1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 56 Twine(MF->getFunctionNumber()) + 57 "_" + Twine(getNumber())); 58 } 59 60 return CachedMCSymbol; 61 } 62 63 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 65 MBB.print(OS); 66 return OS; 67 } 68 69 /// When an MBB is added to an MF, we need to update the parent pointer of the 70 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 71 /// operand list for registers. 72 /// 73 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 74 /// gets the next available unique MBB number. If it is removed from a 75 /// MachineFunction, it goes back to being #-1. 76 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 77 MachineFunction &MF = *N->getParent(); 78 N->Number = MF.addToMBBNumbering(N); 79 80 // Make sure the instructions have their operands in the reginfo lists. 81 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 82 for (MachineBasicBlock::instr_iterator 83 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 84 I->AddRegOperandsToUseLists(RegInfo); 85 } 86 87 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 88 N->getParent()->removeFromMBBNumbering(N->Number); 89 N->Number = -1; 90 } 91 92 /// When we add an instruction to a basic block list, we update its parent 93 /// pointer and add its operands from reg use/def lists if appropriate. 94 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 95 assert(!N->getParent() && "machine instruction already in a basic block"); 96 N->setParent(Parent); 97 98 // Add the instruction's register operands to their corresponding 99 // use/def lists. 100 MachineFunction *MF = Parent->getParent(); 101 N->AddRegOperandsToUseLists(MF->getRegInfo()); 102 } 103 104 /// When we remove an instruction from a basic block list, we update its parent 105 /// pointer and remove its operands from reg use/def lists if appropriate. 106 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 107 assert(N->getParent() && "machine instruction not in a basic block"); 108 109 // Remove from the use/def lists. 110 if (MachineFunction *MF = N->getParent()->getParent()) 111 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 112 113 N->setParent(nullptr); 114 } 115 116 /// When moving a range of instructions from one MBB list to another, we need to 117 /// update the parent pointers and the use/def lists. 118 void ilist_traits<MachineInstr>:: 119 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 120 ilist_iterator<MachineInstr> First, 121 ilist_iterator<MachineInstr> Last) { 122 assert(Parent->getParent() == FromList.Parent->getParent() && 123 "MachineInstr parent mismatch!"); 124 125 // Splice within the same MBB -> no change. 126 if (Parent == FromList.Parent) return; 127 128 // If splicing between two blocks within the same function, just update the 129 // parent pointers. 130 for (; First != Last; ++First) 131 First->setParent(Parent); 132 } 133 134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 135 assert(!MI->getParent() && "MI is still in a block!"); 136 Parent->getParent()->DeleteMachineInstr(MI); 137 } 138 139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 140 instr_iterator I = instr_begin(), E = instr_end(); 141 while (I != E && I->isPHI()) 142 ++I; 143 assert((I == E || !I->isInsideBundle()) && 144 "First non-phi MI cannot be inside a bundle!"); 145 return I; 146 } 147 148 MachineBasicBlock::iterator 149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 150 iterator E = end(); 151 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 152 ++I; 153 // FIXME: This needs to change if we wish to bundle labels / dbg_values 154 // inside the bundle. 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi / non-label instruction is inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 161 iterator B = begin(), E = end(), I = E; 162 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 163 ; /*noop */ 164 while (I != E && !I->isTerminator()) 165 ++I; 166 return I; 167 } 168 169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 170 instr_iterator B = instr_begin(), E = instr_end(), I = E; 171 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 172 ; /*noop */ 173 while (I != E && !I->isTerminator()) 174 ++I; 175 return I; 176 } 177 178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 179 // Skip over begin-of-block dbg_value instructions. 180 iterator I = begin(), E = end(); 181 while (I != E && I->isDebugValue()) 182 ++I; 183 return I; 184 } 185 186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 187 // Skip over end-of-block dbg_value instructions. 188 instr_iterator B = instr_begin(), I = instr_end(); 189 while (I != B) { 190 --I; 191 // Return instruction that starts a bundle. 192 if (I->isDebugValue() || I->isInsideBundle()) 193 continue; 194 return I; 195 } 196 // The block is all debug values. 197 return end(); 198 } 199 200 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 201 // A block with a landing pad successor only has one other successor. 202 if (succ_size() > 2) 203 return nullptr; 204 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 205 if ((*I)->isEHPad()) 206 return *I; 207 return nullptr; 208 } 209 210 bool MachineBasicBlock::hasEHPadSuccessor() const { 211 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 212 if ((*I)->isEHPad()) 213 return true; 214 return false; 215 } 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 void MachineBasicBlock::dump() const { 219 print(dbgs()); 220 } 221 #endif 222 223 StringRef MachineBasicBlock::getName() const { 224 if (const BasicBlock *LBB = getBasicBlock()) 225 return LBB->getName(); 226 else 227 return "(null)"; 228 } 229 230 /// Return a hopefully unique identifier for this block. 231 std::string MachineBasicBlock::getFullName() const { 232 std::string Name; 233 if (getParent()) 234 Name = (getParent()->getName() + ":").str(); 235 if (getBasicBlock()) 236 Name += getBasicBlock()->getName(); 237 else 238 Name += ("BB" + Twine(getNumber())).str(); 239 return Name; 240 } 241 242 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 243 const MachineFunction *MF = getParent(); 244 if (!MF) { 245 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 246 << " is null\n"; 247 return; 248 } 249 const Function *F = MF->getFunction(); 250 const Module *M = F ? F->getParent() : nullptr; 251 ModuleSlotTracker MST(M); 252 print(OS, MST, Indexes); 253 } 254 255 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 256 SlotIndexes *Indexes) const { 257 const MachineFunction *MF = getParent(); 258 if (!MF) { 259 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 260 << " is null\n"; 261 return; 262 } 263 264 if (Indexes) 265 OS << Indexes->getMBBStartIdx(this) << '\t'; 266 267 OS << "BB#" << getNumber() << ": "; 268 269 const char *Comma = ""; 270 if (const BasicBlock *LBB = getBasicBlock()) { 271 OS << Comma << "derived from LLVM BB "; 272 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 273 Comma = ", "; 274 } 275 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 276 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 277 if (Alignment) 278 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 279 << " bytes)"; 280 281 OS << '\n'; 282 283 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 284 if (!livein_empty()) { 285 if (Indexes) OS << '\t'; 286 OS << " Live Ins:"; 287 for (const auto &LI : make_range(livein_begin(), livein_end())) { 288 OS << ' ' << PrintReg(LI.PhysReg, TRI); 289 if (LI.LaneMask != ~0u) 290 OS << ':' << PrintLaneMask(LI.LaneMask); 291 } 292 OS << '\n'; 293 } 294 // Print the preds of this block according to the CFG. 295 if (!pred_empty()) { 296 if (Indexes) OS << '\t'; 297 OS << " Predecessors according to CFG:"; 298 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 299 OS << " BB#" << (*PI)->getNumber(); 300 OS << '\n'; 301 } 302 303 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 304 if (Indexes) { 305 if (Indexes->hasIndex(&*I)) 306 OS << Indexes->getInstructionIndex(&*I); 307 OS << '\t'; 308 } 309 OS << '\t'; 310 if (I->isInsideBundle()) 311 OS << " * "; 312 I->print(OS, MST); 313 } 314 315 // Print the successors of this block according to the CFG. 316 if (!succ_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Successors according to CFG:"; 319 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 320 OS << " BB#" << (*SI)->getNumber(); 321 if (!Weights.empty()) 322 OS << '(' << *getWeightIterator(SI) << ')'; 323 } 324 OS << '\n'; 325 } 326 } 327 328 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 329 bool /*PrintType*/) const { 330 OS << "BB#" << getNumber(); 331 } 332 333 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 334 LiveInVector::iterator I = std::find_if( 335 LiveIns.begin(), LiveIns.end(), 336 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 337 if (I == LiveIns.end()) 338 return; 339 340 I->LaneMask &= ~LaneMask; 341 if (I->LaneMask == 0) 342 LiveIns.erase(I); 343 } 344 345 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 346 livein_iterator I = std::find_if( 347 LiveIns.begin(), LiveIns.end(), 348 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 349 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 350 } 351 352 void MachineBasicBlock::sortUniqueLiveIns() { 353 std::sort(LiveIns.begin(), LiveIns.end(), 354 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 355 return LI0.PhysReg < LI1.PhysReg; 356 }); 357 // Liveins are sorted by physreg now we can merge their lanemasks. 358 LiveInVector::const_iterator I = LiveIns.begin(); 359 LiveInVector::const_iterator J; 360 LiveInVector::iterator Out = LiveIns.begin(); 361 for (; I != LiveIns.end(); ++Out, I = J) { 362 unsigned PhysReg = I->PhysReg; 363 LaneBitmask LaneMask = I->LaneMask; 364 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 365 LaneMask |= J->LaneMask; 366 Out->PhysReg = PhysReg; 367 Out->LaneMask = LaneMask; 368 } 369 LiveIns.erase(Out, LiveIns.end()); 370 } 371 372 unsigned 373 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 374 assert(getParent() && "MBB must be inserted in function"); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 376 assert(RC && "Register class is required"); 377 assert((isEHPad() || this == &getParent()->front()) && 378 "Only the entry block and landing pads can have physreg live ins"); 379 380 bool LiveIn = isLiveIn(PhysReg); 381 iterator I = SkipPHIsAndLabels(begin()), E = end(); 382 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 383 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 384 385 // Look for an existing copy. 386 if (LiveIn) 387 for (;I != E && I->isCopy(); ++I) 388 if (I->getOperand(1).getReg() == PhysReg) { 389 unsigned VirtReg = I->getOperand(0).getReg(); 390 if (!MRI.constrainRegClass(VirtReg, RC)) 391 llvm_unreachable("Incompatible live-in register class."); 392 return VirtReg; 393 } 394 395 // No luck, create a virtual register. 396 unsigned VirtReg = MRI.createVirtualRegister(RC); 397 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 398 .addReg(PhysReg, RegState::Kill); 399 if (!LiveIn) 400 addLiveIn(PhysReg); 401 return VirtReg; 402 } 403 404 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 405 getParent()->splice(NewAfter->getIterator(), getIterator()); 406 } 407 408 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 409 getParent()->splice(++NewBefore->getIterator(), getIterator()); 410 } 411 412 void MachineBasicBlock::updateTerminator() { 413 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 414 // A block with no successors has no concerns with fall-through edges. 415 if (this->succ_empty()) return; 416 417 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 418 SmallVector<MachineOperand, 4> Cond; 419 DebugLoc DL; // FIXME: this is nowhere 420 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 421 (void) B; 422 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 423 if (Cond.empty()) { 424 if (TBB) { 425 // The block has an unconditional branch. If its successor is now 426 // its layout successor, delete the branch. 427 if (isLayoutSuccessor(TBB)) 428 TII->RemoveBranch(*this); 429 } else { 430 // The block has an unconditional fallthrough. If its successor is not 431 // its layout successor, insert a branch. First we have to locate the 432 // only non-landing-pad successor, as that is the fallthrough block. 433 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 434 if ((*SI)->isEHPad()) 435 continue; 436 assert(!TBB && "Found more than one non-landing-pad successor!"); 437 TBB = *SI; 438 } 439 440 // If there is no non-landing-pad successor, the block has no 441 // fall-through edges to be concerned with. 442 if (!TBB) 443 return; 444 445 // Finally update the unconditional successor to be reached via a branch 446 // if it would not be reached by fallthrough. 447 if (!isLayoutSuccessor(TBB)) 448 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 449 } 450 } else { 451 if (FBB) { 452 // The block has a non-fallthrough conditional branch. If one of its 453 // successors is its layout successor, rewrite it to a fallthrough 454 // conditional branch. 455 if (isLayoutSuccessor(TBB)) { 456 if (TII->ReverseBranchCondition(Cond)) 457 return; 458 TII->RemoveBranch(*this); 459 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 460 } else if (isLayoutSuccessor(FBB)) { 461 TII->RemoveBranch(*this); 462 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 463 } 464 } else { 465 // Walk through the successors and find the successor which is not 466 // a landing pad and is not the conditional branch destination (in TBB) 467 // as the fallthrough successor. 468 MachineBasicBlock *FallthroughBB = nullptr; 469 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 470 if ((*SI)->isEHPad() || *SI == TBB) 471 continue; 472 assert(!FallthroughBB && "Found more than one fallthrough successor."); 473 FallthroughBB = *SI; 474 } 475 if (!FallthroughBB && canFallThrough()) { 476 // We fallthrough to the same basic block as the conditional jump 477 // targets. Remove the conditional jump, leaving unconditional 478 // fallthrough. 479 // FIXME: This does not seem like a reasonable pattern to support, but 480 // it has been seen in the wild coming out of degenerate ARM test cases. 481 TII->RemoveBranch(*this); 482 483 // Finally update the unconditional successor to be reached via a branch 484 // if it would not be reached by fallthrough. 485 if (!isLayoutSuccessor(TBB)) 486 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 487 return; 488 } 489 490 // The block has a fallthrough conditional branch. 491 if (isLayoutSuccessor(TBB)) { 492 if (TII->ReverseBranchCondition(Cond)) { 493 // We can't reverse the condition, add an unconditional branch. 494 Cond.clear(); 495 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 496 return; 497 } 498 TII->RemoveBranch(*this); 499 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 500 } else if (!isLayoutSuccessor(FallthroughBB)) { 501 TII->RemoveBranch(*this); 502 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 503 } 504 } 505 } 506 } 507 508 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, uint32_t Weight) { 509 510 // If we see non-zero value for the first time it means we actually use Weight 511 // list, so we fill all Weights with 0's. 512 if (Weight != 0 && Weights.empty()) 513 Weights.resize(Successors.size()); 514 515 if (Weight != 0 || !Weights.empty()) 516 Weights.push_back(Weight); 517 518 Successors.push_back(Succ); 519 Succ->addPredecessor(this); 520 } 521 522 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ) { 523 Succ->removePredecessor(this); 524 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 525 assert(I != Successors.end() && "Not a current successor!"); 526 527 // If Weight list is empty it means we don't use it (disabled optimization). 528 if (!Weights.empty()) { 529 weight_iterator WI = getWeightIterator(I); 530 Weights.erase(WI); 531 } 532 533 Successors.erase(I); 534 } 535 536 MachineBasicBlock::succ_iterator 537 MachineBasicBlock::removeSuccessor(succ_iterator I) { 538 assert(I != Successors.end() && "Not a current successor!"); 539 540 // If Weight list is empty it means we don't use it (disabled optimization). 541 if (!Weights.empty()) { 542 weight_iterator WI = getWeightIterator(I); 543 Weights.erase(WI); 544 } 545 546 (*I)->removePredecessor(this); 547 return Successors.erase(I); 548 } 549 550 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 551 MachineBasicBlock *New) { 552 if (Old == New) 553 return; 554 555 succ_iterator E = succ_end(); 556 succ_iterator NewI = E; 557 succ_iterator OldI = E; 558 for (succ_iterator I = succ_begin(); I != E; ++I) { 559 if (*I == Old) { 560 OldI = I; 561 if (NewI != E) 562 break; 563 } 564 if (*I == New) { 565 NewI = I; 566 if (OldI != E) 567 break; 568 } 569 } 570 assert(OldI != E && "Old is not a successor of this block"); 571 Old->removePredecessor(this); 572 573 // If New isn't already a successor, let it take Old's place. 574 if (NewI == E) { 575 New->addPredecessor(this); 576 *OldI = New; 577 return; 578 } 579 580 // New is already a successor. 581 // Update its weight instead of adding a duplicate edge. 582 if (!Weights.empty()) { 583 weight_iterator OldWI = getWeightIterator(OldI); 584 *getWeightIterator(NewI) += *OldWI; 585 Weights.erase(OldWI); 586 } 587 Successors.erase(OldI); 588 } 589 590 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 591 Predecessors.push_back(Pred); 592 } 593 594 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 595 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 596 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 597 Predecessors.erase(I); 598 } 599 600 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 601 if (this == FromMBB) 602 return; 603 604 while (!FromMBB->succ_empty()) { 605 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 606 uint32_t Weight = 0; 607 608 // If Weight list is empty it means we don't use it (disabled optimization). 609 if (!FromMBB->Weights.empty()) 610 Weight = *FromMBB->Weights.begin(); 611 612 addSuccessor(Succ, Weight); 613 FromMBB->removeSuccessor(Succ); 614 } 615 } 616 617 void 618 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 619 if (this == FromMBB) 620 return; 621 622 while (!FromMBB->succ_empty()) { 623 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 624 uint32_t Weight = 0; 625 if (!FromMBB->Weights.empty()) 626 Weight = *FromMBB->Weights.begin(); 627 addSuccessor(Succ, Weight); 628 FromMBB->removeSuccessor(Succ); 629 630 // Fix up any PHI nodes in the successor. 631 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 632 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 633 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 634 MachineOperand &MO = MI->getOperand(i); 635 if (MO.getMBB() == FromMBB) 636 MO.setMBB(this); 637 } 638 } 639 } 640 641 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 642 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 643 } 644 645 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 646 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 647 } 648 649 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 650 MachineFunction::const_iterator I(this); 651 return std::next(I) == MachineFunction::const_iterator(MBB); 652 } 653 654 bool MachineBasicBlock::canFallThrough() { 655 MachineFunction::iterator Fallthrough = getIterator(); 656 ++Fallthrough; 657 // If FallthroughBlock is off the end of the function, it can't fall through. 658 if (Fallthrough == getParent()->end()) 659 return false; 660 661 // If FallthroughBlock isn't a successor, no fallthrough is possible. 662 if (!isSuccessor(&*Fallthrough)) 663 return false; 664 665 // Analyze the branches, if any, at the end of the block. 666 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 667 SmallVector<MachineOperand, 4> Cond; 668 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 669 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 670 // If we couldn't analyze the branch, examine the last instruction. 671 // If the block doesn't end in a known control barrier, assume fallthrough 672 // is possible. The isPredicated check is needed because this code can be 673 // called during IfConversion, where an instruction which is normally a 674 // Barrier is predicated and thus no longer an actual control barrier. 675 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 676 } 677 678 // If there is no branch, control always falls through. 679 if (!TBB) return true; 680 681 // If there is some explicit branch to the fallthrough block, it can obviously 682 // reach, even though the branch should get folded to fall through implicitly. 683 if (MachineFunction::iterator(TBB) == Fallthrough || 684 MachineFunction::iterator(FBB) == Fallthrough) 685 return true; 686 687 // If it's an unconditional branch to some block not the fall through, it 688 // doesn't fall through. 689 if (Cond.empty()) return false; 690 691 // Otherwise, if it is conditional and has no explicit false block, it falls 692 // through. 693 return FBB == nullptr; 694 } 695 696 MachineBasicBlock * 697 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 698 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 699 // it in this generic function. 700 if (Succ->isEHPad()) 701 return nullptr; 702 703 MachineFunction *MF = getParent(); 704 DebugLoc DL; // FIXME: this is nowhere 705 706 // Performance might be harmed on HW that implements branching using exec mask 707 // where both sides of the branches are always executed. 708 if (MF->getTarget().requiresStructuredCFG()) 709 return nullptr; 710 711 // We may need to update this's terminator, but we can't do that if 712 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 713 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 714 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 715 SmallVector<MachineOperand, 4> Cond; 716 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 717 return nullptr; 718 719 // Avoid bugpoint weirdness: A block may end with a conditional branch but 720 // jumps to the same MBB is either case. We have duplicate CFG edges in that 721 // case that we can't handle. Since this never happens in properly optimized 722 // code, just skip those edges. 723 if (TBB && TBB == FBB) { 724 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 725 << getNumber() << '\n'); 726 return nullptr; 727 } 728 729 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 730 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 731 DEBUG(dbgs() << "Splitting critical edge:" 732 " BB#" << getNumber() 733 << " -- BB#" << NMBB->getNumber() 734 << " -- BB#" << Succ->getNumber() << '\n'); 735 736 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 737 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 738 if (LIS) 739 LIS->insertMBBInMaps(NMBB); 740 else if (Indexes) 741 Indexes->insertMBBInMaps(NMBB); 742 743 // On some targets like Mips, branches may kill virtual registers. Make sure 744 // that LiveVariables is properly updated after updateTerminator replaces the 745 // terminators. 746 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 747 748 // Collect a list of virtual registers killed by the terminators. 749 SmallVector<unsigned, 4> KilledRegs; 750 if (LV) 751 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 752 I != E; ++I) { 753 MachineInstr *MI = &*I; 754 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 755 OE = MI->operands_end(); OI != OE; ++OI) { 756 if (!OI->isReg() || OI->getReg() == 0 || 757 !OI->isUse() || !OI->isKill() || OI->isUndef()) 758 continue; 759 unsigned Reg = OI->getReg(); 760 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 761 LV->getVarInfo(Reg).removeKill(MI)) { 762 KilledRegs.push_back(Reg); 763 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 764 OI->setIsKill(false); 765 } 766 } 767 } 768 769 SmallVector<unsigned, 4> UsedRegs; 770 if (LIS) { 771 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 772 I != E; ++I) { 773 MachineInstr *MI = &*I; 774 775 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 776 OE = MI->operands_end(); OI != OE; ++OI) { 777 if (!OI->isReg() || OI->getReg() == 0) 778 continue; 779 780 unsigned Reg = OI->getReg(); 781 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 782 UsedRegs.push_back(Reg); 783 } 784 } 785 } 786 787 ReplaceUsesOfBlockWith(Succ, NMBB); 788 789 // If updateTerminator() removes instructions, we need to remove them from 790 // SlotIndexes. 791 SmallVector<MachineInstr*, 4> Terminators; 792 if (Indexes) { 793 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 794 I != E; ++I) 795 Terminators.push_back(&*I); 796 } 797 798 updateTerminator(); 799 800 if (Indexes) { 801 SmallVector<MachineInstr*, 4> NewTerminators; 802 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 803 I != E; ++I) 804 NewTerminators.push_back(&*I); 805 806 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 807 E = Terminators.end(); I != E; ++I) { 808 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 809 NewTerminators.end()) 810 Indexes->removeMachineInstrFromMaps(*I); 811 } 812 } 813 814 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 815 NMBB->addSuccessor(Succ); 816 if (!NMBB->isLayoutSuccessor(Succ)) { 817 Cond.clear(); 818 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 819 820 if (Indexes) { 821 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 822 I != E; ++I) { 823 // Some instructions may have been moved to NMBB by updateTerminator(), 824 // so we first remove any instruction that already has an index. 825 if (Indexes->hasIndex(&*I)) 826 Indexes->removeMachineInstrFromMaps(&*I); 827 Indexes->insertMachineInstrInMaps(&*I); 828 } 829 } 830 } 831 832 // Fix PHI nodes in Succ so they refer to NMBB instead of this 833 for (MachineBasicBlock::instr_iterator 834 i = Succ->instr_begin(),e = Succ->instr_end(); 835 i != e && i->isPHI(); ++i) 836 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 837 if (i->getOperand(ni+1).getMBB() == this) 838 i->getOperand(ni+1).setMBB(NMBB); 839 840 // Inherit live-ins from the successor 841 for (const auto &LI : Succ->liveins()) 842 NMBB->addLiveIn(LI); 843 844 // Update LiveVariables. 845 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 846 if (LV) { 847 // Restore kills of virtual registers that were killed by the terminators. 848 while (!KilledRegs.empty()) { 849 unsigned Reg = KilledRegs.pop_back_val(); 850 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 851 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 852 continue; 853 if (TargetRegisterInfo::isVirtualRegister(Reg)) 854 LV->getVarInfo(Reg).Kills.push_back(&*I); 855 DEBUG(dbgs() << "Restored terminator kill: " << *I); 856 break; 857 } 858 } 859 // Update relevant live-through information. 860 LV->addNewBlock(NMBB, this, Succ); 861 } 862 863 if (LIS) { 864 // After splitting the edge and updating SlotIndexes, live intervals may be 865 // in one of two situations, depending on whether this block was the last in 866 // the function. If the original block was the last in the function, all 867 // live intervals will end prior to the beginning of the new split block. If 868 // the original block was not at the end of the function, all live intervals 869 // will extend to the end of the new split block. 870 871 bool isLastMBB = 872 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 873 874 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 875 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 876 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 877 878 // Find the registers used from NMBB in PHIs in Succ. 879 SmallSet<unsigned, 8> PHISrcRegs; 880 for (MachineBasicBlock::instr_iterator 881 I = Succ->instr_begin(), E = Succ->instr_end(); 882 I != E && I->isPHI(); ++I) { 883 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 884 if (I->getOperand(ni+1).getMBB() == NMBB) { 885 MachineOperand &MO = I->getOperand(ni); 886 unsigned Reg = MO.getReg(); 887 PHISrcRegs.insert(Reg); 888 if (MO.isUndef()) 889 continue; 890 891 LiveInterval &LI = LIS->getInterval(Reg); 892 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 893 assert(VNI && 894 "PHI sources should be live out of their predecessors."); 895 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 896 } 897 } 898 } 899 900 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 901 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 902 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 903 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 904 continue; 905 906 LiveInterval &LI = LIS->getInterval(Reg); 907 if (!LI.liveAt(PrevIndex)) 908 continue; 909 910 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 911 if (isLiveOut && isLastMBB) { 912 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 913 assert(VNI && "LiveInterval should have VNInfo where it is live."); 914 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 915 } else if (!isLiveOut && !isLastMBB) { 916 LI.removeSegment(StartIndex, EndIndex); 917 } 918 } 919 920 // Update all intervals for registers whose uses may have been modified by 921 // updateTerminator(). 922 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 923 } 924 925 if (MachineDominatorTree *MDT = 926 P->getAnalysisIfAvailable<MachineDominatorTree>()) 927 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 928 929 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 930 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 931 // If one or the other blocks were not in a loop, the new block is not 932 // either, and thus LI doesn't need to be updated. 933 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 934 if (TIL == DestLoop) { 935 // Both in the same loop, the NMBB joins loop. 936 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 937 } else if (TIL->contains(DestLoop)) { 938 // Edge from an outer loop to an inner loop. Add to the outer loop. 939 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 940 } else if (DestLoop->contains(TIL)) { 941 // Edge from an inner loop to an outer loop. Add to the outer loop. 942 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 943 } else { 944 // Edge from two loops with no containment relation. Because these 945 // are natural loops, we know that the destination block must be the 946 // header of its loop (adding a branch into a loop elsewhere would 947 // create an irreducible loop). 948 assert(DestLoop->getHeader() == Succ && 949 "Should not create irreducible loops!"); 950 if (MachineLoop *P = DestLoop->getParentLoop()) 951 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 952 } 953 } 954 } 955 956 return NMBB; 957 } 958 959 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 960 /// neighboring instructions so the bundle won't be broken by removing MI. 961 static void unbundleSingleMI(MachineInstr *MI) { 962 // Removing the first instruction in a bundle. 963 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 964 MI->unbundleFromSucc(); 965 // Removing the last instruction in a bundle. 966 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 967 MI->unbundleFromPred(); 968 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 969 // are already fine. 970 } 971 972 MachineBasicBlock::instr_iterator 973 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 974 unbundleSingleMI(&*I); 975 return Insts.erase(I); 976 } 977 978 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 979 unbundleSingleMI(MI); 980 MI->clearFlag(MachineInstr::BundledPred); 981 MI->clearFlag(MachineInstr::BundledSucc); 982 return Insts.remove(MI); 983 } 984 985 MachineBasicBlock::instr_iterator 986 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 987 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 988 "Cannot insert instruction with bundle flags"); 989 // Set the bundle flags when inserting inside a bundle. 990 if (I != instr_end() && I->isBundledWithPred()) { 991 MI->setFlag(MachineInstr::BundledPred); 992 MI->setFlag(MachineInstr::BundledSucc); 993 } 994 return Insts.insert(I, MI); 995 } 996 997 /// This method unlinks 'this' from the containing function, and returns it, but 998 /// does not delete it. 999 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1000 assert(getParent() && "Not embedded in a function!"); 1001 getParent()->remove(this); 1002 return this; 1003 } 1004 1005 /// This method unlinks 'this' from the containing function, and deletes it. 1006 void MachineBasicBlock::eraseFromParent() { 1007 assert(getParent() && "Not embedded in a function!"); 1008 getParent()->erase(this); 1009 } 1010 1011 /// Given a machine basic block that branched to 'Old', change the code and CFG 1012 /// so that it branches to 'New' instead. 1013 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1014 MachineBasicBlock *New) { 1015 assert(Old != New && "Cannot replace self with self!"); 1016 1017 MachineBasicBlock::instr_iterator I = instr_end(); 1018 while (I != instr_begin()) { 1019 --I; 1020 if (!I->isTerminator()) break; 1021 1022 // Scan the operands of this machine instruction, replacing any uses of Old 1023 // with New. 1024 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1025 if (I->getOperand(i).isMBB() && 1026 I->getOperand(i).getMBB() == Old) 1027 I->getOperand(i).setMBB(New); 1028 } 1029 1030 // Update the successor information. 1031 replaceSuccessor(Old, New); 1032 } 1033 1034 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1035 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1036 /// MBB successors from the CFG. DestA and DestB can be null. 1037 /// 1038 /// Besides DestA and DestB, retain other edges leading to LandingPads 1039 /// (currently there can be only one; we don't check or require that here). 1040 /// Note it is possible that DestA and/or DestB are LandingPads. 1041 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1042 MachineBasicBlock *DestB, 1043 bool IsCond) { 1044 // The values of DestA and DestB frequently come from a call to the 1045 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1046 // values from there. 1047 // 1048 // 1. If both DestA and DestB are null, then the block ends with no branches 1049 // (it falls through to its successor). 1050 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1051 // with only an unconditional branch. 1052 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1053 // with a conditional branch that falls through to a successor (DestB). 1054 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1055 // conditional branch followed by an unconditional branch. DestA is the 1056 // 'true' destination and DestB is the 'false' destination. 1057 1058 bool Changed = false; 1059 1060 MachineFunction::iterator FallThru = std::next(getIterator()); 1061 1062 if (!DestA && !DestB) { 1063 // Block falls through to successor. 1064 DestA = &*FallThru; 1065 DestB = &*FallThru; 1066 } else if (DestA && !DestB) { 1067 if (IsCond) 1068 // Block ends in conditional jump that falls through to successor. 1069 DestB = &*FallThru; 1070 } else { 1071 assert(DestA && DestB && IsCond && 1072 "CFG in a bad state. Cannot correct CFG edges"); 1073 } 1074 1075 // Remove superfluous edges. I.e., those which aren't destinations of this 1076 // basic block, duplicate edges, or landing pads. 1077 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1078 MachineBasicBlock::succ_iterator SI = succ_begin(); 1079 while (SI != succ_end()) { 1080 const MachineBasicBlock *MBB = *SI; 1081 if (!SeenMBBs.insert(MBB).second || 1082 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1083 // This is a superfluous edge, remove it. 1084 SI = removeSuccessor(SI); 1085 Changed = true; 1086 } else { 1087 ++SI; 1088 } 1089 } 1090 1091 return Changed; 1092 } 1093 1094 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1095 /// instructions. Return UnknownLoc if there is none. 1096 DebugLoc 1097 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1098 DebugLoc DL; 1099 instr_iterator E = instr_end(); 1100 if (MBBI == E) 1101 return DL; 1102 1103 // Skip debug declarations, we don't want a DebugLoc from them. 1104 while (MBBI != E && MBBI->isDebugValue()) 1105 MBBI++; 1106 if (MBBI != E) 1107 DL = MBBI->getDebugLoc(); 1108 return DL; 1109 } 1110 1111 /// Return weight of the edge from this block to MBB. 1112 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1113 if (Weights.empty()) 1114 return 0; 1115 1116 return *getWeightIterator(Succ); 1117 } 1118 1119 /// Set successor weight of a given iterator. 1120 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t Weight) { 1121 if (Weights.empty()) 1122 return; 1123 *getWeightIterator(I) = Weight; 1124 } 1125 1126 /// Return wight iterator corresonding to the I successor iterator. 1127 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1128 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1129 assert(Weights.size() == Successors.size() && "Async weight list!"); 1130 size_t index = std::distance(Successors.begin(), I); 1131 assert(index < Weights.size() && "Not a current successor!"); 1132 return Weights.begin() + index; 1133 } 1134 1135 /// Return wight iterator corresonding to the I successor iterator. 1136 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1137 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1138 assert(Weights.size() == Successors.size() && "Async weight list!"); 1139 const size_t index = std::distance(Successors.begin(), I); 1140 assert(index < Weights.size() && "Not a current successor!"); 1141 return Weights.begin() + index; 1142 } 1143 1144 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1145 /// as of just before "MI". 1146 /// 1147 /// Search is localised to a neighborhood of 1148 /// Neighborhood instructions before (searching for defs or kills) and N 1149 /// instructions after (searching just for defs) MI. 1150 MachineBasicBlock::LivenessQueryResult 1151 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1152 unsigned Reg, const_iterator Before, 1153 unsigned Neighborhood) const { 1154 unsigned N = Neighborhood; 1155 1156 // Start by searching backwards from Before, looking for kills, reads or defs. 1157 const_iterator I(Before); 1158 // If this is the first insn in the block, don't search backwards. 1159 if (I != begin()) { 1160 do { 1161 --I; 1162 1163 MachineOperandIteratorBase::PhysRegInfo Analysis = 1164 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1165 1166 if (Analysis.Defines) 1167 // Outputs happen after inputs so they take precedence if both are 1168 // present. 1169 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1170 1171 if (Analysis.Kills || Analysis.Clobbers) 1172 // Register killed, so isn't live. 1173 return LQR_Dead; 1174 1175 else if (Analysis.ReadsOverlap) 1176 // Defined or read without a previous kill - live. 1177 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1178 1179 } while (I != begin() && --N > 0); 1180 } 1181 1182 // Did we get to the start of the block? 1183 if (I == begin()) { 1184 // If so, the register's state is definitely defined by the live-in state. 1185 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1186 RAI.isValid(); ++RAI) { 1187 if (isLiveIn(*RAI)) 1188 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1189 } 1190 1191 return LQR_Dead; 1192 } 1193 1194 N = Neighborhood; 1195 1196 // Try searching forwards from Before, looking for reads or defs. 1197 I = const_iterator(Before); 1198 // If this is the last insn in the block, don't search forwards. 1199 if (I != end()) { 1200 for (++I; I != end() && N > 0; ++I, --N) { 1201 MachineOperandIteratorBase::PhysRegInfo Analysis = 1202 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1203 1204 if (Analysis.ReadsOverlap) 1205 // Used, therefore must have been live. 1206 return (Analysis.Reads) ? 1207 LQR_Live : LQR_OverlappingLive; 1208 1209 else if (Analysis.Clobbers || Analysis.Defines) 1210 // Defined (but not read) therefore cannot have been live. 1211 return LQR_Dead; 1212 } 1213 } 1214 1215 // At this point we have no idea of the liveness of the register. 1216 return LQR_Unknown; 1217 } 1218