1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the ML eviction advisor and reward injection pass 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RegAllocEvictionAdvisor.h" 14 #include "RegAllocGreedy.h" 15 #include "RegAllocScore.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MLModelRunner.h" 18 #include "llvm/Analysis/ModelUnderTrainingRunner.h" 19 #include "llvm/Analysis/NoInferenceModelRunner.h" 20 #include "llvm/Analysis/ReleaseModeModelRunner.h" 21 #include "llvm/Analysis/Utils/TFUtils.h" 22 #include "llvm/CodeGen/CalcSpillWeights.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/PassRegistry.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 #include <array> 40 #include <memory> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "ml-regalloc" 45 46 // Generated header in release (AOT) mode 47 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 48 #include "RegallocEvictModel.h" 49 using CompiledModelType = RegallocEvictModel; 50 #else 51 using CompiledModelType = NoopSavedModelImpl; 52 #endif 53 54 // Options that only make sense in development mode 55 #ifdef LLVM_HAVE_TF_API 56 static cl::opt<std::string> TrainingLog( 57 "regalloc-training-log", cl::Hidden, 58 cl::desc("Training log for the register allocator eviction model")); 59 60 static cl::opt<std::string> ModelUnderTraining( 61 "regalloc-model", cl::Hidden, 62 cl::desc("The model being trained for register allocation eviction")); 63 64 #endif // #ifdef LLVM_HAVE_TF_API 65 66 extern cl::opt<unsigned> EvictInterferenceCutoff; 67 68 /// The score injection pass. 69 /// This pass calculates the score for a function and inserts it in the log, but 70 /// this happens only in development mode. It's a no-op otherwise. 71 namespace llvm { 72 class RegAllocScoring : public MachineFunctionPass { 73 public: 74 static char ID; 75 76 RegAllocScoring() : MachineFunctionPass(ID) { 77 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); 78 } 79 80 ~RegAllocScoring() override = default; 81 82 StringRef getPassName() const override { 83 return "Register Allocation Pass Scoring"; 84 } 85 86 /// RegAllocReward analysis usage. 87 void getAnalysisUsage(AnalysisUsage &AU) const override { 88 AU.setPreservesAll(); 89 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 90 AU.addRequired<MachineBlockFrequencyInfo>(); 91 AU.addRequired<AAResultsWrapperPass>(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 } 94 95 /// Performs this pass 96 bool runOnMachineFunction(MachineFunction &) override; 97 }; 98 99 char RegAllocScoring::ID = 0; 100 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } 101 102 } // namespace llvm 103 104 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", 105 "Register Allocation Scoring Pass", false, false) 106 107 // =================================== 108 // Common ML Advisor declarations 109 // =================================== 110 namespace { 111 // This is the maximum number of interfererring ranges. That's the number of 112 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize. 113 // For X86, that's 32. 114 // TODO: find a way to get this, statically, in a programmatic way. 115 static const int64_t MaxInterferences = 32; 116 117 // Logically, we can think of the feature set given to the evaluator as a 2D 118 // matrix. The rows are the features (see next). The columns correspond to the 119 // interferences. We treat the candidate virt reg as an 'interference', too, as 120 // its feature set is the same as that of the interferring ranges. So we'll have 121 // MaxInterferences + 1 columns and by convention, we will use the last column 122 // for the virt reg seeking allocation. 123 static const int64_t CandidateVirtRegPos = MaxInterferences; 124 static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1; 125 126 // Most features are as described above, so we'll reuse this vector in defining 127 // them. 128 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; 129 130 // -------------- 131 // Features table 132 // -------------- 133 // For each interfering live range (incl. the candidate) we collect a number of 134 // features. However, because the features are of different types (and because 135 // of ML best practices), we organize the tensors per feature, not per 136 // candidate. Each such tensor has a scalar value corresponding to the 137 // interferring live range at that position, in the order in AllocationOrder. 138 // The last position corresponds to the virt reg seeking allocation. 139 // Exception to all that is the progression feature, which is just a scalar (see 140 // its documentation for details). 141 // Note on naming: the "_by_max" are normalized using the largest value of that 142 // tensor, as observed in the current decision making stage (i.e. for the 143 // current call to the advisor's tryFindEvictionCandidate) 144 // 145 // The feature list format: type, name, shape, documentation. 146 // Note: we can really just use int64 and float, hence the modeling of some 147 // bools as int64 values. 148 #define RA_EVICT_FEATURES_LIST(M) \ 149 M(int64_t, mask, PerLiveRangeShape, \ 150 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ 151 "it " \ 152 "can't be evicted)") \ 153 M(int64_t, is_free, PerLiveRangeShape, \ 154 "boolean values, 1 if this phys reg is actually free (no interferences)") \ 155 M(float, nr_urgent, PerLiveRangeShape, \ 156 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ 157 "to break cascades") \ 158 M(float, nr_broken_hints, PerLiveRangeShape, \ 159 "if this position were evicted, how many broken hints would there be") \ 160 M(int64_t, is_hint, PerLiveRangeShape, \ 161 "is this a preferred phys reg for the candidate") \ 162 M(int64_t, is_local, PerLiveRangeShape, \ 163 "is this live range local to a basic block") \ 164 M(float, nr_rematerializable, PerLiveRangeShape, \ 165 "nr rematerializable ranges") \ 166 M(float, nr_defs_and_uses, PerLiveRangeShape, \ 167 "bb freq - weighed nr defs and uses") \ 168 M(float, weighed_reads_by_max, PerLiveRangeShape, \ 169 "bb freq - weighed nr of reads, normalized") \ 170 M(float, weighed_writes_by_max, PerLiveRangeShape, \ 171 "bb feq - weighed nr of writes, normalized") \ 172 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ 173 "bb freq - weighed nr of uses that are both read and writes, normalized") \ 174 M(float, weighed_indvars_by_max, PerLiveRangeShape, \ 175 "bb freq - weighed nr of uses that are indvars, normalized") \ 176 M(float, hint_weights_by_max, PerLiveRangeShape, \ 177 "bb freq - weighed nr of uses that are hints, normalized") \ 178 M(float, start_bb_freq_by_max, PerLiveRangeShape, \ 179 "the freq in the start block, normalized") \ 180 M(float, end_bb_freq_by_max, PerLiveRangeShape, \ 181 "freq of end block, normalized") \ 182 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ 183 "hottest BB freq, normalized") \ 184 M(float, liverange_size, PerLiveRangeShape, \ 185 "size (instr index diff) of the LR") \ 186 M(float, use_def_density, PerLiveRangeShape, \ 187 "the max weight, as computed by the manual heuristic") \ 188 M(int64_t, max_stage, PerLiveRangeShape, \ 189 "largest stage of an interval in this LR") \ 190 M(int64_t, min_stage, PerLiveRangeShape, \ 191 "lowest stage of an interval in this LR") \ 192 M(float, progress, {1}, "ratio of current queue size to initial size") 193 194 // The model learns to pick one of the mask == 1 interferences. This is the name 195 // of the output tensor. 196 // The contract with the model is that the output will be guaranteed to be to a 197 // mask == 1 position. 198 // Using a macro here to avoid 'not used' warnings (and keep cond compilation to 199 // a minimum) 200 #define DecisionName "index_to_evict" 201 202 // Named features index. 203 enum FeatureIDs { 204 #define _FEATURE_IDX(_, name, __, ___) name, 205 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) 206 #undef _FEATURE_IDX 207 FeatureCount 208 }; 209 210 // The ML advisor will typically have a sparse input to the evaluator, because 211 // various phys regs won't be available. It's easier (maintenance-wise) to 212 // bulk-reset the state of the evaluator each time we are about to use it again. 213 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { 214 size_t Ret = sizeof(T); 215 for (const auto V : Shape) 216 Ret *= V; 217 return Ret; 218 } 219 220 void resetInputs(MLModelRunner &Runner) { 221 #define _RESET(TYPE, NAME, SHAPE, __) \ 222 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ 223 getTotalSize<TYPE>(SHAPE)); 224 RA_EVICT_FEATURES_LIST(_RESET) 225 #undef _RESET 226 } 227 228 // Per-live interval components that get aggregated into the feature values that 229 // will be passed to the evaluator. 230 struct LIFeatureComponents { 231 double R = 0; 232 double W = 0; 233 double RW = 0; 234 double IndVarUpdates = 0; 235 double HintWeights = 0.0; 236 int64_t NrDefsAndUses = 0; 237 float HottestBlockFreq = 0.0; 238 bool IsRemat = false; 239 }; 240 241 using CandidateRegList = 242 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; 243 using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>; 244 245 /// The ML evictor (commonalities between release and development mode) 246 class MLEvictAdvisor : public RegAllocEvictionAdvisor { 247 public: 248 MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 249 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, 250 const MachineLoopInfo &Loops); 251 252 protected: 253 const RegAllocEvictionAdvisor &getDefaultAdvisor() const { 254 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); 255 } 256 257 // The assumption is that if the Runner could not be constructed, we emit-ed 258 // error, and we shouldn't be asking for it here. 259 const MLModelRunner &getRunner() const { return *Runner; } 260 261 /// This just calls Evaluate on the Runner, but in the development mode case, 262 /// if we're just capturing the log of the default advisor, it needs to call 263 /// the latter instead, so we need to pass all the necessary parameters for 264 /// it. In the development case, it will also log. 265 virtual int64_t 266 tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, 267 const AllocationOrder &Order, 268 unsigned OrderLimit, uint8_t CostPerUseLimit, 269 const SmallVirtRegSet &FixedRegisters) const; 270 271 /// Load the features of the given VirtReg (allocated or not) at column Pos, 272 /// but if that can't be evicted, return false instead. 273 bool 274 loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, 275 bool IsHint, const SmallVirtRegSet &FixedRegisters, 276 std::array<float, FeatureIDs::FeatureCount> &Largest, 277 size_t Pos) const; 278 279 private: 280 static float getInitialQueueSize(const MachineFunction &MF); 281 282 MCRegister tryFindEvictionCandidate( 283 const LiveInterval &VirtReg, const AllocationOrder &Order, 284 uint8_t CostPerUseLimit, 285 const SmallVirtRegSet &FixedRegisters) const override; 286 287 void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, 288 std::array<float, FeatureIDs::FeatureCount> &Largest, 289 size_t Pos, int64_t IsHint, int64_t LocalIntfsCount, 290 float NrUrgent) const; 291 292 // Point-in-time: we didn't learn this, so we always delegate to the default. 293 bool canEvictHintInterference( 294 const LiveInterval &VirtReg, MCRegister PhysReg, 295 const SmallVirtRegSet &FixedRegisters) const override { 296 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, 297 FixedRegisters); 298 } 299 300 const LIFeatureComponents & 301 getLIFeatureComponents(const LiveInterval &LI) const; 302 303 // Hold on to a default advisor for: 304 // 1) the implementation of canEvictHintInterference, because we didn't learn 305 // that nuance yet; 306 // 2) for bootstrapping (logging) in the development mode case. 307 const DefaultEvictionAdvisor DefaultAdvisor; 308 MLModelRunner *const Runner; 309 const MachineBlockFrequencyInfo &MBFI; 310 const MachineLoopInfo &Loops; 311 312 // Indices of those features we don't want to normalize. 313 // This could be static and shared, but its initialization is non-trivial. 314 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; 315 const float InitialQSize; 316 317 using RegID = unsigned; 318 mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; 319 }; 320 321 // =================================== 322 // Release (AOT) - specifics 323 // =================================== 324 const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{ 325 #define _GETNAME(_, NAME, __, ___) #NAME, 326 RA_EVICT_FEATURES_LIST(_GETNAME) 327 #undef _GETNAME 328 }; 329 class ReleaseModeEvictionAdvisorAnalysis final 330 : public RegAllocEvictionAdvisorAnalysis { 331 public: 332 ReleaseModeEvictionAdvisorAnalysis() 333 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {} 334 // support for isa<> and dyn_cast. 335 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 336 return R->getAdvisorMode() == AdvisorMode::Release; 337 } 338 339 private: 340 void getAnalysisUsage(AnalysisUsage &AU) const override { 341 AU.addRequired<MachineBlockFrequencyInfo>(); 342 AU.addRequired<MachineLoopInfo>(); 343 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 344 } 345 346 std::unique_ptr<RegAllocEvictionAdvisor> 347 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { 348 if (!Runner) 349 Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( 350 MF.getFunction().getContext(), FeatureNames, DecisionName); 351 return std::make_unique<MLEvictAdvisor>( 352 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 353 getAnalysis<MachineLoopInfo>()); 354 } 355 std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner; 356 }; 357 358 // =================================== 359 // Development mode-specifics 360 // =================================== 361 // 362 // Features we log 363 #ifdef LLVM_HAVE_TF_API 364 #define _DECL_FEATURES(type, name, shape, _) \ 365 TensorSpec::createSpec<type>(#name, shape), 366 367 static const std::vector<TensorSpec> InputFeatures{ 368 {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}, 369 }; 370 #undef _DECL_FEATURES 371 static const TensorSpec Output = 372 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 373 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); 374 375 // Features we bind on the model. The tensor names have a prefix, and we also 376 // need to include some tensors that are expected to be present by the training 377 // algo. 378 // TODO: can we just get rid of these? 379 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ 380 TensorSpec::createSpec<type>(std::string("action_") + #name, shape), 381 382 static const std::vector<TensorSpec> TrainingInputFeatures{ 383 {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 384 TensorSpec::createSpec<float>("action_discount", {1}), 385 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 386 TensorSpec::createSpec<float>("action_reward", {1})}}; 387 #undef _DECL_TRAIN_FEATURES 388 389 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { 390 public: 391 DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 392 MLModelRunner *Runner, 393 const MachineBlockFrequencyInfo &MBFI, 394 const MachineLoopInfo &Loops, Logger *Log) 395 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} 396 397 private: 398 int64_t tryFindEvictionCandidatePosition( 399 const LiveInterval &VirtReg, const AllocationOrder &Order, 400 unsigned OrderLimit, uint8_t CostPerUseLimit, 401 const SmallVirtRegSet &FixedRegisters) const override; 402 403 Logger *const Log; 404 }; 405 406 class DevelopmentModeEvictionAdvisorAnalysis final 407 : public RegAllocEvictionAdvisorAnalysis { 408 public: 409 DevelopmentModeEvictionAdvisorAnalysis() 410 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {} 411 // support for isa<> and dyn_cast. 412 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 413 return R->getAdvisorMode() == AdvisorMode::Development; 414 } 415 416 /// get the logger for the given function, or nullptr if we didn't collect 417 /// one. This is used to inject the score by the RegAllocScoring pass. 418 Logger *getLogger(const MachineFunction &MF) const { 419 auto I = LogMap.find(MF.getName()); 420 if (I == LogMap.end()) 421 return nullptr; 422 return I->second.get(); 423 } 424 425 private: 426 void getAnalysisUsage(AnalysisUsage &AU) const override { 427 AU.addRequired<MachineBlockFrequencyInfo>(); 428 AU.addRequired<MachineLoopInfo>(); 429 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 430 } 431 432 // Save all the logs (when requested). 433 bool doFinalization(Module &M) override { 434 if (TrainingLog.empty()) 435 return false; 436 std::error_code EC; 437 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); 438 if (EC) { 439 M.getContext().emitError(EC.message() + ":" + TrainingLog); 440 return false; 441 } 442 Logger::flushLogs(*OS, LogMap); 443 return false; 444 } 445 446 std::unique_ptr<RegAllocEvictionAdvisor> 447 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { 448 LLVMContext &Ctx = MF.getFunction().getContext(); 449 if (ModelUnderTraining.empty() && TrainingLog.empty()) { 450 Ctx.emitError("Regalloc development mode should be requested with at " 451 "least logging enabled and/or a training model"); 452 return nullptr; 453 } 454 if (!Runner) { 455 if (ModelUnderTraining.empty()) 456 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); 457 else 458 Runner = ModelUnderTrainingRunner::createAndEnsureValid( 459 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); 460 if (!Runner) { 461 Ctx.emitError("Regalloc: could not set up the model runner"); 462 return nullptr; 463 } 464 } 465 466 Logger *Log = nullptr; 467 if (!TrainingLog.empty()) { 468 std::vector<LoggedFeatureSpec> LFS; 469 for (const auto &FS : InputFeatures) 470 LFS.push_back({FS, None}); 471 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) 472 if (MUTR->outputLoggedFeatureSpecs().size() > 1) 473 append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs())); 474 // We always log the output; in particular, if we're not evaluating, we 475 // don't have an output spec json file. That's why we handle the 476 // 'normal' output separately. 477 LFS.push_back({Output, None}); 478 auto I = LogMap.insert(std::make_pair( 479 MF.getFunction().getName(), 480 std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true))); 481 assert(I.second); 482 Log = I.first->second.get(); 483 } 484 return std::make_unique<DevelopmentModeEvictAdvisor>( 485 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 486 getAnalysis<MachineLoopInfo>(), Log); 487 } 488 489 std::unique_ptr<MLModelRunner> Runner; 490 StringMap<std::unique_ptr<Logger>> LogMap; 491 }; 492 #endif //#ifdef LLVM_HAVE_TF_API 493 } // namespace 494 495 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { 496 auto &MRI = MF.getRegInfo(); 497 float Ret = 0.0; 498 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 499 Register Reg = Register::index2VirtReg(I); 500 if (MRI.reg_nodbg_empty(Reg)) 501 continue; 502 ++Ret; 503 } 504 return Ret; 505 } 506 507 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 508 MLModelRunner *Runner, 509 const MachineBlockFrequencyInfo &MBFI, 510 const MachineLoopInfo &Loops) 511 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), 512 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), 513 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { 514 assert(this->Runner); 515 DoNotNormalize.set(FeatureIDs::mask); 516 DoNotNormalize.set(FeatureIDs::is_free); 517 DoNotNormalize.set(FeatureIDs::is_hint); 518 DoNotNormalize.set(FeatureIDs::is_local); 519 DoNotNormalize.set(FeatureIDs::min_stage); 520 DoNotNormalize.set(FeatureIDs::max_stage); 521 DoNotNormalize.set(FeatureIDs::progress); 522 } 523 524 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( 525 const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, 526 const SmallVirtRegSet &) const { 527 int64_t Ret = Runner->evaluate<int64_t>(); 528 assert(Ret >= 0); 529 assert(Ret <= CandidateVirtRegPos); 530 return Ret; 531 } 532 533 bool MLEvictAdvisor::loadInterferenceFeatures( 534 const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 535 const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest, 536 size_t Pos) const { 537 // It is only possible to evict virtual register interference. 538 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { 539 // leave unavailable 540 return false; 541 } 542 543 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 544 int64_t LocalIntfs = 0; 545 float NrUrgent = 0.0f; 546 547 // The cascade tracking is the same as in the default advisor 548 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 549 550 SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; 551 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 552 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 553 // Different from the default heuristic, we don't make any assumptions about 554 // what having more than 10 results in the query may mean. 555 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); 556 if (IFIntervals.empty() && InterferingIntervals.empty()) 557 continue; 558 if (IFIntervals.size() >= EvictInterferenceCutoff) 559 return false; 560 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); 561 for (const LiveInterval *Intf : reverse(IFIntervals)) { 562 assert(Register::isVirtualRegister(Intf->reg()) && 563 "Only expecting virtual register interference from query"); 564 // This is the same set of legality checks as in the default case: don't 565 // try to evict fixed regs or 'done' ones. Also don't break cascades, 566 // except in the urgent case, with the same nuances used in the default 567 // heuristic. 568 // We could try sharing this between the advisors, but it may end up 569 // more complex than it is right now. 570 if (FixedRegisters.count(Intf->reg())) 571 return false; 572 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 573 return false; 574 bool Urgent = 575 !VirtReg.isSpillable() && 576 (Intf->isSpillable() || 577 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 578 RegClassInfo.getNumAllocatableRegs( 579 MRI->getRegClass(Intf->reg()))); 580 // Only evict older cascades or live ranges without a cascade. 581 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 582 if (Cascade <= IntfCascade) { 583 if (!Urgent) 584 return false; 585 ++NrUrgent; 586 } 587 588 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && 589 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); 590 } 591 } 592 // OK, so if we made it this far, this LR is an eviction candidate, load its 593 // features. 594 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, 595 NrUrgent); 596 return true; 597 } 598 599 MCRegister MLEvictAdvisor::tryFindEvictionCandidate( 600 const LiveInterval &VirtReg, const AllocationOrder &Order, 601 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 602 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 603 if (!MaybeOrderLimit) 604 return MCRegister::NoRegister; 605 unsigned OrderLimit = *MaybeOrderLimit; 606 607 // The heuristic sets initial costs such as, if CostPerUseLimit is 608 // max<uint8_t>, then any of the costs of the legally-evictable intervals 609 // would be lower. When that happens, one of those will be selected. 610 // Therefore, we allow the candidate be selected, unless the candidate is 611 // unspillable, in which case it would be incorrect to not find a register for 612 // it. 613 const bool MustFindEviction = 614 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); 615 // Number of available candidates - if 0, no need to continue. 616 size_t Available = 0; 617 // Make sure we don't have leftover partial state from an attempt where we had 618 // no available candidates and bailed out early. 619 resetInputs(*Runner); 620 621 // Track the index->register mapping because AllocationOrder doesn't do that 622 // and we'd have to scan it. 623 // Also track their mask, to write asserts/debug. 624 CandidateRegList Regs; 625 Regs.fill({0, false}); 626 627 // Track the largest value of features seen during this eviction session. We 628 // only normalize (some of) the float features, but it's just simpler to 629 // dimension 'Largest' to all the features, especially since we have the 630 // 'DoNotNormalize' list. 631 FeaturesListNormalizer Largest; 632 Largest.fill(0.0); 633 634 // Same overal idea as in the default eviction policy - we visit the values of 635 // AllocationOrder one at a time. If it's not legally available, we mask off 636 // the corresponding feature column (==do nothing because we already reset all 637 // the features to 0) 638 // Use Pos to capture the column we load features at - in AllocationOrder 639 // order. 640 size_t Pos = 0; 641 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 642 ++I, ++Pos) { 643 MCRegister PhysReg = *I; 644 assert(!Regs[Pos].second); 645 assert(PhysReg); 646 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { 647 continue; 648 } 649 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, 650 Largest, Pos)) { 651 ++Available; 652 Regs[Pos] = std::make_pair(PhysReg, true); 653 } 654 } 655 if (Available == 0) { 656 // Nothing to decide, nothing to learn. 657 assert(!MustFindEviction); 658 return MCRegister::NoRegister; 659 } 660 const size_t ValidPosLimit = Pos; 661 // If we must find eviction, the candidate should be masked out of the 662 // decision making process. 663 Regs[CandidateVirtRegPos].second = !MustFindEviction; 664 if (!MustFindEviction) 665 extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, 666 CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0, 667 /*NrUrgent*/ 0.0); 668 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " 669 "nothing to allocate initially."); 670 // Normalize the features. 671 for (auto &V : Largest) 672 V = V ? V : 1.0; 673 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; 674 ++FeatureIndex) { 675 if (DoNotNormalize.test(FeatureIndex)) 676 continue; 677 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { 678 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; 679 } 680 } 681 *Runner->getTensor<float>(FeatureIDs::progress) = 682 static_cast<float>(RA.getQueueSize()) / InitialQSize; 683 684 // Get a decision. 685 size_t CandidatePos = tryFindEvictionCandidatePosition( 686 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 687 // The contract with the ML side is that CandidatePos is mask == 1 (i.e. 688 // Regs[CandidatePos].second) 689 assert(Regs[CandidatePos].second); 690 if (CandidatePos == CandidateVirtRegPos) { 691 assert(!MustFindEviction); 692 return MCRegister::NoRegister; 693 } 694 assert(CandidatePos < ValidPosLimit); 695 (void)ValidPosLimit; 696 return Regs[CandidatePos].first; 697 } 698 699 const LIFeatureComponents & 700 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { 701 RegID ID = LI.reg().id(); 702 LIFeatureComponents Empty; 703 auto I = CachedFeatures.insert(std::make_pair(ID, Empty)); 704 LIFeatureComponents &Ret = I.first->getSecond(); 705 if (!I.second) 706 return Ret; 707 708 SmallPtrSet<MachineInstr *, 8> Visited; 709 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 710 711 for (MachineRegisterInfo::reg_instr_nodbg_iterator 712 I = MRI->reg_instr_nodbg_begin(LI.reg()), 713 E = MRI->reg_instr_nodbg_end(); 714 I != E;) { 715 MachineInstr *MI = &*(I++); 716 717 ++Ret.NrDefsAndUses; 718 if (!Visited.insert(MI).second) 719 continue; 720 721 if (MI->isIdentityCopy() || MI->isImplicitDef()) 722 continue; 723 724 bool Reads, Writes; 725 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); 726 727 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); 728 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); 729 730 Ret.R += (Reads && !Writes) * Freq; 731 Ret.W += (!Reads && Writes) * Freq; 732 Ret.RW += (Reads && Writes) * Freq; 733 734 auto *MBB = MI->getParent(); 735 auto *Loop = Loops.getLoopFor(MBB); 736 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; 737 738 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) 739 Ret.IndVarUpdates += Freq; 740 741 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) 742 Ret.HintWeights += Freq; 743 } 744 Ret.IsRemat = VirtRegAuxInfo::isRematerializable( 745 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); 746 return Ret; 747 } 748 749 // Overall, this currently mimics what we do for weight calculation, but instead 750 // of accummulating the various features, we keep them separate. 751 void MLEvictAdvisor::extractFeatures( 752 const SmallVectorImpl<const LiveInterval *> &Intervals, 753 std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos, 754 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const { 755 int64_t NrDefsAndUses = 0; 756 int64_t NrBrokenHints = 0; 757 double R = 0.0; 758 double W = 0.0; 759 double RW = 0.0; 760 double IndVarUpdates = 0.0; 761 double HintWeights = 0.0; 762 float StartBBFreq = 0.0; 763 float EndBBFreq = 0.0; 764 float HottestBlockFreq = 0.0; 765 int32_t NrRematerializable = 0; 766 float TotalWeight = 0.0; 767 768 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); 769 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); 770 int64_t MaxStage = 0; 771 int64_t MinStage = 772 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); 773 774 for (const auto *L : Intervals) { 775 const LiveInterval &LI = *L; 776 MaxStage = std::max<int64_t>( 777 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 778 MinStage = std::min<int64_t>( 779 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 780 781 TotalWeight = std::max(TotalWeight, LI.weight()); 782 783 if (LI.beginIndex() < StartSI) 784 StartSI = LI.beginIndex(); 785 786 if (LI.endIndex() > EndSI) 787 EndSI = LI.endIndex(); 788 const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); 789 NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); 790 791 NrDefsAndUses += LIFC.NrDefsAndUses; 792 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); 793 R += LIFC.R; 794 W += LIFC.W; 795 RW += LIFC.RW; 796 797 IndVarUpdates += LIFC.IndVarUpdates; 798 799 HintWeights += LIFC.HintWeights; 800 NrRematerializable += LIFC.IsRemat; 801 } 802 size_t Size = 0; 803 if (!Intervals.empty()) { 804 StartBBFreq = 805 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); 806 if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) 807 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); 808 EndBBFreq = 809 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); 810 Size = StartSI.distance(EndSI); 811 } 812 // Set the features at the column 'Pos'. 813 #define SET(ID, TYPE, VAL) \ 814 do { \ 815 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ 816 if (!DoNotNormalize.test(FeatureIDs::ID)) \ 817 Largest[FeatureIDs::ID] = \ 818 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ 819 } while (false) 820 SET(mask, int64_t, 1); 821 SET(is_free, int64_t, Intervals.empty()); 822 SET(nr_urgent, float, NrUrgent); 823 SET(nr_broken_hints, float, NrBrokenHints); 824 SET(is_hint, int64_t, IsHint); 825 SET(is_local, int64_t, LocalIntfsCount); 826 SET(nr_rematerializable, float, NrRematerializable); 827 SET(nr_defs_and_uses, float, NrDefsAndUses); 828 SET(weighed_reads_by_max, float, R); 829 SET(weighed_writes_by_max, float, W); 830 SET(weighed_read_writes_by_max, float, RW); 831 SET(weighed_indvars_by_max, float, IndVarUpdates); 832 SET(hint_weights_by_max, float, HintWeights); 833 SET(start_bb_freq_by_max, float, StartBBFreq); 834 SET(end_bb_freq_by_max, float, EndBBFreq); 835 SET(hottest_bb_freq_by_max, float, HottestBlockFreq); 836 SET(liverange_size, float, Size); 837 SET(use_def_density, float, TotalWeight); 838 SET(max_stage, int64_t, MaxStage); 839 SET(min_stage, int64_t, MinStage); 840 #undef SET 841 } 842 843 // Development mode-specific implementations 844 #ifdef LLVM_HAVE_TF_API 845 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { 846 return new DevelopmentModeEvictionAdvisorAnalysis(); 847 } 848 849 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( 850 const LiveInterval &VirtReg, const AllocationOrder &Order, 851 unsigned OrderLimit, uint8_t CostPerUseLimit, 852 const SmallVirtRegSet &FixedRegisters) const { 853 int64_t Ret = 0; 854 if (isa<ModelUnderTrainingRunner>(getRunner())) { 855 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( 856 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 857 } else { 858 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( 859 VirtReg, Order, CostPerUseLimit, FixedRegisters); 860 // Find the index of the selected PhysReg. We need it for logging, otherwise 861 // this is wasted cycles (but so would starting development mode without a 862 // model nor logging) 863 if (!PhysReg) 864 Ret = CandidateVirtRegPos; 865 else 866 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); 867 I != E; ++I, ++Ret) 868 if (*I == PhysReg) 869 break; 870 } 871 if (TrainingLog.empty()) 872 return Ret; 873 size_t CurrentFeature = 0; 874 for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) { 875 Log->logSpecifiedTensorValue( 876 CurrentFeature, reinterpret_cast<const char *>( 877 getRunner().getTensorUntyped(CurrentFeature))); 878 } 879 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) 880 for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size(); 881 ++I, ++CurrentFeature) 882 Log->logSpecifiedTensorValue( 883 CurrentFeature, 884 reinterpret_cast<const char *>( 885 MUTR->lastEvaluationResult()->getUntypedTensorValue(I))); 886 // The output is right after the features and the extra outputs 887 Log->logInt64Value(CurrentFeature, &Ret); 888 return Ret; 889 } 890 891 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { 892 if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>( 893 &getAnalysis<RegAllocEvictionAdvisorAnalysis>())) 894 if (auto *Log = DevModeAnalysis->getLogger(MF)) 895 Log->logFloatFinalReward(static_cast<float>( 896 calculateRegAllocScore( 897 MF, getAnalysis<MachineBlockFrequencyInfo>(), 898 getAnalysis<AAResultsWrapperPass>().getAAResults()) 899 .getScore())); 900 901 return false; 902 } 903 #endif // #ifdef LLVM_HAVE_TF_API 904 905 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { 906 return new ReleaseModeEvictionAdvisorAnalysis(); 907 } 908 909 // In all cases except development mode, we don't need scoring. 910 #if !defined(LLVM_HAVE_TF_API) 911 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } 912 #endif 913