MBB = getParent()) 2238 if (const MachineFunction *MF = MBB->getParent()) 2239 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2240 report_fatal_error(Msg); 2241 } 2242 2243 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2244 const MCInstrDesc &MCID, bool IsIndirect, 2245 unsigned Reg, unsigned Offset, 2246 const MDNode *Variable, const MDNode *Expr) { 2247 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2248 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2249 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2250 "Expected inlined-at fields to agree"); 2251 if (IsIndirect) 2252 return BuildMI(MF, DL, MCID) 2253 .addReg(Reg, RegState::Debug) 2254 .addImm(Offset) 2255 .addMetadata(Variable) 2256 .addMetadata(Expr); 2257 else { 2258 assert(Offset == 0 && "A direct address cannot have an offset."); 2259 return BuildMI(MF, DL, MCID) 2260 .addReg(Reg, RegState::Debug) 2261 .addReg(0U, RegState::Debug) 2262 .addMetadata(Variable) 2263 .addMetadata(Expr); 2264 } 2265 } 2266 2267 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2268 MachineBasicBlock::iterator I, 2269 const DebugLoc &DL, const MCInstrDesc &MCID, 2270 bool IsIndirect, unsigned Reg, 2271 unsigned Offset, const MDNode *Variable, 2272 const MDNode *Expr) { 2273 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2274 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2275 MachineFunction &MF = *BB.getParent(); 2276 MachineInstr *MI = 2277 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); 2278 BB.insert(I, MI); 2279 return MachineInstrBuilder(MF, MI); 2280 } 2281