1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 const MachineRegisterInfo &MRI = MF->getRegInfo(); 327 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 328 bool HasLineAttributes = false; 329 330 // Print the preds of this block according to the CFG. 331 if (!pred_empty() && IsStandalone) { 332 if (Indexes) OS << '\t'; 333 // Don't indent(2), align with previous line attributes. 334 OS << "; predecessors: "; 335 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 336 if (I != pred_begin()) 337 OS << ", "; 338 OS << printMBBReference(**I); 339 } 340 OS << '\n'; 341 HasLineAttributes = true; 342 } 343 344 if (!succ_empty()) { 345 if (Indexes) OS << '\t'; 346 // Print the successors 347 OS.indent(2) << "successors: "; 348 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 349 if (I != succ_begin()) 350 OS << ", "; 351 OS << printMBBReference(**I); 352 if (!Probs.empty()) 353 OS << '(' 354 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 355 << ')'; 356 } 357 if (!Probs.empty() && IsStandalone) { 358 // Print human readable probabilities as comments. 359 OS << "; "; 360 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 361 const BranchProbability &BP = *getProbabilityIterator(I); 362 if (I != succ_begin()) 363 OS << ", "; 364 OS << printMBBReference(**I) << '(' 365 << format("%.2f%%", 366 rint(((double)BP.getNumerator() / BP.getDenominator()) * 367 100.0 * 100.0) / 368 100.0) 369 << ')'; 370 } 371 } 372 373 OS << '\n'; 374 HasLineAttributes = true; 375 } 376 377 if (!livein_empty() && MRI.tracksLiveness()) { 378 if (Indexes) OS << '\t'; 379 OS.indent(2) << "liveins: "; 380 381 bool First = true; 382 for (const auto &LI : liveins()) { 383 if (!First) 384 OS << ", "; 385 First = false; 386 OS << printReg(LI.PhysReg, TRI); 387 if (!LI.LaneMask.all()) 388 OS << ":0x" << PrintLaneMask(LI.LaneMask); 389 } 390 HasLineAttributes = true; 391 } 392 393 if (HasLineAttributes) 394 OS << '\n'; 395 396 bool IsInBundle = false; 397 for (const MachineInstr &MI : instrs()) { 398 if (Indexes) { 399 if (Indexes->hasIndex(MI)) 400 OS << Indexes->getInstructionIndex(MI); 401 OS << '\t'; 402 } 403 404 if (IsInBundle && !MI.isInsideBundle()) { 405 OS.indent(2) << "}\n"; 406 IsInBundle = false; 407 } 408 409 OS.indent(IsInBundle ? 4 : 2); 410 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 411 /*AddNewLine=*/false, &TII); 412 413 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 414 OS << " {"; 415 IsInBundle = true; 416 } 417 OS << '\n'; 418 } 419 420 if (IsInBundle) 421 OS.indent(2) << "}\n"; 422 423 if (IrrLoopHeaderWeight && IsStandalone) { 424 if (Indexes) OS << '\t'; 425 OS.indent(2) << "; Irreducible loop header weight: " 426 << IrrLoopHeaderWeight.getValue() << '\n'; 427 } 428 } 429 430 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 431 bool /*PrintType*/) const { 432 OS << "%bb." << getNumber(); 433 } 434 435 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 436 LiveInVector::iterator I = find_if( 437 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 438 if (I == LiveIns.end()) 439 return; 440 441 I->LaneMask &= ~LaneMask; 442 if (I->LaneMask.none()) 443 LiveIns.erase(I); 444 } 445 446 MachineBasicBlock::livein_iterator 447 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 448 // Get non-const version of iterator. 449 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 450 return LiveIns.erase(LI); 451 } 452 453 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 454 livein_iterator I = find_if( 455 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 456 return I != livein_end() && (I->LaneMask & LaneMask).any(); 457 } 458 459 void MachineBasicBlock::sortUniqueLiveIns() { 460 llvm::sort(LiveIns.begin(), LiveIns.end(), 461 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 462 return LI0.PhysReg < LI1.PhysReg; 463 }); 464 // Liveins are sorted by physreg now we can merge their lanemasks. 465 LiveInVector::const_iterator I = LiveIns.begin(); 466 LiveInVector::const_iterator J; 467 LiveInVector::iterator Out = LiveIns.begin(); 468 for (; I != LiveIns.end(); ++Out, I = J) { 469 unsigned PhysReg = I->PhysReg; 470 LaneBitmask LaneMask = I->LaneMask; 471 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 472 LaneMask |= J->LaneMask; 473 Out->PhysReg = PhysReg; 474 Out->LaneMask = LaneMask; 475 } 476 LiveIns.erase(Out, LiveIns.end()); 477 } 478 479 unsigned 480 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 481 assert(getParent() && "MBB must be inserted in function"); 482 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 483 assert(RC && "Register class is required"); 484 assert((isEHPad() || this == &getParent()->front()) && 485 "Only the entry block and landing pads can have physreg live ins"); 486 487 bool LiveIn = isLiveIn(PhysReg); 488 iterator I = SkipPHIsAndLabels(begin()), E = end(); 489 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 490 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 491 492 // Look for an existing copy. 493 if (LiveIn) 494 for (;I != E && I->isCopy(); ++I) 495 if (I->getOperand(1).getReg() == PhysReg) { 496 unsigned VirtReg = I->getOperand(0).getReg(); 497 if (!MRI.constrainRegClass(VirtReg, RC)) 498 llvm_unreachable("Incompatible live-in register class."); 499 return VirtReg; 500 } 501 502 // No luck, create a virtual register. 503 unsigned VirtReg = MRI.createVirtualRegister(RC); 504 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 505 .addReg(PhysReg, RegState::Kill); 506 if (!LiveIn) 507 addLiveIn(PhysReg); 508 return VirtReg; 509 } 510 511 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 512 getParent()->splice(NewAfter->getIterator(), getIterator()); 513 } 514 515 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 516 getParent()->splice(++NewBefore->getIterator(), getIterator()); 517 } 518 519 void MachineBasicBlock::updateTerminator() { 520 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 521 // A block with no successors has no concerns with fall-through edges. 522 if (this->succ_empty()) 523 return; 524 525 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 526 SmallVector<MachineOperand, 4> Cond; 527 DebugLoc DL = findBranchDebugLoc(); 528 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 529 (void) B; 530 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 531 if (Cond.empty()) { 532 if (TBB) { 533 // The block has an unconditional branch. If its successor is now its 534 // layout successor, delete the branch. 535 if (isLayoutSuccessor(TBB)) 536 TII->removeBranch(*this); 537 } else { 538 // The block has an unconditional fallthrough. If its successor is not its 539 // layout successor, insert a branch. First we have to locate the only 540 // non-landing-pad successor, as that is the fallthrough block. 541 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 542 if ((*SI)->isEHPad()) 543 continue; 544 assert(!TBB && "Found more than one non-landing-pad successor!"); 545 TBB = *SI; 546 } 547 548 // If there is no non-landing-pad successor, the block has no fall-through 549 // edges to be concerned with. 550 if (!TBB) 551 return; 552 553 // Finally update the unconditional successor to be reached via a branch 554 // if it would not be reached by fallthrough. 555 if (!isLayoutSuccessor(TBB)) 556 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 557 } 558 return; 559 } 560 561 if (FBB) { 562 // The block has a non-fallthrough conditional branch. If one of its 563 // successors is its layout successor, rewrite it to a fallthrough 564 // conditional branch. 565 if (isLayoutSuccessor(TBB)) { 566 if (TII->reverseBranchCondition(Cond)) 567 return; 568 TII->removeBranch(*this); 569 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 570 } else if (isLayoutSuccessor(FBB)) { 571 TII->removeBranch(*this); 572 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 573 } 574 return; 575 } 576 577 // Walk through the successors and find the successor which is not a landing 578 // pad and is not the conditional branch destination (in TBB) as the 579 // fallthrough successor. 580 MachineBasicBlock *FallthroughBB = nullptr; 581 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 582 if ((*SI)->isEHPad() || *SI == TBB) 583 continue; 584 assert(!FallthroughBB && "Found more than one fallthrough successor."); 585 FallthroughBB = *SI; 586 } 587 588 if (!FallthroughBB) { 589 if (canFallThrough()) { 590 // We fallthrough to the same basic block as the conditional jump targets. 591 // Remove the conditional jump, leaving unconditional fallthrough. 592 // FIXME: This does not seem like a reasonable pattern to support, but it 593 // has been seen in the wild coming out of degenerate ARM test cases. 594 TII->removeBranch(*this); 595 596 // Finally update the unconditional successor to be reached via a branch if 597 // it would not be reached by fallthrough. 598 if (!isLayoutSuccessor(TBB)) 599 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 600 return; 601 } 602 603 // We enter here iff exactly one successor is TBB which cannot fallthrough 604 // and the rest successors if any are EHPads. In this case, we need to 605 // change the conditional branch into unconditional branch. 606 TII->removeBranch(*this); 607 Cond.clear(); 608 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 609 return; 610 } 611 612 // The block has a fallthrough conditional branch. 613 if (isLayoutSuccessor(TBB)) { 614 if (TII->reverseBranchCondition(Cond)) { 615 // We can't reverse the condition, add an unconditional branch. 616 Cond.clear(); 617 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 618 return; 619 } 620 TII->removeBranch(*this); 621 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 622 } else if (!isLayoutSuccessor(FallthroughBB)) { 623 TII->removeBranch(*this); 624 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 625 } 626 } 627 628 void MachineBasicBlock::validateSuccProbs() const { 629 #ifndef NDEBUG 630 int64_t Sum = 0; 631 for (auto Prob : Probs) 632 Sum += Prob.getNumerator(); 633 // Due to precision issue, we assume that the sum of probabilities is one if 634 // the difference between the sum of their numerators and the denominator is 635 // no greater than the number of successors. 636 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 637 Probs.size() && 638 "The sum of successors's probabilities exceeds one."); 639 #endif // NDEBUG 640 } 641 642 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 643 BranchProbability Prob) { 644 // Probability list is either empty (if successor list isn't empty, this means 645 // disabled optimization) or has the same size as successor list. 646 if (!(Probs.empty() && !Successors.empty())) 647 Probs.push_back(Prob); 648 Successors.push_back(Succ); 649 Succ->addPredecessor(this); 650 } 651 652 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 653 // We need to make sure probability list is either empty or has the same size 654 // of successor list. When this function is called, we can safely delete all 655 // probability in the list. 656 Probs.clear(); 657 Successors.push_back(Succ); 658 Succ->addPredecessor(this); 659 } 660 661 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 662 bool NormalizeSuccProbs) { 663 succ_iterator I = find(Successors, Succ); 664 removeSuccessor(I, NormalizeSuccProbs); 665 } 666 667 MachineBasicBlock::succ_iterator 668 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 669 assert(I != Successors.end() && "Not a current successor!"); 670 671 // If probability list is empty it means we don't use it (disabled 672 // optimization). 673 if (!Probs.empty()) { 674 probability_iterator WI = getProbabilityIterator(I); 675 Probs.erase(WI); 676 if (NormalizeSuccProbs) 677 normalizeSuccProbs(); 678 } 679 680 (*I)->removePredecessor(this); 681 return Successors.erase(I); 682 } 683 684 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 685 MachineBasicBlock *New) { 686 if (Old == New) 687 return; 688 689 succ_iterator E = succ_end(); 690 succ_iterator NewI = E; 691 succ_iterator OldI = E; 692 for (succ_iterator I = succ_begin(); I != E; ++I) { 693 if (*I == Old) { 694 OldI = I; 695 if (NewI != E) 696 break; 697 } 698 if (*I == New) { 699 NewI = I; 700 if (OldI != E) 701 break; 702 } 703 } 704 assert(OldI != E && "Old is not a successor of this block"); 705 706 // If New isn't already a successor, let it take Old's place. 707 if (NewI == E) { 708 Old->removePredecessor(this); 709 New->addPredecessor(this); 710 *OldI = New; 711 return; 712 } 713 714 // New is already a successor. 715 // Update its probability instead of adding a duplicate edge. 716 if (!Probs.empty()) { 717 auto ProbIter = getProbabilityIterator(NewI); 718 if (!ProbIter->isUnknown()) 719 *ProbIter += *getProbabilityIterator(OldI); 720 } 721 removeSuccessor(OldI); 722 } 723 724 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 725 succ_iterator I) { 726 if (Orig->Probs.empty()) 727 addSuccessor(*I, Orig->getSuccProbability(I)); 728 else 729 addSuccessorWithoutProb(*I); 730 } 731 732 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 733 Predecessors.push_back(Pred); 734 } 735 736 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 737 pred_iterator I = find(Predecessors, Pred); 738 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 739 Predecessors.erase(I); 740 } 741 742 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 743 if (this == FromMBB) 744 return; 745 746 while (!FromMBB->succ_empty()) { 747 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 748 749 // If probability list is empty it means we don't use it (disabled optimization). 750 if (!FromMBB->Probs.empty()) { 751 auto Prob = *FromMBB->Probs.begin(); 752 addSuccessor(Succ, Prob); 753 } else 754 addSuccessorWithoutProb(Succ); 755 756 FromMBB->removeSuccessor(Succ); 757 } 758 } 759 760 void 761 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 762 if (this == FromMBB) 763 return; 764 765 while (!FromMBB->succ_empty()) { 766 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 767 if (!FromMBB->Probs.empty()) { 768 auto Prob = *FromMBB->Probs.begin(); 769 addSuccessor(Succ, Prob); 770 } else 771 addSuccessorWithoutProb(Succ); 772 FromMBB->removeSuccessor(Succ); 773 774 // Fix up any PHI nodes in the successor. 775 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 776 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 777 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 778 MachineOperand &MO = MI->getOperand(i); 779 if (MO.getMBB() == FromMBB) 780 MO.setMBB(this); 781 } 782 } 783 normalizeSuccProbs(); 784 } 785 786 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 787 return is_contained(predecessors(), MBB); 788 } 789 790 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 791 return is_contained(successors(), MBB); 792 } 793 794 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 795 MachineFunction::const_iterator I(this); 796 return std::next(I) == MachineFunction::const_iterator(MBB); 797 } 798 799 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 800 MachineFunction::iterator Fallthrough = getIterator(); 801 ++Fallthrough; 802 // If FallthroughBlock is off the end of the function, it can't fall through. 803 if (Fallthrough == getParent()->end()) 804 return nullptr; 805 806 // If FallthroughBlock isn't a successor, no fallthrough is possible. 807 if (!isSuccessor(&*Fallthrough)) 808 return nullptr; 809 810 // Analyze the branches, if any, at the end of the block. 811 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 812 SmallVector<MachineOperand, 4> Cond; 813 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 814 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 815 // If we couldn't analyze the branch, examine the last instruction. 816 // If the block doesn't end in a known control barrier, assume fallthrough 817 // is possible. The isPredicated check is needed because this code can be 818 // called during IfConversion, where an instruction which is normally a 819 // Barrier is predicated and thus no longer an actual control barrier. 820 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 821 ? &*Fallthrough 822 : nullptr; 823 } 824 825 // If there is no branch, control always falls through. 826 if (!TBB) return &*Fallthrough; 827 828 // If there is some explicit branch to the fallthrough block, it can obviously 829 // reach, even though the branch should get folded to fall through implicitly. 830 if (MachineFunction::iterator(TBB) == Fallthrough || 831 MachineFunction::iterator(FBB) == Fallthrough) 832 return &*Fallthrough; 833 834 // If it's an unconditional branch to some block not the fall through, it 835 // doesn't fall through. 836 if (Cond.empty()) return nullptr; 837 838 // Otherwise, if it is conditional and has no explicit false block, it falls 839 // through. 840 return (FBB == nullptr) ? &*Fallthrough : nullptr; 841 } 842 843 bool MachineBasicBlock::canFallThrough() { 844 return getFallThrough() != nullptr; 845 } 846 847 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 848 Pass &P) { 849 if (!canSplitCriticalEdge(Succ)) 850 return nullptr; 851 852 MachineFunction *MF = getParent(); 853 DebugLoc DL; // FIXME: this is nowhere 854 855 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 856 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 857 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 858 << " -- " << printMBBReference(*NMBB) << " -- " 859 << printMBBReference(*Succ) << '\n'); 860 861 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 862 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 863 if (LIS) 864 LIS->insertMBBInMaps(NMBB); 865 else if (Indexes) 866 Indexes->insertMBBInMaps(NMBB); 867 868 // On some targets like Mips, branches may kill virtual registers. Make sure 869 // that LiveVariables is properly updated after updateTerminator replaces the 870 // terminators. 871 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 872 873 // Collect a list of virtual registers killed by the terminators. 874 SmallVector<unsigned, 4> KilledRegs; 875 if (LV) 876 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 877 I != E; ++I) { 878 MachineInstr *MI = &*I; 879 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 880 OE = MI->operands_end(); OI != OE; ++OI) { 881 if (!OI->isReg() || OI->getReg() == 0 || 882 !OI->isUse() || !OI->isKill() || OI->isUndef()) 883 continue; 884 unsigned Reg = OI->getReg(); 885 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 886 LV->getVarInfo(Reg).removeKill(*MI)) { 887 KilledRegs.push_back(Reg); 888 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 889 OI->setIsKill(false); 890 } 891 } 892 } 893 894 SmallVector<unsigned, 4> UsedRegs; 895 if (LIS) { 896 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 897 I != E; ++I) { 898 MachineInstr *MI = &*I; 899 900 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 901 OE = MI->operands_end(); OI != OE; ++OI) { 902 if (!OI->isReg() || OI->getReg() == 0) 903 continue; 904 905 unsigned Reg = OI->getReg(); 906 if (!is_contained(UsedRegs, Reg)) 907 UsedRegs.push_back(Reg); 908 } 909 } 910 } 911 912 ReplaceUsesOfBlockWith(Succ, NMBB); 913 914 // If updateTerminator() removes instructions, we need to remove them from 915 // SlotIndexes. 916 SmallVector<MachineInstr*, 4> Terminators; 917 if (Indexes) { 918 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 919 I != E; ++I) 920 Terminators.push_back(&*I); 921 } 922 923 updateTerminator(); 924 925 if (Indexes) { 926 SmallVector<MachineInstr*, 4> NewTerminators; 927 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 928 I != E; ++I) 929 NewTerminators.push_back(&*I); 930 931 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 932 E = Terminators.end(); I != E; ++I) { 933 if (!is_contained(NewTerminators, *I)) 934 Indexes->removeMachineInstrFromMaps(**I); 935 } 936 } 937 938 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 939 NMBB->addSuccessor(Succ); 940 if (!NMBB->isLayoutSuccessor(Succ)) { 941 SmallVector<MachineOperand, 4> Cond; 942 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 943 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 944 945 if (Indexes) { 946 for (MachineInstr &MI : NMBB->instrs()) { 947 // Some instructions may have been moved to NMBB by updateTerminator(), 948 // so we first remove any instruction that already has an index. 949 if (Indexes->hasIndex(MI)) 950 Indexes->removeMachineInstrFromMaps(MI); 951 Indexes->insertMachineInstrInMaps(MI); 952 } 953 } 954 } 955 956 // Fix PHI nodes in Succ so they refer to NMBB instead of this 957 for (MachineBasicBlock::instr_iterator 958 i = Succ->instr_begin(),e = Succ->instr_end(); 959 i != e && i->isPHI(); ++i) 960 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 961 if (i->getOperand(ni+1).getMBB() == this) 962 i->getOperand(ni+1).setMBB(NMBB); 963 964 // Inherit live-ins from the successor 965 for (const auto &LI : Succ->liveins()) 966 NMBB->addLiveIn(LI); 967 968 // Update LiveVariables. 969 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 970 if (LV) { 971 // Restore kills of virtual registers that were killed by the terminators. 972 while (!KilledRegs.empty()) { 973 unsigned Reg = KilledRegs.pop_back_val(); 974 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 975 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 976 continue; 977 if (TargetRegisterInfo::isVirtualRegister(Reg)) 978 LV->getVarInfo(Reg).Kills.push_back(&*I); 979 DEBUG(dbgs() << "Restored terminator kill: " << *I); 980 break; 981 } 982 } 983 // Update relevant live-through information. 984 LV->addNewBlock(NMBB, this, Succ); 985 } 986 987 if (LIS) { 988 // After splitting the edge and updating SlotIndexes, live intervals may be 989 // in one of two situations, depending on whether this block was the last in 990 // the function. If the original block was the last in the function, all 991 // live intervals will end prior to the beginning of the new split block. If 992 // the original block was not at the end of the function, all live intervals 993 // will extend to the end of the new split block. 994 995 bool isLastMBB = 996 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 997 998 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 999 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1000 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1001 1002 // Find the registers used from NMBB in PHIs in Succ. 1003 SmallSet<unsigned, 8> PHISrcRegs; 1004 for (MachineBasicBlock::instr_iterator 1005 I = Succ->instr_begin(), E = Succ->instr_end(); 1006 I != E && I->isPHI(); ++I) { 1007 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1008 if (I->getOperand(ni+1).getMBB() == NMBB) { 1009 MachineOperand &MO = I->getOperand(ni); 1010 unsigned Reg = MO.getReg(); 1011 PHISrcRegs.insert(Reg); 1012 if (MO.isUndef()) 1013 continue; 1014 1015 LiveInterval &LI = LIS->getInterval(Reg); 1016 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1017 assert(VNI && 1018 "PHI sources should be live out of their predecessors."); 1019 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1020 } 1021 } 1022 } 1023 1024 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1025 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1026 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1027 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1028 continue; 1029 1030 LiveInterval &LI = LIS->getInterval(Reg); 1031 if (!LI.liveAt(PrevIndex)) 1032 continue; 1033 1034 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1035 if (isLiveOut && isLastMBB) { 1036 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1037 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1038 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1039 } else if (!isLiveOut && !isLastMBB) { 1040 LI.removeSegment(StartIndex, EndIndex); 1041 } 1042 } 1043 1044 // Update all intervals for registers whose uses may have been modified by 1045 // updateTerminator(). 1046 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1047 } 1048 1049 if (MachineDominatorTree *MDT = 1050 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1051 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1052 1053 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1054 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1055 // If one or the other blocks were not in a loop, the new block is not 1056 // either, and thus LI doesn't need to be updated. 1057 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1058 if (TIL == DestLoop) { 1059 // Both in the same loop, the NMBB joins loop. 1060 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1061 } else if (TIL->contains(DestLoop)) { 1062 // Edge from an outer loop to an inner loop. Add to the outer loop. 1063 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1064 } else if (DestLoop->contains(TIL)) { 1065 // Edge from an inner loop to an outer loop. Add to the outer loop. 1066 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1067 } else { 1068 // Edge from two loops with no containment relation. Because these 1069 // are natural loops, we know that the destination block must be the 1070 // header of its loop (adding a branch into a loop elsewhere would 1071 // create an irreducible loop). 1072 assert(DestLoop->getHeader() == Succ && 1073 "Should not create irreducible loops!"); 1074 if (MachineLoop *P = DestLoop->getParentLoop()) 1075 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1076 } 1077 } 1078 } 1079 1080 return NMBB; 1081 } 1082 1083 bool MachineBasicBlock::canSplitCriticalEdge( 1084 const MachineBasicBlock *Succ) const { 1085 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1086 // it in this generic function. 1087 if (Succ->isEHPad()) 1088 return false; 1089 1090 const MachineFunction *MF = getParent(); 1091 1092 // Performance might be harmed on HW that implements branching using exec mask 1093 // where both sides of the branches are always executed. 1094 if (MF->getTarget().requiresStructuredCFG()) 1095 return false; 1096 1097 // We may need to update this's terminator, but we can't do that if 1098 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1099 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1100 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1101 SmallVector<MachineOperand, 4> Cond; 1102 // AnalyzeBanch should modify this, since we did not allow modification. 1103 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1104 /*AllowModify*/ false)) 1105 return false; 1106 1107 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1108 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1109 // case that we can't handle. Since this never happens in properly optimized 1110 // code, just skip those edges. 1111 if (TBB && TBB == FBB) { 1112 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1113 << printMBBReference(*this) << '\n'); 1114 return false; 1115 } 1116 return true; 1117 } 1118 1119 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1120 /// neighboring instructions so the bundle won't be broken by removing MI. 1121 static void unbundleSingleMI(MachineInstr *MI) { 1122 // Removing the first instruction in a bundle. 1123 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1124 MI->unbundleFromSucc(); 1125 // Removing the last instruction in a bundle. 1126 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1127 MI->unbundleFromPred(); 1128 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1129 // are already fine. 1130 } 1131 1132 MachineBasicBlock::instr_iterator 1133 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1134 unbundleSingleMI(&*I); 1135 return Insts.erase(I); 1136 } 1137 1138 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1139 unbundleSingleMI(MI); 1140 MI->clearFlag(MachineInstr::BundledPred); 1141 MI->clearFlag(MachineInstr::BundledSucc); 1142 return Insts.remove(MI); 1143 } 1144 1145 MachineBasicBlock::instr_iterator 1146 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1147 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1148 "Cannot insert instruction with bundle flags"); 1149 // Set the bundle flags when inserting inside a bundle. 1150 if (I != instr_end() && I->isBundledWithPred()) { 1151 MI->setFlag(MachineInstr::BundledPred); 1152 MI->setFlag(MachineInstr::BundledSucc); 1153 } 1154 return Insts.insert(I, MI); 1155 } 1156 1157 /// This method unlinks 'this' from the containing function, and returns it, but 1158 /// does not delete it. 1159 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1160 assert(getParent() && "Not embedded in a function!"); 1161 getParent()->remove(this); 1162 return this; 1163 } 1164 1165 /// This method unlinks 'this' from the containing function, and deletes it. 1166 void MachineBasicBlock::eraseFromParent() { 1167 assert(getParent() && "Not embedded in a function!"); 1168 getParent()->erase(this); 1169 } 1170 1171 /// Given a machine basic block that branched to 'Old', change the code and CFG 1172 /// so that it branches to 'New' instead. 1173 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1174 MachineBasicBlock *New) { 1175 assert(Old != New && "Cannot replace self with self!"); 1176 1177 MachineBasicBlock::instr_iterator I = instr_end(); 1178 while (I != instr_begin()) { 1179 --I; 1180 if (!I->isTerminator()) break; 1181 1182 // Scan the operands of this machine instruction, replacing any uses of Old 1183 // with New. 1184 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1185 if (I->getOperand(i).isMBB() && 1186 I->getOperand(i).getMBB() == Old) 1187 I->getOperand(i).setMBB(New); 1188 } 1189 1190 // Update the successor information. 1191 replaceSuccessor(Old, New); 1192 } 1193 1194 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1195 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1196 /// MBB successors from the CFG. DestA and DestB can be null. 1197 /// 1198 /// Besides DestA and DestB, retain other edges leading to LandingPads 1199 /// (currently there can be only one; we don't check or require that here). 1200 /// Note it is possible that DestA and/or DestB are LandingPads. 1201 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1202 MachineBasicBlock *DestB, 1203 bool IsCond) { 1204 // The values of DestA and DestB frequently come from a call to the 1205 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1206 // values from there. 1207 // 1208 // 1. If both DestA and DestB are null, then the block ends with no branches 1209 // (it falls through to its successor). 1210 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1211 // with only an unconditional branch. 1212 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1213 // with a conditional branch that falls through to a successor (DestB). 1214 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1215 // conditional branch followed by an unconditional branch. DestA is the 1216 // 'true' destination and DestB is the 'false' destination. 1217 1218 bool Changed = false; 1219 1220 MachineBasicBlock *FallThru = getNextNode(); 1221 1222 if (!DestA && !DestB) { 1223 // Block falls through to successor. 1224 DestA = FallThru; 1225 DestB = FallThru; 1226 } else if (DestA && !DestB) { 1227 if (IsCond) 1228 // Block ends in conditional jump that falls through to successor. 1229 DestB = FallThru; 1230 } else { 1231 assert(DestA && DestB && IsCond && 1232 "CFG in a bad state. Cannot correct CFG edges"); 1233 } 1234 1235 // Remove superfluous edges. I.e., those which aren't destinations of this 1236 // basic block, duplicate edges, or landing pads. 1237 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1238 MachineBasicBlock::succ_iterator SI = succ_begin(); 1239 while (SI != succ_end()) { 1240 const MachineBasicBlock *MBB = *SI; 1241 if (!SeenMBBs.insert(MBB).second || 1242 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1243 // This is a superfluous edge, remove it. 1244 SI = removeSuccessor(SI); 1245 Changed = true; 1246 } else { 1247 ++SI; 1248 } 1249 } 1250 1251 if (Changed) 1252 normalizeSuccProbs(); 1253 return Changed; 1254 } 1255 1256 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1257 /// instructions. Return UnknownLoc if there is none. 1258 DebugLoc 1259 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1260 // Skip debug declarations, we don't want a DebugLoc from them. 1261 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1262 if (MBBI != instr_end()) 1263 return MBBI->getDebugLoc(); 1264 return {}; 1265 } 1266 1267 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1268 /// instructions. Return UnknownLoc if there is none. 1269 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1270 if (MBBI == instr_begin()) return {}; 1271 // Skip debug declarations, we don't want a DebugLoc from them. 1272 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); 1273 if (!MBBI->isDebugValue()) return MBBI->getDebugLoc(); 1274 return {}; 1275 } 1276 1277 /// Find and return the merged DebugLoc of the branch instructions of the block. 1278 /// Return UnknownLoc if there is none. 1279 DebugLoc 1280 MachineBasicBlock::findBranchDebugLoc() { 1281 DebugLoc DL; 1282 auto TI = getFirstTerminator(); 1283 while (TI != end() && !TI->isBranch()) 1284 ++TI; 1285 1286 if (TI != end()) { 1287 DL = TI->getDebugLoc(); 1288 for (++TI ; TI != end() ; ++TI) 1289 if (TI->isBranch()) 1290 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1291 } 1292 return DL; 1293 } 1294 1295 /// Return probability of the edge from this block to MBB. 1296 BranchProbability 1297 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1298 if (Probs.empty()) 1299 return BranchProbability(1, succ_size()); 1300 1301 const auto &Prob = *getProbabilityIterator(Succ); 1302 if (Prob.isUnknown()) { 1303 // For unknown probabilities, collect the sum of all known ones, and evenly 1304 // ditribute the complemental of the sum to each unknown probability. 1305 unsigned KnownProbNum = 0; 1306 auto Sum = BranchProbability::getZero(); 1307 for (auto &P : Probs) { 1308 if (!P.isUnknown()) { 1309 Sum += P; 1310 KnownProbNum++; 1311 } 1312 } 1313 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1314 } else 1315 return Prob; 1316 } 1317 1318 /// Set successor probability of a given iterator. 1319 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1320 BranchProbability Prob) { 1321 assert(!Prob.isUnknown()); 1322 if (Probs.empty()) 1323 return; 1324 *getProbabilityIterator(I) = Prob; 1325 } 1326 1327 /// Return probability iterator corresonding to the I successor iterator 1328 MachineBasicBlock::const_probability_iterator 1329 MachineBasicBlock::getProbabilityIterator( 1330 MachineBasicBlock::const_succ_iterator I) const { 1331 assert(Probs.size() == Successors.size() && "Async probability list!"); 1332 const size_t index = std::distance(Successors.begin(), I); 1333 assert(index < Probs.size() && "Not a current successor!"); 1334 return Probs.begin() + index; 1335 } 1336 1337 /// Return probability iterator corresonding to the I successor iterator. 1338 MachineBasicBlock::probability_iterator 1339 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1340 assert(Probs.size() == Successors.size() && "Async probability list!"); 1341 const size_t index = std::distance(Successors.begin(), I); 1342 assert(index < Probs.size() && "Not a current successor!"); 1343 return Probs.begin() + index; 1344 } 1345 1346 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1347 /// as of just before "MI". 1348 /// 1349 /// Search is localised to a neighborhood of 1350 /// Neighborhood instructions before (searching for defs or kills) and N 1351 /// instructions after (searching just for defs) MI. 1352 MachineBasicBlock::LivenessQueryResult 1353 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1354 unsigned Reg, const_iterator Before, 1355 unsigned Neighborhood) const { 1356 unsigned N = Neighborhood; 1357 1358 // Start by searching backwards from Before, looking for kills, reads or defs. 1359 const_iterator I(Before); 1360 // If this is the first insn in the block, don't search backwards. 1361 if (I != begin()) { 1362 do { 1363 --I; 1364 1365 MachineOperandIteratorBase::PhysRegInfo Info = 1366 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1367 1368 // Defs happen after uses so they take precedence if both are present. 1369 1370 // Register is dead after a dead def of the full register. 1371 if (Info.DeadDef) 1372 return LQR_Dead; 1373 // Register is (at least partially) live after a def. 1374 if (Info.Defined) { 1375 if (!Info.PartialDeadDef) 1376 return LQR_Live; 1377 // As soon as we saw a partial definition (dead or not), 1378 // we cannot tell if the value is partial live without 1379 // tracking the lanemasks. We are not going to do this, 1380 // so fall back on the remaining of the analysis. 1381 break; 1382 } 1383 // Register is dead after a full kill or clobber and no def. 1384 if (Info.Killed || Info.Clobbered) 1385 return LQR_Dead; 1386 // Register must be live if we read it. 1387 if (Info.Read) 1388 return LQR_Live; 1389 } while (I != begin() && --N > 0); 1390 } 1391 1392 // Did we get to the start of the block? 1393 if (I == begin()) { 1394 // If so, the register's state is definitely defined by the live-in state. 1395 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1396 ++RAI) 1397 if (isLiveIn(*RAI)) 1398 return LQR_Live; 1399 1400 return LQR_Dead; 1401 } 1402 1403 N = Neighborhood; 1404 1405 // Try searching forwards from Before, looking for reads or defs. 1406 I = const_iterator(Before); 1407 // If this is the last insn in the block, don't search forwards. 1408 if (I != end()) { 1409 for (++I; I != end() && N > 0; ++I, --N) { 1410 MachineOperandIteratorBase::PhysRegInfo Info = 1411 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1412 1413 // Register is live when we read it here. 1414 if (Info.Read) 1415 return LQR_Live; 1416 // Register is dead if we can fully overwrite or clobber it here. 1417 if (Info.FullyDefined || Info.Clobbered) 1418 return LQR_Dead; 1419 } 1420 } 1421 1422 // At this point we have no idea of the liveness of the register. 1423 return LQR_Unknown; 1424 } 1425 1426 const uint32_t * 1427 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1428 // EH funclet entry does not preserve any registers. 1429 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1430 } 1431 1432 const uint32_t * 1433 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1434 // If we see a return block with successors, this must be a funclet return, 1435 // which does not preserve any registers. If there are no successors, we don't 1436 // care what kind of return it is, putting a mask after it is a no-op. 1437 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1438 } 1439 1440 void MachineBasicBlock::clearLiveIns() { 1441 LiveIns.clear(); 1442 } 1443 1444 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1445 assert(getParent()->getProperties().hasProperty( 1446 MachineFunctionProperties::Property::TracksLiveness) && 1447 "Liveness information is accurate"); 1448 return LiveIns.begin(); 1449 } 1450