1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSlotTracker.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LowLevelTypeImpl.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   if (MCID->ImplicitDefs)
89     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
90            ++ImpDefs)
91       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
92   if (MCID->ImplicitUses)
93     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
94            ++ImpUses)
95       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
96 }
97 
98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
99 /// implicit operands. It reserves space for the number of operands specified by
100 /// the MCInstrDesc.
101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
102                            DebugLoc DL, bool NoImp)
103     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
104   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
105 
106   // Reserve space for the expected number of operands.
107   if (unsigned NumOps = MCID->getNumOperands() +
108     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
109     CapOperands = OperandCapacity::get(NumOps);
110     Operands = MF.allocateOperandArray(CapOperands);
111   }
112 
113   if (!NoImp)
114     addImplicitDefUseOperands(MF);
115 }
116 
117 /// MachineInstr ctor - Copies MachineInstr arg exactly.
118 /// Does not copy the number from debug instruction numbering, to preserve
119 /// uniqueness.
120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
121     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
122       DebugInstrNum(0) {
123   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 
125   CapOperands = OperandCapacity::get(MI.getNumOperands());
126   Operands = MF.allocateOperandArray(CapOperands);
127 
128   // Copy operands.
129   for (const MachineOperand &MO : MI.operands())
130     addOperand(MF, MO);
131 
132   // Copy all the sensible flags.
133   setFlags(MI.Flags);
134 }
135 
136 void MachineInstr::moveBefore(MachineInstr *MovePos) {
137   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
138 }
139 
140 /// getRegInfo - If this instruction is embedded into a MachineFunction,
141 /// return the MachineRegisterInfo object for the current function, otherwise
142 /// return null.
143 MachineRegisterInfo *MachineInstr::getRegInfo() {
144   if (MachineBasicBlock *MBB = getParent())
145     return &MBB->getParent()->getRegInfo();
146   return nullptr;
147 }
148 
149 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
150   for (MachineOperand &MO : operands())
151     if (MO.isReg())
152       MRI.removeRegOperandFromUseList(&MO);
153 }
154 
155 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
156   for (MachineOperand &MO : operands())
157     if (MO.isReg())
158       MRI.addRegOperandToUseList(&MO);
159 }
160 
161 void MachineInstr::addOperand(const MachineOperand &Op) {
162   MachineBasicBlock *MBB = getParent();
163   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
164   MachineFunction *MF = MBB->getParent();
165   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
166   addOperand(*MF, Op);
167 }
168 
169 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
170 /// ranges. If MRI is non-null also update use-def chains.
171 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
172                          unsigned NumOps, MachineRegisterInfo *MRI) {
173   if (MRI)
174     return MRI->moveOperands(Dst, Src, NumOps);
175   // MachineOperand is a trivially copyable type so we can just use memmove.
176   assert(Dst && Src && "Unknown operands");
177   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
178 }
179 
180 /// addOperand - Add the specified operand to the instruction.  If it is an
181 /// implicit operand, it is added to the end of the operand list.  If it is
182 /// an explicit operand it is added at the end of the explicit operand list
183 /// (before the first implicit operand).
184 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
185   assert(MCID && "Cannot add operands before providing an instr descriptor");
186 
187   // Check if we're adding one of our existing operands.
188   if (&Op >= Operands && &Op < Operands + NumOperands) {
189     // This is unusual: MI->addOperand(MI->getOperand(i)).
190     // If adding Op requires reallocating or moving existing operands around,
191     // the Op reference could go stale. Support it by copying Op.
192     MachineOperand CopyOp(Op);
193     return addOperand(MF, CopyOp);
194   }
195 
196   // Find the insert location for the new operand.  Implicit registers go at
197   // the end, everything else goes before the implicit regs.
198   //
199   // FIXME: Allow mixed explicit and implicit operands on inline asm.
200   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
201   // implicit-defs, but they must not be moved around.  See the FIXME in
202   // InstrEmitter.cpp.
203   unsigned OpNo = getNumOperands();
204   bool isImpReg = Op.isReg() && Op.isImplicit();
205   if (!isImpReg && !isInlineAsm()) {
206     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
207       --OpNo;
208       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
209     }
210   }
211 
212   // OpNo now points as the desired insertion point.  Unless this is a variadic
213   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
214   // RegMask operands go between the explicit and implicit operands.
215   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
216           Op.isValidExcessOperand()) &&
217          "Trying to add an operand to a machine instr that is already done!");
218 
219   MachineRegisterInfo *MRI = getRegInfo();
220 
221   // Determine if the Operands array needs to be reallocated.
222   // Save the old capacity and operand array.
223   OperandCapacity OldCap = CapOperands;
224   MachineOperand *OldOperands = Operands;
225   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
226     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
227     Operands = MF.allocateOperandArray(CapOperands);
228     // Move the operands before the insertion point.
229     if (OpNo)
230       moveOperands(Operands, OldOperands, OpNo, MRI);
231   }
232 
233   // Move the operands following the insertion point.
234   if (OpNo != NumOperands)
235     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
236                  MRI);
237   ++NumOperands;
238 
239   // Deallocate the old operand array.
240   if (OldOperands != Operands && OldOperands)
241     MF.deallocateOperandArray(OldCap, OldOperands);
242 
243   // Copy Op into place. It still needs to be inserted into the MRI use lists.
244   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
245   NewMO->ParentMI = this;
246 
247   // When adding a register operand, tell MRI about it.
248   if (NewMO->isReg()) {
249     // Ensure isOnRegUseList() returns false, regardless of Op's status.
250     NewMO->Contents.Reg.Prev = nullptr;
251     // Ignore existing ties. This is not a property that can be copied.
252     NewMO->TiedTo = 0;
253     // Add the new operand to MRI, but only for instructions in an MBB.
254     if (MRI)
255       MRI->addRegOperandToUseList(NewMO);
256     // The MCID operand information isn't accurate until we start adding
257     // explicit operands. The implicit operands are added first, then the
258     // explicits are inserted before them.
259     if (!isImpReg) {
260       // Tie uses to defs as indicated in MCInstrDesc.
261       if (NewMO->isUse()) {
262         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
263         if (DefIdx != -1)
264           tieOperands(DefIdx, OpNo);
265       }
266       // If the register operand is flagged as early, mark the operand as such.
267       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
268         NewMO->setIsEarlyClobber(true);
269     }
270     // Ensure debug instructions set debug flag on register uses.
271     if (NewMO->isUse() && isDebugInstr())
272       NewMO->setIsDebug();
273   }
274 }
275 
276 void MachineInstr::removeOperand(unsigned OpNo) {
277   assert(OpNo < getNumOperands() && "Invalid operand number");
278   untieRegOperand(OpNo);
279 
280 #ifndef NDEBUG
281   // Moving tied operands would break the ties.
282   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
283     if (Operands[i].isReg())
284       assert(!Operands[i].isTied() && "Cannot move tied operands");
285 #endif
286 
287   MachineRegisterInfo *MRI = getRegInfo();
288   if (MRI && Operands[OpNo].isReg())
289     MRI->removeRegOperandFromUseList(Operands + OpNo);
290 
291   // Don't call the MachineOperand destructor. A lot of this code depends on
292   // MachineOperand having a trivial destructor anyway, and adding a call here
293   // wouldn't make it 'destructor-correct'.
294 
295   if (unsigned N = NumOperands - 1 - OpNo)
296     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
297   --NumOperands;
298 }
299 
300 void MachineInstr::setExtraInfo(MachineFunction &MF,
301                                 ArrayRef<MachineMemOperand *> MMOs,
302                                 MCSymbol *PreInstrSymbol,
303                                 MCSymbol *PostInstrSymbol,
304                                 MDNode *HeapAllocMarker) {
305   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
306   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
307   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
308   int NumPointers =
309       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
310 
311   // Drop all extra info if there is none.
312   if (NumPointers <= 0) {
313     Info.clear();
314     return;
315   }
316 
317   // If more than one pointer, then store out of line. Store heap alloc markers
318   // out of line because PointerSumType cannot hold more than 4 tag types with
319   // 32-bit pointers.
320   // FIXME: Maybe we should make the symbols in the extra info mutable?
321   else if (NumPointers > 1 || HasHeapAllocMarker) {
322     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
323         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
324     return;
325   }
326 
327   // Otherwise store the single pointer inline.
328   if (HasPreInstrSymbol)
329     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
330   else if (HasPostInstrSymbol)
331     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
332   else
333     Info.set<EIIK_MMO>(MMOs[0]);
334 }
335 
336 void MachineInstr::dropMemRefs(MachineFunction &MF) {
337   if (memoperands_empty())
338     return;
339 
340   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
341                getHeapAllocMarker());
342 }
343 
344 void MachineInstr::setMemRefs(MachineFunction &MF,
345                               ArrayRef<MachineMemOperand *> MMOs) {
346   if (MMOs.empty()) {
347     dropMemRefs(MF);
348     return;
349   }
350 
351   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
352                getHeapAllocMarker());
353 }
354 
355 void MachineInstr::addMemOperand(MachineFunction &MF,
356                                  MachineMemOperand *MO) {
357   SmallVector<MachineMemOperand *, 2> MMOs;
358   MMOs.append(memoperands_begin(), memoperands_end());
359   MMOs.push_back(MO);
360   setMemRefs(MF, MMOs);
361 }
362 
363 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
364   if (this == &MI)
365     // Nothing to do for a self-clone!
366     return;
367 
368   assert(&MF == MI.getMF() &&
369          "Invalid machine functions when cloning memory refrences!");
370   // See if we can just steal the extra info already allocated for the
371   // instruction. We can do this whenever the pre- and post-instruction symbols
372   // are the same (including null).
373   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
374       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
375       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
376     Info = MI.Info;
377     return;
378   }
379 
380   // Otherwise, fall back on a copy-based clone.
381   setMemRefs(MF, MI.memoperands());
382 }
383 
384 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
385 /// identical.
386 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
387                              ArrayRef<MachineMemOperand *> RHS) {
388   if (LHS.size() != RHS.size())
389     return false;
390 
391   auto LHSPointees = make_pointee_range(LHS);
392   auto RHSPointees = make_pointee_range(RHS);
393   return std::equal(LHSPointees.begin(), LHSPointees.end(),
394                     RHSPointees.begin());
395 }
396 
397 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
398                                       ArrayRef<const MachineInstr *> MIs) {
399   // Try handling easy numbers of MIs with simpler mechanisms.
400   if (MIs.empty()) {
401     dropMemRefs(MF);
402     return;
403   }
404   if (MIs.size() == 1) {
405     cloneMemRefs(MF, *MIs[0]);
406     return;
407   }
408   // Because an empty memoperands list provides *no* information and must be
409   // handled conservatively (assuming the instruction can do anything), the only
410   // way to merge with it is to drop all other memoperands.
411   if (MIs[0]->memoperands_empty()) {
412     dropMemRefs(MF);
413     return;
414   }
415 
416   // Handle the general case.
417   SmallVector<MachineMemOperand *, 2> MergedMMOs;
418   // Start with the first instruction.
419   assert(&MF == MIs[0]->getMF() &&
420          "Invalid machine functions when cloning memory references!");
421   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
422   // Now walk all the other instructions and accumulate any different MMOs.
423   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
424     assert(&MF == MI.getMF() &&
425            "Invalid machine functions when cloning memory references!");
426 
427     // Skip MIs with identical operands to the first. This is a somewhat
428     // arbitrary hack but will catch common cases without being quadratic.
429     // TODO: We could fully implement merge semantics here if needed.
430     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
431       continue;
432 
433     // Because an empty memoperands list provides *no* information and must be
434     // handled conservatively (assuming the instruction can do anything), the
435     // only way to merge with it is to drop all other memoperands.
436     if (MI.memoperands_empty()) {
437       dropMemRefs(MF);
438       return;
439     }
440 
441     // Otherwise accumulate these into our temporary buffer of the merged state.
442     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
443   }
444 
445   setMemRefs(MF, MergedMMOs);
446 }
447 
448 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
449   // Do nothing if old and new symbols are the same.
450   if (Symbol == getPreInstrSymbol())
451     return;
452 
453   // If there was only one symbol and we're removing it, just clear info.
454   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
455     Info.clear();
456     return;
457   }
458 
459   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
460                getHeapAllocMarker());
461 }
462 
463 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
464   // Do nothing if old and new symbols are the same.
465   if (Symbol == getPostInstrSymbol())
466     return;
467 
468   // If there was only one symbol and we're removing it, just clear info.
469   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
470     Info.clear();
471     return;
472   }
473 
474   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
475                getHeapAllocMarker());
476 }
477 
478 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
479   // Do nothing if old and new symbols are the same.
480   if (Marker == getHeapAllocMarker())
481     return;
482 
483   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
484                Marker);
485 }
486 
487 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
488                                      const MachineInstr &MI) {
489   if (this == &MI)
490     // Nothing to do for a self-clone!
491     return;
492 
493   assert(&MF == MI.getMF() &&
494          "Invalid machine functions when cloning instruction symbols!");
495 
496   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
497   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
498   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
499 }
500 
501 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
502   // For now, the just return the union of the flags. If the flags get more
503   // complicated over time, we might need more logic here.
504   return getFlags() | Other.getFlags();
505 }
506 
507 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
508   uint16_t MIFlags = 0;
509   // Copy the wrapping flags.
510   if (const OverflowingBinaryOperator *OB =
511           dyn_cast<OverflowingBinaryOperator>(&I)) {
512     if (OB->hasNoSignedWrap())
513       MIFlags |= MachineInstr::MIFlag::NoSWrap;
514     if (OB->hasNoUnsignedWrap())
515       MIFlags |= MachineInstr::MIFlag::NoUWrap;
516   }
517 
518   // Copy the exact flag.
519   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
520     if (PE->isExact())
521       MIFlags |= MachineInstr::MIFlag::IsExact;
522 
523   // Copy the fast-math flags.
524   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
525     const FastMathFlags Flags = FP->getFastMathFlags();
526     if (Flags.noNaNs())
527       MIFlags |= MachineInstr::MIFlag::FmNoNans;
528     if (Flags.noInfs())
529       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
530     if (Flags.noSignedZeros())
531       MIFlags |= MachineInstr::MIFlag::FmNsz;
532     if (Flags.allowReciprocal())
533       MIFlags |= MachineInstr::MIFlag::FmArcp;
534     if (Flags.allowContract())
535       MIFlags |= MachineInstr::MIFlag::FmContract;
536     if (Flags.approxFunc())
537       MIFlags |= MachineInstr::MIFlag::FmAfn;
538     if (Flags.allowReassoc())
539       MIFlags |= MachineInstr::MIFlag::FmReassoc;
540   }
541 
542   return MIFlags;
543 }
544 
545 void MachineInstr::copyIRFlags(const Instruction &I) {
546   Flags = copyFlagsFromInstruction(I);
547 }
548 
549 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
550   assert(!isBundledWithPred() && "Must be called on bundle header");
551   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
552     if (MII->getDesc().getFlags() & Mask) {
553       if (Type == AnyInBundle)
554         return true;
555     } else {
556       if (Type == AllInBundle && !MII->isBundle())
557         return false;
558     }
559     // This was the last instruction in the bundle.
560     if (!MII->isBundledWithSucc())
561       return Type == AllInBundle;
562   }
563 }
564 
565 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
566                                  MICheckType Check) const {
567   // If opcodes or number of operands are not the same then the two
568   // instructions are obviously not identical.
569   if (Other.getOpcode() != getOpcode() ||
570       Other.getNumOperands() != getNumOperands())
571     return false;
572 
573   if (isBundle()) {
574     // We have passed the test above that both instructions have the same
575     // opcode, so we know that both instructions are bundles here. Let's compare
576     // MIs inside the bundle.
577     assert(Other.isBundle() && "Expected that both instructions are bundles.");
578     MachineBasicBlock::const_instr_iterator I1 = getIterator();
579     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
580     // Loop until we analysed the last intruction inside at least one of the
581     // bundles.
582     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
583       ++I1;
584       ++I2;
585       if (!I1->isIdenticalTo(*I2, Check))
586         return false;
587     }
588     // If we've reached the end of just one of the two bundles, but not both,
589     // the instructions are not identical.
590     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
591       return false;
592   }
593 
594   // Check operands to make sure they match.
595   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
596     const MachineOperand &MO = getOperand(i);
597     const MachineOperand &OMO = Other.getOperand(i);
598     if (!MO.isReg()) {
599       if (!MO.isIdenticalTo(OMO))
600         return false;
601       continue;
602     }
603 
604     // Clients may or may not want to ignore defs when testing for equality.
605     // For example, machine CSE pass only cares about finding common
606     // subexpressions, so it's safe to ignore virtual register defs.
607     if (MO.isDef()) {
608       if (Check == IgnoreDefs)
609         continue;
610       else if (Check == IgnoreVRegDefs) {
611         if (!Register::isVirtualRegister(MO.getReg()) ||
612             !Register::isVirtualRegister(OMO.getReg()))
613           if (!MO.isIdenticalTo(OMO))
614             return false;
615       } else {
616         if (!MO.isIdenticalTo(OMO))
617           return false;
618         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
619           return false;
620       }
621     } else {
622       if (!MO.isIdenticalTo(OMO))
623         return false;
624       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
625         return false;
626     }
627   }
628   // If DebugLoc does not match then two debug instructions are not identical.
629   if (isDebugInstr())
630     if (getDebugLoc() && Other.getDebugLoc() &&
631         getDebugLoc() != Other.getDebugLoc())
632       return false;
633   return true;
634 }
635 
636 const MachineFunction *MachineInstr::getMF() const {
637   return getParent()->getParent();
638 }
639 
640 MachineInstr *MachineInstr::removeFromParent() {
641   assert(getParent() && "Not embedded in a basic block!");
642   return getParent()->remove(this);
643 }
644 
645 MachineInstr *MachineInstr::removeFromBundle() {
646   assert(getParent() && "Not embedded in a basic block!");
647   return getParent()->remove_instr(this);
648 }
649 
650 void MachineInstr::eraseFromParent() {
651   assert(getParent() && "Not embedded in a basic block!");
652   getParent()->erase(this);
653 }
654 
655 void MachineInstr::eraseFromBundle() {
656   assert(getParent() && "Not embedded in a basic block!");
657   getParent()->erase_instr(this);
658 }
659 
660 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
661   if (!isCall(Type))
662     return false;
663   switch (getOpcode()) {
664   case TargetOpcode::PATCHPOINT:
665   case TargetOpcode::STACKMAP:
666   case TargetOpcode::STATEPOINT:
667   case TargetOpcode::FENTRY_CALL:
668     return false;
669   }
670   return true;
671 }
672 
673 bool MachineInstr::shouldUpdateCallSiteInfo() const {
674   if (isBundle())
675     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
676   return isCandidateForCallSiteEntry();
677 }
678 
679 unsigned MachineInstr::getNumExplicitOperands() const {
680   unsigned NumOperands = MCID->getNumOperands();
681   if (!MCID->isVariadic())
682     return NumOperands;
683 
684   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
685     const MachineOperand &MO = getOperand(I);
686     // The operands must always be in the following order:
687     // - explicit reg defs,
688     // - other explicit operands (reg uses, immediates, etc.),
689     // - implicit reg defs
690     // - implicit reg uses
691     if (MO.isReg() && MO.isImplicit())
692       break;
693     ++NumOperands;
694   }
695   return NumOperands;
696 }
697 
698 unsigned MachineInstr::getNumExplicitDefs() const {
699   unsigned NumDefs = MCID->getNumDefs();
700   if (!MCID->isVariadic())
701     return NumDefs;
702 
703   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
704     const MachineOperand &MO = getOperand(I);
705     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
706       break;
707     ++NumDefs;
708   }
709   return NumDefs;
710 }
711 
712 void MachineInstr::bundleWithPred() {
713   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
714   setFlag(BundledPred);
715   MachineBasicBlock::instr_iterator Pred = getIterator();
716   --Pred;
717   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
718   Pred->setFlag(BundledSucc);
719 }
720 
721 void MachineInstr::bundleWithSucc() {
722   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
723   setFlag(BundledSucc);
724   MachineBasicBlock::instr_iterator Succ = getIterator();
725   ++Succ;
726   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
727   Succ->setFlag(BundledPred);
728 }
729 
730 void MachineInstr::unbundleFromPred() {
731   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
732   clearFlag(BundledPred);
733   MachineBasicBlock::instr_iterator Pred = getIterator();
734   --Pred;
735   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
736   Pred->clearFlag(BundledSucc);
737 }
738 
739 void MachineInstr::unbundleFromSucc() {
740   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
741   clearFlag(BundledSucc);
742   MachineBasicBlock::instr_iterator Succ = getIterator();
743   ++Succ;
744   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
745   Succ->clearFlag(BundledPred);
746 }
747 
748 bool MachineInstr::isStackAligningInlineAsm() const {
749   if (isInlineAsm()) {
750     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
751     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
752       return true;
753   }
754   return false;
755 }
756 
757 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
758   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
759   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
760   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
761 }
762 
763 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
764                                        unsigned *GroupNo) const {
765   assert(isInlineAsm() && "Expected an inline asm instruction");
766   assert(OpIdx < getNumOperands() && "OpIdx out of range");
767 
768   // Ignore queries about the initial operands.
769   if (OpIdx < InlineAsm::MIOp_FirstOperand)
770     return -1;
771 
772   unsigned Group = 0;
773   unsigned NumOps;
774   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
775        i += NumOps) {
776     const MachineOperand &FlagMO = getOperand(i);
777     // If we reach the implicit register operands, stop looking.
778     if (!FlagMO.isImm())
779       return -1;
780     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
781     if (i + NumOps > OpIdx) {
782       if (GroupNo)
783         *GroupNo = Group;
784       return i;
785     }
786     ++Group;
787   }
788   return -1;
789 }
790 
791 const DILabel *MachineInstr::getDebugLabel() const {
792   assert(isDebugLabel() && "not a DBG_LABEL");
793   return cast<DILabel>(getOperand(0).getMetadata());
794 }
795 
796 const MachineOperand &MachineInstr::getDebugVariableOp() const {
797   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
798   unsigned VariableOp = isDebugValueList() ? 0 : 2;
799   return getOperand(VariableOp);
800 }
801 
802 MachineOperand &MachineInstr::getDebugVariableOp() {
803   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
804   unsigned VariableOp = isDebugValueList() ? 0 : 2;
805   return getOperand(VariableOp);
806 }
807 
808 const DILocalVariable *MachineInstr::getDebugVariable() const {
809   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
810 }
811 
812 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
813   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
814   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
815   return getOperand(ExpressionOp);
816 }
817 
818 MachineOperand &MachineInstr::getDebugExpressionOp() {
819   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
820   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
821   return getOperand(ExpressionOp);
822 }
823 
824 const DIExpression *MachineInstr::getDebugExpression() const {
825   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
826 }
827 
828 bool MachineInstr::isDebugEntryValue() const {
829   return isDebugValue() && getDebugExpression()->isEntryValue();
830 }
831 
832 const TargetRegisterClass*
833 MachineInstr::getRegClassConstraint(unsigned OpIdx,
834                                     const TargetInstrInfo *TII,
835                                     const TargetRegisterInfo *TRI) const {
836   assert(getParent() && "Can't have an MBB reference here!");
837   assert(getMF() && "Can't have an MF reference here!");
838   const MachineFunction &MF = *getMF();
839 
840   // Most opcodes have fixed constraints in their MCInstrDesc.
841   if (!isInlineAsm())
842     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
843 
844   if (!getOperand(OpIdx).isReg())
845     return nullptr;
846 
847   // For tied uses on inline asm, get the constraint from the def.
848   unsigned DefIdx;
849   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
850     OpIdx = DefIdx;
851 
852   // Inline asm stores register class constraints in the flag word.
853   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
854   if (FlagIdx < 0)
855     return nullptr;
856 
857   unsigned Flag = getOperand(FlagIdx).getImm();
858   unsigned RCID;
859   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
860        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
861        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
862       InlineAsm::hasRegClassConstraint(Flag, RCID))
863     return TRI->getRegClass(RCID);
864 
865   // Assume that all registers in a memory operand are pointers.
866   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
867     return TRI->getPointerRegClass(MF);
868 
869   return nullptr;
870 }
871 
872 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
873     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
874     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
875   // Check every operands inside the bundle if we have
876   // been asked to.
877   if (ExploreBundle)
878     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
879          ++OpndIt)
880       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
881           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
882   else
883     // Otherwise, just check the current operands.
884     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
885       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
886   return CurRC;
887 }
888 
889 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
890     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
891     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
892   assert(CurRC && "Invalid initial register class");
893   // Check if Reg is constrained by some of its use/def from MI.
894   const MachineOperand &MO = getOperand(OpIdx);
895   if (!MO.isReg() || MO.getReg() != Reg)
896     return CurRC;
897   // If yes, accumulate the constraints through the operand.
898   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
899 }
900 
901 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
902     unsigned OpIdx, const TargetRegisterClass *CurRC,
903     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
904   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
905   const MachineOperand &MO = getOperand(OpIdx);
906   assert(MO.isReg() &&
907          "Cannot get register constraints for non-register operand");
908   assert(CurRC && "Invalid initial register class");
909   if (unsigned SubIdx = MO.getSubReg()) {
910     if (OpRC)
911       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
912     else
913       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
914   } else if (OpRC)
915     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
916   return CurRC;
917 }
918 
919 /// Return the number of instructions inside the MI bundle, not counting the
920 /// header instruction.
921 unsigned MachineInstr::getBundleSize() const {
922   MachineBasicBlock::const_instr_iterator I = getIterator();
923   unsigned Size = 0;
924   while (I->isBundledWithSucc()) {
925     ++Size;
926     ++I;
927   }
928   return Size;
929 }
930 
931 /// Returns true if the MachineInstr has an implicit-use operand of exactly
932 /// the given register (not considering sub/super-registers).
933 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
934   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
935     const MachineOperand &MO = getOperand(i);
936     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
937       return true;
938   }
939   return false;
940 }
941 
942 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
943 /// the specific register or -1 if it is not found. It further tightens
944 /// the search criteria to a use that kills the register if isKill is true.
945 int MachineInstr::findRegisterUseOperandIdx(
946     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
947   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
948     const MachineOperand &MO = getOperand(i);
949     if (!MO.isReg() || !MO.isUse())
950       continue;
951     Register MOReg = MO.getReg();
952     if (!MOReg)
953       continue;
954     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
955       if (!isKill || MO.isKill())
956         return i;
957   }
958   return -1;
959 }
960 
961 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
962 /// indicating if this instruction reads or writes Reg. This also considers
963 /// partial defines.
964 std::pair<bool,bool>
965 MachineInstr::readsWritesVirtualRegister(Register Reg,
966                                          SmallVectorImpl<unsigned> *Ops) const {
967   bool PartDef = false; // Partial redefine.
968   bool FullDef = false; // Full define.
969   bool Use = false;
970 
971   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
972     const MachineOperand &MO = getOperand(i);
973     if (!MO.isReg() || MO.getReg() != Reg)
974       continue;
975     if (Ops)
976       Ops->push_back(i);
977     if (MO.isUse())
978       Use |= !MO.isUndef();
979     else if (MO.getSubReg() && !MO.isUndef())
980       // A partial def undef doesn't count as reading the register.
981       PartDef = true;
982     else
983       FullDef = true;
984   }
985   // A partial redefine uses Reg unless there is also a full define.
986   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
987 }
988 
989 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
990 /// the specified register or -1 if it is not found. If isDead is true, defs
991 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
992 /// also checks if there is a def of a super-register.
993 int
994 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
995                                         const TargetRegisterInfo *TRI) const {
996   bool isPhys = Register::isPhysicalRegister(Reg);
997   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998     const MachineOperand &MO = getOperand(i);
999     // Accept regmask operands when Overlap is set.
1000     // Ignore them when looking for a specific def operand (Overlap == false).
1001     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1002       return i;
1003     if (!MO.isReg() || !MO.isDef())
1004       continue;
1005     Register MOReg = MO.getReg();
1006     bool Found = (MOReg == Reg);
1007     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1008       if (Overlap)
1009         Found = TRI->regsOverlap(MOReg, Reg);
1010       else
1011         Found = TRI->isSubRegister(MOReg, Reg);
1012     }
1013     if (Found && (!isDead || MO.isDead()))
1014       return i;
1015   }
1016   return -1;
1017 }
1018 
1019 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1020 /// operand list that is used to represent the predicate. It returns -1 if
1021 /// none is found.
1022 int MachineInstr::findFirstPredOperandIdx() const {
1023   // Don't call MCID.findFirstPredOperandIdx() because this variant
1024   // is sometimes called on an instruction that's not yet complete, and
1025   // so the number of operands is less than the MCID indicates. In
1026   // particular, the PTX target does this.
1027   const MCInstrDesc &MCID = getDesc();
1028   if (MCID.isPredicable()) {
1029     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1030       if (MCID.OpInfo[i].isPredicate())
1031         return i;
1032   }
1033 
1034   return -1;
1035 }
1036 
1037 // MachineOperand::TiedTo is 4 bits wide.
1038 const unsigned TiedMax = 15;
1039 
1040 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1041 ///
1042 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1043 /// field. TiedTo can have these values:
1044 ///
1045 /// 0:              Operand is not tied to anything.
1046 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1047 /// TiedMax:        Tied to an operand >= TiedMax-1.
1048 ///
1049 /// The tied def must be one of the first TiedMax operands on a normal
1050 /// instruction. INLINEASM instructions allow more tied defs.
1051 ///
1052 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1053   MachineOperand &DefMO = getOperand(DefIdx);
1054   MachineOperand &UseMO = getOperand(UseIdx);
1055   assert(DefMO.isDef() && "DefIdx must be a def operand");
1056   assert(UseMO.isUse() && "UseIdx must be a use operand");
1057   assert(!DefMO.isTied() && "Def is already tied to another use");
1058   assert(!UseMO.isTied() && "Use is already tied to another def");
1059 
1060   if (DefIdx < TiedMax)
1061     UseMO.TiedTo = DefIdx + 1;
1062   else {
1063     // Inline asm can use the group descriptors to find tied operands,
1064     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1065     // but on normal instruction, the tied def must be within the first TiedMax
1066     // operands.
1067     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1068            "DefIdx out of range");
1069     UseMO.TiedTo = TiedMax;
1070   }
1071 
1072   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1073   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1074 }
1075 
1076 /// Given the index of a tied register operand, find the operand it is tied to.
1077 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1078 /// which must exist.
1079 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1080   const MachineOperand &MO = getOperand(OpIdx);
1081   assert(MO.isTied() && "Operand isn't tied");
1082 
1083   // Normally TiedTo is in range.
1084   if (MO.TiedTo < TiedMax)
1085     return MO.TiedTo - 1;
1086 
1087   // Uses on normal instructions can be out of range.
1088   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1089     // Normal tied defs must be in the 0..TiedMax-1 range.
1090     if (MO.isUse())
1091       return TiedMax - 1;
1092     // MO is a def. Search for the tied use.
1093     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1094       const MachineOperand &UseMO = getOperand(i);
1095       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1096         return i;
1097     }
1098     llvm_unreachable("Can't find tied use");
1099   }
1100 
1101   if (getOpcode() == TargetOpcode::STATEPOINT) {
1102     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1103     // on registers.
1104     StatepointOpers SO(this);
1105     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1106     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1107     unsigned NumDefs = getNumDefs();
1108     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1109       while (!getOperand(CurUseIdx).isReg())
1110         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1111       if (OpIdx == CurDefIdx)
1112         return CurUseIdx;
1113       if (OpIdx == CurUseIdx)
1114         return CurDefIdx;
1115       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1116     }
1117     llvm_unreachable("Can't find tied use");
1118   }
1119 
1120   // Now deal with inline asm by parsing the operand group descriptor flags.
1121   // Find the beginning of each operand group.
1122   SmallVector<unsigned, 8> GroupIdx;
1123   unsigned OpIdxGroup = ~0u;
1124   unsigned NumOps;
1125   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1126        i += NumOps) {
1127     const MachineOperand &FlagMO = getOperand(i);
1128     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1129     unsigned CurGroup = GroupIdx.size();
1130     GroupIdx.push_back(i);
1131     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1132     // OpIdx belongs to this operand group.
1133     if (OpIdx > i && OpIdx < i + NumOps)
1134       OpIdxGroup = CurGroup;
1135     unsigned TiedGroup;
1136     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1137       continue;
1138     // Operands in this group are tied to operands in TiedGroup which must be
1139     // earlier. Find the number of operands between the two groups.
1140     unsigned Delta = i - GroupIdx[TiedGroup];
1141 
1142     // OpIdx is a use tied to TiedGroup.
1143     if (OpIdxGroup == CurGroup)
1144       return OpIdx - Delta;
1145 
1146     // OpIdx is a def tied to this use group.
1147     if (OpIdxGroup == TiedGroup)
1148       return OpIdx + Delta;
1149   }
1150   llvm_unreachable("Invalid tied operand on inline asm");
1151 }
1152 
1153 /// clearKillInfo - Clears kill flags on all operands.
1154 ///
1155 void MachineInstr::clearKillInfo() {
1156   for (MachineOperand &MO : operands()) {
1157     if (MO.isReg() && MO.isUse())
1158       MO.setIsKill(false);
1159   }
1160 }
1161 
1162 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1163                                       unsigned SubIdx,
1164                                       const TargetRegisterInfo &RegInfo) {
1165   if (Register::isPhysicalRegister(ToReg)) {
1166     if (SubIdx)
1167       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1168     for (MachineOperand &MO : operands()) {
1169       if (!MO.isReg() || MO.getReg() != FromReg)
1170         continue;
1171       MO.substPhysReg(ToReg, RegInfo);
1172     }
1173   } else {
1174     for (MachineOperand &MO : operands()) {
1175       if (!MO.isReg() || MO.getReg() != FromReg)
1176         continue;
1177       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1178     }
1179   }
1180 }
1181 
1182 /// isSafeToMove - Return true if it is safe to move this instruction. If
1183 /// SawStore is set to true, it means that there is a store (or call) between
1184 /// the instruction's location and its intended destination.
1185 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1186   // Ignore stuff that we obviously can't move.
1187   //
1188   // Treat volatile loads as stores. This is not strictly necessary for
1189   // volatiles, but it is required for atomic loads. It is not allowed to move
1190   // a load across an atomic load with Ordering > Monotonic.
1191   if (mayStore() || isCall() || isPHI() ||
1192       (mayLoad() && hasOrderedMemoryRef())) {
1193     SawStore = true;
1194     return false;
1195   }
1196 
1197   if (isPosition() || isDebugInstr() || isTerminator() ||
1198       mayRaiseFPException() || hasUnmodeledSideEffects())
1199     return false;
1200 
1201   // See if this instruction does a load.  If so, we have to guarantee that the
1202   // loaded value doesn't change between the load and the its intended
1203   // destination. The check for isInvariantLoad gives the target the chance to
1204   // classify the load as always returning a constant, e.g. a constant pool
1205   // load.
1206   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1207     // Otherwise, this is a real load.  If there is a store between the load and
1208     // end of block, we can't move it.
1209     return !SawStore;
1210 
1211   return true;
1212 }
1213 
1214 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1215                                  bool UseTBAA, const MachineMemOperand *MMOa,
1216                                  const MachineMemOperand *MMOb) {
1217   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1218   // operates with MachineMemOperand offset with some important assumptions:
1219   //   - LLVM fundamentally assumes flat address spaces.
1220   //   - MachineOperand offset can *only* result from legalization and cannot
1221   //     affect queries other than the trivial case of overlap checking.
1222   //   - These offsets never wrap and never step outside of allocated objects.
1223   //   - There should never be any negative offsets here.
1224   //
1225   // FIXME: Modify API to hide this math from "user"
1226   // Even before we go to AA we can reason locally about some memory objects. It
1227   // can save compile time, and possibly catch some corner cases not currently
1228   // covered.
1229 
1230   int64_t OffsetA = MMOa->getOffset();
1231   int64_t OffsetB = MMOb->getOffset();
1232   int64_t MinOffset = std::min(OffsetA, OffsetB);
1233 
1234   uint64_t WidthA = MMOa->getSize();
1235   uint64_t WidthB = MMOb->getSize();
1236   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1237   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1238 
1239   const Value *ValA = MMOa->getValue();
1240   const Value *ValB = MMOb->getValue();
1241   bool SameVal = (ValA && ValB && (ValA == ValB));
1242   if (!SameVal) {
1243     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1244     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1245     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1246       return false;
1247     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1248       return false;
1249     if (PSVa && PSVb && (PSVa == PSVb))
1250       SameVal = true;
1251   }
1252 
1253   if (SameVal) {
1254     if (!KnownWidthA || !KnownWidthB)
1255       return true;
1256     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1257     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1258     return (MinOffset + LowWidth > MaxOffset);
1259   }
1260 
1261   if (!AA)
1262     return true;
1263 
1264   if (!ValA || !ValB)
1265     return true;
1266 
1267   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1268   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1269 
1270   int64_t OverlapA =
1271       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1272   int64_t OverlapB =
1273       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1274 
1275   return !AA->isNoAlias(
1276       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1277       MemoryLocation(ValB, OverlapB,
1278                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1279 }
1280 
1281 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1282                             bool UseTBAA) const {
1283   const MachineFunction *MF = getMF();
1284   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1285   const MachineFrameInfo &MFI = MF->getFrameInfo();
1286 
1287   // Exclude call instruction which may alter the memory but can not be handled
1288   // by this function.
1289   if (isCall() || Other.isCall())
1290     return true;
1291 
1292   // If neither instruction stores to memory, they can't alias in any
1293   // meaningful way, even if they read from the same address.
1294   if (!mayStore() && !Other.mayStore())
1295     return false;
1296 
1297   // Both instructions must be memory operations to be able to alias.
1298   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1299     return false;
1300 
1301   // Let the target decide if memory accesses cannot possibly overlap.
1302   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1303     return false;
1304 
1305   // Memory operations without memory operands may access anything. Be
1306   // conservative and assume `MayAlias`.
1307   if (memoperands_empty() || Other.memoperands_empty())
1308     return true;
1309 
1310   // Skip if there are too many memory operands.
1311   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1312   if (NumChecks > TII->getMemOperandAACheckLimit())
1313     return true;
1314 
1315   // Check each pair of memory operands from both instructions, which can't
1316   // alias only if all pairs won't alias.
1317   for (auto *MMOa : memoperands())
1318     for (auto *MMOb : Other.memoperands())
1319       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1320         return true;
1321 
1322   return false;
1323 }
1324 
1325 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1326 /// or volatile memory reference, or if the information describing the memory
1327 /// reference is not available. Return false if it is known to have no ordered
1328 /// memory references.
1329 bool MachineInstr::hasOrderedMemoryRef() const {
1330   // An instruction known never to access memory won't have a volatile access.
1331   if (!mayStore() &&
1332       !mayLoad() &&
1333       !isCall() &&
1334       !hasUnmodeledSideEffects())
1335     return false;
1336 
1337   // Otherwise, if the instruction has no memory reference information,
1338   // conservatively assume it wasn't preserved.
1339   if (memoperands_empty())
1340     return true;
1341 
1342   // Check if any of our memory operands are ordered.
1343   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1344     return !MMO->isUnordered();
1345   });
1346 }
1347 
1348 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1349 /// trap and is loading from a location whose value is invariant across a run of
1350 /// this function.
1351 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1352   // If the instruction doesn't load at all, it isn't an invariant load.
1353   if (!mayLoad())
1354     return false;
1355 
1356   // If the instruction has lost its memoperands, conservatively assume that
1357   // it may not be an invariant load.
1358   if (memoperands_empty())
1359     return false;
1360 
1361   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1362 
1363   for (MachineMemOperand *MMO : memoperands()) {
1364     if (!MMO->isUnordered())
1365       // If the memory operand has ordering side effects, we can't move the
1366       // instruction.  Such an instruction is technically an invariant load,
1367       // but the caller code would need updated to expect that.
1368       return false;
1369     if (MMO->isStore()) return false;
1370     if (MMO->isInvariant() && MMO->isDereferenceable())
1371       continue;
1372 
1373     // A load from a constant PseudoSourceValue is invariant.
1374     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1375       if (PSV->isConstant(&MFI))
1376         continue;
1377 
1378     if (const Value *V = MMO->getValue()) {
1379       // If we have an AliasAnalysis, ask it whether the memory is constant.
1380       if (AA &&
1381           AA->pointsToConstantMemory(
1382               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1383         continue;
1384     }
1385 
1386     // Otherwise assume conservatively.
1387     return false;
1388   }
1389 
1390   // Everything checks out.
1391   return true;
1392 }
1393 
1394 /// isConstantValuePHI - If the specified instruction is a PHI that always
1395 /// merges together the same virtual register, return the register, otherwise
1396 /// return 0.
1397 unsigned MachineInstr::isConstantValuePHI() const {
1398   if (!isPHI())
1399     return 0;
1400   assert(getNumOperands() >= 3 &&
1401          "It's illegal to have a PHI without source operands");
1402 
1403   Register Reg = getOperand(1).getReg();
1404   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1405     if (getOperand(i).getReg() != Reg)
1406       return 0;
1407   return Reg;
1408 }
1409 
1410 bool MachineInstr::hasUnmodeledSideEffects() const {
1411   if (hasProperty(MCID::UnmodeledSideEffects))
1412     return true;
1413   if (isInlineAsm()) {
1414     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1415     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1416       return true;
1417   }
1418 
1419   return false;
1420 }
1421 
1422 bool MachineInstr::isLoadFoldBarrier() const {
1423   return mayStore() || isCall() ||
1424          (hasUnmodeledSideEffects() && !isPseudoProbe());
1425 }
1426 
1427 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1428 ///
1429 bool MachineInstr::allDefsAreDead() const {
1430   for (const MachineOperand &MO : operands()) {
1431     if (!MO.isReg() || MO.isUse())
1432       continue;
1433     if (!MO.isDead())
1434       return false;
1435   }
1436   return true;
1437 }
1438 
1439 /// copyImplicitOps - Copy implicit register operands from specified
1440 /// instruction to this instruction.
1441 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1442                                    const MachineInstr &MI) {
1443   for (const MachineOperand &MO :
1444        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1445     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1446       addOperand(MF, MO);
1447 }
1448 
1449 bool MachineInstr::hasComplexRegisterTies() const {
1450   const MCInstrDesc &MCID = getDesc();
1451   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1452     return true;
1453   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1454     const auto &Operand = getOperand(I);
1455     if (!Operand.isReg() || Operand.isDef())
1456       // Ignore the defined registers as MCID marks only the uses as tied.
1457       continue;
1458     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1459     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1460     if (ExpectedTiedIdx != TiedIdx)
1461       return true;
1462   }
1463   return false;
1464 }
1465 
1466 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1467                                  const MachineRegisterInfo &MRI) const {
1468   const MachineOperand &Op = getOperand(OpIdx);
1469   if (!Op.isReg())
1470     return LLT{};
1471 
1472   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1473     return MRI.getType(Op.getReg());
1474 
1475   auto &OpInfo = getDesc().OpInfo[OpIdx];
1476   if (!OpInfo.isGenericType())
1477     return MRI.getType(Op.getReg());
1478 
1479   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1480     return LLT{};
1481 
1482   LLT TypeToPrint = MRI.getType(Op.getReg());
1483   // Don't mark the type index printed if it wasn't actually printed: maybe
1484   // another operand with the same type index has an actual type attached:
1485   if (TypeToPrint.isValid())
1486     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1487   return TypeToPrint;
1488 }
1489 
1490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1492   dbgs() << "  ";
1493   print(dbgs());
1494 }
1495 
1496 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1497     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1498     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1499   if (Depth >= MaxDepth)
1500     return;
1501   if (!AlreadySeenInstrs.insert(this).second)
1502     return;
1503   // PadToColumn always inserts at least one space.
1504   // Don't mess up the alignment if we don't want any space.
1505   if (Depth)
1506     fdbgs().PadToColumn(Depth * 2);
1507   print(fdbgs());
1508   for (const MachineOperand &MO : operands()) {
1509     if (!MO.isReg() || MO.isDef())
1510       continue;
1511     Register Reg = MO.getReg();
1512     if (Reg.isPhysical())
1513       continue;
1514     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1515     if (NewMI == nullptr)
1516       continue;
1517     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1518   }
1519 }
1520 
1521 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1522                                           unsigned MaxDepth) const {
1523   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1524   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1525 }
1526 #endif
1527 
1528 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1529                          bool SkipDebugLoc, bool AddNewLine,
1530                          const TargetInstrInfo *TII) const {
1531   const Module *M = nullptr;
1532   const Function *F = nullptr;
1533   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1534     F = &MF->getFunction();
1535     M = F->getParent();
1536     if (!TII)
1537       TII = MF->getSubtarget().getInstrInfo();
1538   }
1539 
1540   ModuleSlotTracker MST(M);
1541   if (F)
1542     MST.incorporateFunction(*F);
1543   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1544 }
1545 
1546 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1547                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1548                          bool AddNewLine, const TargetInstrInfo *TII) const {
1549   // We can be a bit tidier if we know the MachineFunction.
1550   const TargetRegisterInfo *TRI = nullptr;
1551   const MachineRegisterInfo *MRI = nullptr;
1552   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1553   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1554 
1555   if (isCFIInstruction())
1556     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1557 
1558   SmallBitVector PrintedTypes(8);
1559   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1560   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1561     if (!ShouldPrintRegisterTies)
1562       return 0U;
1563     const MachineOperand &MO = getOperand(OpIdx);
1564     if (MO.isReg() && MO.isTied() && !MO.isDef())
1565       return findTiedOperandIdx(OpIdx);
1566     return 0U;
1567   };
1568   unsigned StartOp = 0;
1569   unsigned e = getNumOperands();
1570 
1571   // Print explicitly defined operands on the left of an assignment syntax.
1572   while (StartOp < e) {
1573     const MachineOperand &MO = getOperand(StartOp);
1574     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1575       break;
1576 
1577     if (StartOp != 0)
1578       OS << ", ";
1579 
1580     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1581     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1582     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1583              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1584     ++StartOp;
1585   }
1586 
1587   if (StartOp != 0)
1588     OS << " = ";
1589 
1590   if (getFlag(MachineInstr::FrameSetup))
1591     OS << "frame-setup ";
1592   if (getFlag(MachineInstr::FrameDestroy))
1593     OS << "frame-destroy ";
1594   if (getFlag(MachineInstr::FmNoNans))
1595     OS << "nnan ";
1596   if (getFlag(MachineInstr::FmNoInfs))
1597     OS << "ninf ";
1598   if (getFlag(MachineInstr::FmNsz))
1599     OS << "nsz ";
1600   if (getFlag(MachineInstr::FmArcp))
1601     OS << "arcp ";
1602   if (getFlag(MachineInstr::FmContract))
1603     OS << "contract ";
1604   if (getFlag(MachineInstr::FmAfn))
1605     OS << "afn ";
1606   if (getFlag(MachineInstr::FmReassoc))
1607     OS << "reassoc ";
1608   if (getFlag(MachineInstr::NoUWrap))
1609     OS << "nuw ";
1610   if (getFlag(MachineInstr::NoSWrap))
1611     OS << "nsw ";
1612   if (getFlag(MachineInstr::IsExact))
1613     OS << "exact ";
1614   if (getFlag(MachineInstr::NoFPExcept))
1615     OS << "nofpexcept ";
1616   if (getFlag(MachineInstr::NoMerge))
1617     OS << "nomerge ";
1618 
1619   // Print the opcode name.
1620   if (TII)
1621     OS << TII->getName(getOpcode());
1622   else
1623     OS << "UNKNOWN";
1624 
1625   if (SkipOpers)
1626     return;
1627 
1628   // Print the rest of the operands.
1629   bool FirstOp = true;
1630   unsigned AsmDescOp = ~0u;
1631   unsigned AsmOpCount = 0;
1632 
1633   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1634     // Print asm string.
1635     OS << " ";
1636     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1637     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1638     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1639     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1640                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1641                             IntrinsicInfo);
1642 
1643     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1644     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1645     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1646       OS << " [sideeffect]";
1647     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1648       OS << " [mayload]";
1649     if (ExtraInfo & InlineAsm::Extra_MayStore)
1650       OS << " [maystore]";
1651     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1652       OS << " [isconvergent]";
1653     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1654       OS << " [alignstack]";
1655     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1656       OS << " [attdialect]";
1657     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1658       OS << " [inteldialect]";
1659 
1660     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1661     FirstOp = false;
1662   }
1663 
1664   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1665     const MachineOperand &MO = getOperand(i);
1666 
1667     if (FirstOp) FirstOp = false; else OS << ",";
1668     OS << " ";
1669 
1670     if (isDebugValue() && MO.isMetadata()) {
1671       // Pretty print DBG_VALUE* instructions.
1672       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1673       if (DIV && !DIV->getName().empty())
1674         OS << "!\"" << DIV->getName() << '\"';
1675       else {
1676         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1677         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1678         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1679                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1680       }
1681     } else if (isDebugLabel() && MO.isMetadata()) {
1682       // Pretty print DBG_LABEL instructions.
1683       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1684       if (DIL && !DIL->getName().empty())
1685         OS << "\"" << DIL->getName() << '\"';
1686       else {
1687         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1688         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1689         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1690                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1691       }
1692     } else if (i == AsmDescOp && MO.isImm()) {
1693       // Pretty print the inline asm operand descriptor.
1694       OS << '$' << AsmOpCount++;
1695       unsigned Flag = MO.getImm();
1696       OS << ":[";
1697       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1698 
1699       unsigned RCID = 0;
1700       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1701           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1702         if (TRI) {
1703           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1704         } else
1705           OS << ":RC" << RCID;
1706       }
1707 
1708       if (InlineAsm::isMemKind(Flag)) {
1709         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1710         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1711       }
1712 
1713       unsigned TiedTo = 0;
1714       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1715         OS << " tiedto:$" << TiedTo;
1716 
1717       OS << ']';
1718 
1719       // Compute the index of the next operand descriptor.
1720       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1721     } else {
1722       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1723       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1724       if (MO.isImm() && isOperandSubregIdx(i))
1725         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1726       else
1727         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1728                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1729     }
1730   }
1731 
1732   // Print any optional symbols attached to this instruction as-if they were
1733   // operands.
1734   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1735     if (!FirstOp) {
1736       FirstOp = false;
1737       OS << ',';
1738     }
1739     OS << " pre-instr-symbol ";
1740     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1741   }
1742   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1743     if (!FirstOp) {
1744       FirstOp = false;
1745       OS << ',';
1746     }
1747     OS << " post-instr-symbol ";
1748     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1749   }
1750   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1751     if (!FirstOp) {
1752       FirstOp = false;
1753       OS << ',';
1754     }
1755     OS << " heap-alloc-marker ";
1756     HeapAllocMarker->printAsOperand(OS, MST);
1757   }
1758 
1759   if (DebugInstrNum) {
1760     if (!FirstOp)
1761       OS << ",";
1762     OS << " debug-instr-number " << DebugInstrNum;
1763   }
1764 
1765   if (!SkipDebugLoc) {
1766     if (const DebugLoc &DL = getDebugLoc()) {
1767       if (!FirstOp)
1768         OS << ',';
1769       OS << " debug-location ";
1770       DL->printAsOperand(OS, MST);
1771     }
1772   }
1773 
1774   if (!memoperands_empty()) {
1775     SmallVector<StringRef, 0> SSNs;
1776     const LLVMContext *Context = nullptr;
1777     std::unique_ptr<LLVMContext> CtxPtr;
1778     const MachineFrameInfo *MFI = nullptr;
1779     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1780       MFI = &MF->getFrameInfo();
1781       Context = &MF->getFunction().getContext();
1782     } else {
1783       CtxPtr = std::make_unique<LLVMContext>();
1784       Context = CtxPtr.get();
1785     }
1786 
1787     OS << " :: ";
1788     bool NeedComma = false;
1789     for (const MachineMemOperand *Op : memoperands()) {
1790       if (NeedComma)
1791         OS << ", ";
1792       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1793       NeedComma = true;
1794     }
1795   }
1796 
1797   if (SkipDebugLoc)
1798     return;
1799 
1800   bool HaveSemi = false;
1801 
1802   // Print debug location information.
1803   if (const DebugLoc &DL = getDebugLoc()) {
1804     if (!HaveSemi) {
1805       OS << ';';
1806       HaveSemi = true;
1807     }
1808     OS << ' ';
1809     DL.print(OS);
1810   }
1811 
1812   // Print extra comments for DEBUG_VALUE.
1813   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1814     if (!HaveSemi) {
1815       OS << ";";
1816       HaveSemi = true;
1817     }
1818     auto *DV = getDebugVariable();
1819     OS << " line no:" <<  DV->getLine();
1820     if (isIndirectDebugValue())
1821       OS << " indirect";
1822   }
1823   // TODO: DBG_LABEL
1824 
1825   if (AddNewLine)
1826     OS << '\n';
1827 }
1828 
1829 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1830                                      const TargetRegisterInfo *RegInfo,
1831                                      bool AddIfNotFound) {
1832   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1833   bool hasAliases = isPhysReg &&
1834     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1835   bool Found = false;
1836   SmallVector<unsigned,4> DeadOps;
1837   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1838     MachineOperand &MO = getOperand(i);
1839     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1840       continue;
1841 
1842     // DEBUG_VALUE nodes do not contribute to code generation and should
1843     // always be ignored. Failure to do so may result in trying to modify
1844     // KILL flags on DEBUG_VALUE nodes.
1845     if (MO.isDebug())
1846       continue;
1847 
1848     Register Reg = MO.getReg();
1849     if (!Reg)
1850       continue;
1851 
1852     if (Reg == IncomingReg) {
1853       if (!Found) {
1854         if (MO.isKill())
1855           // The register is already marked kill.
1856           return true;
1857         if (isPhysReg && isRegTiedToDefOperand(i))
1858           // Two-address uses of physregs must not be marked kill.
1859           return true;
1860         MO.setIsKill();
1861         Found = true;
1862       }
1863     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1864       // A super-register kill already exists.
1865       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1866         return true;
1867       if (RegInfo->isSubRegister(IncomingReg, Reg))
1868         DeadOps.push_back(i);
1869     }
1870   }
1871 
1872   // Trim unneeded kill operands.
1873   while (!DeadOps.empty()) {
1874     unsigned OpIdx = DeadOps.back();
1875     if (getOperand(OpIdx).isImplicit() &&
1876         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1877       removeOperand(OpIdx);
1878     else
1879       getOperand(OpIdx).setIsKill(false);
1880     DeadOps.pop_back();
1881   }
1882 
1883   // If not found, this means an alias of one of the operands is killed. Add a
1884   // new implicit operand if required.
1885   if (!Found && AddIfNotFound) {
1886     addOperand(MachineOperand::CreateReg(IncomingReg,
1887                                          false /*IsDef*/,
1888                                          true  /*IsImp*/,
1889                                          true  /*IsKill*/));
1890     return true;
1891   }
1892   return Found;
1893 }
1894 
1895 void MachineInstr::clearRegisterKills(Register Reg,
1896                                       const TargetRegisterInfo *RegInfo) {
1897   if (!Register::isPhysicalRegister(Reg))
1898     RegInfo = nullptr;
1899   for (MachineOperand &MO : operands()) {
1900     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1901       continue;
1902     Register OpReg = MO.getReg();
1903     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1904       MO.setIsKill(false);
1905   }
1906 }
1907 
1908 bool MachineInstr::addRegisterDead(Register Reg,
1909                                    const TargetRegisterInfo *RegInfo,
1910                                    bool AddIfNotFound) {
1911   bool isPhysReg = Register::isPhysicalRegister(Reg);
1912   bool hasAliases = isPhysReg &&
1913     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1914   bool Found = false;
1915   SmallVector<unsigned,4> DeadOps;
1916   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1917     MachineOperand &MO = getOperand(i);
1918     if (!MO.isReg() || !MO.isDef())
1919       continue;
1920     Register MOReg = MO.getReg();
1921     if (!MOReg)
1922       continue;
1923 
1924     if (MOReg == Reg) {
1925       MO.setIsDead();
1926       Found = true;
1927     } else if (hasAliases && MO.isDead() &&
1928                Register::isPhysicalRegister(MOReg)) {
1929       // There exists a super-register that's marked dead.
1930       if (RegInfo->isSuperRegister(Reg, MOReg))
1931         return true;
1932       if (RegInfo->isSubRegister(Reg, MOReg))
1933         DeadOps.push_back(i);
1934     }
1935   }
1936 
1937   // Trim unneeded dead operands.
1938   while (!DeadOps.empty()) {
1939     unsigned OpIdx = DeadOps.back();
1940     if (getOperand(OpIdx).isImplicit() &&
1941         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1942       removeOperand(OpIdx);
1943     else
1944       getOperand(OpIdx).setIsDead(false);
1945     DeadOps.pop_back();
1946   }
1947 
1948   // If not found, this means an alias of one of the operands is dead. Add a
1949   // new implicit operand if required.
1950   if (Found || !AddIfNotFound)
1951     return Found;
1952 
1953   addOperand(MachineOperand::CreateReg(Reg,
1954                                        true  /*IsDef*/,
1955                                        true  /*IsImp*/,
1956                                        false /*IsKill*/,
1957                                        true  /*IsDead*/));
1958   return true;
1959 }
1960 
1961 void MachineInstr::clearRegisterDeads(Register Reg) {
1962   for (MachineOperand &MO : operands()) {
1963     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1964       continue;
1965     MO.setIsDead(false);
1966   }
1967 }
1968 
1969 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1970   for (MachineOperand &MO : operands()) {
1971     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1972       continue;
1973     MO.setIsUndef(IsUndef);
1974   }
1975 }
1976 
1977 void MachineInstr::addRegisterDefined(Register Reg,
1978                                       const TargetRegisterInfo *RegInfo) {
1979   if (Register::isPhysicalRegister(Reg)) {
1980     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1981     if (MO)
1982       return;
1983   } else {
1984     for (const MachineOperand &MO : operands()) {
1985       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1986           MO.getSubReg() == 0)
1987         return;
1988     }
1989   }
1990   addOperand(MachineOperand::CreateReg(Reg,
1991                                        true  /*IsDef*/,
1992                                        true  /*IsImp*/));
1993 }
1994 
1995 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1996                                          const TargetRegisterInfo &TRI) {
1997   bool HasRegMask = false;
1998   for (MachineOperand &MO : operands()) {
1999     if (MO.isRegMask()) {
2000       HasRegMask = true;
2001       continue;
2002     }
2003     if (!MO.isReg() || !MO.isDef()) continue;
2004     Register Reg = MO.getReg();
2005     if (!Reg.isPhysical())
2006       continue;
2007     // If there are no uses, including partial uses, the def is dead.
2008     if (llvm::none_of(UsedRegs,
2009                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2010       MO.setIsDead();
2011   }
2012 
2013   // This is a call with a register mask operand.
2014   // Mask clobbers are always dead, so add defs for the non-dead defines.
2015   if (HasRegMask)
2016     for (const Register &UsedReg : UsedRegs)
2017       addRegisterDefined(UsedReg, &TRI);
2018 }
2019 
2020 unsigned
2021 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2022   // Build up a buffer of hash code components.
2023   SmallVector<size_t, 16> HashComponents;
2024   HashComponents.reserve(MI->getNumOperands() + 1);
2025   HashComponents.push_back(MI->getOpcode());
2026   for (const MachineOperand &MO : MI->operands()) {
2027     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2028       continue;  // Skip virtual register defs.
2029 
2030     HashComponents.push_back(hash_value(MO));
2031   }
2032   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2033 }
2034 
2035 void MachineInstr::emitError(StringRef Msg) const {
2036   // Find the source location cookie.
2037   uint64_t LocCookie = 0;
2038   const MDNode *LocMD = nullptr;
2039   for (unsigned i = getNumOperands(); i != 0; --i) {
2040     if (getOperand(i-1).isMetadata() &&
2041         (LocMD = getOperand(i-1).getMetadata()) &&
2042         LocMD->getNumOperands() != 0) {
2043       if (const ConstantInt *CI =
2044               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2045         LocCookie = CI->getZExtValue();
2046         break;
2047       }
2048     }
2049   }
2050 
2051   if (const MachineBasicBlock *MBB = getParent())
2052     if (const MachineFunction *MF = MBB->getParent())
2053       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2054   report_fatal_error(Msg);
2055 }
2056 
2057 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2058                                   const MCInstrDesc &MCID, bool IsIndirect,
2059                                   Register Reg, const MDNode *Variable,
2060                                   const MDNode *Expr) {
2061   assert(isa<DILocalVariable>(Variable) && "not a variable");
2062   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2063   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2064          "Expected inlined-at fields to agree");
2065   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2066   if (IsIndirect)
2067     MIB.addImm(0U);
2068   else
2069     MIB.addReg(0U);
2070   return MIB.addMetadata(Variable).addMetadata(Expr);
2071 }
2072 
2073 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2074                                   const MCInstrDesc &MCID, bool IsIndirect,
2075                                   const MachineOperand &MO,
2076                                   const MDNode *Variable, const MDNode *Expr) {
2077   assert(isa<DILocalVariable>(Variable) && "not a variable");
2078   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2079   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2080          "Expected inlined-at fields to agree");
2081   if (MO.isReg())
2082     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2083 
2084   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2085   if (IsIndirect)
2086     MIB.addImm(0U);
2087   else
2088     MIB.addReg(0U);
2089   return MIB.addMetadata(Variable).addMetadata(Expr);
2090 }
2091 
2092 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2093                                   const MCInstrDesc &MCID, bool IsIndirect,
2094                                   ArrayRef<MachineOperand> MOs,
2095                                   const MDNode *Variable, const MDNode *Expr) {
2096   assert(isa<DILocalVariable>(Variable) && "not a variable");
2097   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2098   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2099          "Expected inlined-at fields to agree");
2100   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2101     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2102 
2103   auto MIB = BuildMI(MF, DL, MCID);
2104   MIB.addMetadata(Variable).addMetadata(Expr);
2105   for (const MachineOperand &MO : MOs)
2106     if (MO.isReg())
2107       MIB.addReg(MO.getReg());
2108     else
2109       MIB.add(MO);
2110   return MIB;
2111 }
2112 
2113 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2114                                   MachineBasicBlock::iterator I,
2115                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2116                                   bool IsIndirect, Register Reg,
2117                                   const MDNode *Variable, const MDNode *Expr) {
2118   MachineFunction &MF = *BB.getParent();
2119   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2120   BB.insert(I, MI);
2121   return MachineInstrBuilder(MF, MI);
2122 }
2123 
2124 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2125                                   MachineBasicBlock::iterator I,
2126                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2127                                   bool IsIndirect, MachineOperand &MO,
2128                                   const MDNode *Variable, const MDNode *Expr) {
2129   MachineFunction &MF = *BB.getParent();
2130   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2131   BB.insert(I, MI);
2132   return MachineInstrBuilder(MF, *MI);
2133 }
2134 
2135 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2136                                   MachineBasicBlock::iterator I,
2137                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2138                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2139                                   const MDNode *Variable, const MDNode *Expr) {
2140   MachineFunction &MF = *BB.getParent();
2141   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2142   BB.insert(I, MI);
2143   return MachineInstrBuilder(MF, *MI);
2144 }
2145 
2146 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2147 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2148 static const DIExpression *
2149 computeExprForSpill(const MachineInstr &MI,
2150                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2151   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2152          "Expected inlined-at fields to agree");
2153 
2154   const DIExpression *Expr = MI.getDebugExpression();
2155   if (MI.isIndirectDebugValue()) {
2156     assert(MI.getDebugOffset().getImm() == 0 &&
2157            "DBG_VALUE with nonzero offset");
2158     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2159   } else if (MI.isDebugValueList()) {
2160     // We will replace the spilled register with a frame index, so
2161     // immediately deref all references to the spilled register.
2162     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2163     for (const MachineOperand *Op : SpilledOperands) {
2164       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2165       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2166     }
2167   }
2168   return Expr;
2169 }
2170 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2171                                                Register SpillReg) {
2172   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2173   SmallVector<const MachineOperand *> SpillOperands;
2174   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2175     SpillOperands.push_back(&Op);
2176   return computeExprForSpill(MI, SpillOperands);
2177 }
2178 
2179 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2180                                           MachineBasicBlock::iterator I,
2181                                           const MachineInstr &Orig,
2182                                           int FrameIndex, Register SpillReg) {
2183   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2184   MachineInstrBuilder NewMI =
2185       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2186   // Non-Variadic Operands: Location, Offset, Variable, Expression
2187   // Variadic Operands:     Variable, Expression, Locations...
2188   if (Orig.isNonListDebugValue())
2189     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2190   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2191   if (Orig.isDebugValueList()) {
2192     for (const MachineOperand &Op : Orig.debug_operands())
2193       if (Op.isReg() && Op.getReg() == SpillReg)
2194         NewMI.addFrameIndex(FrameIndex);
2195       else
2196         NewMI.add(MachineOperand(Op));
2197   }
2198   return NewMI;
2199 }
2200 MachineInstr *llvm::buildDbgValueForSpill(
2201     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2202     const MachineInstr &Orig, int FrameIndex,
2203     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2204   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2205   MachineInstrBuilder NewMI =
2206       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2207   // Non-Variadic Operands: Location, Offset, Variable, Expression
2208   // Variadic Operands:     Variable, Expression, Locations...
2209   if (Orig.isNonListDebugValue())
2210     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2211   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2212   if (Orig.isDebugValueList()) {
2213     for (const MachineOperand &Op : Orig.debug_operands())
2214       if (is_contained(SpilledOperands, &Op))
2215         NewMI.addFrameIndex(FrameIndex);
2216       else
2217         NewMI.add(MachineOperand(Op));
2218   }
2219   return NewMI;
2220 }
2221 
2222 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2223                                   Register Reg) {
2224   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2225   if (Orig.isNonListDebugValue())
2226     Orig.getDebugOffset().ChangeToImmediate(0U);
2227   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2228     Op.ChangeToFrameIndex(FrameIndex);
2229   Orig.getDebugExpressionOp().setMetadata(Expr);
2230 }
2231 
2232 void MachineInstr::collectDebugValues(
2233                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2234   MachineInstr &MI = *this;
2235   if (!MI.getOperand(0).isReg())
2236     return;
2237 
2238   MachineBasicBlock::iterator DI = MI; ++DI;
2239   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2240        DI != DE; ++DI) {
2241     if (!DI->isDebugValue())
2242       return;
2243     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2244       DbgValues.push_back(&*DI);
2245   }
2246 }
2247 
2248 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2249   // Collect matching debug values.
2250   SmallVector<MachineInstr *, 2> DbgValues;
2251 
2252   if (!getOperand(0).isReg())
2253     return;
2254 
2255   Register DefReg = getOperand(0).getReg();
2256   auto *MRI = getRegInfo();
2257   for (auto &MO : MRI->use_operands(DefReg)) {
2258     auto *DI = MO.getParent();
2259     if (!DI->isDebugValue())
2260       continue;
2261     if (DI->hasDebugOperandForReg(DefReg)) {
2262       DbgValues.push_back(DI);
2263     }
2264   }
2265 
2266   // Propagate Reg to debug value instructions.
2267   for (auto *DBI : DbgValues)
2268     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2269       Op.setReg(Reg);
2270 }
2271 
2272 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2273 
2274 static unsigned getSpillSlotSize(const MMOList &Accesses,
2275                                  const MachineFrameInfo &MFI) {
2276   unsigned Size = 0;
2277   for (auto A : Accesses)
2278     if (MFI.isSpillSlotObjectIndex(
2279             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2280                 ->getFrameIndex()))
2281       Size += A->getSize();
2282   return Size;
2283 }
2284 
2285 Optional<unsigned>
2286 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2287   int FI;
2288   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2289     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2290     if (MFI.isSpillSlotObjectIndex(FI))
2291       return (*memoperands_begin())->getSize();
2292   }
2293   return None;
2294 }
2295 
2296 Optional<unsigned>
2297 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2298   MMOList Accesses;
2299   if (TII->hasStoreToStackSlot(*this, Accesses))
2300     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2301   return None;
2302 }
2303 
2304 Optional<unsigned>
2305 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2306   int FI;
2307   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2308     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2309     if (MFI.isSpillSlotObjectIndex(FI))
2310       return (*memoperands_begin())->getSize();
2311   }
2312   return None;
2313 }
2314 
2315 Optional<unsigned>
2316 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2317   MMOList Accesses;
2318   if (TII->hasLoadFromStackSlot(*this, Accesses))
2319     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2320   return None;
2321 }
2322 
2323 unsigned MachineInstr::getDebugInstrNum() {
2324   if (DebugInstrNum == 0)
2325     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2326   return DebugInstrNum;
2327 }
2328 
2329 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2330   if (DebugInstrNum == 0)
2331     DebugInstrNum = MF.getNewDebugInstrNum();
2332   return DebugInstrNum;
2333 }
2334