1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the ML eviction advisor and reward injection pass 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RegAllocEvictionAdvisor.h" 14 #include "RegAllocGreedy.h" 15 #include "RegAllocScore.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MLModelRunner.h" 18 #include "llvm/Analysis/ModelUnderTrainingRunner.h" 19 #include "llvm/Analysis/NoInferenceModelRunner.h" 20 #include "llvm/Analysis/ReleaseModeModelRunner.h" 21 #include "llvm/Analysis/Utils/TFUtils.h" 22 #include "llvm/CodeGen/CalcSpillWeights.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/PassRegistry.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 #include <array> 40 #include <memory> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "ml-regalloc" 45 46 // Generated header in release (AOT) mode 47 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 48 #include "RegallocEvictModel.h" 49 #endif 50 51 // Options that only make sense in development mode 52 #ifdef LLVM_HAVE_TF_API 53 static cl::opt<std::string> TrainingLog( 54 "regalloc-training-log", cl::Hidden, 55 cl::desc("Training log for the register allocator eviction model")); 56 57 static cl::opt<std::string> ModelUnderTraining( 58 "regalloc-model", cl::Hidden, 59 cl::desc("The model being trained for register allocation eviction")); 60 61 #endif // #ifdef LLVM_HAVE_TF_API 62 63 /// The score injection pass. 64 /// This pass calculates the score for a function and inserts it in the log, but 65 /// this happens only in development mode. It's a no-op otherwise. 66 namespace llvm { 67 class RegAllocScoring : public MachineFunctionPass { 68 public: 69 static char ID; 70 71 RegAllocScoring() : MachineFunctionPass(ID) { 72 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); 73 } 74 75 ~RegAllocScoring() override = default; 76 77 StringRef getPassName() const override { 78 return "Register Allocation Pass Scoring"; 79 } 80 81 /// RegAllocReward analysis usage. 82 void getAnalysisUsage(AnalysisUsage &AU) const override { 83 AU.setPreservesAll(); 84 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 85 AU.addRequired<MachineBlockFrequencyInfo>(); 86 AU.addRequired<AAResultsWrapperPass>(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 /// Performs this pass 91 bool runOnMachineFunction(MachineFunction &) override; 92 }; 93 94 char RegAllocScoring::ID = 0; 95 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } 96 97 } // namespace llvm 98 99 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", 100 "Register Allocation Scoring Pass", false, false) 101 102 // =================================== 103 // Common ML Advisor declarations 104 // =================================== 105 namespace { 106 // This is the maximum number of interfererring ranges. That's the number of 107 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize. 108 // For X86, that's 32. 109 // TODO: find a way to get this, statically, in a programmatic way. 110 static const int64_t MaxInterferences = 32; 111 112 // Logically, we can think of the feature set given to the evaluator as a 2D 113 // matrix. The rows are the features (see next). The columns correspond to the 114 // interferences. We treat the candidate virt reg as an 'interference', too, as 115 // its feature set is the same as that of the interferring ranges. So we'll have 116 // MaxInterferences + 1 columns and by convention, we will use the last column 117 // for the virt reg seeking allocation. 118 static const int64_t CandidateVirtRegPos = MaxInterferences; 119 static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1; 120 121 // Most features are as described above, so we'll reuse this vector in defining 122 // them. 123 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; 124 125 // -------------- 126 // Features table 127 // -------------- 128 // For each interfering live range (incl. the candidate) we collect a number of 129 // features. However, because the features are of different types (and because 130 // of ML best practices), we organize the tensors per feature, not per 131 // candidate. Each such tensor has a scalar value corresponding to the 132 // interferring live range at that position, in the order in AllocationOrder. 133 // The last position corresponds to the virt reg seeking allocation. 134 // Exception to all that is the progression feature, which is just a scalar (see 135 // its documentation for details). 136 // Note on naming: the "_by_max" are normalized using the largest value of that 137 // tensor, as observed in the current decision making stage (i.e. for the 138 // current call to the advisor's tryFindEvictionCandidate) 139 // 140 // The feature list format: type, name, shape, documentation. 141 // Note: we can really just use int64 and float, hence the modeling of some 142 // bools as int64 values. 143 #define RA_EVICT_FEATURES_LIST(M) \ 144 M(int64_t, mask, PerLiveRangeShape, \ 145 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ 146 "it " \ 147 "can't be evicted)") \ 148 M(int64_t, is_free, PerLiveRangeShape, \ 149 "boolean values, 1 if this phys reg is actually free (no interferences)") \ 150 M(float, nr_urgent, PerLiveRangeShape, \ 151 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ 152 "to break cascades") \ 153 M(float, nr_broken_hints, PerLiveRangeShape, \ 154 "if this position were evicted, how many broken hints would there be") \ 155 M(int64_t, is_hint, PerLiveRangeShape, \ 156 "is this a preferred phys reg for the candidate") \ 157 M(int64_t, is_local, PerLiveRangeShape, \ 158 "is this live range local to a basic block") \ 159 M(float, nr_rematerializable, PerLiveRangeShape, \ 160 "nr rematerializable ranges") \ 161 M(float, nr_defs_and_uses, PerLiveRangeShape, \ 162 "bb freq - weighed nr defs and uses") \ 163 M(float, weighed_reads_by_max, PerLiveRangeShape, \ 164 "bb freq - weighed nr of reads, normalized") \ 165 M(float, weighed_writes_by_max, PerLiveRangeShape, \ 166 "bb feq - weighed nr of writes, normalized") \ 167 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ 168 "bb freq - weighed nr of uses that are both read and writes, normalized") \ 169 M(float, weighed_indvars_by_max, PerLiveRangeShape, \ 170 "bb freq - weighed nr of uses that are indvars, normalized") \ 171 M(float, hint_weights_by_max, PerLiveRangeShape, \ 172 "bb freq - weighed nr of uses that are hints, normalized") \ 173 M(float, start_bb_freq_by_max, PerLiveRangeShape, \ 174 "the freq in the start block, normalized") \ 175 M(float, end_bb_freq_by_max, PerLiveRangeShape, \ 176 "freq of end block, normalized") \ 177 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ 178 "hottest BB freq, normalized") \ 179 M(float, liverange_size, PerLiveRangeShape, \ 180 "size (instr index diff) of the LR") \ 181 M(float, use_def_density, PerLiveRangeShape, \ 182 "the max weight, as computed by the manual heuristic") \ 183 M(int64_t, max_stage, PerLiveRangeShape, \ 184 "largest stage of an interval in this LR") \ 185 M(int64_t, min_stage, PerLiveRangeShape, \ 186 "lowest stage of an interval in this LR") \ 187 M(float, progress, {1}, "ratio of current queue size to initial size") 188 189 // The model learns to pick one of the mask == 1 interferences. This is the name 190 // of the output tensor. 191 // The contract with the model is that the output will be guaranteed to be to a 192 // mask == 1 position. 193 // Using a macro here to avoid 'not used' warnings (and keep cond compilation to 194 // a minimum) 195 #define DecisionName "index_to_evict" 196 197 // Named features index. 198 enum FeatureIDs { 199 #define _FEATURE_IDX(_, name, __, ___) name, 200 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) 201 #undef _FEATURE_IDX 202 FeatureCount 203 }; 204 205 // The ML advisor will typically have a sparse input to the evaluator, because 206 // various phys regs won't be available. It's easier (maintenance-wise) to 207 // bulk-reset the state of the evaluator each time we are about to use it again. 208 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { 209 size_t Ret = sizeof(T); 210 for (const auto V : Shape) 211 Ret *= V; 212 return Ret; 213 } 214 215 void resetInputs(MLModelRunner &Runner) { 216 #define _RESET(TYPE, NAME, SHAPE, __) \ 217 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ 218 getTotalSize<TYPE>(SHAPE)); 219 RA_EVICT_FEATURES_LIST(_RESET) 220 #undef _RESET 221 } 222 223 // Per-live interval components that get aggregated into the feature values that 224 // will be passed to the evaluator. 225 struct LIFeatureComponents { 226 double R = 0; 227 double W = 0; 228 double RW = 0; 229 double IndVarUpdates = 0; 230 double HintWeights = 0.0; 231 int64_t NrDefsAndUses = 0; 232 float HottestBlockFreq = 0.0; 233 bool HasPreferredReg = false; 234 bool IsRemat = false; 235 }; 236 237 using CandidateRegList = 238 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; 239 using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>; 240 241 /// The ML evictor (commonalities between release and development mode) 242 class MLEvictAdvisor : public RegAllocEvictionAdvisor { 243 public: 244 MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, MLModelRunner *Runner, 245 const MachineBlockFrequencyInfo &MBFI, 246 const MachineLoopInfo &Loops); 247 248 protected: 249 const RegAllocEvictionAdvisor &getDefaultAdvisor() const { 250 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); 251 } 252 253 // The assumption is that if the Runner could not be constructed, we emit-ed 254 // error, and we shouldn't be asking for it here. 255 const MLModelRunner &getRunner() const { return *Runner; } 256 257 /// This just calls Evaluate on the Runner, but in the development mode case, 258 /// if we're just capturing the log of the default advisor, it needs to call 259 /// the latter instead, so we need to pass all the necessary parameters for 260 /// it. In the development case, it will also log. 261 virtual int64_t tryFindEvictionCandidatePosition( 262 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 263 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const; 264 265 /// Load the features of the given VirtReg (allocated or not) at column Pos, 266 /// but if that can't be evicted, return false instead. 267 bool 268 loadInterferenceFeatures(LiveInterval &VirtReg, MCRegister PhysReg, 269 bool IsHint, const SmallVirtRegSet &FixedRegisters, 270 std::array<float, FeatureIDs::FeatureCount> &Largest, 271 size_t Pos) const; 272 273 private: 274 static float getInitialQueueSize(const MachineFunction &MF); 275 276 MCRegister tryFindEvictionCandidate( 277 LiveInterval &VirtReg, const AllocationOrder &Order, 278 uint8_t CostPerUseLimit, 279 const SmallVirtRegSet &FixedRegisters) const override; 280 281 void extractFeatures(const SmallVectorImpl<LiveInterval *> &Intervals, 282 std::array<float, FeatureIDs::FeatureCount> &Largest, 283 size_t Pos, int64_t IsHint, int64_t LocalIntfsCount, 284 float NrUrgent) const; 285 286 // Point-in-time: we didn't learn this, so we always delegate to the default. 287 bool canEvictHintInterference( 288 LiveInterval &VirtReg, MCRegister PhysReg, 289 const SmallVirtRegSet &FixedRegisters) const override { 290 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, 291 FixedRegisters); 292 } 293 294 const LIFeatureComponents 295 getLIFeatureComponents(const LiveInterval &LI) const; 296 297 // Hold on to a default advisor for: 298 // 1) the implementation of canEvictHintInterference, because we didn't learn 299 // that nuance yet; 300 // 2) for bootstrapping (logging) in the development mode case. 301 const DefaultEvictionAdvisor DefaultAdvisor; 302 MLModelRunner *const Runner; 303 const MachineBlockFrequencyInfo &MBFI; 304 const MachineLoopInfo &Loops; 305 306 // Indices of those features we don't want to normalize. 307 // This could be static and shared, but its initialization is non-trivial. 308 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; 309 const float InitialQSize; 310 }; 311 312 // =================================== 313 // Release (AOT) - specifics 314 // =================================== 315 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 316 const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{ 317 #define _GETNAME(_, NAME, __, ___) #NAME, 318 RA_EVICT_FEATURES_LIST(_GETNAME) 319 #undef _GETNAME 320 }; 321 class ReleaseModeEvictionAdvisorAnalysis final 322 : public RegAllocEvictionAdvisorAnalysis { 323 public: 324 ReleaseModeEvictionAdvisorAnalysis() 325 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {} 326 // support for isa<> and dyn_cast. 327 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 328 return R->getAdvisorMode() == AdvisorMode::Release; 329 } 330 331 private: 332 void getAnalysisUsage(AnalysisUsage &AU) const override { 333 AU.addRequired<MachineBlockFrequencyInfo>(); 334 AU.addRequired<MachineLoopInfo>(); 335 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 336 } 337 338 std::unique_ptr<RegAllocEvictionAdvisor> 339 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 340 if (!Runner) 341 Runner = std::make_unique<ReleaseModeModelRunner<RegallocEvictModel>>( 342 MF.getFunction().getContext(), FeatureNames, DecisionName); 343 return std::make_unique<MLEvictAdvisor>( 344 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 345 getAnalysis<MachineLoopInfo>()); 346 } 347 std::unique_ptr<ReleaseModeModelRunner<RegallocEvictModel>> Runner; 348 }; 349 #endif 350 351 // =================================== 352 // Development mode-specifics 353 // =================================== 354 // 355 // Features we log 356 #ifdef LLVM_HAVE_TF_API 357 #define _DECL_FEATURES(type, name, shape, _) \ 358 TensorSpec::createSpec<type>(#name, shape), 359 360 static const std::vector<TensorSpec> InputFeatures{ 361 {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}, 362 }; 363 #undef _DECL_FEATURES 364 static const TensorSpec Output = 365 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 366 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); 367 368 // Features we bind on the model. The tensor names have a prefix, and we also 369 // need to include some tensors that are expected to be present by the training 370 // algo. 371 // TODO: can we just get rid of these? 372 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ 373 TensorSpec::createSpec<type>(std::string("action_") + #name, shape), 374 375 static const std::vector<TensorSpec> TrainingInputFeatures{ 376 {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 377 TensorSpec::createSpec<float>("action_discount", {1}), 378 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 379 TensorSpec::createSpec<float>("action_reward", {1})}}; 380 #undef _DECL_TRAIN_FEATURES 381 382 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { 383 public: 384 DevelopmentModeEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 385 MLModelRunner *Runner, 386 const MachineBlockFrequencyInfo &MBFI, 387 const MachineLoopInfo &Loops, Logger *Log) 388 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} 389 390 private: 391 int64_t tryFindEvictionCandidatePosition( 392 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 393 uint8_t CostPerUseLimit, 394 const SmallVirtRegSet &FixedRegisters) const override; 395 396 Logger *const Log; 397 }; 398 399 class DevelopmentModeEvictionAdvisorAnalysis final 400 : public RegAllocEvictionAdvisorAnalysis { 401 public: 402 DevelopmentModeEvictionAdvisorAnalysis() 403 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {} 404 // support for isa<> and dyn_cast. 405 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 406 return R->getAdvisorMode() == AdvisorMode::Development; 407 } 408 409 /// get the logger for the given function, or nullptr if we didn't collect 410 /// one. This is used to inject the score by the RegAllocScoring pass. 411 Logger *getLogger(const MachineFunction &MF) const { 412 auto I = LogMap.find(MF.getName()); 413 if (I == LogMap.end()) 414 return nullptr; 415 return I->second.get(); 416 } 417 418 private: 419 void getAnalysisUsage(AnalysisUsage &AU) const override { 420 AU.addRequired<MachineBlockFrequencyInfo>(); 421 AU.addRequired<MachineLoopInfo>(); 422 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 423 } 424 425 // Save all the logs (when requested). 426 bool doFinalization(Module &M) override { 427 if (TrainingLog.empty()) 428 return false; 429 std::error_code EC; 430 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); 431 if (EC) { 432 M.getContext().emitError(EC.message() + ":" + TrainingLog); 433 return false; 434 } 435 Logger::flushLogs(*OS, LogMap); 436 return false; 437 } 438 439 std::unique_ptr<RegAllocEvictionAdvisor> 440 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 441 LLVMContext &Ctx = MF.getFunction().getContext(); 442 if (ModelUnderTraining.empty() && TrainingLog.empty()) { 443 Ctx.emitError("Regalloc development mode should be requested with at " 444 "least logging enabled and/or a training model"); 445 return nullptr; 446 } 447 if (!Runner) { 448 if (ModelUnderTraining.empty()) 449 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); 450 else 451 Runner = ModelUnderTrainingRunner::createAndEnsureValid( 452 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); 453 if (!Runner) { 454 Ctx.emitError("Regalloc: could not set up the model runner"); 455 return nullptr; 456 } 457 } 458 459 Logger *Log = nullptr; 460 if (!TrainingLog.empty()) { 461 std::vector<LoggedFeatureSpec> LFS; 462 for (const auto &FS : InputFeatures) 463 LFS.push_back({FS, None}); 464 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) 465 if (MUTR->outputLoggedFeatureSpecs().size() > 1) 466 append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs())); 467 // We always log the output; in particular, if we're not evaluating, we 468 // don't have an output spec json file. That's why we handle the 469 // 'normal' output separately. 470 LFS.push_back({Output, None}); 471 auto I = LogMap.insert(std::make_pair( 472 MF.getFunction().getName(), 473 std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true))); 474 assert(I.second); 475 Log = I.first->second.get(); 476 } 477 return std::make_unique<DevelopmentModeEvictAdvisor>( 478 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 479 getAnalysis<MachineLoopInfo>(), Log); 480 } 481 482 std::unique_ptr<MLModelRunner> Runner; 483 StringMap<std::unique_ptr<Logger>> LogMap; 484 }; 485 #endif //#ifdef LLVM_HAVE_TF_API 486 } // namespace 487 488 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { 489 auto &MRI = MF.getRegInfo(); 490 float Ret = 0.0; 491 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 492 Register Reg = Register::index2VirtReg(I); 493 if (MRI.reg_nodbg_empty(Reg)) 494 continue; 495 ++Ret; 496 } 497 return Ret; 498 } 499 500 MLEvictAdvisor::MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 501 MLModelRunner *Runner, 502 const MachineBlockFrequencyInfo &MBFI, 503 const MachineLoopInfo &Loops) 504 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), 505 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), 506 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { 507 assert(this->Runner); 508 DoNotNormalize.set(FeatureIDs::mask); 509 DoNotNormalize.set(FeatureIDs::is_free); 510 DoNotNormalize.set(FeatureIDs::is_hint); 511 DoNotNormalize.set(FeatureIDs::is_local); 512 DoNotNormalize.set(FeatureIDs::min_stage); 513 DoNotNormalize.set(FeatureIDs::max_stage); 514 DoNotNormalize.set(FeatureIDs::progress); 515 } 516 517 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( 518 LiveInterval &, const AllocationOrder &, unsigned, uint8_t, 519 const SmallVirtRegSet &) const { 520 int64_t Ret = Runner->evaluate<int64_t>(); 521 assert(Ret >= 0); 522 assert(Ret <= CandidateVirtRegPos); 523 return Ret; 524 } 525 526 bool MLEvictAdvisor::loadInterferenceFeatures( 527 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 528 const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest, 529 size_t Pos) const { 530 // It is only possible to evict virtual register interference. 531 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { 532 // leave unavailable 533 return false; 534 } 535 536 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 537 int64_t LocalIntfs = 0; 538 float NrUrgent = 0.0f; 539 540 // The cascade tracking is the same as in the default advisor 541 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 542 543 SmallVector<LiveInterval *, MaxInterferences> InterferingIntervals; 544 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 545 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 546 // Different from the default heuristic, we don't make any assumptions about 547 // what having more than 10 results in the query may mean. 548 const auto &IFIntervals = Q.interferingVRegs(); 549 if (IFIntervals.empty() && InterferingIntervals.empty()) 550 continue; 551 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); 552 for (LiveInterval *Intf : reverse(IFIntervals)) { 553 assert(Register::isVirtualRegister(Intf->reg()) && 554 "Only expecting virtual register interference from query"); 555 // This is the same set of legality checks as in the default case: don't 556 // try to evict fixed regs or 'done' ones. Also don't break cascades, 557 // except in the urgent case, with the same nuances used in the default 558 // heuristic. 559 // We could try sharing this between the advisors, but it may end up 560 // more complex than it is right now. 561 if (FixedRegisters.count(Intf->reg())) 562 return false; 563 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 564 return false; 565 bool Urgent = 566 !VirtReg.isSpillable() && 567 (Intf->isSpillable() || 568 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 569 RegClassInfo.getNumAllocatableRegs( 570 MRI->getRegClass(Intf->reg()))); 571 // Only evict older cascades or live ranges without a cascade. 572 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 573 if (Cascade <= IntfCascade) { 574 if (!Urgent) 575 return false; 576 ++NrUrgent; 577 } 578 579 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && 580 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); 581 } 582 } 583 // OK, so if we made it this far, this LR is an eviction candidate, load its 584 // features. 585 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, 586 NrUrgent); 587 return true; 588 } 589 590 MCRegister MLEvictAdvisor::tryFindEvictionCandidate( 591 LiveInterval &VirtReg, const AllocationOrder &Order, 592 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 593 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 594 if (!MaybeOrderLimit) 595 return MCRegister::NoRegister; 596 unsigned OrderLimit = *MaybeOrderLimit; 597 598 // The heuristic sets initial costs such as, if CostPerUseLimit is 599 // max<uint8_t>, then any of the costs of the legally-evictable intervals 600 // would be lower. When that happens, one of those will be selected. 601 // Therefore, we allow the candidate be selected, unless the candidate is 602 // unspillable, in which case it would be incorrect to not find a register for 603 // it. 604 const bool MustFindEviction = 605 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); 606 // Number of available candidates - if 0, no need to continue. 607 size_t Available = 0; 608 // Make sure we don't have leftover partial state from an attempt where we had 609 // no available candidates and bailed out early. 610 resetInputs(*Runner); 611 612 // Track the index->register mapping because AllocationOrder doesn't do that 613 // and we'd have to scan it. 614 // Also track their mask, to write asserts/debug. 615 CandidateRegList Regs; 616 Regs.fill({0, false}); 617 618 // Track the largest value of features seen during this eviction session. We 619 // only normalize (some of) the float features, but it's just simpler to 620 // dimension 'Largest' to all the features, especially since we have the 621 // 'DoNotNormalize' list. 622 FeaturesListNormalizer Largest; 623 Largest.fill(0.0); 624 625 // Same overal idea as in the default eviction policy - we visit the values of 626 // AllocationOrder one at a time. If it's not legally available, we mask off 627 // the corresponding feature column (==do nothing because we already reset all 628 // the features to 0) 629 // Use Pos to capture the column we load features at - in AllocationOrder 630 // order. 631 size_t Pos = 0; 632 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 633 ++I, ++Pos) { 634 MCRegister PhysReg = *I; 635 assert(!Regs[Pos].second); 636 assert(PhysReg); 637 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { 638 continue; 639 } 640 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, 641 Largest, Pos)) { 642 ++Available; 643 Regs[Pos] = std::make_pair(PhysReg, true); 644 } 645 } 646 if (Available == 0) { 647 // Nothing to decide, nothing to learn. 648 assert(!MustFindEviction); 649 return MCRegister::NoRegister; 650 } 651 const size_t ValidPosLimit = Pos; 652 // If we must find eviction, the candidate should be masked out of the 653 // decision making process. 654 Regs[CandidateVirtRegPos].second = !MustFindEviction; 655 if (!MustFindEviction) 656 extractFeatures(SmallVector<LiveInterval *, 1>(1, &VirtReg), Largest, 657 CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0, 658 /*NrUrgent*/ 0.0); 659 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " 660 "nothing to allocate initially."); 661 // Normalize the features. 662 for (auto &V : Largest) 663 V = V ? V : 1.0; 664 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; 665 ++FeatureIndex) { 666 if (DoNotNormalize.test(FeatureIndex)) 667 continue; 668 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { 669 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; 670 } 671 } 672 *Runner->getTensor<float>(FeatureIDs::progress) = 673 static_cast<float>(RA.getQueueSize()) / InitialQSize; 674 675 // Get a decision. 676 size_t CandidatePos = tryFindEvictionCandidatePosition( 677 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 678 // The contract with the ML side is that CandidatePos is mask == 1 (i.e. 679 // Regs[CandidatePos].second) 680 assert(Regs[CandidatePos].second); 681 if (CandidatePos == CandidateVirtRegPos) { 682 assert(!MustFindEviction); 683 return MCRegister::NoRegister; 684 } 685 assert(CandidatePos < ValidPosLimit); 686 (void)ValidPosLimit; 687 return Regs[CandidatePos].first; 688 } 689 690 const LIFeatureComponents 691 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { 692 LIFeatureComponents Ret; 693 SmallPtrSet<MachineInstr *, 8> Visited; 694 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 695 Ret.HasPreferredReg = VRM->hasPreferredPhys(LI.reg()); 696 697 for (MachineRegisterInfo::reg_instr_nodbg_iterator 698 I = MRI->reg_instr_nodbg_begin(LI.reg()), 699 E = MRI->reg_instr_nodbg_end(); 700 I != E;) { 701 MachineInstr *MI = &*(I++); 702 703 ++Ret.NrDefsAndUses; 704 if (!Visited.insert(MI).second) 705 continue; 706 707 if (MI->isIdentityCopy() || MI->isImplicitDef()) 708 continue; 709 710 bool Reads, Writes; 711 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); 712 713 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); 714 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); 715 716 Ret.R += (Reads && !Writes) * Freq; 717 Ret.W += (!Reads && Writes) * Freq; 718 Ret.RW += (Reads && Writes) * Freq; 719 720 auto *MBB = MI->getParent(); 721 auto *Loop = Loops.getLoopFor(MBB); 722 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; 723 724 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) 725 Ret.IndVarUpdates += Freq; 726 727 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) 728 Ret.HintWeights += Freq; 729 } 730 Ret.IsRemat = VirtRegAuxInfo::isRematerializable( 731 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); 732 return Ret; 733 } 734 735 // Overall, this currently mimics what we do for weight calculation, but instead 736 // of accummulating the various features, we keep them separate. 737 void MLEvictAdvisor::extractFeatures( 738 const SmallVectorImpl<LiveInterval *> &Intervals, 739 std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos, 740 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const { 741 int64_t NrDefsAndUses = 0; 742 int64_t NrBrokenHints = 0; 743 double R = 0.0; 744 double W = 0.0; 745 double RW = 0.0; 746 double IndVarUpdates = 0.0; 747 double HintWeights = 0.0; 748 float StartBBFreq = 0.0; 749 float EndBBFreq = 0.0; 750 float HottestBlockFreq = 0.0; 751 int32_t NrRematerializable = 0; 752 float TotalWeight = 0.0; 753 754 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); 755 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); 756 int64_t MaxStage = 0; 757 int64_t MinStage = 758 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); 759 760 for (const auto *L : Intervals) { 761 const LiveInterval &LI = *L; 762 MaxStage = std::max<int64_t>( 763 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 764 MinStage = std::min<int64_t>( 765 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 766 767 TotalWeight = std::max(TotalWeight, LI.weight()); 768 769 if (LI.beginIndex() < StartSI) 770 StartSI = LI.beginIndex(); 771 772 if (LI.endIndex() > EndSI) 773 EndSI = LI.endIndex(); 774 const LIFeatureComponents LIFC = getLIFeatureComponents(LI); 775 NrBrokenHints += LIFC.HasPreferredReg; 776 777 NrDefsAndUses += LIFC.NrDefsAndUses; 778 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); 779 R += LIFC.R; 780 W += LIFC.W; 781 RW += LIFC.RW; 782 783 IndVarUpdates += LIFC.IndVarUpdates; 784 785 HintWeights += LIFC.HintWeights; 786 NrRematerializable += LIFC.IsRemat; 787 } 788 size_t Size = 0; 789 if (!Intervals.empty()) { 790 StartBBFreq = 791 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); 792 if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) 793 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); 794 EndBBFreq = 795 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); 796 Size = StartSI.distance(EndSI); 797 } 798 // Set the features at the column 'Pos'. 799 #define SET(ID, TYPE, VAL) \ 800 do { \ 801 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ 802 if (!DoNotNormalize.test(FeatureIDs::ID)) \ 803 Largest[FeatureIDs::ID] = \ 804 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ 805 } while (false) 806 SET(mask, int64_t, 1); 807 SET(is_free, int64_t, Intervals.empty()); 808 SET(nr_urgent, float, NrUrgent); 809 SET(nr_broken_hints, float, NrBrokenHints); 810 SET(is_hint, int64_t, IsHint); 811 SET(is_local, int64_t, LocalIntfsCount); 812 SET(nr_rematerializable, float, NrRematerializable); 813 SET(nr_defs_and_uses, float, NrDefsAndUses); 814 SET(weighed_reads_by_max, float, R); 815 SET(weighed_writes_by_max, float, W); 816 SET(weighed_read_writes_by_max, float, RW); 817 SET(weighed_indvars_by_max, float, IndVarUpdates); 818 SET(hint_weights_by_max, float, HintWeights); 819 SET(start_bb_freq_by_max, float, StartBBFreq); 820 SET(end_bb_freq_by_max, float, EndBBFreq); 821 SET(hottest_bb_freq_by_max, float, HottestBlockFreq); 822 SET(liverange_size, float, Size); 823 SET(use_def_density, float, TotalWeight); 824 SET(max_stage, int64_t, MaxStage); 825 SET(min_stage, int64_t, MinStage); 826 #undef SET 827 } 828 829 // Development mode-specific implementations 830 #ifdef LLVM_HAVE_TF_API 831 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { 832 return new DevelopmentModeEvictionAdvisorAnalysis(); 833 } 834 835 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( 836 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 837 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 838 int64_t Ret = 0; 839 if (isa<ModelUnderTrainingRunner>(getRunner())) { 840 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( 841 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 842 } else { 843 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( 844 VirtReg, Order, CostPerUseLimit, FixedRegisters); 845 // Find the index of the selected PhysReg. We need it for logging, otherwise 846 // this is wasted cycles (but so would starting development mode without a 847 // model nor logging) 848 if (!PhysReg) 849 Ret = CandidateVirtRegPos; 850 else 851 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); 852 I != E; ++I, ++Ret) 853 if (*I == PhysReg) 854 break; 855 } 856 if (TrainingLog.empty()) 857 return Ret; 858 size_t CurrentFeature = 0; 859 for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) { 860 Log->logSpecifiedTensorValue( 861 CurrentFeature, reinterpret_cast<const char *>( 862 getRunner().getTensorUntyped(CurrentFeature))); 863 } 864 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) 865 for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size(); 866 ++I, ++CurrentFeature) 867 Log->logSpecifiedTensorValue( 868 CurrentFeature, 869 reinterpret_cast<const char *>( 870 MUTR->lastEvaluationResult()->getUntypedTensorValue(I))); 871 // The output is right after the features and the extra outputs 872 Log->logInt64Value(CurrentFeature, &Ret); 873 return Ret; 874 } 875 876 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { 877 if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>( 878 &getAnalysis<RegAllocEvictionAdvisorAnalysis>())) 879 if (auto *Log = DevModeAnalysis->getLogger(MF)) 880 Log->logFloatFinalReward(static_cast<float>( 881 calculateRegAllocScore( 882 MF, getAnalysis<MachineBlockFrequencyInfo>(), 883 getAnalysis<AAResultsWrapperPass>().getAAResults()) 884 .getScore())); 885 886 return false; 887 } 888 #endif // #ifdef LLVM_HAVE_TF_API 889 890 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 891 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { 892 return new ReleaseModeEvictionAdvisorAnalysis(); 893 } 894 #endif 895 896 // In all cases except development mode, we don't need scoring. 897 #if !defined(LLVM_HAVE_TF_API) 898 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } 899 #endif 900