1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsStandalone) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 MST.incorporateFunction(F); 274 print(OS, MST, Indexes, IsStandalone); 275 } 276 277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 278 const SlotIndexes *Indexes, 279 bool IsStandalone) const { 280 const MachineFunction *MF = getParent(); 281 if (!MF) { 282 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 283 << " is null\n"; 284 return; 285 } 286 287 if (Indexes) 288 OS << Indexes->getMBBStartIdx(this) << '\t'; 289 290 OS << "bb." << getNumber(); 291 bool HasAttributes = false; 292 if (const auto *BB = getBasicBlock()) { 293 if (BB->hasName()) { 294 OS << "." << BB->getName(); 295 } else { 296 HasAttributes = true; 297 OS << " ("; 298 int Slot = MST.getLocalSlot(BB); 299 if (Slot == -1) 300 OS << "<ir-block badref>"; 301 else 302 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 303 } 304 } 305 306 if (hasAddressTaken()) { 307 OS << (HasAttributes ? ", " : " ("); 308 OS << "address-taken"; 309 HasAttributes = true; 310 } 311 if (isEHPad()) { 312 OS << (HasAttributes ? ", " : " ("); 313 OS << "landing-pad"; 314 HasAttributes = true; 315 } 316 if (getAlignment()) { 317 OS << (HasAttributes ? ", " : " ("); 318 OS << "align " << getAlignment(); 319 HasAttributes = true; 320 } 321 if (HasAttributes) 322 OS << ")"; 323 OS << ":\n"; 324 325 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 326 if (!livein_empty()) { 327 if (Indexes) OS << '\t'; 328 OS << " Live Ins:"; 329 for (const auto &LI : LiveIns) { 330 OS << ' ' << printReg(LI.PhysReg, TRI); 331 if (!LI.LaneMask.all()) 332 OS << ':' << PrintLaneMask(LI.LaneMask); 333 } 334 OS << '\n'; 335 } 336 // Print the preds of this block according to the CFG. 337 if (!pred_empty()) { 338 if (Indexes) OS << '\t'; 339 OS << " Predecessors according to CFG:"; 340 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 341 OS << " " << printMBBReference(*(*PI)); 342 OS << '\n'; 343 } 344 345 for (auto &I : instrs()) { 346 if (Indexes) { 347 if (Indexes->hasIndex(I)) 348 OS << Indexes->getInstructionIndex(I); 349 OS << '\t'; 350 } 351 OS << '\t'; 352 if (I.isInsideBundle()) 353 OS << " * "; 354 I.print(OS, MST, IsStandalone); 355 } 356 357 // Print the successors of this block according to the CFG. 358 if (!succ_empty()) { 359 if (Indexes) OS << '\t'; 360 OS << " Successors according to CFG:"; 361 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 362 OS << " " << printMBBReference(*(*SI)); 363 if (!Probs.empty()) 364 OS << '(' << *getProbabilityIterator(SI) << ')'; 365 } 366 OS << '\n'; 367 } 368 if (IrrLoopHeaderWeight) { 369 if (Indexes) OS << '\t'; 370 OS << " Irreducible loop header weight: " 371 << IrrLoopHeaderWeight.getValue(); 372 OS << '\n'; 373 } 374 } 375 376 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 377 bool /*PrintType*/) const { 378 OS << "%bb." << getNumber(); 379 } 380 381 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 382 LiveInVector::iterator I = find_if( 383 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 384 if (I == LiveIns.end()) 385 return; 386 387 I->LaneMask &= ~LaneMask; 388 if (I->LaneMask.none()) 389 LiveIns.erase(I); 390 } 391 392 MachineBasicBlock::livein_iterator 393 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 394 // Get non-const version of iterator. 395 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 396 return LiveIns.erase(LI); 397 } 398 399 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 400 livein_iterator I = find_if( 401 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 402 return I != livein_end() && (I->LaneMask & LaneMask).any(); 403 } 404 405 void MachineBasicBlock::sortUniqueLiveIns() { 406 std::sort(LiveIns.begin(), LiveIns.end(), 407 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 408 return LI0.PhysReg < LI1.PhysReg; 409 }); 410 // Liveins are sorted by physreg now we can merge their lanemasks. 411 LiveInVector::const_iterator I = LiveIns.begin(); 412 LiveInVector::const_iterator J; 413 LiveInVector::iterator Out = LiveIns.begin(); 414 for (; I != LiveIns.end(); ++Out, I = J) { 415 unsigned PhysReg = I->PhysReg; 416 LaneBitmask LaneMask = I->LaneMask; 417 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 418 LaneMask |= J->LaneMask; 419 Out->PhysReg = PhysReg; 420 Out->LaneMask = LaneMask; 421 } 422 LiveIns.erase(Out, LiveIns.end()); 423 } 424 425 unsigned 426 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 427 assert(getParent() && "MBB must be inserted in function"); 428 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 429 assert(RC && "Register class is required"); 430 assert((isEHPad() || this == &getParent()->front()) && 431 "Only the entry block and landing pads can have physreg live ins"); 432 433 bool LiveIn = isLiveIn(PhysReg); 434 iterator I = SkipPHIsAndLabels(begin()), E = end(); 435 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 436 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 437 438 // Look for an existing copy. 439 if (LiveIn) 440 for (;I != E && I->isCopy(); ++I) 441 if (I->getOperand(1).getReg() == PhysReg) { 442 unsigned VirtReg = I->getOperand(0).getReg(); 443 if (!MRI.constrainRegClass(VirtReg, RC)) 444 llvm_unreachable("Incompatible live-in register class."); 445 return VirtReg; 446 } 447 448 // No luck, create a virtual register. 449 unsigned VirtReg = MRI.createVirtualRegister(RC); 450 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 451 .addReg(PhysReg, RegState::Kill); 452 if (!LiveIn) 453 addLiveIn(PhysReg); 454 return VirtReg; 455 } 456 457 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 458 getParent()->splice(NewAfter->getIterator(), getIterator()); 459 } 460 461 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 462 getParent()->splice(++NewBefore->getIterator(), getIterator()); 463 } 464 465 void MachineBasicBlock::updateTerminator() { 466 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 467 // A block with no successors has no concerns with fall-through edges. 468 if (this->succ_empty()) 469 return; 470 471 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 472 SmallVector<MachineOperand, 4> Cond; 473 DebugLoc DL = findBranchDebugLoc(); 474 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 475 (void) B; 476 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 477 if (Cond.empty()) { 478 if (TBB) { 479 // The block has an unconditional branch. If its successor is now its 480 // layout successor, delete the branch. 481 if (isLayoutSuccessor(TBB)) 482 TII->removeBranch(*this); 483 } else { 484 // The block has an unconditional fallthrough. If its successor is not its 485 // layout successor, insert a branch. First we have to locate the only 486 // non-landing-pad successor, as that is the fallthrough block. 487 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 488 if ((*SI)->isEHPad()) 489 continue; 490 assert(!TBB && "Found more than one non-landing-pad successor!"); 491 TBB = *SI; 492 } 493 494 // If there is no non-landing-pad successor, the block has no fall-through 495 // edges to be concerned with. 496 if (!TBB) 497 return; 498 499 // Finally update the unconditional successor to be reached via a branch 500 // if it would not be reached by fallthrough. 501 if (!isLayoutSuccessor(TBB)) 502 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 503 } 504 return; 505 } 506 507 if (FBB) { 508 // The block has a non-fallthrough conditional branch. If one of its 509 // successors is its layout successor, rewrite it to a fallthrough 510 // conditional branch. 511 if (isLayoutSuccessor(TBB)) { 512 if (TII->reverseBranchCondition(Cond)) 513 return; 514 TII->removeBranch(*this); 515 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 516 } else if (isLayoutSuccessor(FBB)) { 517 TII->removeBranch(*this); 518 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 519 } 520 return; 521 } 522 523 // Walk through the successors and find the successor which is not a landing 524 // pad and is not the conditional branch destination (in TBB) as the 525 // fallthrough successor. 526 MachineBasicBlock *FallthroughBB = nullptr; 527 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 528 if ((*SI)->isEHPad() || *SI == TBB) 529 continue; 530 assert(!FallthroughBB && "Found more than one fallthrough successor."); 531 FallthroughBB = *SI; 532 } 533 534 if (!FallthroughBB) { 535 if (canFallThrough()) { 536 // We fallthrough to the same basic block as the conditional jump targets. 537 // Remove the conditional jump, leaving unconditional fallthrough. 538 // FIXME: This does not seem like a reasonable pattern to support, but it 539 // has been seen in the wild coming out of degenerate ARM test cases. 540 TII->removeBranch(*this); 541 542 // Finally update the unconditional successor to be reached via a branch if 543 // it would not be reached by fallthrough. 544 if (!isLayoutSuccessor(TBB)) 545 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 546 return; 547 } 548 549 // We enter here iff exactly one successor is TBB which cannot fallthrough 550 // and the rest successors if any are EHPads. In this case, we need to 551 // change the conditional branch into unconditional branch. 552 TII->removeBranch(*this); 553 Cond.clear(); 554 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 555 return; 556 } 557 558 // The block has a fallthrough conditional branch. 559 if (isLayoutSuccessor(TBB)) { 560 if (TII->reverseBranchCondition(Cond)) { 561 // We can't reverse the condition, add an unconditional branch. 562 Cond.clear(); 563 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 564 return; 565 } 566 TII->removeBranch(*this); 567 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 568 } else if (!isLayoutSuccessor(FallthroughBB)) { 569 TII->removeBranch(*this); 570 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 571 } 572 } 573 574 void MachineBasicBlock::validateSuccProbs() const { 575 #ifndef NDEBUG 576 int64_t Sum = 0; 577 for (auto Prob : Probs) 578 Sum += Prob.getNumerator(); 579 // Due to precision issue, we assume that the sum of probabilities is one if 580 // the difference between the sum of their numerators and the denominator is 581 // no greater than the number of successors. 582 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 583 Probs.size() && 584 "The sum of successors's probabilities exceeds one."); 585 #endif // NDEBUG 586 } 587 588 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 589 BranchProbability Prob) { 590 // Probability list is either empty (if successor list isn't empty, this means 591 // disabled optimization) or has the same size as successor list. 592 if (!(Probs.empty() && !Successors.empty())) 593 Probs.push_back(Prob); 594 Successors.push_back(Succ); 595 Succ->addPredecessor(this); 596 } 597 598 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 599 // We need to make sure probability list is either empty or has the same size 600 // of successor list. When this function is called, we can safely delete all 601 // probability in the list. 602 Probs.clear(); 603 Successors.push_back(Succ); 604 Succ->addPredecessor(this); 605 } 606 607 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 608 bool NormalizeSuccProbs) { 609 succ_iterator I = find(Successors, Succ); 610 removeSuccessor(I, NormalizeSuccProbs); 611 } 612 613 MachineBasicBlock::succ_iterator 614 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 615 assert(I != Successors.end() && "Not a current successor!"); 616 617 // If probability list is empty it means we don't use it (disabled 618 // optimization). 619 if (!Probs.empty()) { 620 probability_iterator WI = getProbabilityIterator(I); 621 Probs.erase(WI); 622 if (NormalizeSuccProbs) 623 normalizeSuccProbs(); 624 } 625 626 (*I)->removePredecessor(this); 627 return Successors.erase(I); 628 } 629 630 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 631 MachineBasicBlock *New) { 632 if (Old == New) 633 return; 634 635 succ_iterator E = succ_end(); 636 succ_iterator NewI = E; 637 succ_iterator OldI = E; 638 for (succ_iterator I = succ_begin(); I != E; ++I) { 639 if (*I == Old) { 640 OldI = I; 641 if (NewI != E) 642 break; 643 } 644 if (*I == New) { 645 NewI = I; 646 if (OldI != E) 647 break; 648 } 649 } 650 assert(OldI != E && "Old is not a successor of this block"); 651 652 // If New isn't already a successor, let it take Old's place. 653 if (NewI == E) { 654 Old->removePredecessor(this); 655 New->addPredecessor(this); 656 *OldI = New; 657 return; 658 } 659 660 // New is already a successor. 661 // Update its probability instead of adding a duplicate edge. 662 if (!Probs.empty()) { 663 auto ProbIter = getProbabilityIterator(NewI); 664 if (!ProbIter->isUnknown()) 665 *ProbIter += *getProbabilityIterator(OldI); 666 } 667 removeSuccessor(OldI); 668 } 669 670 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 671 Predecessors.push_back(Pred); 672 } 673 674 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 675 pred_iterator I = find(Predecessors, Pred); 676 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 677 Predecessors.erase(I); 678 } 679 680 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 681 if (this == FromMBB) 682 return; 683 684 while (!FromMBB->succ_empty()) { 685 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 686 687 // If probability list is empty it means we don't use it (disabled optimization). 688 if (!FromMBB->Probs.empty()) { 689 auto Prob = *FromMBB->Probs.begin(); 690 addSuccessor(Succ, Prob); 691 } else 692 addSuccessorWithoutProb(Succ); 693 694 FromMBB->removeSuccessor(Succ); 695 } 696 } 697 698 void 699 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 700 if (this == FromMBB) 701 return; 702 703 while (!FromMBB->succ_empty()) { 704 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 705 if (!FromMBB->Probs.empty()) { 706 auto Prob = *FromMBB->Probs.begin(); 707 addSuccessor(Succ, Prob); 708 } else 709 addSuccessorWithoutProb(Succ); 710 FromMBB->removeSuccessor(Succ); 711 712 // Fix up any PHI nodes in the successor. 713 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 714 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 715 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 716 MachineOperand &MO = MI->getOperand(i); 717 if (MO.getMBB() == FromMBB) 718 MO.setMBB(this); 719 } 720 } 721 normalizeSuccProbs(); 722 } 723 724 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 725 return is_contained(predecessors(), MBB); 726 } 727 728 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 729 return is_contained(successors(), MBB); 730 } 731 732 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 733 MachineFunction::const_iterator I(this); 734 return std::next(I) == MachineFunction::const_iterator(MBB); 735 } 736 737 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 738 MachineFunction::iterator Fallthrough = getIterator(); 739 ++Fallthrough; 740 // If FallthroughBlock is off the end of the function, it can't fall through. 741 if (Fallthrough == getParent()->end()) 742 return nullptr; 743 744 // If FallthroughBlock isn't a successor, no fallthrough is possible. 745 if (!isSuccessor(&*Fallthrough)) 746 return nullptr; 747 748 // Analyze the branches, if any, at the end of the block. 749 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 750 SmallVector<MachineOperand, 4> Cond; 751 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 752 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 753 // If we couldn't analyze the branch, examine the last instruction. 754 // If the block doesn't end in a known control barrier, assume fallthrough 755 // is possible. The isPredicated check is needed because this code can be 756 // called during IfConversion, where an instruction which is normally a 757 // Barrier is predicated and thus no longer an actual control barrier. 758 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 759 ? &*Fallthrough 760 : nullptr; 761 } 762 763 // If there is no branch, control always falls through. 764 if (!TBB) return &*Fallthrough; 765 766 // If there is some explicit branch to the fallthrough block, it can obviously 767 // reach, even though the branch should get folded to fall through implicitly. 768 if (MachineFunction::iterator(TBB) == Fallthrough || 769 MachineFunction::iterator(FBB) == Fallthrough) 770 return &*Fallthrough; 771 772 // If it's an unconditional branch to some block not the fall through, it 773 // doesn't fall through. 774 if (Cond.empty()) return nullptr; 775 776 // Otherwise, if it is conditional and has no explicit false block, it falls 777 // through. 778 return (FBB == nullptr) ? &*Fallthrough : nullptr; 779 } 780 781 bool MachineBasicBlock::canFallThrough() { 782 return getFallThrough() != nullptr; 783 } 784 785 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 786 Pass &P) { 787 if (!canSplitCriticalEdge(Succ)) 788 return nullptr; 789 790 MachineFunction *MF = getParent(); 791 DebugLoc DL; // FIXME: this is nowhere 792 793 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 794 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 795 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 796 << " -- " << printMBBReference(*NMBB) << " -- " 797 << printMBBReference(*Succ) << '\n'); 798 799 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 800 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 801 if (LIS) 802 LIS->insertMBBInMaps(NMBB); 803 else if (Indexes) 804 Indexes->insertMBBInMaps(NMBB); 805 806 // On some targets like Mips, branches may kill virtual registers. Make sure 807 // that LiveVariables is properly updated after updateTerminator replaces the 808 // terminators. 809 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 810 811 // Collect a list of virtual registers killed by the terminators. 812 SmallVector<unsigned, 4> KilledRegs; 813 if (LV) 814 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 815 I != E; ++I) { 816 MachineInstr *MI = &*I; 817 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 818 OE = MI->operands_end(); OI != OE; ++OI) { 819 if (!OI->isReg() || OI->getReg() == 0 || 820 !OI->isUse() || !OI->isKill() || OI->isUndef()) 821 continue; 822 unsigned Reg = OI->getReg(); 823 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 824 LV->getVarInfo(Reg).removeKill(*MI)) { 825 KilledRegs.push_back(Reg); 826 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 827 OI->setIsKill(false); 828 } 829 } 830 } 831 832 SmallVector<unsigned, 4> UsedRegs; 833 if (LIS) { 834 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 835 I != E; ++I) { 836 MachineInstr *MI = &*I; 837 838 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 839 OE = MI->operands_end(); OI != OE; ++OI) { 840 if (!OI->isReg() || OI->getReg() == 0) 841 continue; 842 843 unsigned Reg = OI->getReg(); 844 if (!is_contained(UsedRegs, Reg)) 845 UsedRegs.push_back(Reg); 846 } 847 } 848 } 849 850 ReplaceUsesOfBlockWith(Succ, NMBB); 851 852 // If updateTerminator() removes instructions, we need to remove them from 853 // SlotIndexes. 854 SmallVector<MachineInstr*, 4> Terminators; 855 if (Indexes) { 856 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 857 I != E; ++I) 858 Terminators.push_back(&*I); 859 } 860 861 updateTerminator(); 862 863 if (Indexes) { 864 SmallVector<MachineInstr*, 4> NewTerminators; 865 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 866 I != E; ++I) 867 NewTerminators.push_back(&*I); 868 869 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 870 E = Terminators.end(); I != E; ++I) { 871 if (!is_contained(NewTerminators, *I)) 872 Indexes->removeMachineInstrFromMaps(**I); 873 } 874 } 875 876 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 877 NMBB->addSuccessor(Succ); 878 if (!NMBB->isLayoutSuccessor(Succ)) { 879 SmallVector<MachineOperand, 4> Cond; 880 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 881 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 882 883 if (Indexes) { 884 for (MachineInstr &MI : NMBB->instrs()) { 885 // Some instructions may have been moved to NMBB by updateTerminator(), 886 // so we first remove any instruction that already has an index. 887 if (Indexes->hasIndex(MI)) 888 Indexes->removeMachineInstrFromMaps(MI); 889 Indexes->insertMachineInstrInMaps(MI); 890 } 891 } 892 } 893 894 // Fix PHI nodes in Succ so they refer to NMBB instead of this 895 for (MachineBasicBlock::instr_iterator 896 i = Succ->instr_begin(),e = Succ->instr_end(); 897 i != e && i->isPHI(); ++i) 898 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 899 if (i->getOperand(ni+1).getMBB() == this) 900 i->getOperand(ni+1).setMBB(NMBB); 901 902 // Inherit live-ins from the successor 903 for (const auto &LI : Succ->liveins()) 904 NMBB->addLiveIn(LI); 905 906 // Update LiveVariables. 907 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 908 if (LV) { 909 // Restore kills of virtual registers that were killed by the terminators. 910 while (!KilledRegs.empty()) { 911 unsigned Reg = KilledRegs.pop_back_val(); 912 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 913 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 914 continue; 915 if (TargetRegisterInfo::isVirtualRegister(Reg)) 916 LV->getVarInfo(Reg).Kills.push_back(&*I); 917 DEBUG(dbgs() << "Restored terminator kill: " << *I); 918 break; 919 } 920 } 921 // Update relevant live-through information. 922 LV->addNewBlock(NMBB, this, Succ); 923 } 924 925 if (LIS) { 926 // After splitting the edge and updating SlotIndexes, live intervals may be 927 // in one of two situations, depending on whether this block was the last in 928 // the function. If the original block was the last in the function, all 929 // live intervals will end prior to the beginning of the new split block. If 930 // the original block was not at the end of the function, all live intervals 931 // will extend to the end of the new split block. 932 933 bool isLastMBB = 934 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 935 936 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 937 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 938 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 939 940 // Find the registers used from NMBB in PHIs in Succ. 941 SmallSet<unsigned, 8> PHISrcRegs; 942 for (MachineBasicBlock::instr_iterator 943 I = Succ->instr_begin(), E = Succ->instr_end(); 944 I != E && I->isPHI(); ++I) { 945 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 946 if (I->getOperand(ni+1).getMBB() == NMBB) { 947 MachineOperand &MO = I->getOperand(ni); 948 unsigned Reg = MO.getReg(); 949 PHISrcRegs.insert(Reg); 950 if (MO.isUndef()) 951 continue; 952 953 LiveInterval &LI = LIS->getInterval(Reg); 954 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 955 assert(VNI && 956 "PHI sources should be live out of their predecessors."); 957 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 958 } 959 } 960 } 961 962 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 963 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 964 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 965 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 966 continue; 967 968 LiveInterval &LI = LIS->getInterval(Reg); 969 if (!LI.liveAt(PrevIndex)) 970 continue; 971 972 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 973 if (isLiveOut && isLastMBB) { 974 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 975 assert(VNI && "LiveInterval should have VNInfo where it is live."); 976 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 977 } else if (!isLiveOut && !isLastMBB) { 978 LI.removeSegment(StartIndex, EndIndex); 979 } 980 } 981 982 // Update all intervals for registers whose uses may have been modified by 983 // updateTerminator(). 984 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 985 } 986 987 if (MachineDominatorTree *MDT = 988 P.getAnalysisIfAvailable<MachineDominatorTree>()) 989 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 990 991 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 992 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 993 // If one or the other blocks were not in a loop, the new block is not 994 // either, and thus LI doesn't need to be updated. 995 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 996 if (TIL == DestLoop) { 997 // Both in the same loop, the NMBB joins loop. 998 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 999 } else if (TIL->contains(DestLoop)) { 1000 // Edge from an outer loop to an inner loop. Add to the outer loop. 1001 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1002 } else if (DestLoop->contains(TIL)) { 1003 // Edge from an inner loop to an outer loop. Add to the outer loop. 1004 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1005 } else { 1006 // Edge from two loops with no containment relation. Because these 1007 // are natural loops, we know that the destination block must be the 1008 // header of its loop (adding a branch into a loop elsewhere would 1009 // create an irreducible loop). 1010 assert(DestLoop->getHeader() == Succ && 1011 "Should not create irreducible loops!"); 1012 if (MachineLoop *P = DestLoop->getParentLoop()) 1013 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1014 } 1015 } 1016 } 1017 1018 return NMBB; 1019 } 1020 1021 bool MachineBasicBlock::canSplitCriticalEdge( 1022 const MachineBasicBlock *Succ) const { 1023 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1024 // it in this generic function. 1025 if (Succ->isEHPad()) 1026 return false; 1027 1028 const MachineFunction *MF = getParent(); 1029 1030 // Performance might be harmed on HW that implements branching using exec mask 1031 // where both sides of the branches are always executed. 1032 if (MF->getTarget().requiresStructuredCFG()) 1033 return false; 1034 1035 // We may need to update this's terminator, but we can't do that if 1036 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1037 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1038 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1039 SmallVector<MachineOperand, 4> Cond; 1040 // AnalyzeBanch should modify this, since we did not allow modification. 1041 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1042 /*AllowModify*/ false)) 1043 return false; 1044 1045 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1046 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1047 // case that we can't handle. Since this never happens in properly optimized 1048 // code, just skip those edges. 1049 if (TBB && TBB == FBB) { 1050 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1051 << printMBBReference(*this) << '\n'); 1052 return false; 1053 } 1054 return true; 1055 } 1056 1057 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1058 /// neighboring instructions so the bundle won't be broken by removing MI. 1059 static void unbundleSingleMI(MachineInstr *MI) { 1060 // Removing the first instruction in a bundle. 1061 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1062 MI->unbundleFromSucc(); 1063 // Removing the last instruction in a bundle. 1064 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1065 MI->unbundleFromPred(); 1066 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1067 // are already fine. 1068 } 1069 1070 MachineBasicBlock::instr_iterator 1071 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1072 unbundleSingleMI(&*I); 1073 return Insts.erase(I); 1074 } 1075 1076 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1077 unbundleSingleMI(MI); 1078 MI->clearFlag(MachineInstr::BundledPred); 1079 MI->clearFlag(MachineInstr::BundledSucc); 1080 return Insts.remove(MI); 1081 } 1082 1083 MachineBasicBlock::instr_iterator 1084 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1085 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1086 "Cannot insert instruction with bundle flags"); 1087 // Set the bundle flags when inserting inside a bundle. 1088 if (I != instr_end() && I->isBundledWithPred()) { 1089 MI->setFlag(MachineInstr::BundledPred); 1090 MI->setFlag(MachineInstr::BundledSucc); 1091 } 1092 return Insts.insert(I, MI); 1093 } 1094 1095 /// This method unlinks 'this' from the containing function, and returns it, but 1096 /// does not delete it. 1097 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1098 assert(getParent() && "Not embedded in a function!"); 1099 getParent()->remove(this); 1100 return this; 1101 } 1102 1103 /// This method unlinks 'this' from the containing function, and deletes it. 1104 void MachineBasicBlock::eraseFromParent() { 1105 assert(getParent() && "Not embedded in a function!"); 1106 getParent()->erase(this); 1107 } 1108 1109 /// Given a machine basic block that branched to 'Old', change the code and CFG 1110 /// so that it branches to 'New' instead. 1111 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1112 MachineBasicBlock *New) { 1113 assert(Old != New && "Cannot replace self with self!"); 1114 1115 MachineBasicBlock::instr_iterator I = instr_end(); 1116 while (I != instr_begin()) { 1117 --I; 1118 if (!I->isTerminator()) break; 1119 1120 // Scan the operands of this machine instruction, replacing any uses of Old 1121 // with New. 1122 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1123 if (I->getOperand(i).isMBB() && 1124 I->getOperand(i).getMBB() == Old) 1125 I->getOperand(i).setMBB(New); 1126 } 1127 1128 // Update the successor information. 1129 replaceSuccessor(Old, New); 1130 } 1131 1132 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1133 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1134 /// MBB successors from the CFG. DestA and DestB can be null. 1135 /// 1136 /// Besides DestA and DestB, retain other edges leading to LandingPads 1137 /// (currently there can be only one; we don't check or require that here). 1138 /// Note it is possible that DestA and/or DestB are LandingPads. 1139 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1140 MachineBasicBlock *DestB, 1141 bool IsCond) { 1142 // The values of DestA and DestB frequently come from a call to the 1143 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1144 // values from there. 1145 // 1146 // 1. If both DestA and DestB are null, then the block ends with no branches 1147 // (it falls through to its successor). 1148 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1149 // with only an unconditional branch. 1150 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1151 // with a conditional branch that falls through to a successor (DestB). 1152 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1153 // conditional branch followed by an unconditional branch. DestA is the 1154 // 'true' destination and DestB is the 'false' destination. 1155 1156 bool Changed = false; 1157 1158 MachineBasicBlock *FallThru = getNextNode(); 1159 1160 if (!DestA && !DestB) { 1161 // Block falls through to successor. 1162 DestA = FallThru; 1163 DestB = FallThru; 1164 } else if (DestA && !DestB) { 1165 if (IsCond) 1166 // Block ends in conditional jump that falls through to successor. 1167 DestB = FallThru; 1168 } else { 1169 assert(DestA && DestB && IsCond && 1170 "CFG in a bad state. Cannot correct CFG edges"); 1171 } 1172 1173 // Remove superfluous edges. I.e., those which aren't destinations of this 1174 // basic block, duplicate edges, or landing pads. 1175 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1176 MachineBasicBlock::succ_iterator SI = succ_begin(); 1177 while (SI != succ_end()) { 1178 const MachineBasicBlock *MBB = *SI; 1179 if (!SeenMBBs.insert(MBB).second || 1180 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1181 // This is a superfluous edge, remove it. 1182 SI = removeSuccessor(SI); 1183 Changed = true; 1184 } else { 1185 ++SI; 1186 } 1187 } 1188 1189 if (Changed) 1190 normalizeSuccProbs(); 1191 return Changed; 1192 } 1193 1194 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1195 /// instructions. Return UnknownLoc if there is none. 1196 DebugLoc 1197 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1198 // Skip debug declarations, we don't want a DebugLoc from them. 1199 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1200 if (MBBI != instr_end()) 1201 return MBBI->getDebugLoc(); 1202 return {}; 1203 } 1204 1205 /// Find and return the merged DebugLoc of the branch instructions of the block. 1206 /// Return UnknownLoc if there is none. 1207 DebugLoc 1208 MachineBasicBlock::findBranchDebugLoc() { 1209 DebugLoc DL; 1210 auto TI = getFirstTerminator(); 1211 while (TI != end() && !TI->isBranch()) 1212 ++TI; 1213 1214 if (TI != end()) { 1215 DL = TI->getDebugLoc(); 1216 for (++TI ; TI != end() ; ++TI) 1217 if (TI->isBranch()) 1218 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1219 } 1220 return DL; 1221 } 1222 1223 /// Return probability of the edge from this block to MBB. 1224 BranchProbability 1225 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1226 if (Probs.empty()) 1227 return BranchProbability(1, succ_size()); 1228 1229 const auto &Prob = *getProbabilityIterator(Succ); 1230 if (Prob.isUnknown()) { 1231 // For unknown probabilities, collect the sum of all known ones, and evenly 1232 // ditribute the complemental of the sum to each unknown probability. 1233 unsigned KnownProbNum = 0; 1234 auto Sum = BranchProbability::getZero(); 1235 for (auto &P : Probs) { 1236 if (!P.isUnknown()) { 1237 Sum += P; 1238 KnownProbNum++; 1239 } 1240 } 1241 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1242 } else 1243 return Prob; 1244 } 1245 1246 /// Set successor probability of a given iterator. 1247 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1248 BranchProbability Prob) { 1249 assert(!Prob.isUnknown()); 1250 if (Probs.empty()) 1251 return; 1252 *getProbabilityIterator(I) = Prob; 1253 } 1254 1255 /// Return probability iterator corresonding to the I successor iterator 1256 MachineBasicBlock::const_probability_iterator 1257 MachineBasicBlock::getProbabilityIterator( 1258 MachineBasicBlock::const_succ_iterator I) const { 1259 assert(Probs.size() == Successors.size() && "Async probability list!"); 1260 const size_t index = std::distance(Successors.begin(), I); 1261 assert(index < Probs.size() && "Not a current successor!"); 1262 return Probs.begin() + index; 1263 } 1264 1265 /// Return probability iterator corresonding to the I successor iterator. 1266 MachineBasicBlock::probability_iterator 1267 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1268 assert(Probs.size() == Successors.size() && "Async probability list!"); 1269 const size_t index = std::distance(Successors.begin(), I); 1270 assert(index < Probs.size() && "Not a current successor!"); 1271 return Probs.begin() + index; 1272 } 1273 1274 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1275 /// as of just before "MI". 1276 /// 1277 /// Search is localised to a neighborhood of 1278 /// Neighborhood instructions before (searching for defs or kills) and N 1279 /// instructions after (searching just for defs) MI. 1280 MachineBasicBlock::LivenessQueryResult 1281 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1282 unsigned Reg, const_iterator Before, 1283 unsigned Neighborhood) const { 1284 unsigned N = Neighborhood; 1285 1286 // Start by searching backwards from Before, looking for kills, reads or defs. 1287 const_iterator I(Before); 1288 // If this is the first insn in the block, don't search backwards. 1289 if (I != begin()) { 1290 do { 1291 --I; 1292 1293 MachineOperandIteratorBase::PhysRegInfo Info = 1294 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1295 1296 // Defs happen after uses so they take precedence if both are present. 1297 1298 // Register is dead after a dead def of the full register. 1299 if (Info.DeadDef) 1300 return LQR_Dead; 1301 // Register is (at least partially) live after a def. 1302 if (Info.Defined) { 1303 if (!Info.PartialDeadDef) 1304 return LQR_Live; 1305 // As soon as we saw a partial definition (dead or not), 1306 // we cannot tell if the value is partial live without 1307 // tracking the lanemasks. We are not going to do this, 1308 // so fall back on the remaining of the analysis. 1309 break; 1310 } 1311 // Register is dead after a full kill or clobber and no def. 1312 if (Info.Killed || Info.Clobbered) 1313 return LQR_Dead; 1314 // Register must be live if we read it. 1315 if (Info.Read) 1316 return LQR_Live; 1317 } while (I != begin() && --N > 0); 1318 } 1319 1320 // Did we get to the start of the block? 1321 if (I == begin()) { 1322 // If so, the register's state is definitely defined by the live-in state. 1323 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1324 ++RAI) 1325 if (isLiveIn(*RAI)) 1326 return LQR_Live; 1327 1328 return LQR_Dead; 1329 } 1330 1331 N = Neighborhood; 1332 1333 // Try searching forwards from Before, looking for reads or defs. 1334 I = const_iterator(Before); 1335 // If this is the last insn in the block, don't search forwards. 1336 if (I != end()) { 1337 for (++I; I != end() && N > 0; ++I, --N) { 1338 MachineOperandIteratorBase::PhysRegInfo Info = 1339 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1340 1341 // Register is live when we read it here. 1342 if (Info.Read) 1343 return LQR_Live; 1344 // Register is dead if we can fully overwrite or clobber it here. 1345 if (Info.FullyDefined || Info.Clobbered) 1346 return LQR_Dead; 1347 } 1348 } 1349 1350 // At this point we have no idea of the liveness of the register. 1351 return LQR_Unknown; 1352 } 1353 1354 const uint32_t * 1355 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1356 // EH funclet entry does not preserve any registers. 1357 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1358 } 1359 1360 const uint32_t * 1361 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1362 // If we see a return block with successors, this must be a funclet return, 1363 // which does not preserve any registers. If there are no successors, we don't 1364 // care what kind of return it is, putting a mask after it is a no-op. 1365 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1366 } 1367 1368 void MachineBasicBlock::clearLiveIns() { 1369 LiveIns.clear(); 1370 } 1371 1372 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1373 assert(getParent()->getProperties().hasProperty( 1374 MachineFunctionProperties::Property::TracksLiveness) && 1375 "Liveness information is accurate"); 1376 return LiveIns.begin(); 1377 } 1378