1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/LiveIntervals.h"
15 #include "llvm/CodeGen/LivePhysRegs.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 #define DEBUG_TYPE "codegen"
40
41 static cl::opt<bool> PrintSlotIndexes(
42 "print-slotindexes",
43 cl::desc("When printing machine IR, annotate instructions and blocks with "
44 "SlotIndexes when available"),
45 cl::init(true), cl::Hidden);
46
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)47 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
48 : BB(B), Number(-1), xParent(&MF) {
49 Insts.Parent = this;
50 if (B)
51 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
52 }
53
54 MachineBasicBlock::~MachineBasicBlock() = default;
55
56 /// Return the MCSymbol for this basic block.
getSymbol() const57 MCSymbol *MachineBasicBlock::getSymbol() const {
58 if (!CachedMCSymbol) {
59 const MachineFunction *MF = getParent();
60 MCContext &Ctx = MF->getContext();
61
62 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
63 // a section (with basic block sections). Otherwise we fall back to use temp
64 // label.
65 if (MF->hasBBSections() && isBeginSection()) {
66 SmallString<5> Suffix;
67 if (SectionID == MBBSectionID::ColdSectionID) {
68 Suffix += ".cold";
69 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
70 Suffix += ".eh";
71 } else {
72 // For symbols that represent basic block sections, we add ".__part." to
73 // allow tools like symbolizers to know that this represents a part of
74 // the original function.
75 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
76 }
77 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
78 } else {
79 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
80 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
81 Twine(MF->getFunctionNumber()) +
82 "_" + Twine(getNumber()));
83 }
84 }
85 return CachedMCSymbol;
86 }
87
getEHCatchretSymbol() const88 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
89 if (!CachedEHCatchretMCSymbol) {
90 const MachineFunction *MF = getParent();
91 SmallString<128> SymbolName;
92 raw_svector_ostream(SymbolName)
93 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
94 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
95 }
96 return CachedEHCatchretMCSymbol;
97 }
98
getEndSymbol() const99 MCSymbol *MachineBasicBlock::getEndSymbol() const {
100 if (!CachedEndMCSymbol) {
101 const MachineFunction *MF = getParent();
102 MCContext &Ctx = MF->getContext();
103 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
104 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
105 Twine(MF->getFunctionNumber()) +
106 "_" + Twine(getNumber()));
107 }
108 return CachedEndMCSymbol;
109 }
110
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)111 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
112 MBB.print(OS);
113 return OS;
114 }
115
printMBBReference(const MachineBasicBlock & MBB)116 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
117 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
118 }
119
120 /// When an MBB is added to an MF, we need to update the parent pointer of the
121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
122 /// operand list for registers.
123 ///
124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
125 /// gets the next available unique MBB number. If it is removed from a
126 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)127 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
128 MachineBasicBlock *N) {
129 MachineFunction &MF = *N->getParent();
130 N->Number = MF.addToMBBNumbering(N);
131
132 // Make sure the instructions have their operands in the reginfo lists.
133 MachineRegisterInfo &RegInfo = MF.getRegInfo();
134 for (MachineInstr &MI : N->instrs())
135 MI.addRegOperandsToUseLists(RegInfo);
136 }
137
removeNodeFromList(MachineBasicBlock * N)138 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
139 MachineBasicBlock *N) {
140 N->getParent()->removeFromMBBNumbering(N->Number);
141 N->Number = -1;
142 }
143
144 /// When we add an instruction to a basic block list, we update its parent
145 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)146 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
147 assert(!N->getParent() && "machine instruction already in a basic block");
148 N->setParent(Parent);
149
150 // Add the instruction's register operands to their corresponding
151 // use/def lists.
152 MachineFunction *MF = Parent->getParent();
153 N->addRegOperandsToUseLists(MF->getRegInfo());
154 MF->handleInsertion(*N);
155 }
156
157 /// When we remove an instruction from a basic block list, we update its parent
158 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)159 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
160 assert(N->getParent() && "machine instruction not in a basic block");
161
162 // Remove from the use/def lists.
163 if (MachineFunction *MF = N->getMF()) {
164 MF->handleRemoval(*N);
165 N->removeRegOperandsFromUseLists(MF->getRegInfo());
166 }
167
168 N->setParent(nullptr);
169 }
170
171 /// When moving a range of instructions from one MBB list to another, we need to
172 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)173 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
174 instr_iterator First,
175 instr_iterator Last) {
176 assert(Parent->getParent() == FromList.Parent->getParent() &&
177 "cannot transfer MachineInstrs between MachineFunctions");
178
179 // If it's within the same BB, there's nothing to do.
180 if (this == &FromList)
181 return;
182
183 assert(Parent != FromList.Parent && "Two lists have the same parent?");
184
185 // If splicing between two blocks within the same function, just update the
186 // parent pointers.
187 for (; First != Last; ++First)
188 First->setParent(Parent);
189 }
190
deleteNode(MachineInstr * MI)191 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
192 assert(!MI->getParent() && "MI is still in a block!");
193 Parent->getParent()->deleteMachineInstr(MI);
194 }
195
getFirstNonPHI()196 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
197 instr_iterator I = instr_begin(), E = instr_end();
198 while (I != E && I->isPHI())
199 ++I;
200 assert((I == E || !I->isInsideBundle()) &&
201 "First non-phi MI cannot be inside a bundle!");
202 return I;
203 }
204
205 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
207 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
208
209 iterator E = end();
210 while (I != E && (I->isPHI() || I->isPosition() ||
211 TII->isBasicBlockPrologue(*I)))
212 ++I;
213 // FIXME: This needs to change if we wish to bundle labels
214 // inside the bundle.
215 assert((I == E || !I->isInsideBundle()) &&
216 "First non-phi / non-label instruction is inside a bundle!");
217 return I;
218 }
219
220 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,bool SkipPseudoOp)221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
222 bool SkipPseudoOp) {
223 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
224
225 iterator E = end();
226 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
227 (SkipPseudoOp && I->isPseudoProbe()) ||
228 TII->isBasicBlockPrologue(*I)))
229 ++I;
230 // FIXME: This needs to change if we wish to bundle labels / dbg_values
231 // inside the bundle.
232 assert((I == E || !I->isInsideBundle()) &&
233 "First non-phi / non-label / non-debug "
234 "instruction is inside a bundle!");
235 return I;
236 }
237
getFirstTerminator()238 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
239 iterator B = begin(), E = end(), I = E;
240 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
241 ; /*noop */
242 while (I != E && !I->isTerminator())
243 ++I;
244 return I;
245 }
246
getFirstInstrTerminator()247 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
248 instr_iterator B = instr_begin(), E = instr_end(), I = E;
249 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
250 ; /*noop */
251 while (I != E && !I->isTerminator())
252 ++I;
253 return I;
254 }
255
256 MachineBasicBlock::iterator
getFirstNonDebugInstr(bool SkipPseudoOp)257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
258 // Skip over begin-of-block dbg_value instructions.
259 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
260 }
261
262 MachineBasicBlock::iterator
getLastNonDebugInstr(bool SkipPseudoOp)263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
264 // Skip over end-of-block dbg_value instructions.
265 instr_iterator B = instr_begin(), I = instr_end();
266 while (I != B) {
267 --I;
268 // Return instruction that starts a bundle.
269 if (I->isDebugInstr() || I->isInsideBundle())
270 continue;
271 if (SkipPseudoOp && I->isPseudoProbe())
272 continue;
273 return I;
274 }
275 // The block is all debug values.
276 return end();
277 }
278
hasEHPadSuccessor() const279 bool MachineBasicBlock::hasEHPadSuccessor() const {
280 for (const MachineBasicBlock *Succ : successors())
281 if (Succ->isEHPad())
282 return true;
283 return false;
284 }
285
isEntryBlock() const286 bool MachineBasicBlock::isEntryBlock() const {
287 return getParent()->begin() == getIterator();
288 }
289
290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const291 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
292 print(dbgs());
293 }
294 #endif
295
mayHaveInlineAsmBr() const296 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
297 for (const MachineBasicBlock *Succ : successors()) {
298 if (Succ->isInlineAsmBrIndirectTarget())
299 return true;
300 }
301 return false;
302 }
303
isLegalToHoistInto() const304 bool MachineBasicBlock::isLegalToHoistInto() const {
305 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
306 return false;
307 return true;
308 }
309
getName() const310 StringRef MachineBasicBlock::getName() const {
311 if (const BasicBlock *LBB = getBasicBlock())
312 return LBB->getName();
313 else
314 return StringRef("", 0);
315 }
316
317 /// Return a hopefully unique identifier for this block.
getFullName() const318 std::string MachineBasicBlock::getFullName() const {
319 std::string Name;
320 if (getParent())
321 Name = (getParent()->getName() + ":").str();
322 if (getBasicBlock())
323 Name += getBasicBlock()->getName();
324 else
325 Name += ("BB" + Twine(getNumber())).str();
326 return Name;
327 }
328
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const329 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
330 bool IsStandalone) const {
331 const MachineFunction *MF = getParent();
332 if (!MF) {
333 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
334 << " is null\n";
335 return;
336 }
337 const Function &F = MF->getFunction();
338 const Module *M = F.getParent();
339 ModuleSlotTracker MST(M);
340 MST.incorporateFunction(F);
341 print(OS, MST, Indexes, IsStandalone);
342 }
343
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const344 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
345 const SlotIndexes *Indexes,
346 bool IsStandalone) const {
347 const MachineFunction *MF = getParent();
348 if (!MF) {
349 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
350 << " is null\n";
351 return;
352 }
353
354 if (Indexes && PrintSlotIndexes)
355 OS << Indexes->getMBBStartIdx(this) << '\t';
356
357 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
358 OS << ":\n";
359
360 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
361 const MachineRegisterInfo &MRI = MF->getRegInfo();
362 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
363 bool HasLineAttributes = false;
364
365 // Print the preds of this block according to the CFG.
366 if (!pred_empty() && IsStandalone) {
367 if (Indexes) OS << '\t';
368 // Don't indent(2), align with previous line attributes.
369 OS << "; predecessors: ";
370 ListSeparator LS;
371 for (auto *Pred : predecessors())
372 OS << LS << printMBBReference(*Pred);
373 OS << '\n';
374 HasLineAttributes = true;
375 }
376
377 if (!succ_empty()) {
378 if (Indexes) OS << '\t';
379 // Print the successors
380 OS.indent(2) << "successors: ";
381 ListSeparator LS;
382 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
383 OS << LS << printMBBReference(**I);
384 if (!Probs.empty())
385 OS << '('
386 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
387 << ')';
388 }
389 if (!Probs.empty() && IsStandalone) {
390 // Print human readable probabilities as comments.
391 OS << "; ";
392 ListSeparator LS;
393 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
394 const BranchProbability &BP = getSuccProbability(I);
395 OS << LS << printMBBReference(**I) << '('
396 << format("%.2f%%",
397 rint(((double)BP.getNumerator() / BP.getDenominator()) *
398 100.0 * 100.0) /
399 100.0)
400 << ')';
401 }
402 }
403
404 OS << '\n';
405 HasLineAttributes = true;
406 }
407
408 if (!livein_empty() && MRI.tracksLiveness()) {
409 if (Indexes) OS << '\t';
410 OS.indent(2) << "liveins: ";
411
412 ListSeparator LS;
413 for (const auto &LI : liveins()) {
414 OS << LS << printReg(LI.PhysReg, TRI);
415 if (!LI.LaneMask.all())
416 OS << ":0x" << PrintLaneMask(LI.LaneMask);
417 }
418 HasLineAttributes = true;
419 }
420
421 if (HasLineAttributes)
422 OS << '\n';
423
424 bool IsInBundle = false;
425 for (const MachineInstr &MI : instrs()) {
426 if (Indexes && PrintSlotIndexes) {
427 if (Indexes->hasIndex(MI))
428 OS << Indexes->getInstructionIndex(MI);
429 OS << '\t';
430 }
431
432 if (IsInBundle && !MI.isInsideBundle()) {
433 OS.indent(2) << "}\n";
434 IsInBundle = false;
435 }
436
437 OS.indent(IsInBundle ? 4 : 2);
438 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
439 /*AddNewLine=*/false, &TII);
440
441 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
442 OS << " {";
443 IsInBundle = true;
444 }
445 OS << '\n';
446 }
447
448 if (IsInBundle)
449 OS.indent(2) << "}\n";
450
451 if (IrrLoopHeaderWeight && IsStandalone) {
452 if (Indexes) OS << '\t';
453 OS.indent(2) << "; Irreducible loop header weight: "
454 << IrrLoopHeaderWeight.value() << '\n';
455 }
456 }
457
458 /// Print the basic block's name as:
459 ///
460 /// bb.{number}[.{ir-name}] [(attributes...)]
461 ///
462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
463 /// (which is the default). If the IR block has no name, it is identified
464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
465 ///
466 /// When the \ref PrintNameAttributes flag is passed, additional attributes
467 /// of the block are printed when set.
468 ///
469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
470 /// the parts to print.
471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
472 /// incorporate its own tracker when necessary to
473 /// determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const474 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
475 ModuleSlotTracker *moduleSlotTracker) const {
476 os << "bb." << getNumber();
477 bool hasAttributes = false;
478
479 if (printNameFlags & PrintNameIr) {
480 if (const auto *bb = getBasicBlock()) {
481 if (bb->hasName()) {
482 os << '.' << bb->getName();
483 } else {
484 hasAttributes = true;
485 os << " (";
486
487 int slot = -1;
488
489 if (moduleSlotTracker) {
490 slot = moduleSlotTracker->getLocalSlot(bb);
491 } else if (bb->getParent()) {
492 ModuleSlotTracker tmpTracker(bb->getModule(), false);
493 tmpTracker.incorporateFunction(*bb->getParent());
494 slot = tmpTracker.getLocalSlot(bb);
495 }
496
497 if (slot == -1)
498 os << "<ir-block badref>";
499 else
500 os << (Twine("%ir-block.") + Twine(slot)).str();
501 }
502 }
503 }
504
505 if (printNameFlags & PrintNameAttributes) {
506 if (hasAddressTaken()) {
507 os << (hasAttributes ? ", " : " (");
508 os << "address-taken";
509 hasAttributes = true;
510 }
511 if (isEHPad()) {
512 os << (hasAttributes ? ", " : " (");
513 os << "landing-pad";
514 hasAttributes = true;
515 }
516 if (isInlineAsmBrIndirectTarget()) {
517 os << (hasAttributes ? ", " : " (");
518 os << "inlineasm-br-indirect-target";
519 hasAttributes = true;
520 }
521 if (isEHFuncletEntry()) {
522 os << (hasAttributes ? ", " : " (");
523 os << "ehfunclet-entry";
524 hasAttributes = true;
525 }
526 if (getAlignment() != Align(1)) {
527 os << (hasAttributes ? ", " : " (");
528 os << "align " << getAlignment().value();
529 hasAttributes = true;
530 }
531 if (getSectionID() != MBBSectionID(0)) {
532 os << (hasAttributes ? ", " : " (");
533 os << "bbsections ";
534 switch (getSectionID().Type) {
535 case MBBSectionID::SectionType::Exception:
536 os << "Exception";
537 break;
538 case MBBSectionID::SectionType::Cold:
539 os << "Cold";
540 break;
541 default:
542 os << getSectionID().Number;
543 }
544 hasAttributes = true;
545 }
546 }
547
548 if (hasAttributes)
549 os << ')';
550 }
551
printAsOperand(raw_ostream & OS,bool) const552 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
553 bool /*PrintType*/) const {
554 OS << '%';
555 printName(OS, 0);
556 }
557
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)558 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
559 LiveInVector::iterator I = find_if(
560 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
561 if (I == LiveIns.end())
562 return;
563
564 I->LaneMask &= ~LaneMask;
565 if (I->LaneMask.none())
566 LiveIns.erase(I);
567 }
568
569 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)570 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
571 // Get non-const version of iterator.
572 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
573 return LiveIns.erase(LI);
574 }
575
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const576 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
577 livein_iterator I = find_if(
578 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
579 return I != livein_end() && (I->LaneMask & LaneMask).any();
580 }
581
sortUniqueLiveIns()582 void MachineBasicBlock::sortUniqueLiveIns() {
583 llvm::sort(LiveIns,
584 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
585 return LI0.PhysReg < LI1.PhysReg;
586 });
587 // Liveins are sorted by physreg now we can merge their lanemasks.
588 LiveInVector::const_iterator I = LiveIns.begin();
589 LiveInVector::const_iterator J;
590 LiveInVector::iterator Out = LiveIns.begin();
591 for (; I != LiveIns.end(); ++Out, I = J) {
592 MCRegister PhysReg = I->PhysReg;
593 LaneBitmask LaneMask = I->LaneMask;
594 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
595 LaneMask |= J->LaneMask;
596 Out->PhysReg = PhysReg;
597 Out->LaneMask = LaneMask;
598 }
599 LiveIns.erase(Out, LiveIns.end());
600 }
601
602 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)603 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
604 assert(getParent() && "MBB must be inserted in function");
605 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
606 assert(RC && "Register class is required");
607 assert((isEHPad() || this == &getParent()->front()) &&
608 "Only the entry block and landing pads can have physreg live ins");
609
610 bool LiveIn = isLiveIn(PhysReg);
611 iterator I = SkipPHIsAndLabels(begin()), E = end();
612 MachineRegisterInfo &MRI = getParent()->getRegInfo();
613 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
614
615 // Look for an existing copy.
616 if (LiveIn)
617 for (;I != E && I->isCopy(); ++I)
618 if (I->getOperand(1).getReg() == PhysReg) {
619 Register VirtReg = I->getOperand(0).getReg();
620 if (!MRI.constrainRegClass(VirtReg, RC))
621 llvm_unreachable("Incompatible live-in register class.");
622 return VirtReg;
623 }
624
625 // No luck, create a virtual register.
626 Register VirtReg = MRI.createVirtualRegister(RC);
627 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
628 .addReg(PhysReg, RegState::Kill);
629 if (!LiveIn)
630 addLiveIn(PhysReg);
631 return VirtReg;
632 }
633
moveBefore(MachineBasicBlock * NewAfter)634 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
635 getParent()->splice(NewAfter->getIterator(), getIterator());
636 }
637
moveAfter(MachineBasicBlock * NewBefore)638 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
639 getParent()->splice(++NewBefore->getIterator(), getIterator());
640 }
641
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)642 void MachineBasicBlock::updateTerminator(
643 MachineBasicBlock *PreviousLayoutSuccessor) {
644 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
645 << "\n");
646
647 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
648 // A block with no successors has no concerns with fall-through edges.
649 if (this->succ_empty())
650 return;
651
652 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
653 SmallVector<MachineOperand, 4> Cond;
654 DebugLoc DL = findBranchDebugLoc();
655 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
656 (void) B;
657 assert(!B && "UpdateTerminators requires analyzable predecessors!");
658 if (Cond.empty()) {
659 if (TBB) {
660 // The block has an unconditional branch. If its successor is now its
661 // layout successor, delete the branch.
662 if (isLayoutSuccessor(TBB))
663 TII->removeBranch(*this);
664 } else {
665 // The block has an unconditional fallthrough, or the end of the block is
666 // unreachable.
667
668 // Unfortunately, whether the end of the block is unreachable is not
669 // immediately obvious; we must fall back to checking the successor list,
670 // and assuming that if the passed in block is in the succesor list and
671 // not an EHPad, it must be the intended target.
672 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
673 PreviousLayoutSuccessor->isEHPad())
674 return;
675
676 // If the unconditional successor block is not the current layout
677 // successor, insert a branch to jump to it.
678 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
679 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
680 }
681 return;
682 }
683
684 if (FBB) {
685 // The block has a non-fallthrough conditional branch. If one of its
686 // successors is its layout successor, rewrite it to a fallthrough
687 // conditional branch.
688 if (isLayoutSuccessor(TBB)) {
689 if (TII->reverseBranchCondition(Cond))
690 return;
691 TII->removeBranch(*this);
692 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
693 } else if (isLayoutSuccessor(FBB)) {
694 TII->removeBranch(*this);
695 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
696 }
697 return;
698 }
699
700 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
701 assert(PreviousLayoutSuccessor);
702 assert(!PreviousLayoutSuccessor->isEHPad());
703 assert(isSuccessor(PreviousLayoutSuccessor));
704
705 if (PreviousLayoutSuccessor == TBB) {
706 // We had a fallthrough to the same basic block as the conditional jump
707 // targets. Remove the conditional jump, leaving an unconditional
708 // fallthrough or an unconditional jump.
709 TII->removeBranch(*this);
710 if (!isLayoutSuccessor(TBB)) {
711 Cond.clear();
712 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
713 }
714 return;
715 }
716
717 // The block has a fallthrough conditional branch.
718 if (isLayoutSuccessor(TBB)) {
719 if (TII->reverseBranchCondition(Cond)) {
720 // We can't reverse the condition, add an unconditional branch.
721 Cond.clear();
722 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
723 return;
724 }
725 TII->removeBranch(*this);
726 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
727 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
728 TII->removeBranch(*this);
729 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
730 }
731 }
732
validateSuccProbs() const733 void MachineBasicBlock::validateSuccProbs() const {
734 #ifndef NDEBUG
735 int64_t Sum = 0;
736 for (auto Prob : Probs)
737 Sum += Prob.getNumerator();
738 // Due to precision issue, we assume that the sum of probabilities is one if
739 // the difference between the sum of their numerators and the denominator is
740 // no greater than the number of successors.
741 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
742 Probs.size() &&
743 "The sum of successors's probabilities exceeds one.");
744 #endif // NDEBUG
745 }
746
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)747 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
748 BranchProbability Prob) {
749 // Probability list is either empty (if successor list isn't empty, this means
750 // disabled optimization) or has the same size as successor list.
751 if (!(Probs.empty() && !Successors.empty()))
752 Probs.push_back(Prob);
753 Successors.push_back(Succ);
754 Succ->addPredecessor(this);
755 }
756
addSuccessorWithoutProb(MachineBasicBlock * Succ)757 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
758 // We need to make sure probability list is either empty or has the same size
759 // of successor list. When this function is called, we can safely delete all
760 // probability in the list.
761 Probs.clear();
762 Successors.push_back(Succ);
763 Succ->addPredecessor(this);
764 }
765
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)766 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
767 MachineBasicBlock *New,
768 bool NormalizeSuccProbs) {
769 succ_iterator OldI = llvm::find(successors(), Old);
770 assert(OldI != succ_end() && "Old is not a successor of this block!");
771 assert(!llvm::is_contained(successors(), New) &&
772 "New is already a successor of this block!");
773
774 // Add a new successor with equal probability as the original one. Note
775 // that we directly copy the probability using the iterator rather than
776 // getting a potentially synthetic probability computed when unknown. This
777 // preserves the probabilities as-is and then we can renormalize them and
778 // query them effectively afterward.
779 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
780 : *getProbabilityIterator(OldI));
781 if (NormalizeSuccProbs)
782 normalizeSuccProbs();
783 }
784
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)785 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
786 bool NormalizeSuccProbs) {
787 succ_iterator I = find(Successors, Succ);
788 removeSuccessor(I, NormalizeSuccProbs);
789 }
790
791 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)792 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
793 assert(I != Successors.end() && "Not a current successor!");
794
795 // If probability list is empty it means we don't use it (disabled
796 // optimization).
797 if (!Probs.empty()) {
798 probability_iterator WI = getProbabilityIterator(I);
799 Probs.erase(WI);
800 if (NormalizeSuccProbs)
801 normalizeSuccProbs();
802 }
803
804 (*I)->removePredecessor(this);
805 return Successors.erase(I);
806 }
807
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)808 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
809 MachineBasicBlock *New) {
810 if (Old == New)
811 return;
812
813 succ_iterator E = succ_end();
814 succ_iterator NewI = E;
815 succ_iterator OldI = E;
816 for (succ_iterator I = succ_begin(); I != E; ++I) {
817 if (*I == Old) {
818 OldI = I;
819 if (NewI != E)
820 break;
821 }
822 if (*I == New) {
823 NewI = I;
824 if (OldI != E)
825 break;
826 }
827 }
828 assert(OldI != E && "Old is not a successor of this block");
829
830 // If New isn't already a successor, let it take Old's place.
831 if (NewI == E) {
832 Old->removePredecessor(this);
833 New->addPredecessor(this);
834 *OldI = New;
835 return;
836 }
837
838 // New is already a successor.
839 // Update its probability instead of adding a duplicate edge.
840 if (!Probs.empty()) {
841 auto ProbIter = getProbabilityIterator(NewI);
842 if (!ProbIter->isUnknown())
843 *ProbIter += *getProbabilityIterator(OldI);
844 }
845 removeSuccessor(OldI);
846 }
847
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)848 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
849 succ_iterator I) {
850 if (!Orig->Probs.empty())
851 addSuccessor(*I, Orig->getSuccProbability(I));
852 else
853 addSuccessorWithoutProb(*I);
854 }
855
addPredecessor(MachineBasicBlock * Pred)856 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
857 Predecessors.push_back(Pred);
858 }
859
removePredecessor(MachineBasicBlock * Pred)860 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
861 pred_iterator I = find(Predecessors, Pred);
862 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
863 Predecessors.erase(I);
864 }
865
transferSuccessors(MachineBasicBlock * FromMBB)866 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
867 if (this == FromMBB)
868 return;
869
870 while (!FromMBB->succ_empty()) {
871 MachineBasicBlock *Succ = *FromMBB->succ_begin();
872
873 // If probability list is empty it means we don't use it (disabled
874 // optimization).
875 if (!FromMBB->Probs.empty()) {
876 auto Prob = *FromMBB->Probs.begin();
877 addSuccessor(Succ, Prob);
878 } else
879 addSuccessorWithoutProb(Succ);
880
881 FromMBB->removeSuccessor(Succ);
882 }
883 }
884
885 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)886 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
887 if (this == FromMBB)
888 return;
889
890 while (!FromMBB->succ_empty()) {
891 MachineBasicBlock *Succ = *FromMBB->succ_begin();
892 if (!FromMBB->Probs.empty()) {
893 auto Prob = *FromMBB->Probs.begin();
894 addSuccessor(Succ, Prob);
895 } else
896 addSuccessorWithoutProb(Succ);
897 FromMBB->removeSuccessor(Succ);
898
899 // Fix up any PHI nodes in the successor.
900 Succ->replacePhiUsesWith(FromMBB, this);
901 }
902 normalizeSuccProbs();
903 }
904
isPredecessor(const MachineBasicBlock * MBB) const905 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
906 return is_contained(predecessors(), MBB);
907 }
908
isSuccessor(const MachineBasicBlock * MBB) const909 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
910 return is_contained(successors(), MBB);
911 }
912
isLayoutSuccessor(const MachineBasicBlock * MBB) const913 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
914 MachineFunction::const_iterator I(this);
915 return std::next(I) == MachineFunction::const_iterator(MBB);
916 }
917
getSingleSuccessor() const918 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
919 return Successors.size() == 1 ? Successors[0] : nullptr;
920 }
921
getFallThrough()922 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
923 MachineFunction::iterator Fallthrough = getIterator();
924 ++Fallthrough;
925 // If FallthroughBlock is off the end of the function, it can't fall through.
926 if (Fallthrough == getParent()->end())
927 return nullptr;
928
929 // If FallthroughBlock isn't a successor, no fallthrough is possible.
930 if (!isSuccessor(&*Fallthrough))
931 return nullptr;
932
933 // Analyze the branches, if any, at the end of the block.
934 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
935 SmallVector<MachineOperand, 4> Cond;
936 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
937 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
938 // If we couldn't analyze the branch, examine the last instruction.
939 // If the block doesn't end in a known control barrier, assume fallthrough
940 // is possible. The isPredicated check is needed because this code can be
941 // called during IfConversion, where an instruction which is normally a
942 // Barrier is predicated and thus no longer an actual control barrier.
943 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
944 ? &*Fallthrough
945 : nullptr;
946 }
947
948 // If there is no branch, control always falls through.
949 if (!TBB) return &*Fallthrough;
950
951 // If there is some explicit branch to the fallthrough block, it can obviously
952 // reach, even though the branch should get folded to fall through implicitly.
953 if (MachineFunction::iterator(TBB) == Fallthrough ||
954 MachineFunction::iterator(FBB) == Fallthrough)
955 return &*Fallthrough;
956
957 // If it's an unconditional branch to some block not the fall through, it
958 // doesn't fall through.
959 if (Cond.empty()) return nullptr;
960
961 // Otherwise, if it is conditional and has no explicit false block, it falls
962 // through.
963 return (FBB == nullptr) ? &*Fallthrough : nullptr;
964 }
965
canFallThrough()966 bool MachineBasicBlock::canFallThrough() {
967 return getFallThrough() != nullptr;
968 }
969
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)970 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
971 bool UpdateLiveIns,
972 LiveIntervals *LIS) {
973 MachineBasicBlock::iterator SplitPoint(&MI);
974 ++SplitPoint;
975
976 if (SplitPoint == end()) {
977 // Don't bother with a new block.
978 return this;
979 }
980
981 MachineFunction *MF = getParent();
982
983 LivePhysRegs LiveRegs;
984 if (UpdateLiveIns) {
985 // Make sure we add any physregs we define in the block as liveins to the
986 // new block.
987 MachineBasicBlock::iterator Prev(&MI);
988 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
989 LiveRegs.addLiveOuts(*this);
990 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
991 LiveRegs.stepBackward(*I);
992 }
993
994 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
995
996 MF->insert(++MachineFunction::iterator(this), SplitBB);
997 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
998
999 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1000 addSuccessor(SplitBB);
1001
1002 if (UpdateLiveIns)
1003 addLiveIns(*SplitBB, LiveRegs);
1004
1005 if (LIS)
1006 LIS->insertMBBInMaps(SplitBB);
1007
1008 return SplitBB;
1009 }
1010
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P,std::vector<SparseBitVector<>> * LiveInSets)1011 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1012 MachineBasicBlock *Succ, Pass &P,
1013 std::vector<SparseBitVector<>> *LiveInSets) {
1014 if (!canSplitCriticalEdge(Succ))
1015 return nullptr;
1016
1017 MachineFunction *MF = getParent();
1018 MachineBasicBlock *PrevFallthrough = getNextNode();
1019 DebugLoc DL; // FIXME: this is nowhere
1020
1021 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1022 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1023 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1024 << " -- " << printMBBReference(*NMBB) << " -- "
1025 << printMBBReference(*Succ) << '\n');
1026
1027 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1028 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1029 if (LIS)
1030 LIS->insertMBBInMaps(NMBB);
1031 else if (Indexes)
1032 Indexes->insertMBBInMaps(NMBB);
1033
1034 // On some targets like Mips, branches may kill virtual registers. Make sure
1035 // that LiveVariables is properly updated after updateTerminator replaces the
1036 // terminators.
1037 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1038
1039 // Collect a list of virtual registers killed by the terminators.
1040 SmallVector<Register, 4> KilledRegs;
1041 if (LV)
1042 for (MachineInstr &MI :
1043 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1044 for (MachineOperand &MO : MI.operands()) {
1045 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1046 MO.isUndef())
1047 continue;
1048 Register Reg = MO.getReg();
1049 if (Register::isPhysicalRegister(Reg) ||
1050 LV->getVarInfo(Reg).removeKill(MI)) {
1051 KilledRegs.push_back(Reg);
1052 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1053 MO.setIsKill(false);
1054 }
1055 }
1056 }
1057
1058 SmallVector<Register, 4> UsedRegs;
1059 if (LIS) {
1060 for (MachineInstr &MI :
1061 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1062 for (const MachineOperand &MO : MI.operands()) {
1063 if (!MO.isReg() || MO.getReg() == 0)
1064 continue;
1065
1066 Register Reg = MO.getReg();
1067 if (!is_contained(UsedRegs, Reg))
1068 UsedRegs.push_back(Reg);
1069 }
1070 }
1071 }
1072
1073 ReplaceUsesOfBlockWith(Succ, NMBB);
1074
1075 // If updateTerminator() removes instructions, we need to remove them from
1076 // SlotIndexes.
1077 SmallVector<MachineInstr*, 4> Terminators;
1078 if (Indexes) {
1079 for (MachineInstr &MI :
1080 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1081 Terminators.push_back(&MI);
1082 }
1083
1084 // Since we replaced all uses of Succ with NMBB, that should also be treated
1085 // as the fallthrough successor
1086 if (Succ == PrevFallthrough)
1087 PrevFallthrough = NMBB;
1088 updateTerminator(PrevFallthrough);
1089
1090 if (Indexes) {
1091 SmallVector<MachineInstr*, 4> NewTerminators;
1092 for (MachineInstr &MI :
1093 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1094 NewTerminators.push_back(&MI);
1095
1096 for (MachineInstr *Terminator : Terminators) {
1097 if (!is_contained(NewTerminators, Terminator))
1098 Indexes->removeMachineInstrFromMaps(*Terminator);
1099 }
1100 }
1101
1102 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1103 NMBB->addSuccessor(Succ);
1104 if (!NMBB->isLayoutSuccessor(Succ)) {
1105 SmallVector<MachineOperand, 4> Cond;
1106 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1107 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1108
1109 if (Indexes) {
1110 for (MachineInstr &MI : NMBB->instrs()) {
1111 // Some instructions may have been moved to NMBB by updateTerminator(),
1112 // so we first remove any instruction that already has an index.
1113 if (Indexes->hasIndex(MI))
1114 Indexes->removeMachineInstrFromMaps(MI);
1115 Indexes->insertMachineInstrInMaps(MI);
1116 }
1117 }
1118 }
1119
1120 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1121 Succ->replacePhiUsesWith(this, NMBB);
1122
1123 // Inherit live-ins from the successor
1124 for (const auto &LI : Succ->liveins())
1125 NMBB->addLiveIn(LI);
1126
1127 // Update LiveVariables.
1128 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1129 if (LV) {
1130 // Restore kills of virtual registers that were killed by the terminators.
1131 while (!KilledRegs.empty()) {
1132 Register Reg = KilledRegs.pop_back_val();
1133 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1134 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1135 continue;
1136 if (Register::isVirtualRegister(Reg))
1137 LV->getVarInfo(Reg).Kills.push_back(&*I);
1138 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1139 break;
1140 }
1141 }
1142 // Update relevant live-through information.
1143 if (LiveInSets != nullptr)
1144 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1145 else
1146 LV->addNewBlock(NMBB, this, Succ);
1147 }
1148
1149 if (LIS) {
1150 // After splitting the edge and updating SlotIndexes, live intervals may be
1151 // in one of two situations, depending on whether this block was the last in
1152 // the function. If the original block was the last in the function, all
1153 // live intervals will end prior to the beginning of the new split block. If
1154 // the original block was not at the end of the function, all live intervals
1155 // will extend to the end of the new split block.
1156
1157 bool isLastMBB =
1158 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1159
1160 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1161 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1162 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1163
1164 // Find the registers used from NMBB in PHIs in Succ.
1165 SmallSet<Register, 8> PHISrcRegs;
1166 for (MachineBasicBlock::instr_iterator
1167 I = Succ->instr_begin(), E = Succ->instr_end();
1168 I != E && I->isPHI(); ++I) {
1169 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1170 if (I->getOperand(ni+1).getMBB() == NMBB) {
1171 MachineOperand &MO = I->getOperand(ni);
1172 Register Reg = MO.getReg();
1173 PHISrcRegs.insert(Reg);
1174 if (MO.isUndef())
1175 continue;
1176
1177 LiveInterval &LI = LIS->getInterval(Reg);
1178 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1179 assert(VNI &&
1180 "PHI sources should be live out of their predecessors.");
1181 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1182 }
1183 }
1184 }
1185
1186 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1187 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1188 Register Reg = Register::index2VirtReg(i);
1189 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1190 continue;
1191
1192 LiveInterval &LI = LIS->getInterval(Reg);
1193 if (!LI.liveAt(PrevIndex))
1194 continue;
1195
1196 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1197 if (isLiveOut && isLastMBB) {
1198 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1199 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1200 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1201 } else if (!isLiveOut && !isLastMBB) {
1202 LI.removeSegment(StartIndex, EndIndex);
1203 }
1204 }
1205
1206 // Update all intervals for registers whose uses may have been modified by
1207 // updateTerminator().
1208 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1209 }
1210
1211 if (MachineDominatorTree *MDT =
1212 P.getAnalysisIfAvailable<MachineDominatorTree>())
1213 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1214
1215 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1216 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1217 // If one or the other blocks were not in a loop, the new block is not
1218 // either, and thus LI doesn't need to be updated.
1219 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1220 if (TIL == DestLoop) {
1221 // Both in the same loop, the NMBB joins loop.
1222 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1223 } else if (TIL->contains(DestLoop)) {
1224 // Edge from an outer loop to an inner loop. Add to the outer loop.
1225 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1226 } else if (DestLoop->contains(TIL)) {
1227 // Edge from an inner loop to an outer loop. Add to the outer loop.
1228 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1229 } else {
1230 // Edge from two loops with no containment relation. Because these
1231 // are natural loops, we know that the destination block must be the
1232 // header of its loop (adding a branch into a loop elsewhere would
1233 // create an irreducible loop).
1234 assert(DestLoop->getHeader() == Succ &&
1235 "Should not create irreducible loops!");
1236 if (MachineLoop *P = DestLoop->getParentLoop())
1237 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1238 }
1239 }
1240 }
1241
1242 return NMBB;
1243 }
1244
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1245 bool MachineBasicBlock::canSplitCriticalEdge(
1246 const MachineBasicBlock *Succ) const {
1247 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1248 // it in this generic function.
1249 if (Succ->isEHPad())
1250 return false;
1251
1252 // Splitting the critical edge to a callbr's indirect block isn't advised.
1253 // Don't do it in this generic function.
1254 if (Succ->isInlineAsmBrIndirectTarget())
1255 return false;
1256
1257 const MachineFunction *MF = getParent();
1258 // Performance might be harmed on HW that implements branching using exec mask
1259 // where both sides of the branches are always executed.
1260 if (MF->getTarget().requiresStructuredCFG())
1261 return false;
1262
1263 // We may need to update this's terminator, but we can't do that if
1264 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1265 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1266 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1267 SmallVector<MachineOperand, 4> Cond;
1268 // AnalyzeBanch should modify this, since we did not allow modification.
1269 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1270 /*AllowModify*/ false))
1271 return false;
1272
1273 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1274 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1275 // case that we can't handle. Since this never happens in properly optimized
1276 // code, just skip those edges.
1277 if (TBB && TBB == FBB) {
1278 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1279 << printMBBReference(*this) << '\n');
1280 return false;
1281 }
1282 return true;
1283 }
1284
1285 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1286 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1287 static void unbundleSingleMI(MachineInstr *MI) {
1288 // Removing the first instruction in a bundle.
1289 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1290 MI->unbundleFromSucc();
1291 // Removing the last instruction in a bundle.
1292 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1293 MI->unbundleFromPred();
1294 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1295 // are already fine.
1296 }
1297
1298 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1299 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1300 unbundleSingleMI(&*I);
1301 return Insts.erase(I);
1302 }
1303
remove_instr(MachineInstr * MI)1304 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1305 unbundleSingleMI(MI);
1306 MI->clearFlag(MachineInstr::BundledPred);
1307 MI->clearFlag(MachineInstr::BundledSucc);
1308 return Insts.remove(MI);
1309 }
1310
1311 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1312 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1313 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1314 "Cannot insert instruction with bundle flags");
1315 // Set the bundle flags when inserting inside a bundle.
1316 if (I != instr_end() && I->isBundledWithPred()) {
1317 MI->setFlag(MachineInstr::BundledPred);
1318 MI->setFlag(MachineInstr::BundledSucc);
1319 }
1320 return Insts.insert(I, MI);
1321 }
1322
1323 /// This method unlinks 'this' from the containing function, and returns it, but
1324 /// does not delete it.
removeFromParent()1325 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1326 assert(getParent() && "Not embedded in a function!");
1327 getParent()->remove(this);
1328 return this;
1329 }
1330
1331 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1332 void MachineBasicBlock::eraseFromParent() {
1333 assert(getParent() && "Not embedded in a function!");
1334 getParent()->erase(this);
1335 }
1336
1337 /// Given a machine basic block that branched to 'Old', change the code and CFG
1338 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1339 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1340 MachineBasicBlock *New) {
1341 assert(Old != New && "Cannot replace self with self!");
1342
1343 MachineBasicBlock::instr_iterator I = instr_end();
1344 while (I != instr_begin()) {
1345 --I;
1346 if (!I->isTerminator()) break;
1347
1348 // Scan the operands of this machine instruction, replacing any uses of Old
1349 // with New.
1350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1351 if (I->getOperand(i).isMBB() &&
1352 I->getOperand(i).getMBB() == Old)
1353 I->getOperand(i).setMBB(New);
1354 }
1355
1356 // Update the successor information.
1357 replaceSuccessor(Old, New);
1358 }
1359
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1360 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1361 MachineBasicBlock *New) {
1362 for (MachineInstr &MI : phis())
1363 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1364 MachineOperand &MO = MI.getOperand(i);
1365 if (MO.getMBB() == Old)
1366 MO.setMBB(New);
1367 }
1368 }
1369
1370 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1371 /// instructions. Return UnknownLoc if there is none.
1372 DebugLoc
findDebugLoc(instr_iterator MBBI)1373 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1374 // Skip debug declarations, we don't want a DebugLoc from them.
1375 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1376 if (MBBI != instr_end())
1377 return MBBI->getDebugLoc();
1378 return {};
1379 }
1380
rfindDebugLoc(reverse_instr_iterator MBBI)1381 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1382 // Skip debug declarations, we don't want a DebugLoc from them.
1383 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1384 if (!MBBI->isDebugInstr())
1385 return MBBI->getDebugLoc();
1386 return {};
1387 }
1388
1389 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1390 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1391 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1392 if (MBBI == instr_begin()) return {};
1393 // Skip debug instructions, we don't want a DebugLoc from them.
1394 MBBI = prev_nodbg(MBBI, instr_begin());
1395 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1396 return {};
1397 }
1398
rfindPrevDebugLoc(reverse_instr_iterator MBBI)1399 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1400 if (MBBI == instr_rend())
1401 return {};
1402 // Skip debug declarations, we don't want a DebugLoc from them.
1403 MBBI = next_nodbg(MBBI, instr_rend());
1404 if (MBBI != instr_rend())
1405 return MBBI->getDebugLoc();
1406 return {};
1407 }
1408
1409 /// Find and return the merged DebugLoc of the branch instructions of the block.
1410 /// Return UnknownLoc if there is none.
1411 DebugLoc
findBranchDebugLoc()1412 MachineBasicBlock::findBranchDebugLoc() {
1413 DebugLoc DL;
1414 auto TI = getFirstTerminator();
1415 while (TI != end() && !TI->isBranch())
1416 ++TI;
1417
1418 if (TI != end()) {
1419 DL = TI->getDebugLoc();
1420 for (++TI ; TI != end() ; ++TI)
1421 if (TI->isBranch())
1422 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1423 }
1424 return DL;
1425 }
1426
1427 /// Return probability of the edge from this block to MBB.
1428 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1429 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1430 if (Probs.empty())
1431 return BranchProbability(1, succ_size());
1432
1433 const auto &Prob = *getProbabilityIterator(Succ);
1434 if (Prob.isUnknown()) {
1435 // For unknown probabilities, collect the sum of all known ones, and evenly
1436 // ditribute the complemental of the sum to each unknown probability.
1437 unsigned KnownProbNum = 0;
1438 auto Sum = BranchProbability::getZero();
1439 for (const auto &P : Probs) {
1440 if (!P.isUnknown()) {
1441 Sum += P;
1442 KnownProbNum++;
1443 }
1444 }
1445 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1446 } else
1447 return Prob;
1448 }
1449
1450 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1451 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1452 BranchProbability Prob) {
1453 assert(!Prob.isUnknown());
1454 if (Probs.empty())
1455 return;
1456 *getProbabilityIterator(I) = Prob;
1457 }
1458
1459 /// Return probability iterator corresonding to the I successor iterator
1460 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1461 MachineBasicBlock::getProbabilityIterator(
1462 MachineBasicBlock::const_succ_iterator I) const {
1463 assert(Probs.size() == Successors.size() && "Async probability list!");
1464 const size_t index = std::distance(Successors.begin(), I);
1465 assert(index < Probs.size() && "Not a current successor!");
1466 return Probs.begin() + index;
1467 }
1468
1469 /// Return probability iterator corresonding to the I successor iterator.
1470 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1471 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1472 assert(Probs.size() == Successors.size() && "Async probability list!");
1473 const size_t index = std::distance(Successors.begin(), I);
1474 assert(index < Probs.size() && "Not a current successor!");
1475 return Probs.begin() + index;
1476 }
1477
1478 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1479 /// as of just before "MI".
1480 ///
1481 /// Search is localised to a neighborhood of
1482 /// Neighborhood instructions before (searching for defs or kills) and N
1483 /// instructions after (searching just for defs) MI.
1484 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1485 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1486 MCRegister Reg, const_iterator Before,
1487 unsigned Neighborhood) const {
1488 unsigned N = Neighborhood;
1489
1490 // Try searching forwards from Before, looking for reads or defs.
1491 const_iterator I(Before);
1492 for (; I != end() && N > 0; ++I) {
1493 if (I->isDebugOrPseudoInstr())
1494 continue;
1495
1496 --N;
1497
1498 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1499
1500 // Register is live when we read it here.
1501 if (Info.Read)
1502 return LQR_Live;
1503 // Register is dead if we can fully overwrite or clobber it here.
1504 if (Info.FullyDefined || Info.Clobbered)
1505 return LQR_Dead;
1506 }
1507
1508 // If we reached the end, it is safe to clobber Reg at the end of a block of
1509 // no successor has it live in.
1510 if (I == end()) {
1511 for (MachineBasicBlock *S : successors()) {
1512 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1513 if (TRI->regsOverlap(LI.PhysReg, Reg))
1514 return LQR_Live;
1515 }
1516 }
1517
1518 return LQR_Dead;
1519 }
1520
1521
1522 N = Neighborhood;
1523
1524 // Start by searching backwards from Before, looking for kills, reads or defs.
1525 I = const_iterator(Before);
1526 // If this is the first insn in the block, don't search backwards.
1527 if (I != begin()) {
1528 do {
1529 --I;
1530
1531 if (I->isDebugOrPseudoInstr())
1532 continue;
1533
1534 --N;
1535
1536 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1537
1538 // Defs happen after uses so they take precedence if both are present.
1539
1540 // Register is dead after a dead def of the full register.
1541 if (Info.DeadDef)
1542 return LQR_Dead;
1543 // Register is (at least partially) live after a def.
1544 if (Info.Defined) {
1545 if (!Info.PartialDeadDef)
1546 return LQR_Live;
1547 // As soon as we saw a partial definition (dead or not),
1548 // we cannot tell if the value is partial live without
1549 // tracking the lanemasks. We are not going to do this,
1550 // so fall back on the remaining of the analysis.
1551 break;
1552 }
1553 // Register is dead after a full kill or clobber and no def.
1554 if (Info.Killed || Info.Clobbered)
1555 return LQR_Dead;
1556 // Register must be live if we read it.
1557 if (Info.Read)
1558 return LQR_Live;
1559
1560 } while (I != begin() && N > 0);
1561 }
1562
1563 // If all the instructions before this in the block are debug instructions,
1564 // skip over them.
1565 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1566 --I;
1567
1568 // Did we get to the start of the block?
1569 if (I == begin()) {
1570 // If so, the register's state is definitely defined by the live-in state.
1571 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1572 if (TRI->regsOverlap(LI.PhysReg, Reg))
1573 return LQR_Live;
1574
1575 return LQR_Dead;
1576 }
1577
1578 // At this point we have no idea of the liveness of the register.
1579 return LQR_Unknown;
1580 }
1581
1582 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1583 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1584 // EH funclet entry does not preserve any registers.
1585 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1586 }
1587
1588 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1589 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1590 // If we see a return block with successors, this must be a funclet return,
1591 // which does not preserve any registers. If there are no successors, we don't
1592 // care what kind of return it is, putting a mask after it is a no-op.
1593 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1594 }
1595
clearLiveIns()1596 void MachineBasicBlock::clearLiveIns() {
1597 LiveIns.clear();
1598 }
1599
livein_begin() const1600 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1601 assert(getParent()->getProperties().hasProperty(
1602 MachineFunctionProperties::Property::TracksLiveness) &&
1603 "Liveness information is accurate");
1604 return LiveIns.begin();
1605 }
1606
liveout_begin() const1607 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1608 const MachineFunction &MF = *getParent();
1609 assert(MF.getProperties().hasProperty(
1610 MachineFunctionProperties::Property::TracksLiveness) &&
1611 "Liveness information is accurate");
1612
1613 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1614 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1615 if (MF.getFunction().hasPersonalityFn()) {
1616 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1617 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1618 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1619 }
1620
1621 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1622 }
1623
sizeWithoutDebugLargerThan(unsigned Limit) const1624 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1625 unsigned Cntr = 0;
1626 auto R = instructionsWithoutDebug(begin(), end());
1627 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1628 if (++Cntr > Limit)
1629 return true;
1630 }
1631 return false;
1632 }
1633
1634 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1635 const MBBSectionID
1636 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1637