1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LeakDetector.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 LeakDetector::removeGarbageObject(this); 49 } 50 51 /// getSymbol - Return the MCSymbol for this basic block. 52 /// 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + 59 Twine(MF->getFunctionNumber()) + 60 "_" + Twine(getNumber())); 61 } 62 63 return CachedMCSymbol; 64 } 65 66 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 68 MBB.print(OS); 69 return OS; 70 } 71 72 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 73 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 74 /// MBB to be on the right operand list for registers. 75 /// 76 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 77 /// gets the next available unique MBB number. If it is removed from a 78 /// MachineFunction, it goes back to being #-1. 79 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 89 LeakDetector::removeGarbageObject(N); 90 } 91 92 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 93 N->getParent()->removeFromMBBNumbering(N->Number); 94 N->Number = -1; 95 LeakDetector::addGarbageObject(N); 96 } 97 98 99 /// addNodeToList (MI) - When we add an instruction to a basic block 100 /// list, we update its parent pointer and add its operands from reg use/def 101 /// lists if appropriate. 102 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 103 assert(!N->getParent() && "machine instruction already in a basic block"); 104 N->setParent(Parent); 105 106 // Add the instruction's register operands to their corresponding 107 // use/def lists. 108 MachineFunction *MF = Parent->getParent(); 109 N->AddRegOperandsToUseLists(MF->getRegInfo()); 110 111 LeakDetector::removeGarbageObject(N); 112 } 113 114 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 115 /// list, we update its parent pointer and remove its operands from reg use/def 116 /// lists if appropriate. 117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 118 assert(N->getParent() && "machine instruction not in a basic block"); 119 120 // Remove from the use/def lists. 121 if (MachineFunction *MF = N->getParent()->getParent()) 122 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 123 124 N->setParent(nullptr); 125 126 LeakDetector::addGarbageObject(N); 127 } 128 129 /// transferNodesFromList (MI) - When moving a range of instructions from one 130 /// MBB list to another, we need to update the parent pointers and the use/def 131 /// lists. 132 void ilist_traits<MachineInstr>:: 133 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 134 ilist_iterator<MachineInstr> first, 135 ilist_iterator<MachineInstr> last) { 136 assert(Parent->getParent() == fromList.Parent->getParent() && 137 "MachineInstr parent mismatch!"); 138 139 // Splice within the same MBB -> no change. 140 if (Parent == fromList.Parent) return; 141 142 // If splicing between two blocks within the same function, just update the 143 // parent pointers. 144 for (; first != last; ++first) 145 first->setParent(Parent); 146 } 147 148 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 149 assert(!MI->getParent() && "MI is still in a block!"); 150 Parent->getParent()->DeleteMachineInstr(MI); 151 } 152 153 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 154 instr_iterator I = instr_begin(), E = instr_end(); 155 while (I != E && I->isPHI()) 156 ++I; 157 assert((I == E || !I->isInsideBundle()) && 158 "First non-phi MI cannot be inside a bundle!"); 159 return I; 160 } 161 162 MachineBasicBlock::iterator 163 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 164 iterator E = end(); 165 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 166 ++I; 167 // FIXME: This needs to change if we wish to bundle labels / dbg_values 168 // inside the bundle. 169 assert((I == E || !I->isInsideBundle()) && 170 "First non-phi / non-label instruction is inside a bundle!"); 171 return I; 172 } 173 174 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 175 iterator B = begin(), E = end(), I = E; 176 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 177 ; /*noop */ 178 while (I != E && !I->isTerminator()) 179 ++I; 180 return I; 181 } 182 183 MachineBasicBlock::const_iterator 184 MachineBasicBlock::getFirstTerminator() const { 185 const_iterator B = begin(), E = end(), I = E; 186 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 187 ; /*noop */ 188 while (I != E && !I->isTerminator()) 189 ++I; 190 return I; 191 } 192 193 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 194 instr_iterator B = instr_begin(), E = instr_end(), I = E; 195 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 196 ; /*noop */ 197 while (I != E && !I->isTerminator()) 198 ++I; 199 return I; 200 } 201 202 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 203 // Skip over end-of-block dbg_value instructions. 204 instr_iterator B = instr_begin(), I = instr_end(); 205 while (I != B) { 206 --I; 207 // Return instruction that starts a bundle. 208 if (I->isDebugValue() || I->isInsideBundle()) 209 continue; 210 return I; 211 } 212 // The block is all debug values. 213 return end(); 214 } 215 216 MachineBasicBlock::const_iterator 217 MachineBasicBlock::getLastNonDebugInstr() const { 218 // Skip over end-of-block dbg_value instructions. 219 const_instr_iterator B = instr_begin(), I = instr_end(); 220 while (I != B) { 221 --I; 222 // Return instruction that starts a bundle. 223 if (I->isDebugValue() || I->isInsideBundle()) 224 continue; 225 return I; 226 } 227 // The block is all debug values. 228 return end(); 229 } 230 231 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 232 // A block with a landing pad successor only has one other successor. 233 if (succ_size() > 2) 234 return nullptr; 235 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 236 if ((*I)->isLandingPad()) 237 return *I; 238 return nullptr; 239 } 240 241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 242 void MachineBasicBlock::dump() const { 243 print(dbgs()); 244 } 245 #endif 246 247 StringRef MachineBasicBlock::getName() const { 248 if (const BasicBlock *LBB = getBasicBlock()) 249 return LBB->getName(); 250 else 251 return "(null)"; 252 } 253 254 /// Return a hopefully unique identifier for this block. 255 std::string MachineBasicBlock::getFullName() const { 256 std::string Name; 257 if (getParent()) 258 Name = (getParent()->getName() + ":").str(); 259 if (getBasicBlock()) 260 Name += getBasicBlock()->getName(); 261 else 262 Name += (Twine("BB") + Twine(getNumber())).str(); 263 return Name; 264 } 265 266 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 267 const MachineFunction *MF = getParent(); 268 if (!MF) { 269 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 270 << " is null\n"; 271 return; 272 } 273 274 if (Indexes) 275 OS << Indexes->getMBBStartIdx(this) << '\t'; 276 277 OS << "BB#" << getNumber() << ": "; 278 279 const char *Comma = ""; 280 if (const BasicBlock *LBB = getBasicBlock()) { 281 OS << Comma << "derived from LLVM BB "; 282 LBB->printAsOperand(OS, /*PrintType=*/false); 283 Comma = ", "; 284 } 285 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 286 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 287 if (Alignment) 288 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 289 << " bytes)"; 290 291 OS << '\n'; 292 293 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 294 if (!livein_empty()) { 295 if (Indexes) OS << '\t'; 296 OS << " Live Ins:"; 297 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 298 OS << ' ' << PrintReg(*I, TRI); 299 OS << '\n'; 300 } 301 // Print the preds of this block according to the CFG. 302 if (!pred_empty()) { 303 if (Indexes) OS << '\t'; 304 OS << " Predecessors according to CFG:"; 305 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 306 OS << " BB#" << (*PI)->getNumber(); 307 OS << '\n'; 308 } 309 310 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 311 if (Indexes) { 312 if (Indexes->hasIndex(I)) 313 OS << Indexes->getInstructionIndex(I); 314 OS << '\t'; 315 } 316 OS << '\t'; 317 if (I->isInsideBundle()) 318 OS << " * "; 319 I->print(OS, &getParent()->getTarget()); 320 } 321 322 // Print the successors of this block according to the CFG. 323 if (!succ_empty()) { 324 if (Indexes) OS << '\t'; 325 OS << " Successors according to CFG:"; 326 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 327 OS << " BB#" << (*SI)->getNumber(); 328 if (!Weights.empty()) 329 OS << '(' << *getWeightIterator(SI) << ')'; 330 } 331 OS << '\n'; 332 } 333 } 334 335 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { 336 OS << "BB#" << getNumber(); 337 } 338 339 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 340 std::vector<unsigned>::iterator I = 341 std::find(LiveIns.begin(), LiveIns.end(), Reg); 342 if (I != LiveIns.end()) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 347 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 348 return I != livein_end(); 349 } 350 351 unsigned 352 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 353 assert(getParent() && "MBB must be inserted in function"); 354 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 355 assert(RC && "Register class is required"); 356 assert((isLandingPad() || this == &getParent()->front()) && 357 "Only the entry block and landing pads can have physreg live ins"); 358 359 bool LiveIn = isLiveIn(PhysReg); 360 iterator I = SkipPHIsAndLabels(begin()), E = end(); 361 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 362 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 363 364 // Look for an existing copy. 365 if (LiveIn) 366 for (;I != E && I->isCopy(); ++I) 367 if (I->getOperand(1).getReg() == PhysReg) { 368 unsigned VirtReg = I->getOperand(0).getReg(); 369 if (!MRI.constrainRegClass(VirtReg, RC)) 370 llvm_unreachable("Incompatible live-in register class."); 371 return VirtReg; 372 } 373 374 // No luck, create a virtual register. 375 unsigned VirtReg = MRI.createVirtualRegister(RC); 376 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 377 .addReg(PhysReg, RegState::Kill); 378 if (!LiveIn) 379 addLiveIn(PhysReg); 380 return VirtReg; 381 } 382 383 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 384 getParent()->splice(NewAfter, this); 385 } 386 387 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 388 MachineFunction::iterator BBI = NewBefore; 389 getParent()->splice(++BBI, this); 390 } 391 392 void MachineBasicBlock::updateTerminator() { 393 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 394 // A block with no successors has no concerns with fall-through edges. 395 if (this->succ_empty()) return; 396 397 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 398 SmallVector<MachineOperand, 4> Cond; 399 DebugLoc dl; // FIXME: this is nowhere 400 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 401 (void) B; 402 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 403 if (Cond.empty()) { 404 if (TBB) { 405 // The block has an unconditional branch. If its successor is now 406 // its layout successor, delete the branch. 407 if (isLayoutSuccessor(TBB)) 408 TII->RemoveBranch(*this); 409 } else { 410 // The block has an unconditional fallthrough. If its successor is not 411 // its layout successor, insert a branch. First we have to locate the 412 // only non-landing-pad successor, as that is the fallthrough block. 413 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 414 if ((*SI)->isLandingPad()) 415 continue; 416 assert(!TBB && "Found more than one non-landing-pad successor!"); 417 TBB = *SI; 418 } 419 420 // If there is no non-landing-pad successor, the block has no 421 // fall-through edges to be concerned with. 422 if (!TBB) 423 return; 424 425 // Finally update the unconditional successor to be reached via a branch 426 // if it would not be reached by fallthrough. 427 if (!isLayoutSuccessor(TBB)) 428 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 429 } 430 } else { 431 if (FBB) { 432 // The block has a non-fallthrough conditional branch. If one of its 433 // successors is its layout successor, rewrite it to a fallthrough 434 // conditional branch. 435 if (isLayoutSuccessor(TBB)) { 436 if (TII->ReverseBranchCondition(Cond)) 437 return; 438 TII->RemoveBranch(*this); 439 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 440 } else if (isLayoutSuccessor(FBB)) { 441 TII->RemoveBranch(*this); 442 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 443 } 444 } else { 445 // Walk through the successors and find the successor which is not 446 // a landing pad and is not the conditional branch destination (in TBB) 447 // as the fallthrough successor. 448 MachineBasicBlock *FallthroughBB = nullptr; 449 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 450 if ((*SI)->isLandingPad() || *SI == TBB) 451 continue; 452 assert(!FallthroughBB && "Found more than one fallthrough successor."); 453 FallthroughBB = *SI; 454 } 455 if (!FallthroughBB && canFallThrough()) { 456 // We fallthrough to the same basic block as the conditional jump 457 // targets. Remove the conditional jump, leaving unconditional 458 // fallthrough. 459 // FIXME: This does not seem like a reasonable pattern to support, but it 460 // has been seen in the wild coming out of degenerate ARM test cases. 461 TII->RemoveBranch(*this); 462 463 // Finally update the unconditional successor to be reached via a branch 464 // if it would not be reached by fallthrough. 465 if (!isLayoutSuccessor(TBB)) 466 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 467 return; 468 } 469 470 // The block has a fallthrough conditional branch. 471 if (isLayoutSuccessor(TBB)) { 472 if (TII->ReverseBranchCondition(Cond)) { 473 // We can't reverse the condition, add an unconditional branch. 474 Cond.clear(); 475 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 476 return; 477 } 478 TII->RemoveBranch(*this); 479 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 480 } else if (!isLayoutSuccessor(FallthroughBB)) { 481 TII->RemoveBranch(*this); 482 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 483 } 484 } 485 } 486 } 487 488 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 489 490 // If we see non-zero value for the first time it means we actually use Weight 491 // list, so we fill all Weights with 0's. 492 if (weight != 0 && Weights.empty()) 493 Weights.resize(Successors.size()); 494 495 if (weight != 0 || !Weights.empty()) 496 Weights.push_back(weight); 497 498 Successors.push_back(succ); 499 succ->addPredecessor(this); 500 } 501 502 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 503 succ->removePredecessor(this); 504 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 505 assert(I != Successors.end() && "Not a current successor!"); 506 507 // If Weight list is empty it means we don't use it (disabled optimization). 508 if (!Weights.empty()) { 509 weight_iterator WI = getWeightIterator(I); 510 Weights.erase(WI); 511 } 512 513 Successors.erase(I); 514 } 515 516 MachineBasicBlock::succ_iterator 517 MachineBasicBlock::removeSuccessor(succ_iterator I) { 518 assert(I != Successors.end() && "Not a current successor!"); 519 520 // If Weight list is empty it means we don't use it (disabled optimization). 521 if (!Weights.empty()) { 522 weight_iterator WI = getWeightIterator(I); 523 Weights.erase(WI); 524 } 525 526 (*I)->removePredecessor(this); 527 return Successors.erase(I); 528 } 529 530 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 531 MachineBasicBlock *New) { 532 if (Old == New) 533 return; 534 535 succ_iterator E = succ_end(); 536 succ_iterator NewI = E; 537 succ_iterator OldI = E; 538 for (succ_iterator I = succ_begin(); I != E; ++I) { 539 if (*I == Old) { 540 OldI = I; 541 if (NewI != E) 542 break; 543 } 544 if (*I == New) { 545 NewI = I; 546 if (OldI != E) 547 break; 548 } 549 } 550 assert(OldI != E && "Old is not a successor of this block"); 551 Old->removePredecessor(this); 552 553 // If New isn't already a successor, let it take Old's place. 554 if (NewI == E) { 555 New->addPredecessor(this); 556 *OldI = New; 557 return; 558 } 559 560 // New is already a successor. 561 // Update its weight instead of adding a duplicate edge. 562 if (!Weights.empty()) { 563 weight_iterator OldWI = getWeightIterator(OldI); 564 *getWeightIterator(NewI) += *OldWI; 565 Weights.erase(OldWI); 566 } 567 Successors.erase(OldI); 568 } 569 570 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 571 Predecessors.push_back(pred); 572 } 573 574 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 575 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 576 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 577 Predecessors.erase(I); 578 } 579 580 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 581 if (this == fromMBB) 582 return; 583 584 while (!fromMBB->succ_empty()) { 585 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 586 uint32_t Weight = 0; 587 588 // If Weight list is empty it means we don't use it (disabled optimization). 589 if (!fromMBB->Weights.empty()) 590 Weight = *fromMBB->Weights.begin(); 591 592 addSuccessor(Succ, Weight); 593 fromMBB->removeSuccessor(Succ); 594 } 595 } 596 597 void 598 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 599 if (this == fromMBB) 600 return; 601 602 while (!fromMBB->succ_empty()) { 603 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 604 uint32_t Weight = 0; 605 if (!fromMBB->Weights.empty()) 606 Weight = *fromMBB->Weights.begin(); 607 addSuccessor(Succ, Weight); 608 fromMBB->removeSuccessor(Succ); 609 610 // Fix up any PHI nodes in the successor. 611 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 612 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 613 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 614 MachineOperand &MO = MI->getOperand(i); 615 if (MO.getMBB() == fromMBB) 616 MO.setMBB(this); 617 } 618 } 619 } 620 621 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 622 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 623 } 624 625 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 626 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 627 } 628 629 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 630 MachineFunction::const_iterator I(this); 631 return std::next(I) == MachineFunction::const_iterator(MBB); 632 } 633 634 bool MachineBasicBlock::canFallThrough() { 635 MachineFunction::iterator Fallthrough = this; 636 ++Fallthrough; 637 // If FallthroughBlock is off the end of the function, it can't fall through. 638 if (Fallthrough == getParent()->end()) 639 return false; 640 641 // If FallthroughBlock isn't a successor, no fallthrough is possible. 642 if (!isSuccessor(Fallthrough)) 643 return false; 644 645 // Analyze the branches, if any, at the end of the block. 646 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 647 SmallVector<MachineOperand, 4> Cond; 648 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 649 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 650 // If we couldn't analyze the branch, examine the last instruction. 651 // If the block doesn't end in a known control barrier, assume fallthrough 652 // is possible. The isPredicated check is needed because this code can be 653 // called during IfConversion, where an instruction which is normally a 654 // Barrier is predicated and thus no longer an actual control barrier. 655 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 656 } 657 658 // If there is no branch, control always falls through. 659 if (!TBB) return true; 660 661 // If there is some explicit branch to the fallthrough block, it can obviously 662 // reach, even though the branch should get folded to fall through implicitly. 663 if (MachineFunction::iterator(TBB) == Fallthrough || 664 MachineFunction::iterator(FBB) == Fallthrough) 665 return true; 666 667 // If it's an unconditional branch to some block not the fall through, it 668 // doesn't fall through. 669 if (Cond.empty()) return false; 670 671 // Otherwise, if it is conditional and has no explicit false block, it falls 672 // through. 673 return FBB == nullptr; 674 } 675 676 MachineBasicBlock * 677 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 678 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 679 // it in this generic function. 680 if (Succ->isLandingPad()) 681 return nullptr; 682 683 MachineFunction *MF = getParent(); 684 DebugLoc dl; // FIXME: this is nowhere 685 686 // Performance might be harmed on HW that implements branching using exec mask 687 // where both sides of the branches are always executed. 688 if (MF->getTarget().requiresStructuredCFG()) 689 return nullptr; 690 691 // We may need to update this's terminator, but we can't do that if 692 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 693 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 694 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 695 SmallVector<MachineOperand, 4> Cond; 696 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 697 return nullptr; 698 699 // Avoid bugpoint weirdness: A block may end with a conditional branch but 700 // jumps to the same MBB is either case. We have duplicate CFG edges in that 701 // case that we can't handle. Since this never happens in properly optimized 702 // code, just skip those edges. 703 if (TBB && TBB == FBB) { 704 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 705 << getNumber() << '\n'); 706 return nullptr; 707 } 708 709 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 710 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 711 DEBUG(dbgs() << "Splitting critical edge:" 712 " BB#" << getNumber() 713 << " -- BB#" << NMBB->getNumber() 714 << " -- BB#" << Succ->getNumber() << '\n'); 715 716 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 717 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 718 if (LIS) 719 LIS->insertMBBInMaps(NMBB); 720 else if (Indexes) 721 Indexes->insertMBBInMaps(NMBB); 722 723 // On some targets like Mips, branches may kill virtual registers. Make sure 724 // that LiveVariables is properly updated after updateTerminator replaces the 725 // terminators. 726 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 727 728 // Collect a list of virtual registers killed by the terminators. 729 SmallVector<unsigned, 4> KilledRegs; 730 if (LV) 731 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 732 I != E; ++I) { 733 MachineInstr *MI = I; 734 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 735 OE = MI->operands_end(); OI != OE; ++OI) { 736 if (!OI->isReg() || OI->getReg() == 0 || 737 !OI->isUse() || !OI->isKill() || OI->isUndef()) 738 continue; 739 unsigned Reg = OI->getReg(); 740 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 741 LV->getVarInfo(Reg).removeKill(MI)) { 742 KilledRegs.push_back(Reg); 743 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 744 OI->setIsKill(false); 745 } 746 } 747 } 748 749 SmallVector<unsigned, 4> UsedRegs; 750 if (LIS) { 751 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 752 I != E; ++I) { 753 MachineInstr *MI = I; 754 755 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 756 OE = MI->operands_end(); OI != OE; ++OI) { 757 if (!OI->isReg() || OI->getReg() == 0) 758 continue; 759 760 unsigned Reg = OI->getReg(); 761 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 762 UsedRegs.push_back(Reg); 763 } 764 } 765 } 766 767 ReplaceUsesOfBlockWith(Succ, NMBB); 768 769 // If updateTerminator() removes instructions, we need to remove them from 770 // SlotIndexes. 771 SmallVector<MachineInstr*, 4> Terminators; 772 if (Indexes) { 773 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 774 I != E; ++I) 775 Terminators.push_back(I); 776 } 777 778 updateTerminator(); 779 780 if (Indexes) { 781 SmallVector<MachineInstr*, 4> NewTerminators; 782 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 783 I != E; ++I) 784 NewTerminators.push_back(I); 785 786 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 787 E = Terminators.end(); I != E; ++I) { 788 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 789 NewTerminators.end()) 790 Indexes->removeMachineInstrFromMaps(*I); 791 } 792 } 793 794 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 795 NMBB->addSuccessor(Succ); 796 if (!NMBB->isLayoutSuccessor(Succ)) { 797 Cond.clear(); 798 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 799 dl); 800 801 if (Indexes) { 802 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 803 I != E; ++I) { 804 // Some instructions may have been moved to NMBB by updateTerminator(), 805 // so we first remove any instruction that already has an index. 806 if (Indexes->hasIndex(I)) 807 Indexes->removeMachineInstrFromMaps(I); 808 Indexes->insertMachineInstrInMaps(I); 809 } 810 } 811 } 812 813 // Fix PHI nodes in Succ so they refer to NMBB instead of this 814 for (MachineBasicBlock::instr_iterator 815 i = Succ->instr_begin(),e = Succ->instr_end(); 816 i != e && i->isPHI(); ++i) 817 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 818 if (i->getOperand(ni+1).getMBB() == this) 819 i->getOperand(ni+1).setMBB(NMBB); 820 821 // Inherit live-ins from the successor 822 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 823 E = Succ->livein_end(); I != E; ++I) 824 NMBB->addLiveIn(*I); 825 826 // Update LiveVariables. 827 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 828 if (LV) { 829 // Restore kills of virtual registers that were killed by the terminators. 830 while (!KilledRegs.empty()) { 831 unsigned Reg = KilledRegs.pop_back_val(); 832 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 833 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 834 continue; 835 if (TargetRegisterInfo::isVirtualRegister(Reg)) 836 LV->getVarInfo(Reg).Kills.push_back(I); 837 DEBUG(dbgs() << "Restored terminator kill: " << *I); 838 break; 839 } 840 } 841 // Update relevant live-through information. 842 LV->addNewBlock(NMBB, this, Succ); 843 } 844 845 if (LIS) { 846 // After splitting the edge and updating SlotIndexes, live intervals may be 847 // in one of two situations, depending on whether this block was the last in 848 // the function. If the original block was the last in the function, all live 849 // intervals will end prior to the beginning of the new split block. If the 850 // original block was not at the end of the function, all live intervals will 851 // extend to the end of the new split block. 852 853 bool isLastMBB = 854 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 855 856 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 857 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 858 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 859 860 // Find the registers used from NMBB in PHIs in Succ. 861 SmallSet<unsigned, 8> PHISrcRegs; 862 for (MachineBasicBlock::instr_iterator 863 I = Succ->instr_begin(), E = Succ->instr_end(); 864 I != E && I->isPHI(); ++I) { 865 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 866 if (I->getOperand(ni+1).getMBB() == NMBB) { 867 MachineOperand &MO = I->getOperand(ni); 868 unsigned Reg = MO.getReg(); 869 PHISrcRegs.insert(Reg); 870 if (MO.isUndef()) 871 continue; 872 873 LiveInterval &LI = LIS->getInterval(Reg); 874 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 875 assert(VNI && "PHI sources should be live out of their predecessors."); 876 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 877 } 878 } 879 } 880 881 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 882 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 883 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 884 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 885 continue; 886 887 LiveInterval &LI = LIS->getInterval(Reg); 888 if (!LI.liveAt(PrevIndex)) 889 continue; 890 891 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 892 if (isLiveOut && isLastMBB) { 893 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 894 assert(VNI && "LiveInterval should have VNInfo where it is live."); 895 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 896 } else if (!isLiveOut && !isLastMBB) { 897 LI.removeSegment(StartIndex, EndIndex); 898 } 899 } 900 901 // Update all intervals for registers whose uses may have been modified by 902 // updateTerminator(). 903 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 904 } 905 906 if (MachineDominatorTree *MDT = 907 P->getAnalysisIfAvailable<MachineDominatorTree>()) 908 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 909 910 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 911 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 912 // If one or the other blocks were not in a loop, the new block is not 913 // either, and thus LI doesn't need to be updated. 914 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 915 if (TIL == DestLoop) { 916 // Both in the same loop, the NMBB joins loop. 917 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 918 } else if (TIL->contains(DestLoop)) { 919 // Edge from an outer loop to an inner loop. Add to the outer loop. 920 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 921 } else if (DestLoop->contains(TIL)) { 922 // Edge from an inner loop to an outer loop. Add to the outer loop. 923 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 924 } else { 925 // Edge from two loops with no containment relation. Because these 926 // are natural loops, we know that the destination block must be the 927 // header of its loop (adding a branch into a loop elsewhere would 928 // create an irreducible loop). 929 assert(DestLoop->getHeader() == Succ && 930 "Should not create irreducible loops!"); 931 if (MachineLoop *P = DestLoop->getParentLoop()) 932 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 933 } 934 } 935 } 936 937 return NMBB; 938 } 939 940 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 941 /// neighboring instructions so the bundle won't be broken by removing MI. 942 static void unbundleSingleMI(MachineInstr *MI) { 943 // Removing the first instruction in a bundle. 944 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 945 MI->unbundleFromSucc(); 946 // Removing the last instruction in a bundle. 947 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 948 MI->unbundleFromPred(); 949 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 950 // are already fine. 951 } 952 953 MachineBasicBlock::instr_iterator 954 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 955 unbundleSingleMI(I); 956 return Insts.erase(I); 957 } 958 959 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 960 unbundleSingleMI(MI); 961 MI->clearFlag(MachineInstr::BundledPred); 962 MI->clearFlag(MachineInstr::BundledSucc); 963 return Insts.remove(MI); 964 } 965 966 MachineBasicBlock::instr_iterator 967 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 968 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 969 "Cannot insert instruction with bundle flags"); 970 // Set the bundle flags when inserting inside a bundle. 971 if (I != instr_end() && I->isBundledWithPred()) { 972 MI->setFlag(MachineInstr::BundledPred); 973 MI->setFlag(MachineInstr::BundledSucc); 974 } 975 return Insts.insert(I, MI); 976 } 977 978 /// removeFromParent - This method unlinks 'this' from the containing function, 979 /// and returns it, but does not delete it. 980 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 981 assert(getParent() && "Not embedded in a function!"); 982 getParent()->remove(this); 983 return this; 984 } 985 986 987 /// eraseFromParent - This method unlinks 'this' from the containing function, 988 /// and deletes it. 989 void MachineBasicBlock::eraseFromParent() { 990 assert(getParent() && "Not embedded in a function!"); 991 getParent()->erase(this); 992 } 993 994 995 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 996 /// 'Old', change the code and CFG so that it branches to 'New' instead. 997 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 998 MachineBasicBlock *New) { 999 assert(Old != New && "Cannot replace self with self!"); 1000 1001 MachineBasicBlock::instr_iterator I = instr_end(); 1002 while (I != instr_begin()) { 1003 --I; 1004 if (!I->isTerminator()) break; 1005 1006 // Scan the operands of this machine instruction, replacing any uses of Old 1007 // with New. 1008 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1009 if (I->getOperand(i).isMBB() && 1010 I->getOperand(i).getMBB() == Old) 1011 I->getOperand(i).setMBB(New); 1012 } 1013 1014 // Update the successor information. 1015 replaceSuccessor(Old, New); 1016 } 1017 1018 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 1019 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 1020 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 1021 /// null. 1022 /// 1023 /// Besides DestA and DestB, retain other edges leading to LandingPads 1024 /// (currently there can be only one; we don't check or require that here). 1025 /// Note it is possible that DestA and/or DestB are LandingPads. 1026 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1027 MachineBasicBlock *DestB, 1028 bool isCond) { 1029 // The values of DestA and DestB frequently come from a call to the 1030 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1031 // values from there. 1032 // 1033 // 1. If both DestA and DestB are null, then the block ends with no branches 1034 // (it falls through to its successor). 1035 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1036 // with only an unconditional branch. 1037 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1038 // with a conditional branch that falls through to a successor (DestB). 1039 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1040 // conditional branch followed by an unconditional branch. DestA is the 1041 // 'true' destination and DestB is the 'false' destination. 1042 1043 bool Changed = false; 1044 1045 MachineFunction::iterator FallThru = 1046 std::next(MachineFunction::iterator(this)); 1047 1048 if (!DestA && !DestB) { 1049 // Block falls through to successor. 1050 DestA = FallThru; 1051 DestB = FallThru; 1052 } else if (DestA && !DestB) { 1053 if (isCond) 1054 // Block ends in conditional jump that falls through to successor. 1055 DestB = FallThru; 1056 } else { 1057 assert(DestA && DestB && isCond && 1058 "CFG in a bad state. Cannot correct CFG edges"); 1059 } 1060 1061 // Remove superfluous edges. I.e., those which aren't destinations of this 1062 // basic block, duplicate edges, or landing pads. 1063 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1064 MachineBasicBlock::succ_iterator SI = succ_begin(); 1065 while (SI != succ_end()) { 1066 const MachineBasicBlock *MBB = *SI; 1067 if (!SeenMBBs.insert(MBB).second || 1068 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1069 // This is a superfluous edge, remove it. 1070 SI = removeSuccessor(SI); 1071 Changed = true; 1072 } else { 1073 ++SI; 1074 } 1075 } 1076 1077 return Changed; 1078 } 1079 1080 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 1081 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 1082 DebugLoc 1083 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1084 DebugLoc DL; 1085 instr_iterator E = instr_end(); 1086 if (MBBI == E) 1087 return DL; 1088 1089 // Skip debug declarations, we don't want a DebugLoc from them. 1090 while (MBBI != E && MBBI->isDebugValue()) 1091 MBBI++; 1092 if (MBBI != E) 1093 DL = MBBI->getDebugLoc(); 1094 return DL; 1095 } 1096 1097 /// getSuccWeight - Return weight of the edge from this block to MBB. 1098 /// 1099 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1100 if (Weights.empty()) 1101 return 0; 1102 1103 return *getWeightIterator(Succ); 1104 } 1105 1106 /// Set successor weight of a given iterator. 1107 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1108 if (Weights.empty()) 1109 return; 1110 *getWeightIterator(I) = weight; 1111 } 1112 1113 /// getWeightIterator - Return wight iterator corresonding to the I successor 1114 /// iterator 1115 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1116 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1117 assert(Weights.size() == Successors.size() && "Async weight list!"); 1118 size_t index = std::distance(Successors.begin(), I); 1119 assert(index < Weights.size() && "Not a current successor!"); 1120 return Weights.begin() + index; 1121 } 1122 1123 /// getWeightIterator - Return wight iterator corresonding to the I successor 1124 /// iterator 1125 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1126 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1127 assert(Weights.size() == Successors.size() && "Async weight list!"); 1128 const size_t index = std::distance(Successors.begin(), I); 1129 assert(index < Weights.size() && "Not a current successor!"); 1130 return Weights.begin() + index; 1131 } 1132 1133 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1134 /// as of just before "MI". 1135 /// 1136 /// Search is localised to a neighborhood of 1137 /// Neighborhood instructions before (searching for defs or kills) and N 1138 /// instructions after (searching just for defs) MI. 1139 MachineBasicBlock::LivenessQueryResult 1140 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1141 unsigned Reg, MachineInstr *MI, 1142 unsigned Neighborhood) { 1143 unsigned N = Neighborhood; 1144 MachineBasicBlock *MBB = MI->getParent(); 1145 1146 // Start by searching backwards from MI, looking for kills, reads or defs. 1147 1148 MachineBasicBlock::iterator I(MI); 1149 // If this is the first insn in the block, don't search backwards. 1150 if (I != MBB->begin()) { 1151 do { 1152 --I; 1153 1154 MachineOperandIteratorBase::PhysRegInfo Analysis = 1155 MIOperands(I).analyzePhysReg(Reg, TRI); 1156 1157 if (Analysis.Defines) 1158 // Outputs happen after inputs so they take precedence if both are 1159 // present. 1160 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1161 1162 if (Analysis.Kills || Analysis.Clobbers) 1163 // Register killed, so isn't live. 1164 return LQR_Dead; 1165 1166 else if (Analysis.ReadsOverlap) 1167 // Defined or read without a previous kill - live. 1168 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1169 1170 } while (I != MBB->begin() && --N > 0); 1171 } 1172 1173 // Did we get to the start of the block? 1174 if (I == MBB->begin()) { 1175 // If so, the register's state is definitely defined by the live-in state. 1176 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1177 RAI.isValid(); ++RAI) { 1178 if (MBB->isLiveIn(*RAI)) 1179 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1180 } 1181 1182 return LQR_Dead; 1183 } 1184 1185 N = Neighborhood; 1186 1187 // Try searching forwards from MI, looking for reads or defs. 1188 I = MachineBasicBlock::iterator(MI); 1189 // If this is the last insn in the block, don't search forwards. 1190 if (I != MBB->end()) { 1191 for (++I; I != MBB->end() && N > 0; ++I, --N) { 1192 MachineOperandIteratorBase::PhysRegInfo Analysis = 1193 MIOperands(I).analyzePhysReg(Reg, TRI); 1194 1195 if (Analysis.ReadsOverlap) 1196 // Used, therefore must have been live. 1197 return (Analysis.Reads) ? 1198 LQR_Live : LQR_OverlappingLive; 1199 1200 else if (Analysis.Clobbers || Analysis.Defines) 1201 // Defined (but not read) therefore cannot have been live. 1202 return LQR_Dead; 1203 } 1204 } 1205 1206 // At this point we have no idea of the liveness of the register. 1207 return LQR_Unknown; 1208 } 1209