1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   const MachineRegisterInfo &MRI = MF->getRegInfo();
327   if (!livein_empty() && MRI.tracksLiveness()) {
328     if (Indexes) OS << '\t';
329     OS.indent(2) << "liveins: ";
330 
331     bool First = true;
332     for (const auto &LI : liveins()) {
333       if (!First)
334         OS << ", ";
335       First = false;
336       OS << printReg(LI.PhysReg, TRI);
337       if (!LI.LaneMask.all())
338         OS << ":0x" << PrintLaneMask(LI.LaneMask);
339     }
340     OS << '\n';
341   }
342 
343   if (!succ_empty()) {
344     if (Indexes) OS << '\t';
345     // Print the successors
346     OS.indent(2) << "successors: ";
347     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
348       if (I != succ_begin())
349         OS << ", ";
350       OS << printMBBReference(**I);
351       if (!Probs.empty())
352         OS << '('
353            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
354            << ')';
355     }
356     if (!Probs.empty()) {
357       // Print human readable probabilities as comments.
358       OS << "; ";
359       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
360         const BranchProbability &BP = *getProbabilityIterator(I);
361         if (I != succ_begin())
362           OS << ", ";
363         OS << printMBBReference(**I) << '('
364            << format("%.2f%%",
365                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
366                           100.0 * 100.0) /
367                          100.0)
368            << ')';
369       }
370       OS << '\n';
371     }
372   }
373 
374   // Print the preds of this block according to the CFG.
375   if (!pred_empty()) {
376     if (Indexes) OS << '\t';
377     // Don't indent(2), align with previous line attributes.
378     OS << "; predecessors: ";
379     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
380       if (I != pred_begin())
381         OS << ", ";
382       OS << printMBBReference(**I);
383     }
384     OS << '\n';
385   }
386 
387   for (auto &I : instrs()) {
388     if (Indexes) {
389       if (Indexes->hasIndex(I))
390         OS << Indexes->getInstructionIndex(I);
391       OS << '\t';
392     }
393     OS << '\t';
394     if (I.isInsideBundle())
395       OS << "  * ";
396     I.print(OS, MST, IsStandalone);
397     OS << '\n';
398   }
399 
400   if (IrrLoopHeaderWeight) {
401     if (Indexes) OS << '\t';
402     OS << "    Irreducible loop header weight: "
403        << IrrLoopHeaderWeight.getValue();
404     OS << '\n';
405   }
406 }
407 
408 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
409                                        bool /*PrintType*/) const {
410   OS << "%bb." << getNumber();
411 }
412 
413 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
414   LiveInVector::iterator I = find_if(
415       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
416   if (I == LiveIns.end())
417     return;
418 
419   I->LaneMask &= ~LaneMask;
420   if (I->LaneMask.none())
421     LiveIns.erase(I);
422 }
423 
424 MachineBasicBlock::livein_iterator
425 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
426   // Get non-const version of iterator.
427   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
428   return LiveIns.erase(LI);
429 }
430 
431 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
432   livein_iterator I = find_if(
433       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
434   return I != livein_end() && (I->LaneMask & LaneMask).any();
435 }
436 
437 void MachineBasicBlock::sortUniqueLiveIns() {
438   std::sort(LiveIns.begin(), LiveIns.end(),
439             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
440               return LI0.PhysReg < LI1.PhysReg;
441             });
442   // Liveins are sorted by physreg now we can merge their lanemasks.
443   LiveInVector::const_iterator I = LiveIns.begin();
444   LiveInVector::const_iterator J;
445   LiveInVector::iterator Out = LiveIns.begin();
446   for (; I != LiveIns.end(); ++Out, I = J) {
447     unsigned PhysReg = I->PhysReg;
448     LaneBitmask LaneMask = I->LaneMask;
449     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
450       LaneMask |= J->LaneMask;
451     Out->PhysReg = PhysReg;
452     Out->LaneMask = LaneMask;
453   }
454   LiveIns.erase(Out, LiveIns.end());
455 }
456 
457 unsigned
458 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
459   assert(getParent() && "MBB must be inserted in function");
460   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
461   assert(RC && "Register class is required");
462   assert((isEHPad() || this == &getParent()->front()) &&
463          "Only the entry block and landing pads can have physreg live ins");
464 
465   bool LiveIn = isLiveIn(PhysReg);
466   iterator I = SkipPHIsAndLabels(begin()), E = end();
467   MachineRegisterInfo &MRI = getParent()->getRegInfo();
468   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
469 
470   // Look for an existing copy.
471   if (LiveIn)
472     for (;I != E && I->isCopy(); ++I)
473       if (I->getOperand(1).getReg() == PhysReg) {
474         unsigned VirtReg = I->getOperand(0).getReg();
475         if (!MRI.constrainRegClass(VirtReg, RC))
476           llvm_unreachable("Incompatible live-in register class.");
477         return VirtReg;
478       }
479 
480   // No luck, create a virtual register.
481   unsigned VirtReg = MRI.createVirtualRegister(RC);
482   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
483     .addReg(PhysReg, RegState::Kill);
484   if (!LiveIn)
485     addLiveIn(PhysReg);
486   return VirtReg;
487 }
488 
489 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
490   getParent()->splice(NewAfter->getIterator(), getIterator());
491 }
492 
493 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
494   getParent()->splice(++NewBefore->getIterator(), getIterator());
495 }
496 
497 void MachineBasicBlock::updateTerminator() {
498   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
499   // A block with no successors has no concerns with fall-through edges.
500   if (this->succ_empty())
501     return;
502 
503   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
504   SmallVector<MachineOperand, 4> Cond;
505   DebugLoc DL = findBranchDebugLoc();
506   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
507   (void) B;
508   assert(!B && "UpdateTerminators requires analyzable predecessors!");
509   if (Cond.empty()) {
510     if (TBB) {
511       // The block has an unconditional branch. If its successor is now its
512       // layout successor, delete the branch.
513       if (isLayoutSuccessor(TBB))
514         TII->removeBranch(*this);
515     } else {
516       // The block has an unconditional fallthrough. If its successor is not its
517       // layout successor, insert a branch. First we have to locate the only
518       // non-landing-pad successor, as that is the fallthrough block.
519       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
520         if ((*SI)->isEHPad())
521           continue;
522         assert(!TBB && "Found more than one non-landing-pad successor!");
523         TBB = *SI;
524       }
525 
526       // If there is no non-landing-pad successor, the block has no fall-through
527       // edges to be concerned with.
528       if (!TBB)
529         return;
530 
531       // Finally update the unconditional successor to be reached via a branch
532       // if it would not be reached by fallthrough.
533       if (!isLayoutSuccessor(TBB))
534         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
535     }
536     return;
537   }
538 
539   if (FBB) {
540     // The block has a non-fallthrough conditional branch. If one of its
541     // successors is its layout successor, rewrite it to a fallthrough
542     // conditional branch.
543     if (isLayoutSuccessor(TBB)) {
544       if (TII->reverseBranchCondition(Cond))
545         return;
546       TII->removeBranch(*this);
547       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
548     } else if (isLayoutSuccessor(FBB)) {
549       TII->removeBranch(*this);
550       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
551     }
552     return;
553   }
554 
555   // Walk through the successors and find the successor which is not a landing
556   // pad and is not the conditional branch destination (in TBB) as the
557   // fallthrough successor.
558   MachineBasicBlock *FallthroughBB = nullptr;
559   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
560     if ((*SI)->isEHPad() || *SI == TBB)
561       continue;
562     assert(!FallthroughBB && "Found more than one fallthrough successor.");
563     FallthroughBB = *SI;
564   }
565 
566   if (!FallthroughBB) {
567     if (canFallThrough()) {
568       // We fallthrough to the same basic block as the conditional jump targets.
569       // Remove the conditional jump, leaving unconditional fallthrough.
570       // FIXME: This does not seem like a reasonable pattern to support, but it
571       // has been seen in the wild coming out of degenerate ARM test cases.
572       TII->removeBranch(*this);
573 
574       // Finally update the unconditional successor to be reached via a branch if
575       // it would not be reached by fallthrough.
576       if (!isLayoutSuccessor(TBB))
577         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
578       return;
579     }
580 
581     // We enter here iff exactly one successor is TBB which cannot fallthrough
582     // and the rest successors if any are EHPads.  In this case, we need to
583     // change the conditional branch into unconditional branch.
584     TII->removeBranch(*this);
585     Cond.clear();
586     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
587     return;
588   }
589 
590   // The block has a fallthrough conditional branch.
591   if (isLayoutSuccessor(TBB)) {
592     if (TII->reverseBranchCondition(Cond)) {
593       // We can't reverse the condition, add an unconditional branch.
594       Cond.clear();
595       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
596       return;
597     }
598     TII->removeBranch(*this);
599     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
600   } else if (!isLayoutSuccessor(FallthroughBB)) {
601     TII->removeBranch(*this);
602     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
603   }
604 }
605 
606 void MachineBasicBlock::validateSuccProbs() const {
607 #ifndef NDEBUG
608   int64_t Sum = 0;
609   for (auto Prob : Probs)
610     Sum += Prob.getNumerator();
611   // Due to precision issue, we assume that the sum of probabilities is one if
612   // the difference between the sum of their numerators and the denominator is
613   // no greater than the number of successors.
614   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
615              Probs.size() &&
616          "The sum of successors's probabilities exceeds one.");
617 #endif // NDEBUG
618 }
619 
620 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
621                                      BranchProbability Prob) {
622   // Probability list is either empty (if successor list isn't empty, this means
623   // disabled optimization) or has the same size as successor list.
624   if (!(Probs.empty() && !Successors.empty()))
625     Probs.push_back(Prob);
626   Successors.push_back(Succ);
627   Succ->addPredecessor(this);
628 }
629 
630 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
631   // We need to make sure probability list is either empty or has the same size
632   // of successor list. When this function is called, we can safely delete all
633   // probability in the list.
634   Probs.clear();
635   Successors.push_back(Succ);
636   Succ->addPredecessor(this);
637 }
638 
639 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
640                                         bool NormalizeSuccProbs) {
641   succ_iterator I = find(Successors, Succ);
642   removeSuccessor(I, NormalizeSuccProbs);
643 }
644 
645 MachineBasicBlock::succ_iterator
646 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
647   assert(I != Successors.end() && "Not a current successor!");
648 
649   // If probability list is empty it means we don't use it (disabled
650   // optimization).
651   if (!Probs.empty()) {
652     probability_iterator WI = getProbabilityIterator(I);
653     Probs.erase(WI);
654     if (NormalizeSuccProbs)
655       normalizeSuccProbs();
656   }
657 
658   (*I)->removePredecessor(this);
659   return Successors.erase(I);
660 }
661 
662 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
663                                          MachineBasicBlock *New) {
664   if (Old == New)
665     return;
666 
667   succ_iterator E = succ_end();
668   succ_iterator NewI = E;
669   succ_iterator OldI = E;
670   for (succ_iterator I = succ_begin(); I != E; ++I) {
671     if (*I == Old) {
672       OldI = I;
673       if (NewI != E)
674         break;
675     }
676     if (*I == New) {
677       NewI = I;
678       if (OldI != E)
679         break;
680     }
681   }
682   assert(OldI != E && "Old is not a successor of this block");
683 
684   // If New isn't already a successor, let it take Old's place.
685   if (NewI == E) {
686     Old->removePredecessor(this);
687     New->addPredecessor(this);
688     *OldI = New;
689     return;
690   }
691 
692   // New is already a successor.
693   // Update its probability instead of adding a duplicate edge.
694   if (!Probs.empty()) {
695     auto ProbIter = getProbabilityIterator(NewI);
696     if (!ProbIter->isUnknown())
697       *ProbIter += *getProbabilityIterator(OldI);
698   }
699   removeSuccessor(OldI);
700 }
701 
702 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
703   Predecessors.push_back(Pred);
704 }
705 
706 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
707   pred_iterator I = find(Predecessors, Pred);
708   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
709   Predecessors.erase(I);
710 }
711 
712 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
713   if (this == FromMBB)
714     return;
715 
716   while (!FromMBB->succ_empty()) {
717     MachineBasicBlock *Succ = *FromMBB->succ_begin();
718 
719     // If probability list is empty it means we don't use it (disabled optimization).
720     if (!FromMBB->Probs.empty()) {
721       auto Prob = *FromMBB->Probs.begin();
722       addSuccessor(Succ, Prob);
723     } else
724       addSuccessorWithoutProb(Succ);
725 
726     FromMBB->removeSuccessor(Succ);
727   }
728 }
729 
730 void
731 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
732   if (this == FromMBB)
733     return;
734 
735   while (!FromMBB->succ_empty()) {
736     MachineBasicBlock *Succ = *FromMBB->succ_begin();
737     if (!FromMBB->Probs.empty()) {
738       auto Prob = *FromMBB->Probs.begin();
739       addSuccessor(Succ, Prob);
740     } else
741       addSuccessorWithoutProb(Succ);
742     FromMBB->removeSuccessor(Succ);
743 
744     // Fix up any PHI nodes in the successor.
745     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
746            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
747       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
748         MachineOperand &MO = MI->getOperand(i);
749         if (MO.getMBB() == FromMBB)
750           MO.setMBB(this);
751       }
752   }
753   normalizeSuccProbs();
754 }
755 
756 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
757   return is_contained(predecessors(), MBB);
758 }
759 
760 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
761   return is_contained(successors(), MBB);
762 }
763 
764 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
765   MachineFunction::const_iterator I(this);
766   return std::next(I) == MachineFunction::const_iterator(MBB);
767 }
768 
769 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
770   MachineFunction::iterator Fallthrough = getIterator();
771   ++Fallthrough;
772   // If FallthroughBlock is off the end of the function, it can't fall through.
773   if (Fallthrough == getParent()->end())
774     return nullptr;
775 
776   // If FallthroughBlock isn't a successor, no fallthrough is possible.
777   if (!isSuccessor(&*Fallthrough))
778     return nullptr;
779 
780   // Analyze the branches, if any, at the end of the block.
781   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
782   SmallVector<MachineOperand, 4> Cond;
783   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
784   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
785     // If we couldn't analyze the branch, examine the last instruction.
786     // If the block doesn't end in a known control barrier, assume fallthrough
787     // is possible. The isPredicated check is needed because this code can be
788     // called during IfConversion, where an instruction which is normally a
789     // Barrier is predicated and thus no longer an actual control barrier.
790     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
791                ? &*Fallthrough
792                : nullptr;
793   }
794 
795   // If there is no branch, control always falls through.
796   if (!TBB) return &*Fallthrough;
797 
798   // If there is some explicit branch to the fallthrough block, it can obviously
799   // reach, even though the branch should get folded to fall through implicitly.
800   if (MachineFunction::iterator(TBB) == Fallthrough ||
801       MachineFunction::iterator(FBB) == Fallthrough)
802     return &*Fallthrough;
803 
804   // If it's an unconditional branch to some block not the fall through, it
805   // doesn't fall through.
806   if (Cond.empty()) return nullptr;
807 
808   // Otherwise, if it is conditional and has no explicit false block, it falls
809   // through.
810   return (FBB == nullptr) ? &*Fallthrough : nullptr;
811 }
812 
813 bool MachineBasicBlock::canFallThrough() {
814   return getFallThrough() != nullptr;
815 }
816 
817 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
818                                                         Pass &P) {
819   if (!canSplitCriticalEdge(Succ))
820     return nullptr;
821 
822   MachineFunction *MF = getParent();
823   DebugLoc DL;  // FIXME: this is nowhere
824 
825   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
826   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
827   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
828                << " -- " << printMBBReference(*NMBB) << " -- "
829                << printMBBReference(*Succ) << '\n');
830 
831   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
832   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
833   if (LIS)
834     LIS->insertMBBInMaps(NMBB);
835   else if (Indexes)
836     Indexes->insertMBBInMaps(NMBB);
837 
838   // On some targets like Mips, branches may kill virtual registers. Make sure
839   // that LiveVariables is properly updated after updateTerminator replaces the
840   // terminators.
841   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
842 
843   // Collect a list of virtual registers killed by the terminators.
844   SmallVector<unsigned, 4> KilledRegs;
845   if (LV)
846     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
847          I != E; ++I) {
848       MachineInstr *MI = &*I;
849       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
850            OE = MI->operands_end(); OI != OE; ++OI) {
851         if (!OI->isReg() || OI->getReg() == 0 ||
852             !OI->isUse() || !OI->isKill() || OI->isUndef())
853           continue;
854         unsigned Reg = OI->getReg();
855         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
856             LV->getVarInfo(Reg).removeKill(*MI)) {
857           KilledRegs.push_back(Reg);
858           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
859           OI->setIsKill(false);
860         }
861       }
862     }
863 
864   SmallVector<unsigned, 4> UsedRegs;
865   if (LIS) {
866     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
867          I != E; ++I) {
868       MachineInstr *MI = &*I;
869 
870       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
871            OE = MI->operands_end(); OI != OE; ++OI) {
872         if (!OI->isReg() || OI->getReg() == 0)
873           continue;
874 
875         unsigned Reg = OI->getReg();
876         if (!is_contained(UsedRegs, Reg))
877           UsedRegs.push_back(Reg);
878       }
879     }
880   }
881 
882   ReplaceUsesOfBlockWith(Succ, NMBB);
883 
884   // If updateTerminator() removes instructions, we need to remove them from
885   // SlotIndexes.
886   SmallVector<MachineInstr*, 4> Terminators;
887   if (Indexes) {
888     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
889          I != E; ++I)
890       Terminators.push_back(&*I);
891   }
892 
893   updateTerminator();
894 
895   if (Indexes) {
896     SmallVector<MachineInstr*, 4> NewTerminators;
897     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
898          I != E; ++I)
899       NewTerminators.push_back(&*I);
900 
901     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
902         E = Terminators.end(); I != E; ++I) {
903       if (!is_contained(NewTerminators, *I))
904         Indexes->removeMachineInstrFromMaps(**I);
905     }
906   }
907 
908   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
909   NMBB->addSuccessor(Succ);
910   if (!NMBB->isLayoutSuccessor(Succ)) {
911     SmallVector<MachineOperand, 4> Cond;
912     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
913     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
914 
915     if (Indexes) {
916       for (MachineInstr &MI : NMBB->instrs()) {
917         // Some instructions may have been moved to NMBB by updateTerminator(),
918         // so we first remove any instruction that already has an index.
919         if (Indexes->hasIndex(MI))
920           Indexes->removeMachineInstrFromMaps(MI);
921         Indexes->insertMachineInstrInMaps(MI);
922       }
923     }
924   }
925 
926   // Fix PHI nodes in Succ so they refer to NMBB instead of this
927   for (MachineBasicBlock::instr_iterator
928          i = Succ->instr_begin(),e = Succ->instr_end();
929        i != e && i->isPHI(); ++i)
930     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
931       if (i->getOperand(ni+1).getMBB() == this)
932         i->getOperand(ni+1).setMBB(NMBB);
933 
934   // Inherit live-ins from the successor
935   for (const auto &LI : Succ->liveins())
936     NMBB->addLiveIn(LI);
937 
938   // Update LiveVariables.
939   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
940   if (LV) {
941     // Restore kills of virtual registers that were killed by the terminators.
942     while (!KilledRegs.empty()) {
943       unsigned Reg = KilledRegs.pop_back_val();
944       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
945         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
946           continue;
947         if (TargetRegisterInfo::isVirtualRegister(Reg))
948           LV->getVarInfo(Reg).Kills.push_back(&*I);
949         DEBUG(dbgs() << "Restored terminator kill: " << *I);
950         break;
951       }
952     }
953     // Update relevant live-through information.
954     LV->addNewBlock(NMBB, this, Succ);
955   }
956 
957   if (LIS) {
958     // After splitting the edge and updating SlotIndexes, live intervals may be
959     // in one of two situations, depending on whether this block was the last in
960     // the function. If the original block was the last in the function, all
961     // live intervals will end prior to the beginning of the new split block. If
962     // the original block was not at the end of the function, all live intervals
963     // will extend to the end of the new split block.
964 
965     bool isLastMBB =
966       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
967 
968     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
969     SlotIndex PrevIndex = StartIndex.getPrevSlot();
970     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
971 
972     // Find the registers used from NMBB in PHIs in Succ.
973     SmallSet<unsigned, 8> PHISrcRegs;
974     for (MachineBasicBlock::instr_iterator
975          I = Succ->instr_begin(), E = Succ->instr_end();
976          I != E && I->isPHI(); ++I) {
977       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
978         if (I->getOperand(ni+1).getMBB() == NMBB) {
979           MachineOperand &MO = I->getOperand(ni);
980           unsigned Reg = MO.getReg();
981           PHISrcRegs.insert(Reg);
982           if (MO.isUndef())
983             continue;
984 
985           LiveInterval &LI = LIS->getInterval(Reg);
986           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
987           assert(VNI &&
988                  "PHI sources should be live out of their predecessors.");
989           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
990         }
991       }
992     }
993 
994     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
995     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
996       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
997       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
998         continue;
999 
1000       LiveInterval &LI = LIS->getInterval(Reg);
1001       if (!LI.liveAt(PrevIndex))
1002         continue;
1003 
1004       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1005       if (isLiveOut && isLastMBB) {
1006         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1007         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1008         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1009       } else if (!isLiveOut && !isLastMBB) {
1010         LI.removeSegment(StartIndex, EndIndex);
1011       }
1012     }
1013 
1014     // Update all intervals for registers whose uses may have been modified by
1015     // updateTerminator().
1016     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1017   }
1018 
1019   if (MachineDominatorTree *MDT =
1020           P.getAnalysisIfAvailable<MachineDominatorTree>())
1021     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1022 
1023   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1024     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1025       // If one or the other blocks were not in a loop, the new block is not
1026       // either, and thus LI doesn't need to be updated.
1027       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1028         if (TIL == DestLoop) {
1029           // Both in the same loop, the NMBB joins loop.
1030           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1031         } else if (TIL->contains(DestLoop)) {
1032           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1033           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1034         } else if (DestLoop->contains(TIL)) {
1035           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1036           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1037         } else {
1038           // Edge from two loops with no containment relation.  Because these
1039           // are natural loops, we know that the destination block must be the
1040           // header of its loop (adding a branch into a loop elsewhere would
1041           // create an irreducible loop).
1042           assert(DestLoop->getHeader() == Succ &&
1043                  "Should not create irreducible loops!");
1044           if (MachineLoop *P = DestLoop->getParentLoop())
1045             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1046         }
1047       }
1048     }
1049 
1050   return NMBB;
1051 }
1052 
1053 bool MachineBasicBlock::canSplitCriticalEdge(
1054     const MachineBasicBlock *Succ) const {
1055   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1056   // it in this generic function.
1057   if (Succ->isEHPad())
1058     return false;
1059 
1060   const MachineFunction *MF = getParent();
1061 
1062   // Performance might be harmed on HW that implements branching using exec mask
1063   // where both sides of the branches are always executed.
1064   if (MF->getTarget().requiresStructuredCFG())
1065     return false;
1066 
1067   // We may need to update this's terminator, but we can't do that if
1068   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1069   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1070   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1071   SmallVector<MachineOperand, 4> Cond;
1072   // AnalyzeBanch should modify this, since we did not allow modification.
1073   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1074                          /*AllowModify*/ false))
1075     return false;
1076 
1077   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1078   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1079   // case that we can't handle. Since this never happens in properly optimized
1080   // code, just skip those edges.
1081   if (TBB && TBB == FBB) {
1082     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1083                  << printMBBReference(*this) << '\n');
1084     return false;
1085   }
1086   return true;
1087 }
1088 
1089 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1090 /// neighboring instructions so the bundle won't be broken by removing MI.
1091 static void unbundleSingleMI(MachineInstr *MI) {
1092   // Removing the first instruction in a bundle.
1093   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1094     MI->unbundleFromSucc();
1095   // Removing the last instruction in a bundle.
1096   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1097     MI->unbundleFromPred();
1098   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1099   // are already fine.
1100 }
1101 
1102 MachineBasicBlock::instr_iterator
1103 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1104   unbundleSingleMI(&*I);
1105   return Insts.erase(I);
1106 }
1107 
1108 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1109   unbundleSingleMI(MI);
1110   MI->clearFlag(MachineInstr::BundledPred);
1111   MI->clearFlag(MachineInstr::BundledSucc);
1112   return Insts.remove(MI);
1113 }
1114 
1115 MachineBasicBlock::instr_iterator
1116 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1117   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1118          "Cannot insert instruction with bundle flags");
1119   // Set the bundle flags when inserting inside a bundle.
1120   if (I != instr_end() && I->isBundledWithPred()) {
1121     MI->setFlag(MachineInstr::BundledPred);
1122     MI->setFlag(MachineInstr::BundledSucc);
1123   }
1124   return Insts.insert(I, MI);
1125 }
1126 
1127 /// This method unlinks 'this' from the containing function, and returns it, but
1128 /// does not delete it.
1129 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1130   assert(getParent() && "Not embedded in a function!");
1131   getParent()->remove(this);
1132   return this;
1133 }
1134 
1135 /// This method unlinks 'this' from the containing function, and deletes it.
1136 void MachineBasicBlock::eraseFromParent() {
1137   assert(getParent() && "Not embedded in a function!");
1138   getParent()->erase(this);
1139 }
1140 
1141 /// Given a machine basic block that branched to 'Old', change the code and CFG
1142 /// so that it branches to 'New' instead.
1143 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1144                                                MachineBasicBlock *New) {
1145   assert(Old != New && "Cannot replace self with self!");
1146 
1147   MachineBasicBlock::instr_iterator I = instr_end();
1148   while (I != instr_begin()) {
1149     --I;
1150     if (!I->isTerminator()) break;
1151 
1152     // Scan the operands of this machine instruction, replacing any uses of Old
1153     // with New.
1154     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1155       if (I->getOperand(i).isMBB() &&
1156           I->getOperand(i).getMBB() == Old)
1157         I->getOperand(i).setMBB(New);
1158   }
1159 
1160   // Update the successor information.
1161   replaceSuccessor(Old, New);
1162 }
1163 
1164 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1165 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1166 /// MBB successors from the CFG.  DestA and DestB can be null.
1167 ///
1168 /// Besides DestA and DestB, retain other edges leading to LandingPads
1169 /// (currently there can be only one; we don't check or require that here).
1170 /// Note it is possible that DestA and/or DestB are LandingPads.
1171 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1172                                              MachineBasicBlock *DestB,
1173                                              bool IsCond) {
1174   // The values of DestA and DestB frequently come from a call to the
1175   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1176   // values from there.
1177   //
1178   // 1. If both DestA and DestB are null, then the block ends with no branches
1179   //    (it falls through to its successor).
1180   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1181   //    with only an unconditional branch.
1182   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1183   //    with a conditional branch that falls through to a successor (DestB).
1184   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1185   //    conditional branch followed by an unconditional branch. DestA is the
1186   //    'true' destination and DestB is the 'false' destination.
1187 
1188   bool Changed = false;
1189 
1190   MachineBasicBlock *FallThru = getNextNode();
1191 
1192   if (!DestA && !DestB) {
1193     // Block falls through to successor.
1194     DestA = FallThru;
1195     DestB = FallThru;
1196   } else if (DestA && !DestB) {
1197     if (IsCond)
1198       // Block ends in conditional jump that falls through to successor.
1199       DestB = FallThru;
1200   } else {
1201     assert(DestA && DestB && IsCond &&
1202            "CFG in a bad state. Cannot correct CFG edges");
1203   }
1204 
1205   // Remove superfluous edges. I.e., those which aren't destinations of this
1206   // basic block, duplicate edges, or landing pads.
1207   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1208   MachineBasicBlock::succ_iterator SI = succ_begin();
1209   while (SI != succ_end()) {
1210     const MachineBasicBlock *MBB = *SI;
1211     if (!SeenMBBs.insert(MBB).second ||
1212         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1213       // This is a superfluous edge, remove it.
1214       SI = removeSuccessor(SI);
1215       Changed = true;
1216     } else {
1217       ++SI;
1218     }
1219   }
1220 
1221   if (Changed)
1222     normalizeSuccProbs();
1223   return Changed;
1224 }
1225 
1226 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1227 /// instructions.  Return UnknownLoc if there is none.
1228 DebugLoc
1229 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1230   // Skip debug declarations, we don't want a DebugLoc from them.
1231   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1232   if (MBBI != instr_end())
1233     return MBBI->getDebugLoc();
1234   return {};
1235 }
1236 
1237 /// Find and return the merged DebugLoc of the branch instructions of the block.
1238 /// Return UnknownLoc if there is none.
1239 DebugLoc
1240 MachineBasicBlock::findBranchDebugLoc() {
1241   DebugLoc DL;
1242   auto TI = getFirstTerminator();
1243   while (TI != end() && !TI->isBranch())
1244     ++TI;
1245 
1246   if (TI != end()) {
1247     DL = TI->getDebugLoc();
1248     for (++TI ; TI != end() ; ++TI)
1249       if (TI->isBranch())
1250         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1251   }
1252   return DL;
1253 }
1254 
1255 /// Return probability of the edge from this block to MBB.
1256 BranchProbability
1257 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1258   if (Probs.empty())
1259     return BranchProbability(1, succ_size());
1260 
1261   const auto &Prob = *getProbabilityIterator(Succ);
1262   if (Prob.isUnknown()) {
1263     // For unknown probabilities, collect the sum of all known ones, and evenly
1264     // ditribute the complemental of the sum to each unknown probability.
1265     unsigned KnownProbNum = 0;
1266     auto Sum = BranchProbability::getZero();
1267     for (auto &P : Probs) {
1268       if (!P.isUnknown()) {
1269         Sum += P;
1270         KnownProbNum++;
1271       }
1272     }
1273     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1274   } else
1275     return Prob;
1276 }
1277 
1278 /// Set successor probability of a given iterator.
1279 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1280                                            BranchProbability Prob) {
1281   assert(!Prob.isUnknown());
1282   if (Probs.empty())
1283     return;
1284   *getProbabilityIterator(I) = Prob;
1285 }
1286 
1287 /// Return probability iterator corresonding to the I successor iterator
1288 MachineBasicBlock::const_probability_iterator
1289 MachineBasicBlock::getProbabilityIterator(
1290     MachineBasicBlock::const_succ_iterator I) const {
1291   assert(Probs.size() == Successors.size() && "Async probability list!");
1292   const size_t index = std::distance(Successors.begin(), I);
1293   assert(index < Probs.size() && "Not a current successor!");
1294   return Probs.begin() + index;
1295 }
1296 
1297 /// Return probability iterator corresonding to the I successor iterator.
1298 MachineBasicBlock::probability_iterator
1299 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1300   assert(Probs.size() == Successors.size() && "Async probability list!");
1301   const size_t index = std::distance(Successors.begin(), I);
1302   assert(index < Probs.size() && "Not a current successor!");
1303   return Probs.begin() + index;
1304 }
1305 
1306 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1307 /// as of just before "MI".
1308 ///
1309 /// Search is localised to a neighborhood of
1310 /// Neighborhood instructions before (searching for defs or kills) and N
1311 /// instructions after (searching just for defs) MI.
1312 MachineBasicBlock::LivenessQueryResult
1313 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1314                                            unsigned Reg, const_iterator Before,
1315                                            unsigned Neighborhood) const {
1316   unsigned N = Neighborhood;
1317 
1318   // Start by searching backwards from Before, looking for kills, reads or defs.
1319   const_iterator I(Before);
1320   // If this is the first insn in the block, don't search backwards.
1321   if (I != begin()) {
1322     do {
1323       --I;
1324 
1325       MachineOperandIteratorBase::PhysRegInfo Info =
1326           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1327 
1328       // Defs happen after uses so they take precedence if both are present.
1329 
1330       // Register is dead after a dead def of the full register.
1331       if (Info.DeadDef)
1332         return LQR_Dead;
1333       // Register is (at least partially) live after a def.
1334       if (Info.Defined) {
1335         if (!Info.PartialDeadDef)
1336           return LQR_Live;
1337         // As soon as we saw a partial definition (dead or not),
1338         // we cannot tell if the value is partial live without
1339         // tracking the lanemasks. We are not going to do this,
1340         // so fall back on the remaining of the analysis.
1341         break;
1342       }
1343       // Register is dead after a full kill or clobber and no def.
1344       if (Info.Killed || Info.Clobbered)
1345         return LQR_Dead;
1346       // Register must be live if we read it.
1347       if (Info.Read)
1348         return LQR_Live;
1349     } while (I != begin() && --N > 0);
1350   }
1351 
1352   // Did we get to the start of the block?
1353   if (I == begin()) {
1354     // If so, the register's state is definitely defined by the live-in state.
1355     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1356          ++RAI)
1357       if (isLiveIn(*RAI))
1358         return LQR_Live;
1359 
1360     return LQR_Dead;
1361   }
1362 
1363   N = Neighborhood;
1364 
1365   // Try searching forwards from Before, looking for reads or defs.
1366   I = const_iterator(Before);
1367   // If this is the last insn in the block, don't search forwards.
1368   if (I != end()) {
1369     for (++I; I != end() && N > 0; ++I, --N) {
1370       MachineOperandIteratorBase::PhysRegInfo Info =
1371           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1372 
1373       // Register is live when we read it here.
1374       if (Info.Read)
1375         return LQR_Live;
1376       // Register is dead if we can fully overwrite or clobber it here.
1377       if (Info.FullyDefined || Info.Clobbered)
1378         return LQR_Dead;
1379     }
1380   }
1381 
1382   // At this point we have no idea of the liveness of the register.
1383   return LQR_Unknown;
1384 }
1385 
1386 const uint32_t *
1387 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1388   // EH funclet entry does not preserve any registers.
1389   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1390 }
1391 
1392 const uint32_t *
1393 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1394   // If we see a return block with successors, this must be a funclet return,
1395   // which does not preserve any registers. If there are no successors, we don't
1396   // care what kind of return it is, putting a mask after it is a no-op.
1397   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1398 }
1399 
1400 void MachineBasicBlock::clearLiveIns() {
1401   LiveIns.clear();
1402 }
1403 
1404 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1405   assert(getParent()->getProperties().hasProperty(
1406       MachineFunctionProperties::Property::TracksLiveness) &&
1407       "Liveness information is accurate");
1408   return LiveIns.begin();
1409 }
1410