1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// getSymbol - Return the MCSymbol for this basic block. 51 /// 52 MCSymbol *MachineBasicBlock::getSymbol() const { 53 if (!CachedMCSymbol) { 54 const MachineFunction *MF = getParent(); 55 MCContext &Ctx = MF->getContext(); 56 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 72 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 73 /// MBB to be on the right operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 90 N->getParent()->removeFromMBBNumbering(N->Number); 91 N->Number = -1; 92 } 93 94 95 /// addNodeToList (MI) - When we add an instruction to a basic block 96 /// list, we update its parent pointer and add its operands from reg use/def 97 /// lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 109 /// list, we update its parent pointer and remove its operands from reg use/def 110 /// lists if appropriate. 111 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 112 assert(N->getParent() && "machine instruction not in a basic block"); 113 114 // Remove from the use/def lists. 115 if (MachineFunction *MF = N->getParent()->getParent()) 116 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 117 118 N->setParent(nullptr); 119 } 120 121 /// transferNodesFromList (MI) - When moving a range of instructions from one 122 /// MBB list to another, we need to update the parent pointers and the use/def 123 /// lists. 124 void ilist_traits<MachineInstr>:: 125 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 126 ilist_iterator<MachineInstr> first, 127 ilist_iterator<MachineInstr> last) { 128 assert(Parent->getParent() == fromList.Parent->getParent() && 129 "MachineInstr parent mismatch!"); 130 131 // Splice within the same MBB -> no change. 132 if (Parent == fromList.Parent) return; 133 134 // If splicing between two blocks within the same function, just update the 135 // parent pointers. 136 for (; first != last; ++first) 137 first->setParent(Parent); 138 } 139 140 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 141 assert(!MI->getParent() && "MI is still in a block!"); 142 Parent->getParent()->DeleteMachineInstr(MI); 143 } 144 145 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 146 instr_iterator I = instr_begin(), E = instr_end(); 147 while (I != E && I->isPHI()) 148 ++I; 149 assert((I == E || !I->isInsideBundle()) && 150 "First non-phi MI cannot be inside a bundle!"); 151 return I; 152 } 153 154 MachineBasicBlock::iterator 155 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 156 iterator E = end(); 157 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 158 ++I; 159 // FIXME: This needs to change if we wish to bundle labels / dbg_values 160 // inside the bundle. 161 assert((I == E || !I->isInsideBundle()) && 162 "First non-phi / non-label instruction is inside a bundle!"); 163 return I; 164 } 165 166 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 167 iterator B = begin(), E = end(), I = E; 168 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 169 ; /*noop */ 170 while (I != E && !I->isTerminator()) 171 ++I; 172 return I; 173 } 174 175 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 176 instr_iterator B = instr_begin(), E = instr_end(), I = E; 177 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 178 ; /*noop */ 179 while (I != E && !I->isTerminator()) 180 ++I; 181 return I; 182 } 183 184 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 185 // Skip over begin-of-block dbg_value instructions. 186 iterator I = begin(), E = end(); 187 while (I != E && I->isDebugValue()) 188 ++I; 189 return I; 190 } 191 192 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 193 // Skip over end-of-block dbg_value instructions. 194 instr_iterator B = instr_begin(), I = instr_end(); 195 while (I != B) { 196 --I; 197 // Return instruction that starts a bundle. 198 if (I->isDebugValue() || I->isInsideBundle()) 199 continue; 200 return I; 201 } 202 // The block is all debug values. 203 return end(); 204 } 205 206 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 207 // A block with a landing pad successor only has one other successor. 208 if (succ_size() > 2) 209 return nullptr; 210 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 211 if ((*I)->isLandingPad()) 212 return *I; 213 return nullptr; 214 } 215 216 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 217 void MachineBasicBlock::dump() const { 218 print(dbgs()); 219 } 220 #endif 221 222 StringRef MachineBasicBlock::getName() const { 223 if (const BasicBlock *LBB = getBasicBlock()) 224 return LBB->getName(); 225 else 226 return "(null)"; 227 } 228 229 /// Return a hopefully unique identifier for this block. 230 std::string MachineBasicBlock::getFullName() const { 231 std::string Name; 232 if (getParent()) 233 Name = (getParent()->getName() + ":").str(); 234 if (getBasicBlock()) 235 Name += getBasicBlock()->getName(); 236 else 237 Name += ("BB" + Twine(getNumber())).str(); 238 return Name; 239 } 240 241 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 242 const MachineFunction *MF = getParent(); 243 if (!MF) { 244 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 245 << " is null\n"; 246 return; 247 } 248 const Function *F = MF->getFunction(); 249 const Module *M = F ? F->getParent() : nullptr; 250 ModuleSlotTracker MST(M); 251 print(OS, MST, Indexes); 252 } 253 254 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 255 SlotIndexes *Indexes) const { 256 const MachineFunction *MF = getParent(); 257 if (!MF) { 258 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 259 << " is null\n"; 260 return; 261 } 262 263 if (Indexes) 264 OS << Indexes->getMBBStartIdx(this) << '\t'; 265 266 OS << "BB#" << getNumber() << ": "; 267 268 const char *Comma = ""; 269 if (const BasicBlock *LBB = getBasicBlock()) { 270 OS << Comma << "derived from LLVM BB "; 271 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 272 Comma = ", "; 273 } 274 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 275 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 276 if (Alignment) 277 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 278 << " bytes)"; 279 280 OS << '\n'; 281 282 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 283 if (!livein_empty()) { 284 if (Indexes) OS << '\t'; 285 OS << " Live Ins:"; 286 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 287 OS << ' ' << PrintReg(*I, TRI); 288 OS << '\n'; 289 } 290 // Print the preds of this block according to the CFG. 291 if (!pred_empty()) { 292 if (Indexes) OS << '\t'; 293 OS << " Predecessors according to CFG:"; 294 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 295 OS << " BB#" << (*PI)->getNumber(); 296 OS << '\n'; 297 } 298 299 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 300 if (Indexes) { 301 if (Indexes->hasIndex(I)) 302 OS << Indexes->getInstructionIndex(I); 303 OS << '\t'; 304 } 305 OS << '\t'; 306 if (I->isInsideBundle()) 307 OS << " * "; 308 I->print(OS, MST); 309 } 310 311 // Print the successors of this block according to the CFG. 312 if (!succ_empty()) { 313 if (Indexes) OS << '\t'; 314 OS << " Successors according to CFG:"; 315 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 316 OS << " BB#" << (*SI)->getNumber(); 317 if (!Weights.empty()) 318 OS << '(' << *getWeightIterator(SI) << ')'; 319 } 320 OS << '\n'; 321 } 322 } 323 324 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 325 bool /*PrintType*/) const { 326 OS << "BB#" << getNumber(); 327 } 328 329 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 330 std::vector<unsigned>::iterator I = 331 std::find(LiveIns.begin(), LiveIns.end(), Reg); 332 if (I != LiveIns.end()) 333 LiveIns.erase(I); 334 } 335 336 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 337 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 338 return I != livein_end(); 339 } 340 341 unsigned 342 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 343 assert(getParent() && "MBB must be inserted in function"); 344 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 345 assert(RC && "Register class is required"); 346 assert((isLandingPad() || this == &getParent()->front()) && 347 "Only the entry block and landing pads can have physreg live ins"); 348 349 bool LiveIn = isLiveIn(PhysReg); 350 iterator I = SkipPHIsAndLabels(begin()), E = end(); 351 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 352 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 353 354 // Look for an existing copy. 355 if (LiveIn) 356 for (;I != E && I->isCopy(); ++I) 357 if (I->getOperand(1).getReg() == PhysReg) { 358 unsigned VirtReg = I->getOperand(0).getReg(); 359 if (!MRI.constrainRegClass(VirtReg, RC)) 360 llvm_unreachable("Incompatible live-in register class."); 361 return VirtReg; 362 } 363 364 // No luck, create a virtual register. 365 unsigned VirtReg = MRI.createVirtualRegister(RC); 366 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 367 .addReg(PhysReg, RegState::Kill); 368 if (!LiveIn) 369 addLiveIn(PhysReg); 370 return VirtReg; 371 } 372 373 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 374 getParent()->splice(NewAfter, this); 375 } 376 377 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 378 MachineFunction::iterator BBI = NewBefore; 379 getParent()->splice(++BBI, this); 380 } 381 382 void MachineBasicBlock::updateTerminator() { 383 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 384 // A block with no successors has no concerns with fall-through edges. 385 if (this->succ_empty()) return; 386 387 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 388 SmallVector<MachineOperand, 4> Cond; 389 DebugLoc dl; // FIXME: this is nowhere 390 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 391 (void) B; 392 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 393 if (Cond.empty()) { 394 if (TBB) { 395 // The block has an unconditional branch. If its successor is now 396 // its layout successor, delete the branch. 397 if (isLayoutSuccessor(TBB)) 398 TII->RemoveBranch(*this); 399 } else { 400 // The block has an unconditional fallthrough. If its successor is not 401 // its layout successor, insert a branch. First we have to locate the 402 // only non-landing-pad successor, as that is the fallthrough block. 403 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 404 if ((*SI)->isLandingPad()) 405 continue; 406 assert(!TBB && "Found more than one non-landing-pad successor!"); 407 TBB = *SI; 408 } 409 410 // If there is no non-landing-pad successor, the block has no 411 // fall-through edges to be concerned with. 412 if (!TBB) 413 return; 414 415 // Finally update the unconditional successor to be reached via a branch 416 // if it would not be reached by fallthrough. 417 if (!isLayoutSuccessor(TBB)) 418 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 419 } 420 } else { 421 if (FBB) { 422 // The block has a non-fallthrough conditional branch. If one of its 423 // successors is its layout successor, rewrite it to a fallthrough 424 // conditional branch. 425 if (isLayoutSuccessor(TBB)) { 426 if (TII->ReverseBranchCondition(Cond)) 427 return; 428 TII->RemoveBranch(*this); 429 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 430 } else if (isLayoutSuccessor(FBB)) { 431 TII->RemoveBranch(*this); 432 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 433 } 434 } else { 435 // Walk through the successors and find the successor which is not 436 // a landing pad and is not the conditional branch destination (in TBB) 437 // as the fallthrough successor. 438 MachineBasicBlock *FallthroughBB = nullptr; 439 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 440 if ((*SI)->isLandingPad() || *SI == TBB) 441 continue; 442 assert(!FallthroughBB && "Found more than one fallthrough successor."); 443 FallthroughBB = *SI; 444 } 445 if (!FallthroughBB && canFallThrough()) { 446 // We fallthrough to the same basic block as the conditional jump 447 // targets. Remove the conditional jump, leaving unconditional 448 // fallthrough. 449 // FIXME: This does not seem like a reasonable pattern to support, but 450 // it has been seen in the wild coming out of degenerate ARM test cases. 451 TII->RemoveBranch(*this); 452 453 // Finally update the unconditional successor to be reached via a branch 454 // if it would not be reached by fallthrough. 455 if (!isLayoutSuccessor(TBB)) 456 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 457 return; 458 } 459 460 // The block has a fallthrough conditional branch. 461 if (isLayoutSuccessor(TBB)) { 462 if (TII->ReverseBranchCondition(Cond)) { 463 // We can't reverse the condition, add an unconditional branch. 464 Cond.clear(); 465 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 466 return; 467 } 468 TII->RemoveBranch(*this); 469 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 470 } else if (!isLayoutSuccessor(FallthroughBB)) { 471 TII->RemoveBranch(*this); 472 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 473 } 474 } 475 } 476 } 477 478 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 479 480 // If we see non-zero value for the first time it means we actually use Weight 481 // list, so we fill all Weights with 0's. 482 if (weight != 0 && Weights.empty()) 483 Weights.resize(Successors.size()); 484 485 if (weight != 0 || !Weights.empty()) 486 Weights.push_back(weight); 487 488 Successors.push_back(succ); 489 succ->addPredecessor(this); 490 } 491 492 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 493 succ->removePredecessor(this); 494 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 495 assert(I != Successors.end() && "Not a current successor!"); 496 497 // If Weight list is empty it means we don't use it (disabled optimization). 498 if (!Weights.empty()) { 499 weight_iterator WI = getWeightIterator(I); 500 Weights.erase(WI); 501 } 502 503 Successors.erase(I); 504 } 505 506 MachineBasicBlock::succ_iterator 507 MachineBasicBlock::removeSuccessor(succ_iterator I) { 508 assert(I != Successors.end() && "Not a current successor!"); 509 510 // If Weight list is empty it means we don't use it (disabled optimization). 511 if (!Weights.empty()) { 512 weight_iterator WI = getWeightIterator(I); 513 Weights.erase(WI); 514 } 515 516 (*I)->removePredecessor(this); 517 return Successors.erase(I); 518 } 519 520 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 521 MachineBasicBlock *New) { 522 if (Old == New) 523 return; 524 525 succ_iterator E = succ_end(); 526 succ_iterator NewI = E; 527 succ_iterator OldI = E; 528 for (succ_iterator I = succ_begin(); I != E; ++I) { 529 if (*I == Old) { 530 OldI = I; 531 if (NewI != E) 532 break; 533 } 534 if (*I == New) { 535 NewI = I; 536 if (OldI != E) 537 break; 538 } 539 } 540 assert(OldI != E && "Old is not a successor of this block"); 541 Old->removePredecessor(this); 542 543 // If New isn't already a successor, let it take Old's place. 544 if (NewI == E) { 545 New->addPredecessor(this); 546 *OldI = New; 547 return; 548 } 549 550 // New is already a successor. 551 // Update its weight instead of adding a duplicate edge. 552 if (!Weights.empty()) { 553 weight_iterator OldWI = getWeightIterator(OldI); 554 *getWeightIterator(NewI) += *OldWI; 555 Weights.erase(OldWI); 556 } 557 Successors.erase(OldI); 558 } 559 560 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 561 Predecessors.push_back(pred); 562 } 563 564 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 565 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 566 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 567 Predecessors.erase(I); 568 } 569 570 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 571 if (this == fromMBB) 572 return; 573 574 while (!fromMBB->succ_empty()) { 575 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 576 uint32_t Weight = 0; 577 578 // If Weight list is empty it means we don't use it (disabled optimization). 579 if (!fromMBB->Weights.empty()) 580 Weight = *fromMBB->Weights.begin(); 581 582 addSuccessor(Succ, Weight); 583 fromMBB->removeSuccessor(Succ); 584 } 585 } 586 587 void 588 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 589 if (this == fromMBB) 590 return; 591 592 while (!fromMBB->succ_empty()) { 593 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 594 uint32_t Weight = 0; 595 if (!fromMBB->Weights.empty()) 596 Weight = *fromMBB->Weights.begin(); 597 addSuccessor(Succ, Weight); 598 fromMBB->removeSuccessor(Succ); 599 600 // Fix up any PHI nodes in the successor. 601 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 602 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 603 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 604 MachineOperand &MO = MI->getOperand(i); 605 if (MO.getMBB() == fromMBB) 606 MO.setMBB(this); 607 } 608 } 609 } 610 611 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 612 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 613 } 614 615 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 616 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 617 } 618 619 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 620 MachineFunction::const_iterator I(this); 621 return std::next(I) == MachineFunction::const_iterator(MBB); 622 } 623 624 bool MachineBasicBlock::canFallThrough() { 625 MachineFunction::iterator Fallthrough = this; 626 ++Fallthrough; 627 // If FallthroughBlock is off the end of the function, it can't fall through. 628 if (Fallthrough == getParent()->end()) 629 return false; 630 631 // If FallthroughBlock isn't a successor, no fallthrough is possible. 632 if (!isSuccessor(Fallthrough)) 633 return false; 634 635 // Analyze the branches, if any, at the end of the block. 636 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 637 SmallVector<MachineOperand, 4> Cond; 638 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 639 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 640 // If we couldn't analyze the branch, examine the last instruction. 641 // If the block doesn't end in a known control barrier, assume fallthrough 642 // is possible. The isPredicated check is needed because this code can be 643 // called during IfConversion, where an instruction which is normally a 644 // Barrier is predicated and thus no longer an actual control barrier. 645 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 646 } 647 648 // If there is no branch, control always falls through. 649 if (!TBB) return true; 650 651 // If there is some explicit branch to the fallthrough block, it can obviously 652 // reach, even though the branch should get folded to fall through implicitly. 653 if (MachineFunction::iterator(TBB) == Fallthrough || 654 MachineFunction::iterator(FBB) == Fallthrough) 655 return true; 656 657 // If it's an unconditional branch to some block not the fall through, it 658 // doesn't fall through. 659 if (Cond.empty()) return false; 660 661 // Otherwise, if it is conditional and has no explicit false block, it falls 662 // through. 663 return FBB == nullptr; 664 } 665 666 MachineBasicBlock * 667 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 668 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 669 // it in this generic function. 670 if (Succ->isLandingPad()) 671 return nullptr; 672 673 MachineFunction *MF = getParent(); 674 DebugLoc dl; // FIXME: this is nowhere 675 676 // Performance might be harmed on HW that implements branching using exec mask 677 // where both sides of the branches are always executed. 678 if (MF->getTarget().requiresStructuredCFG()) 679 return nullptr; 680 681 // We may need to update this's terminator, but we can't do that if 682 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 683 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 684 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 685 SmallVector<MachineOperand, 4> Cond; 686 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 687 return nullptr; 688 689 // Avoid bugpoint weirdness: A block may end with a conditional branch but 690 // jumps to the same MBB is either case. We have duplicate CFG edges in that 691 // case that we can't handle. Since this never happens in properly optimized 692 // code, just skip those edges. 693 if (TBB && TBB == FBB) { 694 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 695 << getNumber() << '\n'); 696 return nullptr; 697 } 698 699 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 700 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 701 DEBUG(dbgs() << "Splitting critical edge:" 702 " BB#" << getNumber() 703 << " -- BB#" << NMBB->getNumber() 704 << " -- BB#" << Succ->getNumber() << '\n'); 705 706 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 707 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 708 if (LIS) 709 LIS->insertMBBInMaps(NMBB); 710 else if (Indexes) 711 Indexes->insertMBBInMaps(NMBB); 712 713 // On some targets like Mips, branches may kill virtual registers. Make sure 714 // that LiveVariables is properly updated after updateTerminator replaces the 715 // terminators. 716 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 717 718 // Collect a list of virtual registers killed by the terminators. 719 SmallVector<unsigned, 4> KilledRegs; 720 if (LV) 721 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 722 I != E; ++I) { 723 MachineInstr *MI = I; 724 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 725 OE = MI->operands_end(); OI != OE; ++OI) { 726 if (!OI->isReg() || OI->getReg() == 0 || 727 !OI->isUse() || !OI->isKill() || OI->isUndef()) 728 continue; 729 unsigned Reg = OI->getReg(); 730 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 731 LV->getVarInfo(Reg).removeKill(MI)) { 732 KilledRegs.push_back(Reg); 733 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 734 OI->setIsKill(false); 735 } 736 } 737 } 738 739 SmallVector<unsigned, 4> UsedRegs; 740 if (LIS) { 741 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 742 I != E; ++I) { 743 MachineInstr *MI = I; 744 745 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 746 OE = MI->operands_end(); OI != OE; ++OI) { 747 if (!OI->isReg() || OI->getReg() == 0) 748 continue; 749 750 unsigned Reg = OI->getReg(); 751 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 752 UsedRegs.push_back(Reg); 753 } 754 } 755 } 756 757 ReplaceUsesOfBlockWith(Succ, NMBB); 758 759 // If updateTerminator() removes instructions, we need to remove them from 760 // SlotIndexes. 761 SmallVector<MachineInstr*, 4> Terminators; 762 if (Indexes) { 763 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 764 I != E; ++I) 765 Terminators.push_back(I); 766 } 767 768 updateTerminator(); 769 770 if (Indexes) { 771 SmallVector<MachineInstr*, 4> NewTerminators; 772 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 773 I != E; ++I) 774 NewTerminators.push_back(I); 775 776 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 777 E = Terminators.end(); I != E; ++I) { 778 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 779 NewTerminators.end()) 780 Indexes->removeMachineInstrFromMaps(*I); 781 } 782 } 783 784 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 785 NMBB->addSuccessor(Succ); 786 if (!NMBB->isLayoutSuccessor(Succ)) { 787 Cond.clear(); 788 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 789 dl); 790 791 if (Indexes) { 792 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 793 I != E; ++I) { 794 // Some instructions may have been moved to NMBB by updateTerminator(), 795 // so we first remove any instruction that already has an index. 796 if (Indexes->hasIndex(I)) 797 Indexes->removeMachineInstrFromMaps(I); 798 Indexes->insertMachineInstrInMaps(I); 799 } 800 } 801 } 802 803 // Fix PHI nodes in Succ so they refer to NMBB instead of this 804 for (MachineBasicBlock::instr_iterator 805 i = Succ->instr_begin(),e = Succ->instr_end(); 806 i != e && i->isPHI(); ++i) 807 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 808 if (i->getOperand(ni+1).getMBB() == this) 809 i->getOperand(ni+1).setMBB(NMBB); 810 811 // Inherit live-ins from the successor 812 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 813 E = Succ->livein_end(); I != E; ++I) 814 NMBB->addLiveIn(*I); 815 816 // Update LiveVariables. 817 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 818 if (LV) { 819 // Restore kills of virtual registers that were killed by the terminators. 820 while (!KilledRegs.empty()) { 821 unsigned Reg = KilledRegs.pop_back_val(); 822 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 823 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 824 continue; 825 if (TargetRegisterInfo::isVirtualRegister(Reg)) 826 LV->getVarInfo(Reg).Kills.push_back(I); 827 DEBUG(dbgs() << "Restored terminator kill: " << *I); 828 break; 829 } 830 } 831 // Update relevant live-through information. 832 LV->addNewBlock(NMBB, this, Succ); 833 } 834 835 if (LIS) { 836 // After splitting the edge and updating SlotIndexes, live intervals may be 837 // in one of two situations, depending on whether this block was the last in 838 // the function. If the original block was the last in the function, all 839 // live intervals will end prior to the beginning of the new split block. If 840 // the original block was not at the end of the function, all live intervals 841 // will extend to the end of the new split block. 842 843 bool isLastMBB = 844 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 845 846 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 847 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 848 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 849 850 // Find the registers used from NMBB in PHIs in Succ. 851 SmallSet<unsigned, 8> PHISrcRegs; 852 for (MachineBasicBlock::instr_iterator 853 I = Succ->instr_begin(), E = Succ->instr_end(); 854 I != E && I->isPHI(); ++I) { 855 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 856 if (I->getOperand(ni+1).getMBB() == NMBB) { 857 MachineOperand &MO = I->getOperand(ni); 858 unsigned Reg = MO.getReg(); 859 PHISrcRegs.insert(Reg); 860 if (MO.isUndef()) 861 continue; 862 863 LiveInterval &LI = LIS->getInterval(Reg); 864 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 865 assert(VNI && 866 "PHI sources should be live out of their predecessors."); 867 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 868 } 869 } 870 } 871 872 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 873 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 874 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 875 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 876 continue; 877 878 LiveInterval &LI = LIS->getInterval(Reg); 879 if (!LI.liveAt(PrevIndex)) 880 continue; 881 882 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 883 if (isLiveOut && isLastMBB) { 884 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 885 assert(VNI && "LiveInterval should have VNInfo where it is live."); 886 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 887 } else if (!isLiveOut && !isLastMBB) { 888 LI.removeSegment(StartIndex, EndIndex); 889 } 890 } 891 892 // Update all intervals for registers whose uses may have been modified by 893 // updateTerminator(). 894 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 895 } 896 897 if (MachineDominatorTree *MDT = 898 P->getAnalysisIfAvailable<MachineDominatorTree>()) 899 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 900 901 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 902 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 903 // If one or the other blocks were not in a loop, the new block is not 904 // either, and thus LI doesn't need to be updated. 905 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 906 if (TIL == DestLoop) { 907 // Both in the same loop, the NMBB joins loop. 908 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 909 } else if (TIL->contains(DestLoop)) { 910 // Edge from an outer loop to an inner loop. Add to the outer loop. 911 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 912 } else if (DestLoop->contains(TIL)) { 913 // Edge from an inner loop to an outer loop. Add to the outer loop. 914 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 915 } else { 916 // Edge from two loops with no containment relation. Because these 917 // are natural loops, we know that the destination block must be the 918 // header of its loop (adding a branch into a loop elsewhere would 919 // create an irreducible loop). 920 assert(DestLoop->getHeader() == Succ && 921 "Should not create irreducible loops!"); 922 if (MachineLoop *P = DestLoop->getParentLoop()) 923 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 924 } 925 } 926 } 927 928 return NMBB; 929 } 930 931 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 932 /// neighboring instructions so the bundle won't be broken by removing MI. 933 static void unbundleSingleMI(MachineInstr *MI) { 934 // Removing the first instruction in a bundle. 935 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 936 MI->unbundleFromSucc(); 937 // Removing the last instruction in a bundle. 938 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 939 MI->unbundleFromPred(); 940 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 941 // are already fine. 942 } 943 944 MachineBasicBlock::instr_iterator 945 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 946 unbundleSingleMI(I); 947 return Insts.erase(I); 948 } 949 950 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 951 unbundleSingleMI(MI); 952 MI->clearFlag(MachineInstr::BundledPred); 953 MI->clearFlag(MachineInstr::BundledSucc); 954 return Insts.remove(MI); 955 } 956 957 MachineBasicBlock::instr_iterator 958 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 959 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 960 "Cannot insert instruction with bundle flags"); 961 // Set the bundle flags when inserting inside a bundle. 962 if (I != instr_end() && I->isBundledWithPred()) { 963 MI->setFlag(MachineInstr::BundledPred); 964 MI->setFlag(MachineInstr::BundledSucc); 965 } 966 return Insts.insert(I, MI); 967 } 968 969 /// removeFromParent - This method unlinks 'this' from the containing function, 970 /// and returns it, but does not delete it. 971 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 972 assert(getParent() && "Not embedded in a function!"); 973 getParent()->remove(this); 974 return this; 975 } 976 977 978 /// eraseFromParent - This method unlinks 'this' from the containing function, 979 /// and deletes it. 980 void MachineBasicBlock::eraseFromParent() { 981 assert(getParent() && "Not embedded in a function!"); 982 getParent()->erase(this); 983 } 984 985 986 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 987 /// 'Old', change the code and CFG so that it branches to 'New' instead. 988 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 989 MachineBasicBlock *New) { 990 assert(Old != New && "Cannot replace self with self!"); 991 992 MachineBasicBlock::instr_iterator I = instr_end(); 993 while (I != instr_begin()) { 994 --I; 995 if (!I->isTerminator()) break; 996 997 // Scan the operands of this machine instruction, replacing any uses of Old 998 // with New. 999 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1000 if (I->getOperand(i).isMBB() && 1001 I->getOperand(i).getMBB() == Old) 1002 I->getOperand(i).setMBB(New); 1003 } 1004 1005 // Update the successor information. 1006 replaceSuccessor(Old, New); 1007 } 1008 1009 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 1010 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 1011 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 1012 /// null. 1013 /// 1014 /// Besides DestA and DestB, retain other edges leading to LandingPads 1015 /// (currently there can be only one; we don't check or require that here). 1016 /// Note it is possible that DestA and/or DestB are LandingPads. 1017 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1018 MachineBasicBlock *DestB, 1019 bool isCond) { 1020 // The values of DestA and DestB frequently come from a call to the 1021 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1022 // values from there. 1023 // 1024 // 1. If both DestA and DestB are null, then the block ends with no branches 1025 // (it falls through to its successor). 1026 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1027 // with only an unconditional branch. 1028 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1029 // with a conditional branch that falls through to a successor (DestB). 1030 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1031 // conditional branch followed by an unconditional branch. DestA is the 1032 // 'true' destination and DestB is the 'false' destination. 1033 1034 bool Changed = false; 1035 1036 MachineFunction::iterator FallThru = 1037 std::next(MachineFunction::iterator(this)); 1038 1039 if (!DestA && !DestB) { 1040 // Block falls through to successor. 1041 DestA = FallThru; 1042 DestB = FallThru; 1043 } else if (DestA && !DestB) { 1044 if (isCond) 1045 // Block ends in conditional jump that falls through to successor. 1046 DestB = FallThru; 1047 } else { 1048 assert(DestA && DestB && isCond && 1049 "CFG in a bad state. Cannot correct CFG edges"); 1050 } 1051 1052 // Remove superfluous edges. I.e., those which aren't destinations of this 1053 // basic block, duplicate edges, or landing pads. 1054 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1055 MachineBasicBlock::succ_iterator SI = succ_begin(); 1056 while (SI != succ_end()) { 1057 const MachineBasicBlock *MBB = *SI; 1058 if (!SeenMBBs.insert(MBB).second || 1059 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1060 // This is a superfluous edge, remove it. 1061 SI = removeSuccessor(SI); 1062 Changed = true; 1063 } else { 1064 ++SI; 1065 } 1066 } 1067 1068 return Changed; 1069 } 1070 1071 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 1072 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 1073 DebugLoc 1074 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1075 DebugLoc DL; 1076 instr_iterator E = instr_end(); 1077 if (MBBI == E) 1078 return DL; 1079 1080 // Skip debug declarations, we don't want a DebugLoc from them. 1081 while (MBBI != E && MBBI->isDebugValue()) 1082 MBBI++; 1083 if (MBBI != E) 1084 DL = MBBI->getDebugLoc(); 1085 return DL; 1086 } 1087 1088 /// getSuccWeight - Return weight of the edge from this block to MBB. 1089 /// 1090 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1091 if (Weights.empty()) 1092 return 0; 1093 1094 return *getWeightIterator(Succ); 1095 } 1096 1097 /// Set successor weight of a given iterator. 1098 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1099 if (Weights.empty()) 1100 return; 1101 *getWeightIterator(I) = weight; 1102 } 1103 1104 /// getWeightIterator - Return wight iterator corresonding to the I successor 1105 /// iterator 1106 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1107 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1108 assert(Weights.size() == Successors.size() && "Async weight list!"); 1109 size_t index = std::distance(Successors.begin(), I); 1110 assert(index < Weights.size() && "Not a current successor!"); 1111 return Weights.begin() + index; 1112 } 1113 1114 /// getWeightIterator - Return wight iterator corresonding to the I successor 1115 /// iterator 1116 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1117 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1118 assert(Weights.size() == Successors.size() && "Async weight list!"); 1119 const size_t index = std::distance(Successors.begin(), I); 1120 assert(index < Weights.size() && "Not a current successor!"); 1121 return Weights.begin() + index; 1122 } 1123 1124 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1125 /// as of just before "MI". 1126 /// 1127 /// Search is localised to a neighborhood of 1128 /// Neighborhood instructions before (searching for defs or kills) and N 1129 /// instructions after (searching just for defs) MI. 1130 MachineBasicBlock::LivenessQueryResult 1131 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1132 unsigned Reg, const_iterator Before, 1133 unsigned Neighborhood) const { 1134 unsigned N = Neighborhood; 1135 1136 // Start by searching backwards from Before, looking for kills, reads or defs. 1137 const_iterator I(Before); 1138 // If this is the first insn in the block, don't search backwards. 1139 if (I != begin()) { 1140 do { 1141 --I; 1142 1143 MachineOperandIteratorBase::PhysRegInfo Analysis = 1144 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1145 1146 if (Analysis.Defines) 1147 // Outputs happen after inputs so they take precedence if both are 1148 // present. 1149 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1150 1151 if (Analysis.Kills || Analysis.Clobbers) 1152 // Register killed, so isn't live. 1153 return LQR_Dead; 1154 1155 else if (Analysis.ReadsOverlap) 1156 // Defined or read without a previous kill - live. 1157 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1158 1159 } while (I != begin() && --N > 0); 1160 } 1161 1162 // Did we get to the start of the block? 1163 if (I == begin()) { 1164 // If so, the register's state is definitely defined by the live-in state. 1165 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1166 RAI.isValid(); ++RAI) { 1167 if (isLiveIn(*RAI)) 1168 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1169 } 1170 1171 return LQR_Dead; 1172 } 1173 1174 N = Neighborhood; 1175 1176 // Try searching forwards from Before, looking for reads or defs. 1177 I = const_iterator(Before); 1178 // If this is the last insn in the block, don't search forwards. 1179 if (I != end()) { 1180 for (++I; I != end() && N > 0; ++I, --N) { 1181 MachineOperandIteratorBase::PhysRegInfo Analysis = 1182 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1183 1184 if (Analysis.ReadsOverlap) 1185 // Used, therefore must have been live. 1186 return (Analysis.Reads) ? 1187 LQR_Live : LQR_OverlappingLive; 1188 1189 else if (Analysis.Clobbers || Analysis.Defines) 1190 // Defined (but not read) therefore cannot have been live. 1191 return LQR_Dead; 1192 } 1193 } 1194 1195 // At this point we have no idea of the liveness of the register. 1196 return LQR_Unknown; 1197 } 1198