1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isEHPad()) 207 return *I; 208 return nullptr; 209 } 210 211 bool MachineBasicBlock::hasEHPadSuccessor() const { 212 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 213 if ((*I)->isEHPad()) 214 return true; 215 return false; 216 } 217 218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 219 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 220 print(dbgs()); 221 } 222 #endif 223 224 StringRef MachineBasicBlock::getName() const { 225 if (const BasicBlock *LBB = getBasicBlock()) 226 return LBB->getName(); 227 else 228 return "(null)"; 229 } 230 231 /// Return a hopefully unique identifier for this block. 232 std::string MachineBasicBlock::getFullName() const { 233 std::string Name; 234 if (getParent()) 235 Name = (getParent()->getName() + ":").str(); 236 if (getBasicBlock()) 237 Name += getBasicBlock()->getName(); 238 else 239 Name += ("BB" + Twine(getNumber())).str(); 240 return Name; 241 } 242 243 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 244 const MachineFunction *MF = getParent(); 245 if (!MF) { 246 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 247 << " is null\n"; 248 return; 249 } 250 const Function *F = MF->getFunction(); 251 const Module *M = F ? F->getParent() : nullptr; 252 ModuleSlotTracker MST(M); 253 print(OS, MST, Indexes); 254 } 255 256 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 257 SlotIndexes *Indexes) const { 258 const MachineFunction *MF = getParent(); 259 if (!MF) { 260 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 261 << " is null\n"; 262 return; 263 } 264 265 if (Indexes) 266 OS << Indexes->getMBBStartIdx(this) << '\t'; 267 268 OS << "BB#" << getNumber() << ": "; 269 270 const char *Comma = ""; 271 if (const BasicBlock *LBB = getBasicBlock()) { 272 OS << Comma << "derived from LLVM BB "; 273 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 274 Comma = ", "; 275 } 276 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 277 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 278 if (Alignment) 279 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 280 << " bytes)"; 281 282 OS << '\n'; 283 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 if (!livein_empty()) { 286 if (Indexes) OS << '\t'; 287 OS << " Live Ins:"; 288 for (const auto &LI : make_range(livein_begin(), livein_end())) { 289 OS << ' ' << PrintReg(LI.PhysReg, TRI); 290 if (LI.LaneMask != ~0u) 291 OS << ':' << PrintLaneMask(LI.LaneMask); 292 } 293 OS << '\n'; 294 } 295 // Print the preds of this block according to the CFG. 296 if (!pred_empty()) { 297 if (Indexes) OS << '\t'; 298 OS << " Predecessors according to CFG:"; 299 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 300 OS << " BB#" << (*PI)->getNumber(); 301 OS << '\n'; 302 } 303 304 for (auto &I : instrs()) { 305 if (Indexes) { 306 if (Indexes->hasIndex(I)) 307 OS << Indexes->getInstructionIndex(I); 308 OS << '\t'; 309 } 310 OS << '\t'; 311 if (I.isInsideBundle()) 312 OS << " * "; 313 I.print(OS, MST); 314 } 315 316 // Print the successors of this block according to the CFG. 317 if (!succ_empty()) { 318 if (Indexes) OS << '\t'; 319 OS << " Successors according to CFG:"; 320 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 321 OS << " BB#" << (*SI)->getNumber(); 322 if (!Probs.empty()) 323 OS << '(' << *getProbabilityIterator(SI) << ')'; 324 } 325 OS << '\n'; 326 } 327 } 328 329 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 330 bool /*PrintType*/) const { 331 OS << "BB#" << getNumber(); 332 } 333 334 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 335 LiveInVector::iterator I = std::find_if( 336 LiveIns.begin(), LiveIns.end(), 337 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 if (I == LiveIns.end()) 339 return; 340 341 I->LaneMask &= ~LaneMask; 342 if (I->LaneMask == 0) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 347 livein_iterator I = std::find_if( 348 LiveIns.begin(), LiveIns.end(), 349 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 350 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 351 } 352 353 void MachineBasicBlock::sortUniqueLiveIns() { 354 std::sort(LiveIns.begin(), LiveIns.end(), 355 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 356 return LI0.PhysReg < LI1.PhysReg; 357 }); 358 // Liveins are sorted by physreg now we can merge their lanemasks. 359 LiveInVector::const_iterator I = LiveIns.begin(); 360 LiveInVector::const_iterator J; 361 LiveInVector::iterator Out = LiveIns.begin(); 362 for (; I != LiveIns.end(); ++Out, I = J) { 363 unsigned PhysReg = I->PhysReg; 364 LaneBitmask LaneMask = I->LaneMask; 365 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 366 LaneMask |= J->LaneMask; 367 Out->PhysReg = PhysReg; 368 Out->LaneMask = LaneMask; 369 } 370 LiveIns.erase(Out, LiveIns.end()); 371 } 372 373 unsigned 374 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 375 assert(getParent() && "MBB must be inserted in function"); 376 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 377 assert(RC && "Register class is required"); 378 assert((isEHPad() || this == &getParent()->front()) && 379 "Only the entry block and landing pads can have physreg live ins"); 380 381 bool LiveIn = isLiveIn(PhysReg); 382 iterator I = SkipPHIsAndLabels(begin()), E = end(); 383 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 384 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 385 386 // Look for an existing copy. 387 if (LiveIn) 388 for (;I != E && I->isCopy(); ++I) 389 if (I->getOperand(1).getReg() == PhysReg) { 390 unsigned VirtReg = I->getOperand(0).getReg(); 391 if (!MRI.constrainRegClass(VirtReg, RC)) 392 llvm_unreachable("Incompatible live-in register class."); 393 return VirtReg; 394 } 395 396 // No luck, create a virtual register. 397 unsigned VirtReg = MRI.createVirtualRegister(RC); 398 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 399 .addReg(PhysReg, RegState::Kill); 400 if (!LiveIn) 401 addLiveIn(PhysReg); 402 return VirtReg; 403 } 404 405 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 406 getParent()->splice(NewAfter->getIterator(), getIterator()); 407 } 408 409 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 410 getParent()->splice(++NewBefore->getIterator(), getIterator()); 411 } 412 413 void MachineBasicBlock::updateTerminator() { 414 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 415 // A block with no successors has no concerns with fall-through edges. 416 if (this->succ_empty()) return; 417 418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 419 SmallVector<MachineOperand, 4> Cond; 420 DebugLoc DL; // FIXME: this is nowhere 421 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 422 (void) B; 423 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 424 if (Cond.empty()) { 425 if (TBB) { 426 // The block has an unconditional branch. If its successor is now 427 // its layout successor, delete the branch. 428 if (isLayoutSuccessor(TBB)) 429 TII->RemoveBranch(*this); 430 } else { 431 // The block has an unconditional fallthrough. If its successor is not 432 // its layout successor, insert a branch. First we have to locate the 433 // only non-landing-pad successor, as that is the fallthrough block. 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isEHPad()) 436 continue; 437 assert(!TBB && "Found more than one non-landing-pad successor!"); 438 TBB = *SI; 439 } 440 441 // If there is no non-landing-pad successor, the block has no 442 // fall-through edges to be concerned with. 443 if (!TBB) 444 return; 445 446 // Finally update the unconditional successor to be reached via a branch 447 // if it would not be reached by fallthrough. 448 if (!isLayoutSuccessor(TBB)) 449 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 450 } 451 } else { 452 if (FBB) { 453 // The block has a non-fallthrough conditional branch. If one of its 454 // successors is its layout successor, rewrite it to a fallthrough 455 // conditional branch. 456 if (isLayoutSuccessor(TBB)) { 457 if (TII->ReverseBranchCondition(Cond)) 458 return; 459 TII->RemoveBranch(*this); 460 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 461 } else if (isLayoutSuccessor(FBB)) { 462 TII->RemoveBranch(*this); 463 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 464 } 465 } else { 466 // Walk through the successors and find the successor which is not 467 // a landing pad and is not the conditional branch destination (in TBB) 468 // as the fallthrough successor. 469 MachineBasicBlock *FallthroughBB = nullptr; 470 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 471 if ((*SI)->isEHPad() || *SI == TBB) 472 continue; 473 assert(!FallthroughBB && "Found more than one fallthrough successor."); 474 FallthroughBB = *SI; 475 } 476 if (!FallthroughBB && canFallThrough()) { 477 // We fallthrough to the same basic block as the conditional jump 478 // targets. Remove the conditional jump, leaving unconditional 479 // fallthrough. 480 // FIXME: This does not seem like a reasonable pattern to support, but 481 // it has been seen in the wild coming out of degenerate ARM test cases. 482 TII->RemoveBranch(*this); 483 484 // Finally update the unconditional successor to be reached via a branch 485 // if it would not be reached by fallthrough. 486 if (!isLayoutSuccessor(TBB)) 487 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 488 return; 489 } 490 491 // The block has a fallthrough conditional branch. 492 if (isLayoutSuccessor(TBB)) { 493 if (TII->ReverseBranchCondition(Cond)) { 494 // We can't reverse the condition, add an unconditional branch. 495 Cond.clear(); 496 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 497 return; 498 } 499 TII->RemoveBranch(*this); 500 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 501 } else if (!isLayoutSuccessor(FallthroughBB)) { 502 TII->RemoveBranch(*this); 503 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 504 } 505 } 506 } 507 } 508 509 void MachineBasicBlock::validateSuccProbs() const { 510 #ifndef NDEBUG 511 int64_t Sum = 0; 512 for (auto Prob : Probs) 513 Sum += Prob.getNumerator(); 514 // Due to precision issue, we assume that the sum of probabilities is one if 515 // the difference between the sum of their numerators and the denominator is 516 // no greater than the number of successors. 517 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 518 Probs.size() && 519 "The sum of successors's probabilities exceeds one."); 520 #endif // NDEBUG 521 } 522 523 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 524 BranchProbability Prob) { 525 // Probability list is either empty (if successor list isn't empty, this means 526 // disabled optimization) or has the same size as successor list. 527 if (!(Probs.empty() && !Successors.empty())) 528 Probs.push_back(Prob); 529 Successors.push_back(Succ); 530 Succ->addPredecessor(this); 531 } 532 533 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 534 // We need to make sure probability list is either empty or has the same size 535 // of successor list. When this function is called, we can safely delete all 536 // probability in the list. 537 Probs.clear(); 538 Successors.push_back(Succ); 539 Succ->addPredecessor(this); 540 } 541 542 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 543 bool NormalizeSuccProbs) { 544 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 545 removeSuccessor(I, NormalizeSuccProbs); 546 } 547 548 MachineBasicBlock::succ_iterator 549 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 550 assert(I != Successors.end() && "Not a current successor!"); 551 552 // If probability list is empty it means we don't use it (disabled 553 // optimization). 554 if (!Probs.empty()) { 555 probability_iterator WI = getProbabilityIterator(I); 556 Probs.erase(WI); 557 if (NormalizeSuccProbs) 558 normalizeSuccProbs(); 559 } 560 561 (*I)->removePredecessor(this); 562 return Successors.erase(I); 563 } 564 565 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 566 MachineBasicBlock *New) { 567 if (Old == New) 568 return; 569 570 succ_iterator E = succ_end(); 571 succ_iterator NewI = E; 572 succ_iterator OldI = E; 573 for (succ_iterator I = succ_begin(); I != E; ++I) { 574 if (*I == Old) { 575 OldI = I; 576 if (NewI != E) 577 break; 578 } 579 if (*I == New) { 580 NewI = I; 581 if (OldI != E) 582 break; 583 } 584 } 585 assert(OldI != E && "Old is not a successor of this block"); 586 587 // If New isn't already a successor, let it take Old's place. 588 if (NewI == E) { 589 Old->removePredecessor(this); 590 New->addPredecessor(this); 591 *OldI = New; 592 return; 593 } 594 595 // New is already a successor. 596 // Update its probability instead of adding a duplicate edge. 597 if (!Probs.empty()) { 598 auto ProbIter = getProbabilityIterator(NewI); 599 if (!ProbIter->isUnknown()) 600 *ProbIter += *getProbabilityIterator(OldI); 601 } 602 removeSuccessor(OldI); 603 } 604 605 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 606 Predecessors.push_back(Pred); 607 } 608 609 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 610 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 611 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 612 Predecessors.erase(I); 613 } 614 615 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 616 if (this == FromMBB) 617 return; 618 619 while (!FromMBB->succ_empty()) { 620 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 621 622 // If probability list is empty it means we don't use it (disabled optimization). 623 if (!FromMBB->Probs.empty()) { 624 auto Prob = *FromMBB->Probs.begin(); 625 addSuccessor(Succ, Prob); 626 } else 627 addSuccessorWithoutProb(Succ); 628 629 FromMBB->removeSuccessor(Succ); 630 } 631 } 632 633 void 634 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 635 if (this == FromMBB) 636 return; 637 638 while (!FromMBB->succ_empty()) { 639 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 640 if (!FromMBB->Probs.empty()) { 641 auto Prob = *FromMBB->Probs.begin(); 642 addSuccessor(Succ, Prob); 643 } else 644 addSuccessorWithoutProb(Succ); 645 FromMBB->removeSuccessor(Succ); 646 647 // Fix up any PHI nodes in the successor. 648 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 649 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 650 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 651 MachineOperand &MO = MI->getOperand(i); 652 if (MO.getMBB() == FromMBB) 653 MO.setMBB(this); 654 } 655 } 656 normalizeSuccProbs(); 657 } 658 659 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 660 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 661 } 662 663 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 664 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 665 } 666 667 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 668 MachineFunction::const_iterator I(this); 669 return std::next(I) == MachineFunction::const_iterator(MBB); 670 } 671 672 bool MachineBasicBlock::canFallThrough() { 673 MachineFunction::iterator Fallthrough = getIterator(); 674 ++Fallthrough; 675 // If FallthroughBlock is off the end of the function, it can't fall through. 676 if (Fallthrough == getParent()->end()) 677 return false; 678 679 // If FallthroughBlock isn't a successor, no fallthrough is possible. 680 if (!isSuccessor(&*Fallthrough)) 681 return false; 682 683 // Analyze the branches, if any, at the end of the block. 684 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 685 SmallVector<MachineOperand, 4> Cond; 686 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 687 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 688 // If we couldn't analyze the branch, examine the last instruction. 689 // If the block doesn't end in a known control barrier, assume fallthrough 690 // is possible. The isPredicated check is needed because this code can be 691 // called during IfConversion, where an instruction which is normally a 692 // Barrier is predicated and thus no longer an actual control barrier. 693 return empty() || !back().isBarrier() || TII->isPredicated(back()); 694 } 695 696 // If there is no branch, control always falls through. 697 if (!TBB) return true; 698 699 // If there is some explicit branch to the fallthrough block, it can obviously 700 // reach, even though the branch should get folded to fall through implicitly. 701 if (MachineFunction::iterator(TBB) == Fallthrough || 702 MachineFunction::iterator(FBB) == Fallthrough) 703 return true; 704 705 // If it's an unconditional branch to some block not the fall through, it 706 // doesn't fall through. 707 if (Cond.empty()) return false; 708 709 // Otherwise, if it is conditional and has no explicit false block, it falls 710 // through. 711 return FBB == nullptr; 712 } 713 714 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 715 Pass &P) { 716 if (!canSplitCriticalEdge(Succ)) 717 return nullptr; 718 719 MachineFunction *MF = getParent(); 720 DebugLoc DL; // FIXME: this is nowhere 721 722 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 723 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 724 DEBUG(dbgs() << "Splitting critical edge:" 725 " BB#" << getNumber() 726 << " -- BB#" << NMBB->getNumber() 727 << " -- BB#" << Succ->getNumber() << '\n'); 728 729 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 730 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 731 if (LIS) 732 LIS->insertMBBInMaps(NMBB); 733 else if (Indexes) 734 Indexes->insertMBBInMaps(NMBB); 735 736 // On some targets like Mips, branches may kill virtual registers. Make sure 737 // that LiveVariables is properly updated after updateTerminator replaces the 738 // terminators. 739 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 740 741 // Collect a list of virtual registers killed by the terminators. 742 SmallVector<unsigned, 4> KilledRegs; 743 if (LV) 744 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 745 I != E; ++I) { 746 MachineInstr *MI = &*I; 747 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 748 OE = MI->operands_end(); OI != OE; ++OI) { 749 if (!OI->isReg() || OI->getReg() == 0 || 750 !OI->isUse() || !OI->isKill() || OI->isUndef()) 751 continue; 752 unsigned Reg = OI->getReg(); 753 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 754 LV->getVarInfo(Reg).removeKill(MI)) { 755 KilledRegs.push_back(Reg); 756 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 757 OI->setIsKill(false); 758 } 759 } 760 } 761 762 SmallVector<unsigned, 4> UsedRegs; 763 if (LIS) { 764 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 765 I != E; ++I) { 766 MachineInstr *MI = &*I; 767 768 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 769 OE = MI->operands_end(); OI != OE; ++OI) { 770 if (!OI->isReg() || OI->getReg() == 0) 771 continue; 772 773 unsigned Reg = OI->getReg(); 774 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 775 UsedRegs.push_back(Reg); 776 } 777 } 778 } 779 780 ReplaceUsesOfBlockWith(Succ, NMBB); 781 782 // If updateTerminator() removes instructions, we need to remove them from 783 // SlotIndexes. 784 SmallVector<MachineInstr*, 4> Terminators; 785 if (Indexes) { 786 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 787 I != E; ++I) 788 Terminators.push_back(&*I); 789 } 790 791 updateTerminator(); 792 793 if (Indexes) { 794 SmallVector<MachineInstr*, 4> NewTerminators; 795 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 796 I != E; ++I) 797 NewTerminators.push_back(&*I); 798 799 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 800 E = Terminators.end(); I != E; ++I) { 801 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 802 NewTerminators.end()) 803 Indexes->removeMachineInstrFromMaps(**I); 804 } 805 } 806 807 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 808 NMBB->addSuccessor(Succ); 809 if (!NMBB->isLayoutSuccessor(Succ)) { 810 SmallVector<MachineOperand, 4> Cond; 811 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 812 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 813 814 if (Indexes) { 815 for (MachineInstr &MI : NMBB->instrs()) { 816 // Some instructions may have been moved to NMBB by updateTerminator(), 817 // so we first remove any instruction that already has an index. 818 if (Indexes->hasIndex(MI)) 819 Indexes->removeMachineInstrFromMaps(MI); 820 Indexes->insertMachineInstrInMaps(MI); 821 } 822 } 823 } 824 825 // Fix PHI nodes in Succ so they refer to NMBB instead of this 826 for (MachineBasicBlock::instr_iterator 827 i = Succ->instr_begin(),e = Succ->instr_end(); 828 i != e && i->isPHI(); ++i) 829 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 830 if (i->getOperand(ni+1).getMBB() == this) 831 i->getOperand(ni+1).setMBB(NMBB); 832 833 // Inherit live-ins from the successor 834 for (const auto &LI : Succ->liveins()) 835 NMBB->addLiveIn(LI); 836 837 // Update LiveVariables. 838 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 839 if (LV) { 840 // Restore kills of virtual registers that were killed by the terminators. 841 while (!KilledRegs.empty()) { 842 unsigned Reg = KilledRegs.pop_back_val(); 843 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 844 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 845 continue; 846 if (TargetRegisterInfo::isVirtualRegister(Reg)) 847 LV->getVarInfo(Reg).Kills.push_back(&*I); 848 DEBUG(dbgs() << "Restored terminator kill: " << *I); 849 break; 850 } 851 } 852 // Update relevant live-through information. 853 LV->addNewBlock(NMBB, this, Succ); 854 } 855 856 if (LIS) { 857 // After splitting the edge and updating SlotIndexes, live intervals may be 858 // in one of two situations, depending on whether this block was the last in 859 // the function. If the original block was the last in the function, all 860 // live intervals will end prior to the beginning of the new split block. If 861 // the original block was not at the end of the function, all live intervals 862 // will extend to the end of the new split block. 863 864 bool isLastMBB = 865 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 866 867 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 868 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 869 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 870 871 // Find the registers used from NMBB in PHIs in Succ. 872 SmallSet<unsigned, 8> PHISrcRegs; 873 for (MachineBasicBlock::instr_iterator 874 I = Succ->instr_begin(), E = Succ->instr_end(); 875 I != E && I->isPHI(); ++I) { 876 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 877 if (I->getOperand(ni+1).getMBB() == NMBB) { 878 MachineOperand &MO = I->getOperand(ni); 879 unsigned Reg = MO.getReg(); 880 PHISrcRegs.insert(Reg); 881 if (MO.isUndef()) 882 continue; 883 884 LiveInterval &LI = LIS->getInterval(Reg); 885 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 886 assert(VNI && 887 "PHI sources should be live out of their predecessors."); 888 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 889 } 890 } 891 } 892 893 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 894 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 895 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 896 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 897 continue; 898 899 LiveInterval &LI = LIS->getInterval(Reg); 900 if (!LI.liveAt(PrevIndex)) 901 continue; 902 903 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 904 if (isLiveOut && isLastMBB) { 905 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 906 assert(VNI && "LiveInterval should have VNInfo where it is live."); 907 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 908 } else if (!isLiveOut && !isLastMBB) { 909 LI.removeSegment(StartIndex, EndIndex); 910 } 911 } 912 913 // Update all intervals for registers whose uses may have been modified by 914 // updateTerminator(). 915 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 916 } 917 918 if (MachineDominatorTree *MDT = 919 P.getAnalysisIfAvailable<MachineDominatorTree>()) 920 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 921 922 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 923 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 924 // If one or the other blocks were not in a loop, the new block is not 925 // either, and thus LI doesn't need to be updated. 926 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 927 if (TIL == DestLoop) { 928 // Both in the same loop, the NMBB joins loop. 929 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 930 } else if (TIL->contains(DestLoop)) { 931 // Edge from an outer loop to an inner loop. Add to the outer loop. 932 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 933 } else if (DestLoop->contains(TIL)) { 934 // Edge from an inner loop to an outer loop. Add to the outer loop. 935 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 936 } else { 937 // Edge from two loops with no containment relation. Because these 938 // are natural loops, we know that the destination block must be the 939 // header of its loop (adding a branch into a loop elsewhere would 940 // create an irreducible loop). 941 assert(DestLoop->getHeader() == Succ && 942 "Should not create irreducible loops!"); 943 if (MachineLoop *P = DestLoop->getParentLoop()) 944 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 945 } 946 } 947 } 948 949 return NMBB; 950 } 951 952 bool MachineBasicBlock::canSplitCriticalEdge( 953 const MachineBasicBlock *Succ) const { 954 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 955 // it in this generic function. 956 if (Succ->isEHPad()) 957 return false; 958 959 const MachineFunction *MF = getParent(); 960 961 // Performance might be harmed on HW that implements branching using exec mask 962 // where both sides of the branches are always executed. 963 if (MF->getTarget().requiresStructuredCFG()) 964 return false; 965 966 // We may need to update this's terminator, but we can't do that if 967 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 968 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 970 SmallVector<MachineOperand, 4> Cond; 971 // AnalyzeBanch should modify this, since we did not allow modification. 972 if (TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 973 /*AllowModify*/ false)) 974 return false; 975 976 // Avoid bugpoint weirdness: A block may end with a conditional branch but 977 // jumps to the same MBB is either case. We have duplicate CFG edges in that 978 // case that we can't handle. Since this never happens in properly optimized 979 // code, just skip those edges. 980 if (TBB && TBB == FBB) { 981 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 982 << getNumber() << '\n'); 983 return false; 984 } 985 return true; 986 } 987 988 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 989 /// neighboring instructions so the bundle won't be broken by removing MI. 990 static void unbundleSingleMI(MachineInstr *MI) { 991 // Removing the first instruction in a bundle. 992 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 993 MI->unbundleFromSucc(); 994 // Removing the last instruction in a bundle. 995 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 996 MI->unbundleFromPred(); 997 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 998 // are already fine. 999 } 1000 1001 MachineBasicBlock::instr_iterator 1002 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1003 unbundleSingleMI(&*I); 1004 return Insts.erase(I); 1005 } 1006 1007 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1008 unbundleSingleMI(MI); 1009 MI->clearFlag(MachineInstr::BundledPred); 1010 MI->clearFlag(MachineInstr::BundledSucc); 1011 return Insts.remove(MI); 1012 } 1013 1014 MachineBasicBlock::instr_iterator 1015 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1016 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1017 "Cannot insert instruction with bundle flags"); 1018 // Set the bundle flags when inserting inside a bundle. 1019 if (I != instr_end() && I->isBundledWithPred()) { 1020 MI->setFlag(MachineInstr::BundledPred); 1021 MI->setFlag(MachineInstr::BundledSucc); 1022 } 1023 return Insts.insert(I, MI); 1024 } 1025 1026 /// This method unlinks 'this' from the containing function, and returns it, but 1027 /// does not delete it. 1028 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1029 assert(getParent() && "Not embedded in a function!"); 1030 getParent()->remove(this); 1031 return this; 1032 } 1033 1034 /// This method unlinks 'this' from the containing function, and deletes it. 1035 void MachineBasicBlock::eraseFromParent() { 1036 assert(getParent() && "Not embedded in a function!"); 1037 getParent()->erase(this); 1038 } 1039 1040 /// Given a machine basic block that branched to 'Old', change the code and CFG 1041 /// so that it branches to 'New' instead. 1042 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1043 MachineBasicBlock *New) { 1044 assert(Old != New && "Cannot replace self with self!"); 1045 1046 MachineBasicBlock::instr_iterator I = instr_end(); 1047 while (I != instr_begin()) { 1048 --I; 1049 if (!I->isTerminator()) break; 1050 1051 // Scan the operands of this machine instruction, replacing any uses of Old 1052 // with New. 1053 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1054 if (I->getOperand(i).isMBB() && 1055 I->getOperand(i).getMBB() == Old) 1056 I->getOperand(i).setMBB(New); 1057 } 1058 1059 // Update the successor information. 1060 replaceSuccessor(Old, New); 1061 } 1062 1063 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1064 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1065 /// MBB successors from the CFG. DestA and DestB can be null. 1066 /// 1067 /// Besides DestA and DestB, retain other edges leading to LandingPads 1068 /// (currently there can be only one; we don't check or require that here). 1069 /// Note it is possible that DestA and/or DestB are LandingPads. 1070 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1071 MachineBasicBlock *DestB, 1072 bool IsCond) { 1073 // The values of DestA and DestB frequently come from a call to the 1074 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1075 // values from there. 1076 // 1077 // 1. If both DestA and DestB are null, then the block ends with no branches 1078 // (it falls through to its successor). 1079 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1080 // with only an unconditional branch. 1081 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1082 // with a conditional branch that falls through to a successor (DestB). 1083 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1084 // conditional branch followed by an unconditional branch. DestA is the 1085 // 'true' destination and DestB is the 'false' destination. 1086 1087 bool Changed = false; 1088 1089 MachineFunction::iterator FallThru = std::next(getIterator()); 1090 1091 if (!DestA && !DestB) { 1092 // Block falls through to successor. 1093 DestA = &*FallThru; 1094 DestB = &*FallThru; 1095 } else if (DestA && !DestB) { 1096 if (IsCond) 1097 // Block ends in conditional jump that falls through to successor. 1098 DestB = &*FallThru; 1099 } else { 1100 assert(DestA && DestB && IsCond && 1101 "CFG in a bad state. Cannot correct CFG edges"); 1102 } 1103 1104 // Remove superfluous edges. I.e., those which aren't destinations of this 1105 // basic block, duplicate edges, or landing pads. 1106 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1107 MachineBasicBlock::succ_iterator SI = succ_begin(); 1108 while (SI != succ_end()) { 1109 const MachineBasicBlock *MBB = *SI; 1110 if (!SeenMBBs.insert(MBB).second || 1111 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1112 // This is a superfluous edge, remove it. 1113 SI = removeSuccessor(SI); 1114 Changed = true; 1115 } else { 1116 ++SI; 1117 } 1118 } 1119 1120 if (Changed) 1121 normalizeSuccProbs(); 1122 return Changed; 1123 } 1124 1125 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1126 /// instructions. Return UnknownLoc if there is none. 1127 DebugLoc 1128 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1129 DebugLoc DL; 1130 instr_iterator E = instr_end(); 1131 if (MBBI == E) 1132 return DL; 1133 1134 // Skip debug declarations, we don't want a DebugLoc from them. 1135 while (MBBI != E && MBBI->isDebugValue()) 1136 MBBI++; 1137 if (MBBI != E) 1138 DL = MBBI->getDebugLoc(); 1139 return DL; 1140 } 1141 1142 /// Return probability of the edge from this block to MBB. 1143 BranchProbability 1144 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1145 if (Probs.empty()) 1146 return BranchProbability(1, succ_size()); 1147 1148 const auto &Prob = *getProbabilityIterator(Succ); 1149 if (Prob.isUnknown()) { 1150 // For unknown probabilities, collect the sum of all known ones, and evenly 1151 // ditribute the complemental of the sum to each unknown probability. 1152 unsigned KnownProbNum = 0; 1153 auto Sum = BranchProbability::getZero(); 1154 for (auto &P : Probs) { 1155 if (!P.isUnknown()) { 1156 Sum += P; 1157 KnownProbNum++; 1158 } 1159 } 1160 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1161 } else 1162 return Prob; 1163 } 1164 1165 /// Set successor probability of a given iterator. 1166 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1167 BranchProbability Prob) { 1168 assert(!Prob.isUnknown()); 1169 if (Probs.empty()) 1170 return; 1171 *getProbabilityIterator(I) = Prob; 1172 } 1173 1174 /// Return probability iterator corresonding to the I successor iterator 1175 MachineBasicBlock::const_probability_iterator 1176 MachineBasicBlock::getProbabilityIterator( 1177 MachineBasicBlock::const_succ_iterator I) const { 1178 assert(Probs.size() == Successors.size() && "Async probability list!"); 1179 const size_t index = std::distance(Successors.begin(), I); 1180 assert(index < Probs.size() && "Not a current successor!"); 1181 return Probs.begin() + index; 1182 } 1183 1184 /// Return probability iterator corresonding to the I successor iterator. 1185 MachineBasicBlock::probability_iterator 1186 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1187 assert(Probs.size() == Successors.size() && "Async probability list!"); 1188 const size_t index = std::distance(Successors.begin(), I); 1189 assert(index < Probs.size() && "Not a current successor!"); 1190 return Probs.begin() + index; 1191 } 1192 1193 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1194 /// as of just before "MI". 1195 /// 1196 /// Search is localised to a neighborhood of 1197 /// Neighborhood instructions before (searching for defs or kills) and N 1198 /// instructions after (searching just for defs) MI. 1199 MachineBasicBlock::LivenessQueryResult 1200 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1201 unsigned Reg, const_iterator Before, 1202 unsigned Neighborhood) const { 1203 unsigned N = Neighborhood; 1204 1205 // Start by searching backwards from Before, looking for kills, reads or defs. 1206 const_iterator I(Before); 1207 // If this is the first insn in the block, don't search backwards. 1208 if (I != begin()) { 1209 do { 1210 --I; 1211 1212 MachineOperandIteratorBase::PhysRegInfo Info = 1213 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1214 1215 // Defs happen after uses so they take precedence if both are present. 1216 1217 // Register is dead after a dead def of the full register. 1218 if (Info.DeadDef) 1219 return LQR_Dead; 1220 // Register is (at least partially) live after a def. 1221 if (Info.Defined) 1222 return LQR_Live; 1223 // Register is dead after a full kill or clobber and no def. 1224 if (Info.Killed || Info.Clobbered) 1225 return LQR_Dead; 1226 // Register must be live if we read it. 1227 if (Info.Read) 1228 return LQR_Live; 1229 } while (I != begin() && --N > 0); 1230 } 1231 1232 // Did we get to the start of the block? 1233 if (I == begin()) { 1234 // If so, the register's state is definitely defined by the live-in state. 1235 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1236 ++RAI) 1237 if (isLiveIn(*RAI)) 1238 return LQR_Live; 1239 1240 return LQR_Dead; 1241 } 1242 1243 N = Neighborhood; 1244 1245 // Try searching forwards from Before, looking for reads or defs. 1246 I = const_iterator(Before); 1247 // If this is the last insn in the block, don't search forwards. 1248 if (I != end()) { 1249 for (++I; I != end() && N > 0; ++I, --N) { 1250 MachineOperandIteratorBase::PhysRegInfo Info = 1251 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1252 1253 // Register is live when we read it here. 1254 if (Info.Read) 1255 return LQR_Live; 1256 // Register is dead if we can fully overwrite or clobber it here. 1257 if (Info.FullyDefined || Info.Clobbered) 1258 return LQR_Dead; 1259 } 1260 } 1261 1262 // At this point we have no idea of the liveness of the register. 1263 return LQR_Unknown; 1264 } 1265 1266 const uint32_t * 1267 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1268 // EH funclet entry does not preserve any registers. 1269 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1270 } 1271 1272 const uint32_t * 1273 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1274 // If we see a return block with successors, this must be a funclet return, 1275 // which does not preserve any registers. If there are no successors, we don't 1276 // care what kind of return it is, putting a mask after it is a no-op. 1277 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1278 } 1279