1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the ML eviction advisor and reward injection pass 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RegAllocEvictionAdvisor.h" 14 #include "RegAllocGreedy.h" 15 #include "RegAllocScore.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MLModelRunner.h" 18 #include "llvm/Analysis/ModelUnderTrainingRunner.h" 19 #include "llvm/Analysis/NoInferenceModelRunner.h" 20 #include "llvm/Analysis/ReleaseModeModelRunner.h" 21 #include "llvm/Analysis/Utils/TFUtils.h" 22 #include "llvm/CodeGen/CalcSpillWeights.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/PassRegistry.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 #include <array> 40 #include <memory> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "ml-regalloc" 45 46 // Generated header in release (AOT) mode 47 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 48 #include "RegallocEvictModel.h" 49 #endif 50 51 // Options that only make sense in development mode 52 #ifdef LLVM_HAVE_TF_API 53 static cl::opt<std::string> TrainingLog( 54 "regalloc-training-log", cl::Hidden, 55 cl::desc("Training log for the register allocator eviction model")); 56 57 static cl::opt<std::string> ModelUnderTraining( 58 "regalloc-model", cl::Hidden, 59 cl::desc("The model being trained for register allocation eviction")); 60 61 extern cl::opt<unsigned> EvictInterferenceCutoff; 62 63 #endif // #ifdef LLVM_HAVE_TF_API 64 65 /// The score injection pass. 66 /// This pass calculates the score for a function and inserts it in the log, but 67 /// this happens only in development mode. It's a no-op otherwise. 68 namespace llvm { 69 class RegAllocScoring : public MachineFunctionPass { 70 public: 71 static char ID; 72 73 RegAllocScoring() : MachineFunctionPass(ID) { 74 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); 75 } 76 77 ~RegAllocScoring() override = default; 78 79 StringRef getPassName() const override { 80 return "Register Allocation Pass Scoring"; 81 } 82 83 /// RegAllocReward analysis usage. 84 void getAnalysisUsage(AnalysisUsage &AU) const override { 85 AU.setPreservesAll(); 86 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 87 AU.addRequired<MachineBlockFrequencyInfo>(); 88 AU.addRequired<AAResultsWrapperPass>(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 /// Performs this pass 93 bool runOnMachineFunction(MachineFunction &) override; 94 }; 95 96 char RegAllocScoring::ID = 0; 97 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } 98 99 } // namespace llvm 100 101 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", 102 "Register Allocation Scoring Pass", false, false) 103 104 // =================================== 105 // Common ML Advisor declarations 106 // =================================== 107 namespace { 108 // This is the maximum number of interfererring ranges. That's the number of 109 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize. 110 // For X86, that's 32. 111 // TODO: find a way to get this, statically, in a programmatic way. 112 static const int64_t MaxInterferences = 32; 113 114 // Logically, we can think of the feature set given to the evaluator as a 2D 115 // matrix. The rows are the features (see next). The columns correspond to the 116 // interferences. We treat the candidate virt reg as an 'interference', too, as 117 // its feature set is the same as that of the interferring ranges. So we'll have 118 // MaxInterferences + 1 columns and by convention, we will use the last column 119 // for the virt reg seeking allocation. 120 static const int64_t CandidateVirtRegPos = MaxInterferences; 121 static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1; 122 123 // Most features are as described above, so we'll reuse this vector in defining 124 // them. 125 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; 126 127 // -------------- 128 // Features table 129 // -------------- 130 // For each interfering live range (incl. the candidate) we collect a number of 131 // features. However, because the features are of different types (and because 132 // of ML best practices), we organize the tensors per feature, not per 133 // candidate. Each such tensor has a scalar value corresponding to the 134 // interferring live range at that position, in the order in AllocationOrder. 135 // The last position corresponds to the virt reg seeking allocation. 136 // Exception to all that is the progression feature, which is just a scalar (see 137 // its documentation for details). 138 // Note on naming: the "_by_max" are normalized using the largest value of that 139 // tensor, as observed in the current decision making stage (i.e. for the 140 // current call to the advisor's tryFindEvictionCandidate) 141 // 142 // The feature list format: type, name, shape, documentation. 143 // Note: we can really just use int64 and float, hence the modeling of some 144 // bools as int64 values. 145 #define RA_EVICT_FEATURES_LIST(M) \ 146 M(int64_t, mask, PerLiveRangeShape, \ 147 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ 148 "it " \ 149 "can't be evicted)") \ 150 M(int64_t, is_free, PerLiveRangeShape, \ 151 "boolean values, 1 if this phys reg is actually free (no interferences)") \ 152 M(float, nr_urgent, PerLiveRangeShape, \ 153 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ 154 "to break cascades") \ 155 M(float, nr_broken_hints, PerLiveRangeShape, \ 156 "if this position were evicted, how many broken hints would there be") \ 157 M(int64_t, is_hint, PerLiveRangeShape, \ 158 "is this a preferred phys reg for the candidate") \ 159 M(int64_t, is_local, PerLiveRangeShape, \ 160 "is this live range local to a basic block") \ 161 M(float, nr_rematerializable, PerLiveRangeShape, \ 162 "nr rematerializable ranges") \ 163 M(float, nr_defs_and_uses, PerLiveRangeShape, \ 164 "bb freq - weighed nr defs and uses") \ 165 M(float, weighed_reads_by_max, PerLiveRangeShape, \ 166 "bb freq - weighed nr of reads, normalized") \ 167 M(float, weighed_writes_by_max, PerLiveRangeShape, \ 168 "bb feq - weighed nr of writes, normalized") \ 169 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ 170 "bb freq - weighed nr of uses that are both read and writes, normalized") \ 171 M(float, weighed_indvars_by_max, PerLiveRangeShape, \ 172 "bb freq - weighed nr of uses that are indvars, normalized") \ 173 M(float, hint_weights_by_max, PerLiveRangeShape, \ 174 "bb freq - weighed nr of uses that are hints, normalized") \ 175 M(float, start_bb_freq_by_max, PerLiveRangeShape, \ 176 "the freq in the start block, normalized") \ 177 M(float, end_bb_freq_by_max, PerLiveRangeShape, \ 178 "freq of end block, normalized") \ 179 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ 180 "hottest BB freq, normalized") \ 181 M(float, liverange_size, PerLiveRangeShape, \ 182 "size (instr index diff) of the LR") \ 183 M(float, use_def_density, PerLiveRangeShape, \ 184 "the max weight, as computed by the manual heuristic") \ 185 M(int64_t, max_stage, PerLiveRangeShape, \ 186 "largest stage of an interval in this LR") \ 187 M(int64_t, min_stage, PerLiveRangeShape, \ 188 "lowest stage of an interval in this LR") \ 189 M(float, progress, {1}, "ratio of current queue size to initial size") 190 191 // The model learns to pick one of the mask == 1 interferences. This is the name 192 // of the output tensor. 193 // The contract with the model is that the output will be guaranteed to be to a 194 // mask == 1 position. 195 // Using a macro here to avoid 'not used' warnings (and keep cond compilation to 196 // a minimum) 197 #define DecisionName "index_to_evict" 198 199 // Named features index. 200 enum FeatureIDs { 201 #define _FEATURE_IDX(_, name, __, ___) name, 202 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) 203 #undef _FEATURE_IDX 204 FeatureCount 205 }; 206 207 // The ML advisor will typically have a sparse input to the evaluator, because 208 // various phys regs won't be available. It's easier (maintenance-wise) to 209 // bulk-reset the state of the evaluator each time we are about to use it again. 210 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { 211 size_t Ret = sizeof(T); 212 for (const auto V : Shape) 213 Ret *= V; 214 return Ret; 215 } 216 217 void resetInputs(MLModelRunner &Runner) { 218 #define _RESET(TYPE, NAME, SHAPE, __) \ 219 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ 220 getTotalSize<TYPE>(SHAPE)); 221 RA_EVICT_FEATURES_LIST(_RESET) 222 #undef _RESET 223 } 224 225 // Per-live interval components that get aggregated into the feature values that 226 // will be passed to the evaluator. 227 struct LIFeatureComponents { 228 double R = 0; 229 double W = 0; 230 double RW = 0; 231 double IndVarUpdates = 0; 232 double HintWeights = 0.0; 233 int64_t NrDefsAndUses = 0; 234 float HottestBlockFreq = 0.0; 235 bool IsRemat = false; 236 }; 237 238 using CandidateRegList = 239 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; 240 using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>; 241 242 /// The ML evictor (commonalities between release and development mode) 243 class MLEvictAdvisor : public RegAllocEvictionAdvisor { 244 public: 245 MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, MLModelRunner *Runner, 246 const MachineBlockFrequencyInfo &MBFI, 247 const MachineLoopInfo &Loops); 248 249 protected: 250 const RegAllocEvictionAdvisor &getDefaultAdvisor() const { 251 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); 252 } 253 254 // The assumption is that if the Runner could not be constructed, we emit-ed 255 // error, and we shouldn't be asking for it here. 256 const MLModelRunner &getRunner() const { return *Runner; } 257 258 /// This just calls Evaluate on the Runner, but in the development mode case, 259 /// if we're just capturing the log of the default advisor, it needs to call 260 /// the latter instead, so we need to pass all the necessary parameters for 261 /// it. In the development case, it will also log. 262 virtual int64_t tryFindEvictionCandidatePosition( 263 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 264 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const; 265 266 /// Load the features of the given VirtReg (allocated or not) at column Pos, 267 /// but if that can't be evicted, return false instead. 268 bool 269 loadInterferenceFeatures(LiveInterval &VirtReg, MCRegister PhysReg, 270 bool IsHint, const SmallVirtRegSet &FixedRegisters, 271 std::array<float, FeatureIDs::FeatureCount> &Largest, 272 size_t Pos) const; 273 274 private: 275 static float getInitialQueueSize(const MachineFunction &MF); 276 277 MCRegister tryFindEvictionCandidate( 278 LiveInterval &VirtReg, const AllocationOrder &Order, 279 uint8_t CostPerUseLimit, 280 const SmallVirtRegSet &FixedRegisters) const override; 281 282 void extractFeatures(const SmallVectorImpl<LiveInterval *> &Intervals, 283 std::array<float, FeatureIDs::FeatureCount> &Largest, 284 size_t Pos, int64_t IsHint, int64_t LocalIntfsCount, 285 float NrUrgent) const; 286 287 // Point-in-time: we didn't learn this, so we always delegate to the default. 288 bool canEvictHintInterference( 289 LiveInterval &VirtReg, MCRegister PhysReg, 290 const SmallVirtRegSet &FixedRegisters) const override { 291 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, 292 FixedRegisters); 293 } 294 295 const LIFeatureComponents 296 getLIFeatureComponents(const LiveInterval &LI) const; 297 298 // Hold on to a default advisor for: 299 // 1) the implementation of canEvictHintInterference, because we didn't learn 300 // that nuance yet; 301 // 2) for bootstrapping (logging) in the development mode case. 302 const DefaultEvictionAdvisor DefaultAdvisor; 303 MLModelRunner *const Runner; 304 const MachineBlockFrequencyInfo &MBFI; 305 const MachineLoopInfo &Loops; 306 307 // Indices of those features we don't want to normalize. 308 // This could be static and shared, but its initialization is non-trivial. 309 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; 310 const float InitialQSize; 311 }; 312 313 // =================================== 314 // Release (AOT) - specifics 315 // =================================== 316 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 317 const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{ 318 #define _GETNAME(_, NAME, __, ___) #NAME, 319 RA_EVICT_FEATURES_LIST(_GETNAME) 320 #undef _GETNAME 321 }; 322 class ReleaseModeEvictionAdvisorAnalysis final 323 : public RegAllocEvictionAdvisorAnalysis { 324 public: 325 ReleaseModeEvictionAdvisorAnalysis() 326 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {} 327 // support for isa<> and dyn_cast. 328 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 329 return R->getAdvisorMode() == AdvisorMode::Release; 330 } 331 332 private: 333 void getAnalysisUsage(AnalysisUsage &AU) const override { 334 AU.addRequired<MachineBlockFrequencyInfo>(); 335 AU.addRequired<MachineLoopInfo>(); 336 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 337 } 338 339 std::unique_ptr<RegAllocEvictionAdvisor> 340 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 341 if (!Runner) 342 Runner = std::make_unique<ReleaseModeModelRunner<RegallocEvictModel>>( 343 MF.getFunction().getContext(), FeatureNames, DecisionName); 344 return std::make_unique<MLEvictAdvisor>( 345 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 346 getAnalysis<MachineLoopInfo>()); 347 } 348 std::unique_ptr<ReleaseModeModelRunner<RegallocEvictModel>> Runner; 349 }; 350 #endif 351 352 // =================================== 353 // Development mode-specifics 354 // =================================== 355 // 356 // Features we log 357 #ifdef LLVM_HAVE_TF_API 358 #define _DECL_FEATURES(type, name, shape, _) \ 359 TensorSpec::createSpec<type>(#name, shape), 360 361 static const std::vector<TensorSpec> InputFeatures{ 362 {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}, 363 }; 364 #undef _DECL_FEATURES 365 static const TensorSpec Output = 366 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 367 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); 368 369 // Features we bind on the model. The tensor names have a prefix, and we also 370 // need to include some tensors that are expected to be present by the training 371 // algo. 372 // TODO: can we just get rid of these? 373 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ 374 TensorSpec::createSpec<type>(std::string("action_") + #name, shape), 375 376 static const std::vector<TensorSpec> TrainingInputFeatures{ 377 {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 378 TensorSpec::createSpec<float>("action_discount", {1}), 379 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 380 TensorSpec::createSpec<float>("action_reward", {1})}}; 381 #undef _DECL_TRAIN_FEATURES 382 383 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { 384 public: 385 DevelopmentModeEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 386 MLModelRunner *Runner, 387 const MachineBlockFrequencyInfo &MBFI, 388 const MachineLoopInfo &Loops, Logger *Log) 389 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} 390 391 private: 392 int64_t tryFindEvictionCandidatePosition( 393 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 394 uint8_t CostPerUseLimit, 395 const SmallVirtRegSet &FixedRegisters) const override; 396 397 Logger *const Log; 398 }; 399 400 class DevelopmentModeEvictionAdvisorAnalysis final 401 : public RegAllocEvictionAdvisorAnalysis { 402 public: 403 DevelopmentModeEvictionAdvisorAnalysis() 404 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {} 405 // support for isa<> and dyn_cast. 406 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 407 return R->getAdvisorMode() == AdvisorMode::Development; 408 } 409 410 /// get the logger for the given function, or nullptr if we didn't collect 411 /// one. This is used to inject the score by the RegAllocScoring pass. 412 Logger *getLogger(const MachineFunction &MF) const { 413 auto I = LogMap.find(MF.getName()); 414 if (I == LogMap.end()) 415 return nullptr; 416 return I->second.get(); 417 } 418 419 private: 420 void getAnalysisUsage(AnalysisUsage &AU) const override { 421 AU.addRequired<MachineBlockFrequencyInfo>(); 422 AU.addRequired<MachineLoopInfo>(); 423 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 424 } 425 426 // Save all the logs (when requested). 427 bool doFinalization(Module &M) override { 428 if (TrainingLog.empty()) 429 return false; 430 std::error_code EC; 431 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); 432 if (EC) { 433 M.getContext().emitError(EC.message() + ":" + TrainingLog); 434 return false; 435 } 436 Logger::flushLogs(*OS, LogMap); 437 return false; 438 } 439 440 std::unique_ptr<RegAllocEvictionAdvisor> 441 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 442 LLVMContext &Ctx = MF.getFunction().getContext(); 443 if (ModelUnderTraining.empty() && TrainingLog.empty()) { 444 Ctx.emitError("Regalloc development mode should be requested with at " 445 "least logging enabled and/or a training model"); 446 return nullptr; 447 } 448 if (!Runner) { 449 if (ModelUnderTraining.empty()) 450 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); 451 else 452 Runner = ModelUnderTrainingRunner::createAndEnsureValid( 453 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); 454 if (!Runner) { 455 Ctx.emitError("Regalloc: could not set up the model runner"); 456 return nullptr; 457 } 458 } 459 460 Logger *Log = nullptr; 461 if (!TrainingLog.empty()) { 462 std::vector<LoggedFeatureSpec> LFS; 463 for (const auto &FS : InputFeatures) 464 LFS.push_back({FS, None}); 465 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) 466 if (MUTR->outputLoggedFeatureSpecs().size() > 1) 467 append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs())); 468 // We always log the output; in particular, if we're not evaluating, we 469 // don't have an output spec json file. That's why we handle the 470 // 'normal' output separately. 471 LFS.push_back({Output, None}); 472 auto I = LogMap.insert(std::make_pair( 473 MF.getFunction().getName(), 474 std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true))); 475 assert(I.second); 476 Log = I.first->second.get(); 477 } 478 return std::make_unique<DevelopmentModeEvictAdvisor>( 479 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 480 getAnalysis<MachineLoopInfo>(), Log); 481 } 482 483 std::unique_ptr<MLModelRunner> Runner; 484 StringMap<std::unique_ptr<Logger>> LogMap; 485 }; 486 #endif //#ifdef LLVM_HAVE_TF_API 487 } // namespace 488 489 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { 490 auto &MRI = MF.getRegInfo(); 491 float Ret = 0.0; 492 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 493 Register Reg = Register::index2VirtReg(I); 494 if (MRI.reg_nodbg_empty(Reg)) 495 continue; 496 ++Ret; 497 } 498 return Ret; 499 } 500 501 MLEvictAdvisor::MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 502 MLModelRunner *Runner, 503 const MachineBlockFrequencyInfo &MBFI, 504 const MachineLoopInfo &Loops) 505 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), 506 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), 507 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { 508 assert(this->Runner); 509 DoNotNormalize.set(FeatureIDs::mask); 510 DoNotNormalize.set(FeatureIDs::is_free); 511 DoNotNormalize.set(FeatureIDs::is_hint); 512 DoNotNormalize.set(FeatureIDs::is_local); 513 DoNotNormalize.set(FeatureIDs::min_stage); 514 DoNotNormalize.set(FeatureIDs::max_stage); 515 DoNotNormalize.set(FeatureIDs::progress); 516 } 517 518 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( 519 LiveInterval &, const AllocationOrder &, unsigned, uint8_t, 520 const SmallVirtRegSet &) const { 521 int64_t Ret = Runner->evaluate<int64_t>(); 522 assert(Ret >= 0); 523 assert(Ret <= CandidateVirtRegPos); 524 return Ret; 525 } 526 527 bool MLEvictAdvisor::loadInterferenceFeatures( 528 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 529 const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest, 530 size_t Pos) const { 531 // It is only possible to evict virtual register interference. 532 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { 533 // leave unavailable 534 return false; 535 } 536 537 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 538 int64_t LocalIntfs = 0; 539 float NrUrgent = 0.0f; 540 541 // The cascade tracking is the same as in the default advisor 542 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 543 544 SmallVector<LiveInterval *, MaxInterferences> InterferingIntervals; 545 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 546 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 547 // Different from the default heuristic, we don't make any assumptions about 548 // what having more than 10 results in the query may mean. 549 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); 550 if (IFIntervals.empty() && InterferingIntervals.empty()) 551 continue; 552 if (IFIntervals.size() >= EvictInterferenceCutoff) 553 return false; 554 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); 555 for (LiveInterval *Intf : reverse(IFIntervals)) { 556 assert(Register::isVirtualRegister(Intf->reg()) && 557 "Only expecting virtual register interference from query"); 558 // This is the same set of legality checks as in the default case: don't 559 // try to evict fixed regs or 'done' ones. Also don't break cascades, 560 // except in the urgent case, with the same nuances used in the default 561 // heuristic. 562 // We could try sharing this between the advisors, but it may end up 563 // more complex than it is right now. 564 if (FixedRegisters.count(Intf->reg())) 565 return false; 566 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 567 return false; 568 bool Urgent = 569 !VirtReg.isSpillable() && 570 (Intf->isSpillable() || 571 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 572 RegClassInfo.getNumAllocatableRegs( 573 MRI->getRegClass(Intf->reg()))); 574 // Only evict older cascades or live ranges without a cascade. 575 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 576 if (Cascade <= IntfCascade) { 577 if (!Urgent) 578 return false; 579 ++NrUrgent; 580 } 581 582 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && 583 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); 584 } 585 } 586 // OK, so if we made it this far, this LR is an eviction candidate, load its 587 // features. 588 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, 589 NrUrgent); 590 return true; 591 } 592 593 MCRegister MLEvictAdvisor::tryFindEvictionCandidate( 594 LiveInterval &VirtReg, const AllocationOrder &Order, 595 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 596 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 597 if (!MaybeOrderLimit) 598 return MCRegister::NoRegister; 599 unsigned OrderLimit = *MaybeOrderLimit; 600 601 // The heuristic sets initial costs such as, if CostPerUseLimit is 602 // max<uint8_t>, then any of the costs of the legally-evictable intervals 603 // would be lower. When that happens, one of those will be selected. 604 // Therefore, we allow the candidate be selected, unless the candidate is 605 // unspillable, in which case it would be incorrect to not find a register for 606 // it. 607 const bool MustFindEviction = 608 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); 609 // Number of available candidates - if 0, no need to continue. 610 size_t Available = 0; 611 // Make sure we don't have leftover partial state from an attempt where we had 612 // no available candidates and bailed out early. 613 resetInputs(*Runner); 614 615 // Track the index->register mapping because AllocationOrder doesn't do that 616 // and we'd have to scan it. 617 // Also track their mask, to write asserts/debug. 618 CandidateRegList Regs; 619 Regs.fill({0, false}); 620 621 // Track the largest value of features seen during this eviction session. We 622 // only normalize (some of) the float features, but it's just simpler to 623 // dimension 'Largest' to all the features, especially since we have the 624 // 'DoNotNormalize' list. 625 FeaturesListNormalizer Largest; 626 Largest.fill(0.0); 627 628 // Same overal idea as in the default eviction policy - we visit the values of 629 // AllocationOrder one at a time. If it's not legally available, we mask off 630 // the corresponding feature column (==do nothing because we already reset all 631 // the features to 0) 632 // Use Pos to capture the column we load features at - in AllocationOrder 633 // order. 634 size_t Pos = 0; 635 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 636 ++I, ++Pos) { 637 MCRegister PhysReg = *I; 638 assert(!Regs[Pos].second); 639 assert(PhysReg); 640 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { 641 continue; 642 } 643 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, 644 Largest, Pos)) { 645 ++Available; 646 Regs[Pos] = std::make_pair(PhysReg, true); 647 } 648 } 649 if (Available == 0) { 650 // Nothing to decide, nothing to learn. 651 assert(!MustFindEviction); 652 return MCRegister::NoRegister; 653 } 654 const size_t ValidPosLimit = Pos; 655 // If we must find eviction, the candidate should be masked out of the 656 // decision making process. 657 Regs[CandidateVirtRegPos].second = !MustFindEviction; 658 if (!MustFindEviction) 659 extractFeatures(SmallVector<LiveInterval *, 1>(1, &VirtReg), Largest, 660 CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0, 661 /*NrUrgent*/ 0.0); 662 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " 663 "nothing to allocate initially."); 664 // Normalize the features. 665 for (auto &V : Largest) 666 V = V ? V : 1.0; 667 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; 668 ++FeatureIndex) { 669 if (DoNotNormalize.test(FeatureIndex)) 670 continue; 671 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { 672 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; 673 } 674 } 675 *Runner->getTensor<float>(FeatureIDs::progress) = 676 static_cast<float>(RA.getQueueSize()) / InitialQSize; 677 678 // Get a decision. 679 size_t CandidatePos = tryFindEvictionCandidatePosition( 680 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 681 // The contract with the ML side is that CandidatePos is mask == 1 (i.e. 682 // Regs[CandidatePos].second) 683 assert(Regs[CandidatePos].second); 684 if (CandidatePos == CandidateVirtRegPos) { 685 assert(!MustFindEviction); 686 return MCRegister::NoRegister; 687 } 688 assert(CandidatePos < ValidPosLimit); 689 (void)ValidPosLimit; 690 return Regs[CandidatePos].first; 691 } 692 693 const LIFeatureComponents 694 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { 695 LIFeatureComponents Ret; 696 SmallPtrSet<MachineInstr *, 8> Visited; 697 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 698 699 for (MachineRegisterInfo::reg_instr_nodbg_iterator 700 I = MRI->reg_instr_nodbg_begin(LI.reg()), 701 E = MRI->reg_instr_nodbg_end(); 702 I != E;) { 703 MachineInstr *MI = &*(I++); 704 705 ++Ret.NrDefsAndUses; 706 if (!Visited.insert(MI).second) 707 continue; 708 709 if (MI->isIdentityCopy() || MI->isImplicitDef()) 710 continue; 711 712 bool Reads, Writes; 713 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); 714 715 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); 716 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); 717 718 Ret.R += (Reads && !Writes) * Freq; 719 Ret.W += (!Reads && Writes) * Freq; 720 Ret.RW += (Reads && Writes) * Freq; 721 722 auto *MBB = MI->getParent(); 723 auto *Loop = Loops.getLoopFor(MBB); 724 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; 725 726 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) 727 Ret.IndVarUpdates += Freq; 728 729 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) 730 Ret.HintWeights += Freq; 731 } 732 Ret.IsRemat = VirtRegAuxInfo::isRematerializable( 733 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); 734 return Ret; 735 } 736 737 // Overall, this currently mimics what we do for weight calculation, but instead 738 // of accummulating the various features, we keep them separate. 739 void MLEvictAdvisor::extractFeatures( 740 const SmallVectorImpl<LiveInterval *> &Intervals, 741 std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos, 742 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const { 743 int64_t NrDefsAndUses = 0; 744 int64_t NrBrokenHints = 0; 745 double R = 0.0; 746 double W = 0.0; 747 double RW = 0.0; 748 double IndVarUpdates = 0.0; 749 double HintWeights = 0.0; 750 float StartBBFreq = 0.0; 751 float EndBBFreq = 0.0; 752 float HottestBlockFreq = 0.0; 753 int32_t NrRematerializable = 0; 754 float TotalWeight = 0.0; 755 756 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); 757 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); 758 int64_t MaxStage = 0; 759 int64_t MinStage = 760 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); 761 762 for (const auto *L : Intervals) { 763 const LiveInterval &LI = *L; 764 MaxStage = std::max<int64_t>( 765 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 766 MinStage = std::min<int64_t>( 767 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 768 769 TotalWeight = std::max(TotalWeight, LI.weight()); 770 771 if (LI.beginIndex() < StartSI) 772 StartSI = LI.beginIndex(); 773 774 if (LI.endIndex() > EndSI) 775 EndSI = LI.endIndex(); 776 const LIFeatureComponents LIFC = getLIFeatureComponents(LI); 777 NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); 778 779 NrDefsAndUses += LIFC.NrDefsAndUses; 780 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); 781 R += LIFC.R; 782 W += LIFC.W; 783 RW += LIFC.RW; 784 785 IndVarUpdates += LIFC.IndVarUpdates; 786 787 HintWeights += LIFC.HintWeights; 788 NrRematerializable += LIFC.IsRemat; 789 } 790 size_t Size = 0; 791 if (!Intervals.empty()) { 792 StartBBFreq = 793 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); 794 if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) 795 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); 796 EndBBFreq = 797 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); 798 Size = StartSI.distance(EndSI); 799 } 800 // Set the features at the column 'Pos'. 801 #define SET(ID, TYPE, VAL) \ 802 do { \ 803 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ 804 if (!DoNotNormalize.test(FeatureIDs::ID)) \ 805 Largest[FeatureIDs::ID] = \ 806 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ 807 } while (false) 808 SET(mask, int64_t, 1); 809 SET(is_free, int64_t, Intervals.empty()); 810 SET(nr_urgent, float, NrUrgent); 811 SET(nr_broken_hints, float, NrBrokenHints); 812 SET(is_hint, int64_t, IsHint); 813 SET(is_local, int64_t, LocalIntfsCount); 814 SET(nr_rematerializable, float, NrRematerializable); 815 SET(nr_defs_and_uses, float, NrDefsAndUses); 816 SET(weighed_reads_by_max, float, R); 817 SET(weighed_writes_by_max, float, W); 818 SET(weighed_read_writes_by_max, float, RW); 819 SET(weighed_indvars_by_max, float, IndVarUpdates); 820 SET(hint_weights_by_max, float, HintWeights); 821 SET(start_bb_freq_by_max, float, StartBBFreq); 822 SET(end_bb_freq_by_max, float, EndBBFreq); 823 SET(hottest_bb_freq_by_max, float, HottestBlockFreq); 824 SET(liverange_size, float, Size); 825 SET(use_def_density, float, TotalWeight); 826 SET(max_stage, int64_t, MaxStage); 827 SET(min_stage, int64_t, MinStage); 828 #undef SET 829 } 830 831 // Development mode-specific implementations 832 #ifdef LLVM_HAVE_TF_API 833 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { 834 return new DevelopmentModeEvictionAdvisorAnalysis(); 835 } 836 837 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( 838 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 839 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 840 int64_t Ret = 0; 841 if (isa<ModelUnderTrainingRunner>(getRunner())) { 842 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( 843 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 844 } else { 845 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( 846 VirtReg, Order, CostPerUseLimit, FixedRegisters); 847 // Find the index of the selected PhysReg. We need it for logging, otherwise 848 // this is wasted cycles (but so would starting development mode without a 849 // model nor logging) 850 if (!PhysReg) 851 Ret = CandidateVirtRegPos; 852 else 853 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); 854 I != E; ++I, ++Ret) 855 if (*I == PhysReg) 856 break; 857 } 858 if (TrainingLog.empty()) 859 return Ret; 860 size_t CurrentFeature = 0; 861 for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) { 862 Log->logSpecifiedTensorValue( 863 CurrentFeature, reinterpret_cast<const char *>( 864 getRunner().getTensorUntyped(CurrentFeature))); 865 } 866 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) 867 for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size(); 868 ++I, ++CurrentFeature) 869 Log->logSpecifiedTensorValue( 870 CurrentFeature, 871 reinterpret_cast<const char *>( 872 MUTR->lastEvaluationResult()->getUntypedTensorValue(I))); 873 // The output is right after the features and the extra outputs 874 Log->logInt64Value(CurrentFeature, &Ret); 875 return Ret; 876 } 877 878 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { 879 if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>( 880 &getAnalysis<RegAllocEvictionAdvisorAnalysis>())) 881 if (auto *Log = DevModeAnalysis->getLogger(MF)) 882 Log->logFloatFinalReward(static_cast<float>( 883 calculateRegAllocScore( 884 MF, getAnalysis<MachineBlockFrequencyInfo>(), 885 getAnalysis<AAResultsWrapperPass>().getAAResults()) 886 .getScore())); 887 888 return false; 889 } 890 #endif // #ifdef LLVM_HAVE_TF_API 891 892 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 893 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { 894 return new ReleaseModeEvictionAdvisorAnalysis(); 895 } 896 #endif 897 898 // In all cases except development mode, we don't need scoring. 899 #if !defined(LLVM_HAVE_TF_API) 900 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } 901 #endif 902