1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LeakDetector.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 LeakDetector::removeGarbageObject(this); 49 } 50 51 /// getSymbol - Return the MCSymbol for this basic block. 52 /// 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + 59 Twine(MF->getFunctionNumber()) + 60 "_" + Twine(getNumber())); 61 } 62 63 return CachedMCSymbol; 64 } 65 66 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 68 MBB.print(OS); 69 return OS; 70 } 71 72 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 73 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 74 /// MBB to be on the right operand list for registers. 75 /// 76 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 77 /// gets the next available unique MBB number. If it is removed from a 78 /// MachineFunction, it goes back to being #-1. 79 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 89 LeakDetector::removeGarbageObject(N); 90 } 91 92 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 93 N->getParent()->removeFromMBBNumbering(N->Number); 94 N->Number = -1; 95 LeakDetector::addGarbageObject(N); 96 } 97 98 99 /// addNodeToList (MI) - When we add an instruction to a basic block 100 /// list, we update its parent pointer and add its operands from reg use/def 101 /// lists if appropriate. 102 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 103 assert(!N->getParent() && "machine instruction already in a basic block"); 104 N->setParent(Parent); 105 106 // Add the instruction's register operands to their corresponding 107 // use/def lists. 108 MachineFunction *MF = Parent->getParent(); 109 N->AddRegOperandsToUseLists(MF->getRegInfo()); 110 } 111 112 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 113 /// list, we update its parent pointer and remove its operands from reg use/def 114 /// lists if appropriate. 115 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 116 assert(N->getParent() && "machine instruction not in a basic block"); 117 118 // Remove from the use/def lists. 119 if (MachineFunction *MF = N->getParent()->getParent()) 120 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 121 122 N->setParent(nullptr); 123 } 124 125 /// transferNodesFromList (MI) - When moving a range of instructions from one 126 /// MBB list to another, we need to update the parent pointers and the use/def 127 /// lists. 128 void ilist_traits<MachineInstr>:: 129 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 130 ilist_iterator<MachineInstr> first, 131 ilist_iterator<MachineInstr> last) { 132 assert(Parent->getParent() == fromList.Parent->getParent() && 133 "MachineInstr parent mismatch!"); 134 135 // Splice within the same MBB -> no change. 136 if (Parent == fromList.Parent) return; 137 138 // If splicing between two blocks within the same function, just update the 139 // parent pointers. 140 for (; first != last; ++first) 141 first->setParent(Parent); 142 } 143 144 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 145 assert(!MI->getParent() && "MI is still in a block!"); 146 Parent->getParent()->DeleteMachineInstr(MI); 147 } 148 149 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 150 instr_iterator I = instr_begin(), E = instr_end(); 151 while (I != E && I->isPHI()) 152 ++I; 153 assert((I == E || !I->isInsideBundle()) && 154 "First non-phi MI cannot be inside a bundle!"); 155 return I; 156 } 157 158 MachineBasicBlock::iterator 159 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 162 ++I; 163 // FIXME: This needs to change if we wish to bundle labels / dbg_values 164 // inside the bundle. 165 assert((I == E || !I->isInsideBundle()) && 166 "First non-phi / non-label instruction is inside a bundle!"); 167 return I; 168 } 169 170 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 171 iterator B = begin(), E = end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::const_iterator 180 MachineBasicBlock::getFirstTerminator() const { 181 const_iterator B = begin(), E = end(), I = E; 182 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 183 ; /*noop */ 184 while (I != E && !I->isTerminator()) 185 ++I; 186 return I; 187 } 188 189 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 190 instr_iterator B = instr_begin(), E = instr_end(), I = E; 191 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 192 ; /*noop */ 193 while (I != E && !I->isTerminator()) 194 ++I; 195 return I; 196 } 197 198 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 199 // Skip over end-of-block dbg_value instructions. 200 instr_iterator B = instr_begin(), I = instr_end(); 201 while (I != B) { 202 --I; 203 // Return instruction that starts a bundle. 204 if (I->isDebugValue() || I->isInsideBundle()) 205 continue; 206 return I; 207 } 208 // The block is all debug values. 209 return end(); 210 } 211 212 MachineBasicBlock::const_iterator 213 MachineBasicBlock::getLastNonDebugInstr() const { 214 // Skip over end-of-block dbg_value instructions. 215 const_instr_iterator B = instr_begin(), I = instr_end(); 216 while (I != B) { 217 --I; 218 // Return instruction that starts a bundle. 219 if (I->isDebugValue() || I->isInsideBundle()) 220 continue; 221 return I; 222 } 223 // The block is all debug values. 224 return end(); 225 } 226 227 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 228 // A block with a landing pad successor only has one other successor. 229 if (succ_size() > 2) 230 return nullptr; 231 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 232 if ((*I)->isLandingPad()) 233 return *I; 234 return nullptr; 235 } 236 237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 238 void MachineBasicBlock::dump() const { 239 print(dbgs()); 240 } 241 #endif 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return "(null)"; 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += (Twine("BB") + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 263 const MachineFunction *MF = getParent(); 264 if (!MF) { 265 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 266 << " is null\n"; 267 return; 268 } 269 270 if (Indexes) 271 OS << Indexes->getMBBStartIdx(this) << '\t'; 272 273 OS << "BB#" << getNumber() << ": "; 274 275 const char *Comma = ""; 276 if (const BasicBlock *LBB = getBasicBlock()) { 277 OS << Comma << "derived from LLVM BB "; 278 LBB->printAsOperand(OS, /*PrintType=*/false); 279 Comma = ", "; 280 } 281 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 282 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 283 if (Alignment) 284 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 285 << " bytes)"; 286 287 OS << '\n'; 288 289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 290 if (!livein_empty()) { 291 if (Indexes) OS << '\t'; 292 OS << " Live Ins:"; 293 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 294 OS << ' ' << PrintReg(*I, TRI); 295 OS << '\n'; 296 } 297 // Print the preds of this block according to the CFG. 298 if (!pred_empty()) { 299 if (Indexes) OS << '\t'; 300 OS << " Predecessors according to CFG:"; 301 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 302 OS << " BB#" << (*PI)->getNumber(); 303 OS << '\n'; 304 } 305 306 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 307 if (Indexes) { 308 if (Indexes->hasIndex(I)) 309 OS << Indexes->getInstructionIndex(I); 310 OS << '\t'; 311 } 312 OS << '\t'; 313 if (I->isInsideBundle()) 314 OS << " * "; 315 I->print(OS, &getParent()->getTarget()); 316 } 317 318 // Print the successors of this block according to the CFG. 319 if (!succ_empty()) { 320 if (Indexes) OS << '\t'; 321 OS << " Successors according to CFG:"; 322 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 323 OS << " BB#" << (*SI)->getNumber(); 324 if (!Weights.empty()) 325 OS << '(' << *getWeightIterator(SI) << ')'; 326 } 327 OS << '\n'; 328 } 329 } 330 331 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { 332 OS << "BB#" << getNumber(); 333 } 334 335 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 336 std::vector<unsigned>::iterator I = 337 std::find(LiveIns.begin(), LiveIns.end(), Reg); 338 if (I != LiveIns.end()) 339 LiveIns.erase(I); 340 } 341 342 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 343 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 344 return I != livein_end(); 345 } 346 347 unsigned 348 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 349 assert(getParent() && "MBB must be inserted in function"); 350 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 351 assert(RC && "Register class is required"); 352 assert((isLandingPad() || this == &getParent()->front()) && 353 "Only the entry block and landing pads can have physreg live ins"); 354 355 bool LiveIn = isLiveIn(PhysReg); 356 iterator I = SkipPHIsAndLabels(begin()), E = end(); 357 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 358 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 359 360 // Look for an existing copy. 361 if (LiveIn) 362 for (;I != E && I->isCopy(); ++I) 363 if (I->getOperand(1).getReg() == PhysReg) { 364 unsigned VirtReg = I->getOperand(0).getReg(); 365 if (!MRI.constrainRegClass(VirtReg, RC)) 366 llvm_unreachable("Incompatible live-in register class."); 367 return VirtReg; 368 } 369 370 // No luck, create a virtual register. 371 unsigned VirtReg = MRI.createVirtualRegister(RC); 372 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 373 .addReg(PhysReg, RegState::Kill); 374 if (!LiveIn) 375 addLiveIn(PhysReg); 376 return VirtReg; 377 } 378 379 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 380 getParent()->splice(NewAfter, this); 381 } 382 383 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 384 MachineFunction::iterator BBI = NewBefore; 385 getParent()->splice(++BBI, this); 386 } 387 388 void MachineBasicBlock::updateTerminator() { 389 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 390 // A block with no successors has no concerns with fall-through edges. 391 if (this->succ_empty()) return; 392 393 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 394 SmallVector<MachineOperand, 4> Cond; 395 DebugLoc dl; // FIXME: this is nowhere 396 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 397 (void) B; 398 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 399 if (Cond.empty()) { 400 if (TBB) { 401 // The block has an unconditional branch. If its successor is now 402 // its layout successor, delete the branch. 403 if (isLayoutSuccessor(TBB)) 404 TII->RemoveBranch(*this); 405 } else { 406 // The block has an unconditional fallthrough. If its successor is not 407 // its layout successor, insert a branch. First we have to locate the 408 // only non-landing-pad successor, as that is the fallthrough block. 409 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 410 if ((*SI)->isLandingPad()) 411 continue; 412 assert(!TBB && "Found more than one non-landing-pad successor!"); 413 TBB = *SI; 414 } 415 416 // If there is no non-landing-pad successor, the block has no 417 // fall-through edges to be concerned with. 418 if (!TBB) 419 return; 420 421 // Finally update the unconditional successor to be reached via a branch 422 // if it would not be reached by fallthrough. 423 if (!isLayoutSuccessor(TBB)) 424 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 425 } 426 } else { 427 if (FBB) { 428 // The block has a non-fallthrough conditional branch. If one of its 429 // successors is its layout successor, rewrite it to a fallthrough 430 // conditional branch. 431 if (isLayoutSuccessor(TBB)) { 432 if (TII->ReverseBranchCondition(Cond)) 433 return; 434 TII->RemoveBranch(*this); 435 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 436 } else if (isLayoutSuccessor(FBB)) { 437 TII->RemoveBranch(*this); 438 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 439 } 440 } else { 441 // Walk through the successors and find the successor which is not 442 // a landing pad and is not the conditional branch destination (in TBB) 443 // as the fallthrough successor. 444 MachineBasicBlock *FallthroughBB = nullptr; 445 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 446 if ((*SI)->isLandingPad() || *SI == TBB) 447 continue; 448 assert(!FallthroughBB && "Found more than one fallthrough successor."); 449 FallthroughBB = *SI; 450 } 451 if (!FallthroughBB && canFallThrough()) { 452 // We fallthrough to the same basic block as the conditional jump 453 // targets. Remove the conditional jump, leaving unconditional 454 // fallthrough. 455 // FIXME: This does not seem like a reasonable pattern to support, but it 456 // has been seen in the wild coming out of degenerate ARM test cases. 457 TII->RemoveBranch(*this); 458 459 // Finally update the unconditional successor to be reached via a branch 460 // if it would not be reached by fallthrough. 461 if (!isLayoutSuccessor(TBB)) 462 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 463 return; 464 } 465 466 // The block has a fallthrough conditional branch. 467 if (isLayoutSuccessor(TBB)) { 468 if (TII->ReverseBranchCondition(Cond)) { 469 // We can't reverse the condition, add an unconditional branch. 470 Cond.clear(); 471 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 472 return; 473 } 474 TII->RemoveBranch(*this); 475 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 476 } else if (!isLayoutSuccessor(FallthroughBB)) { 477 TII->RemoveBranch(*this); 478 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 479 } 480 } 481 } 482 } 483 484 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 485 486 // If we see non-zero value for the first time it means we actually use Weight 487 // list, so we fill all Weights with 0's. 488 if (weight != 0 && Weights.empty()) 489 Weights.resize(Successors.size()); 490 491 if (weight != 0 || !Weights.empty()) 492 Weights.push_back(weight); 493 494 Successors.push_back(succ); 495 succ->addPredecessor(this); 496 } 497 498 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 499 succ->removePredecessor(this); 500 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 501 assert(I != Successors.end() && "Not a current successor!"); 502 503 // If Weight list is empty it means we don't use it (disabled optimization). 504 if (!Weights.empty()) { 505 weight_iterator WI = getWeightIterator(I); 506 Weights.erase(WI); 507 } 508 509 Successors.erase(I); 510 } 511 512 MachineBasicBlock::succ_iterator 513 MachineBasicBlock::removeSuccessor(succ_iterator I) { 514 assert(I != Successors.end() && "Not a current successor!"); 515 516 // If Weight list is empty it means we don't use it (disabled optimization). 517 if (!Weights.empty()) { 518 weight_iterator WI = getWeightIterator(I); 519 Weights.erase(WI); 520 } 521 522 (*I)->removePredecessor(this); 523 return Successors.erase(I); 524 } 525 526 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 527 MachineBasicBlock *New) { 528 if (Old == New) 529 return; 530 531 succ_iterator E = succ_end(); 532 succ_iterator NewI = E; 533 succ_iterator OldI = E; 534 for (succ_iterator I = succ_begin(); I != E; ++I) { 535 if (*I == Old) { 536 OldI = I; 537 if (NewI != E) 538 break; 539 } 540 if (*I == New) { 541 NewI = I; 542 if (OldI != E) 543 break; 544 } 545 } 546 assert(OldI != E && "Old is not a successor of this block"); 547 Old->removePredecessor(this); 548 549 // If New isn't already a successor, let it take Old's place. 550 if (NewI == E) { 551 New->addPredecessor(this); 552 *OldI = New; 553 return; 554 } 555 556 // New is already a successor. 557 // Update its weight instead of adding a duplicate edge. 558 if (!Weights.empty()) { 559 weight_iterator OldWI = getWeightIterator(OldI); 560 *getWeightIterator(NewI) += *OldWI; 561 Weights.erase(OldWI); 562 } 563 Successors.erase(OldI); 564 } 565 566 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 567 Predecessors.push_back(pred); 568 } 569 570 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 571 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 572 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 573 Predecessors.erase(I); 574 } 575 576 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 577 if (this == fromMBB) 578 return; 579 580 while (!fromMBB->succ_empty()) { 581 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 582 uint32_t Weight = 0; 583 584 // If Weight list is empty it means we don't use it (disabled optimization). 585 if (!fromMBB->Weights.empty()) 586 Weight = *fromMBB->Weights.begin(); 587 588 addSuccessor(Succ, Weight); 589 fromMBB->removeSuccessor(Succ); 590 } 591 } 592 593 void 594 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 595 if (this == fromMBB) 596 return; 597 598 while (!fromMBB->succ_empty()) { 599 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 600 uint32_t Weight = 0; 601 if (!fromMBB->Weights.empty()) 602 Weight = *fromMBB->Weights.begin(); 603 addSuccessor(Succ, Weight); 604 fromMBB->removeSuccessor(Succ); 605 606 // Fix up any PHI nodes in the successor. 607 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 608 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 609 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 610 MachineOperand &MO = MI->getOperand(i); 611 if (MO.getMBB() == fromMBB) 612 MO.setMBB(this); 613 } 614 } 615 } 616 617 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 618 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 619 } 620 621 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 622 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 623 } 624 625 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 626 MachineFunction::const_iterator I(this); 627 return std::next(I) == MachineFunction::const_iterator(MBB); 628 } 629 630 bool MachineBasicBlock::canFallThrough() { 631 MachineFunction::iterator Fallthrough = this; 632 ++Fallthrough; 633 // If FallthroughBlock is off the end of the function, it can't fall through. 634 if (Fallthrough == getParent()->end()) 635 return false; 636 637 // If FallthroughBlock isn't a successor, no fallthrough is possible. 638 if (!isSuccessor(Fallthrough)) 639 return false; 640 641 // Analyze the branches, if any, at the end of the block. 642 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 643 SmallVector<MachineOperand, 4> Cond; 644 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 645 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 646 // If we couldn't analyze the branch, examine the last instruction. 647 // If the block doesn't end in a known control barrier, assume fallthrough 648 // is possible. The isPredicated check is needed because this code can be 649 // called during IfConversion, where an instruction which is normally a 650 // Barrier is predicated and thus no longer an actual control barrier. 651 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 652 } 653 654 // If there is no branch, control always falls through. 655 if (!TBB) return true; 656 657 // If there is some explicit branch to the fallthrough block, it can obviously 658 // reach, even though the branch should get folded to fall through implicitly. 659 if (MachineFunction::iterator(TBB) == Fallthrough || 660 MachineFunction::iterator(FBB) == Fallthrough) 661 return true; 662 663 // If it's an unconditional branch to some block not the fall through, it 664 // doesn't fall through. 665 if (Cond.empty()) return false; 666 667 // Otherwise, if it is conditional and has no explicit false block, it falls 668 // through. 669 return FBB == nullptr; 670 } 671 672 MachineBasicBlock * 673 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 674 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 675 // it in this generic function. 676 if (Succ->isLandingPad()) 677 return nullptr; 678 679 MachineFunction *MF = getParent(); 680 DebugLoc dl; // FIXME: this is nowhere 681 682 // Performance might be harmed on HW that implements branching using exec mask 683 // where both sides of the branches are always executed. 684 if (MF->getTarget().requiresStructuredCFG()) 685 return nullptr; 686 687 // We may need to update this's terminator, but we can't do that if 688 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 689 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 690 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 691 SmallVector<MachineOperand, 4> Cond; 692 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 693 return nullptr; 694 695 // Avoid bugpoint weirdness: A block may end with a conditional branch but 696 // jumps to the same MBB is either case. We have duplicate CFG edges in that 697 // case that we can't handle. Since this never happens in properly optimized 698 // code, just skip those edges. 699 if (TBB && TBB == FBB) { 700 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 701 << getNumber() << '\n'); 702 return nullptr; 703 } 704 705 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 706 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 707 DEBUG(dbgs() << "Splitting critical edge:" 708 " BB#" << getNumber() 709 << " -- BB#" << NMBB->getNumber() 710 << " -- BB#" << Succ->getNumber() << '\n'); 711 712 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 713 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 714 if (LIS) 715 LIS->insertMBBInMaps(NMBB); 716 else if (Indexes) 717 Indexes->insertMBBInMaps(NMBB); 718 719 // On some targets like Mips, branches may kill virtual registers. Make sure 720 // that LiveVariables is properly updated after updateTerminator replaces the 721 // terminators. 722 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 723 724 // Collect a list of virtual registers killed by the terminators. 725 SmallVector<unsigned, 4> KilledRegs; 726 if (LV) 727 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 728 I != E; ++I) { 729 MachineInstr *MI = I; 730 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 731 OE = MI->operands_end(); OI != OE; ++OI) { 732 if (!OI->isReg() || OI->getReg() == 0 || 733 !OI->isUse() || !OI->isKill() || OI->isUndef()) 734 continue; 735 unsigned Reg = OI->getReg(); 736 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 737 LV->getVarInfo(Reg).removeKill(MI)) { 738 KilledRegs.push_back(Reg); 739 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 740 OI->setIsKill(false); 741 } 742 } 743 } 744 745 SmallVector<unsigned, 4> UsedRegs; 746 if (LIS) { 747 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 748 I != E; ++I) { 749 MachineInstr *MI = I; 750 751 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 752 OE = MI->operands_end(); OI != OE; ++OI) { 753 if (!OI->isReg() || OI->getReg() == 0) 754 continue; 755 756 unsigned Reg = OI->getReg(); 757 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 758 UsedRegs.push_back(Reg); 759 } 760 } 761 } 762 763 ReplaceUsesOfBlockWith(Succ, NMBB); 764 765 // If updateTerminator() removes instructions, we need to remove them from 766 // SlotIndexes. 767 SmallVector<MachineInstr*, 4> Terminators; 768 if (Indexes) { 769 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 770 I != E; ++I) 771 Terminators.push_back(I); 772 } 773 774 updateTerminator(); 775 776 if (Indexes) { 777 SmallVector<MachineInstr*, 4> NewTerminators; 778 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 779 I != E; ++I) 780 NewTerminators.push_back(I); 781 782 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 783 E = Terminators.end(); I != E; ++I) { 784 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 785 NewTerminators.end()) 786 Indexes->removeMachineInstrFromMaps(*I); 787 } 788 } 789 790 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 791 NMBB->addSuccessor(Succ); 792 if (!NMBB->isLayoutSuccessor(Succ)) { 793 Cond.clear(); 794 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 795 dl); 796 797 if (Indexes) { 798 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 799 I != E; ++I) { 800 // Some instructions may have been moved to NMBB by updateTerminator(), 801 // so we first remove any instruction that already has an index. 802 if (Indexes->hasIndex(I)) 803 Indexes->removeMachineInstrFromMaps(I); 804 Indexes->insertMachineInstrInMaps(I); 805 } 806 } 807 } 808 809 // Fix PHI nodes in Succ so they refer to NMBB instead of this 810 for (MachineBasicBlock::instr_iterator 811 i = Succ->instr_begin(),e = Succ->instr_end(); 812 i != e && i->isPHI(); ++i) 813 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 814 if (i->getOperand(ni+1).getMBB() == this) 815 i->getOperand(ni+1).setMBB(NMBB); 816 817 // Inherit live-ins from the successor 818 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 819 E = Succ->livein_end(); I != E; ++I) 820 NMBB->addLiveIn(*I); 821 822 // Update LiveVariables. 823 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 824 if (LV) { 825 // Restore kills of virtual registers that were killed by the terminators. 826 while (!KilledRegs.empty()) { 827 unsigned Reg = KilledRegs.pop_back_val(); 828 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 829 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 830 continue; 831 if (TargetRegisterInfo::isVirtualRegister(Reg)) 832 LV->getVarInfo(Reg).Kills.push_back(I); 833 DEBUG(dbgs() << "Restored terminator kill: " << *I); 834 break; 835 } 836 } 837 // Update relevant live-through information. 838 LV->addNewBlock(NMBB, this, Succ); 839 } 840 841 if (LIS) { 842 // After splitting the edge and updating SlotIndexes, live intervals may be 843 // in one of two situations, depending on whether this block was the last in 844 // the function. If the original block was the last in the function, all live 845 // intervals will end prior to the beginning of the new split block. If the 846 // original block was not at the end of the function, all live intervals will 847 // extend to the end of the new split block. 848 849 bool isLastMBB = 850 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 851 852 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 853 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 854 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 855 856 // Find the registers used from NMBB in PHIs in Succ. 857 SmallSet<unsigned, 8> PHISrcRegs; 858 for (MachineBasicBlock::instr_iterator 859 I = Succ->instr_begin(), E = Succ->instr_end(); 860 I != E && I->isPHI(); ++I) { 861 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 862 if (I->getOperand(ni+1).getMBB() == NMBB) { 863 MachineOperand &MO = I->getOperand(ni); 864 unsigned Reg = MO.getReg(); 865 PHISrcRegs.insert(Reg); 866 if (MO.isUndef()) 867 continue; 868 869 LiveInterval &LI = LIS->getInterval(Reg); 870 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 871 assert(VNI && "PHI sources should be live out of their predecessors."); 872 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 873 } 874 } 875 } 876 877 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 878 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 879 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 880 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 881 continue; 882 883 LiveInterval &LI = LIS->getInterval(Reg); 884 if (!LI.liveAt(PrevIndex)) 885 continue; 886 887 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 888 if (isLiveOut && isLastMBB) { 889 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 890 assert(VNI && "LiveInterval should have VNInfo where it is live."); 891 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 892 } else if (!isLiveOut && !isLastMBB) { 893 LI.removeSegment(StartIndex, EndIndex); 894 } 895 } 896 897 // Update all intervals for registers whose uses may have been modified by 898 // updateTerminator(). 899 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 900 } 901 902 if (MachineDominatorTree *MDT = 903 P->getAnalysisIfAvailable<MachineDominatorTree>()) 904 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 905 906 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 907 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 908 // If one or the other blocks were not in a loop, the new block is not 909 // either, and thus LI doesn't need to be updated. 910 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 911 if (TIL == DestLoop) { 912 // Both in the same loop, the NMBB joins loop. 913 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 914 } else if (TIL->contains(DestLoop)) { 915 // Edge from an outer loop to an inner loop. Add to the outer loop. 916 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 917 } else if (DestLoop->contains(TIL)) { 918 // Edge from an inner loop to an outer loop. Add to the outer loop. 919 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 920 } else { 921 // Edge from two loops with no containment relation. Because these 922 // are natural loops, we know that the destination block must be the 923 // header of its loop (adding a branch into a loop elsewhere would 924 // create an irreducible loop). 925 assert(DestLoop->getHeader() == Succ && 926 "Should not create irreducible loops!"); 927 if (MachineLoop *P = DestLoop->getParentLoop()) 928 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 929 } 930 } 931 } 932 933 return NMBB; 934 } 935 936 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 937 /// neighboring instructions so the bundle won't be broken by removing MI. 938 static void unbundleSingleMI(MachineInstr *MI) { 939 // Removing the first instruction in a bundle. 940 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 941 MI->unbundleFromSucc(); 942 // Removing the last instruction in a bundle. 943 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 944 MI->unbundleFromPred(); 945 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 946 // are already fine. 947 } 948 949 MachineBasicBlock::instr_iterator 950 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 951 unbundleSingleMI(I); 952 return Insts.erase(I); 953 } 954 955 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 956 unbundleSingleMI(MI); 957 MI->clearFlag(MachineInstr::BundledPred); 958 MI->clearFlag(MachineInstr::BundledSucc); 959 return Insts.remove(MI); 960 } 961 962 MachineBasicBlock::instr_iterator 963 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 964 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 965 "Cannot insert instruction with bundle flags"); 966 // Set the bundle flags when inserting inside a bundle. 967 if (I != instr_end() && I->isBundledWithPred()) { 968 MI->setFlag(MachineInstr::BundledPred); 969 MI->setFlag(MachineInstr::BundledSucc); 970 } 971 return Insts.insert(I, MI); 972 } 973 974 /// removeFromParent - This method unlinks 'this' from the containing function, 975 /// and returns it, but does not delete it. 976 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 977 assert(getParent() && "Not embedded in a function!"); 978 getParent()->remove(this); 979 return this; 980 } 981 982 983 /// eraseFromParent - This method unlinks 'this' from the containing function, 984 /// and deletes it. 985 void MachineBasicBlock::eraseFromParent() { 986 assert(getParent() && "Not embedded in a function!"); 987 getParent()->erase(this); 988 } 989 990 991 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 992 /// 'Old', change the code and CFG so that it branches to 'New' instead. 993 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 994 MachineBasicBlock *New) { 995 assert(Old != New && "Cannot replace self with self!"); 996 997 MachineBasicBlock::instr_iterator I = instr_end(); 998 while (I != instr_begin()) { 999 --I; 1000 if (!I->isTerminator()) break; 1001 1002 // Scan the operands of this machine instruction, replacing any uses of Old 1003 // with New. 1004 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1005 if (I->getOperand(i).isMBB() && 1006 I->getOperand(i).getMBB() == Old) 1007 I->getOperand(i).setMBB(New); 1008 } 1009 1010 // Update the successor information. 1011 replaceSuccessor(Old, New); 1012 } 1013 1014 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 1015 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 1016 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 1017 /// null. 1018 /// 1019 /// Besides DestA and DestB, retain other edges leading to LandingPads 1020 /// (currently there can be only one; we don't check or require that here). 1021 /// Note it is possible that DestA and/or DestB are LandingPads. 1022 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1023 MachineBasicBlock *DestB, 1024 bool isCond) { 1025 // The values of DestA and DestB frequently come from a call to the 1026 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1027 // values from there. 1028 // 1029 // 1. If both DestA and DestB are null, then the block ends with no branches 1030 // (it falls through to its successor). 1031 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1032 // with only an unconditional branch. 1033 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1034 // with a conditional branch that falls through to a successor (DestB). 1035 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1036 // conditional branch followed by an unconditional branch. DestA is the 1037 // 'true' destination and DestB is the 'false' destination. 1038 1039 bool Changed = false; 1040 1041 MachineFunction::iterator FallThru = 1042 std::next(MachineFunction::iterator(this)); 1043 1044 if (!DestA && !DestB) { 1045 // Block falls through to successor. 1046 DestA = FallThru; 1047 DestB = FallThru; 1048 } else if (DestA && !DestB) { 1049 if (isCond) 1050 // Block ends in conditional jump that falls through to successor. 1051 DestB = FallThru; 1052 } else { 1053 assert(DestA && DestB && isCond && 1054 "CFG in a bad state. Cannot correct CFG edges"); 1055 } 1056 1057 // Remove superfluous edges. I.e., those which aren't destinations of this 1058 // basic block, duplicate edges, or landing pads. 1059 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1060 MachineBasicBlock::succ_iterator SI = succ_begin(); 1061 while (SI != succ_end()) { 1062 const MachineBasicBlock *MBB = *SI; 1063 if (!SeenMBBs.insert(MBB).second || 1064 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1065 // This is a superfluous edge, remove it. 1066 SI = removeSuccessor(SI); 1067 Changed = true; 1068 } else { 1069 ++SI; 1070 } 1071 } 1072 1073 return Changed; 1074 } 1075 1076 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 1077 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 1078 DebugLoc 1079 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1080 DebugLoc DL; 1081 instr_iterator E = instr_end(); 1082 if (MBBI == E) 1083 return DL; 1084 1085 // Skip debug declarations, we don't want a DebugLoc from them. 1086 while (MBBI != E && MBBI->isDebugValue()) 1087 MBBI++; 1088 if (MBBI != E) 1089 DL = MBBI->getDebugLoc(); 1090 return DL; 1091 } 1092 1093 /// getSuccWeight - Return weight of the edge from this block to MBB. 1094 /// 1095 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1096 if (Weights.empty()) 1097 return 0; 1098 1099 return *getWeightIterator(Succ); 1100 } 1101 1102 /// Set successor weight of a given iterator. 1103 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1104 if (Weights.empty()) 1105 return; 1106 *getWeightIterator(I) = weight; 1107 } 1108 1109 /// getWeightIterator - Return wight iterator corresonding to the I successor 1110 /// iterator 1111 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1112 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1113 assert(Weights.size() == Successors.size() && "Async weight list!"); 1114 size_t index = std::distance(Successors.begin(), I); 1115 assert(index < Weights.size() && "Not a current successor!"); 1116 return Weights.begin() + index; 1117 } 1118 1119 /// getWeightIterator - Return wight iterator corresonding to the I successor 1120 /// iterator 1121 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1122 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1123 assert(Weights.size() == Successors.size() && "Async weight list!"); 1124 const size_t index = std::distance(Successors.begin(), I); 1125 assert(index < Weights.size() && "Not a current successor!"); 1126 return Weights.begin() + index; 1127 } 1128 1129 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1130 /// as of just before "MI". 1131 /// 1132 /// Search is localised to a neighborhood of 1133 /// Neighborhood instructions before (searching for defs or kills) and N 1134 /// instructions after (searching just for defs) MI. 1135 MachineBasicBlock::LivenessQueryResult 1136 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1137 unsigned Reg, MachineInstr *MI, 1138 unsigned Neighborhood) { 1139 unsigned N = Neighborhood; 1140 MachineBasicBlock *MBB = MI->getParent(); 1141 1142 // Start by searching backwards from MI, looking for kills, reads or defs. 1143 1144 MachineBasicBlock::iterator I(MI); 1145 // If this is the first insn in the block, don't search backwards. 1146 if (I != MBB->begin()) { 1147 do { 1148 --I; 1149 1150 MachineOperandIteratorBase::PhysRegInfo Analysis = 1151 MIOperands(I).analyzePhysReg(Reg, TRI); 1152 1153 if (Analysis.Defines) 1154 // Outputs happen after inputs so they take precedence if both are 1155 // present. 1156 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1157 1158 if (Analysis.Kills || Analysis.Clobbers) 1159 // Register killed, so isn't live. 1160 return LQR_Dead; 1161 1162 else if (Analysis.ReadsOverlap) 1163 // Defined or read without a previous kill - live. 1164 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1165 1166 } while (I != MBB->begin() && --N > 0); 1167 } 1168 1169 // Did we get to the start of the block? 1170 if (I == MBB->begin()) { 1171 // If so, the register's state is definitely defined by the live-in state. 1172 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1173 RAI.isValid(); ++RAI) { 1174 if (MBB->isLiveIn(*RAI)) 1175 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1176 } 1177 1178 return LQR_Dead; 1179 } 1180 1181 N = Neighborhood; 1182 1183 // Try searching forwards from MI, looking for reads or defs. 1184 I = MachineBasicBlock::iterator(MI); 1185 // If this is the last insn in the block, don't search forwards. 1186 if (I != MBB->end()) { 1187 for (++I; I != MBB->end() && N > 0; ++I, --N) { 1188 MachineOperandIteratorBase::PhysRegInfo Analysis = 1189 MIOperands(I).analyzePhysReg(Reg, TRI); 1190 1191 if (Analysis.ReadsOverlap) 1192 // Used, therefore must have been live. 1193 return (Analysis.Reads) ? 1194 LQR_Live : LQR_OverlappingLive; 1195 1196 else if (Analysis.Clobbers || Analysis.Defines) 1197 // Defined (but not read) therefore cannot have been live. 1198 return LQR_Dead; 1199 } 1200 } 1201 1202 // At this point we have no idea of the liveness of the register. 1203 return LQR_Unknown; 1204 } 1205