1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the ML eviction advisor and reward injection pass 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RegAllocEvictionAdvisor.h" 14 #include "RegAllocGreedy.h" 15 #include "RegAllocScore.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MLModelRunner.h" 18 #include "llvm/Analysis/ModelUnderTrainingRunner.h" 19 #include "llvm/Analysis/NoInferenceModelRunner.h" 20 #include "llvm/Analysis/ReleaseModeModelRunner.h" 21 #include "llvm/Analysis/Utils/TFUtils.h" 22 #include "llvm/CodeGen/CalcSpillWeights.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/PassRegistry.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 #include <array> 40 #include <memory> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "ml-regalloc" 45 46 // Generated header in release (AOT) mode 47 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 48 #include "RegallocEvictModel.h" 49 #endif 50 51 // Options that only make sense in development mode 52 #ifdef LLVM_HAVE_TF_API 53 static cl::opt<std::string> TrainingLog( 54 "regalloc-training-log", cl::Hidden, 55 cl::desc("Training log for the register allocator eviction model")); 56 57 static cl::opt<std::string> ModelUnderTraining( 58 "regalloc-model", cl::Hidden, 59 cl::desc("The model being trained for register allocation eviction")); 60 61 #endif // #ifdef LLVM_HAVE_TF_API 62 63 /// The score injection pass. 64 /// This pass calculates the score for a function and inserts it in the log, but 65 /// this happens only in development mode. It's a no-op otherwise. 66 namespace llvm { 67 class RegAllocScoring : public MachineFunctionPass { 68 public: 69 static char ID; 70 71 RegAllocScoring() : MachineFunctionPass(ID) { 72 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); 73 } 74 75 ~RegAllocScoring() override = default; 76 77 StringRef getPassName() const override { 78 return "Register Allocation Pass Scoring"; 79 } 80 81 /// RegAllocReward analysis usage. 82 void getAnalysisUsage(AnalysisUsage &AU) const override { 83 AU.setPreservesAll(); 84 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 85 AU.addRequired<MachineBlockFrequencyInfo>(); 86 AU.addRequired<AAResultsWrapperPass>(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 /// Performs this pass 91 bool runOnMachineFunction(MachineFunction &) override; 92 }; 93 94 char RegAllocScoring::ID = 0; 95 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } 96 97 } // namespace llvm 98 99 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", 100 "Register Allocation Scoring Pass", false, false) 101 102 // =================================== 103 // Common ML Advisor declarations 104 // =================================== 105 namespace { 106 // This is the maximum number of interfererring ranges. That's the number of 107 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize. 108 // For X86, that's 32. 109 // TODO: find a way to get this, statically, in a programmatic way. 110 static const int64_t MaxInterferences = 32; 111 112 // Logically, we can think of the feature set given to the evaluator as a 2D 113 // matrix. The rows are the features (see next). The columns correspond to the 114 // interferences. We treat the candidate virt reg as an 'interference', too, as 115 // its feature set is the same as that of the interferring ranges. So we'll have 116 // MaxInterferences + 1 columns and by convention, we will use the last column 117 // for the virt reg seeking allocation. 118 static const int64_t CandidateVirtRegPos = MaxInterferences; 119 static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1; 120 121 // Most features are as described above, so we'll reuse this vector in defining 122 // them. 123 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; 124 125 // -------------- 126 // Features table 127 // -------------- 128 // For each interfering live range (incl. the candidate) we collect a number of 129 // features. However, because the features are of different types (and because 130 // of ML best practices), we organize the tensors per feature, not per 131 // candidate. Each such tensor has a scalar value corresponding to the 132 // interferring live range at that position, in the order in AllocationOrder. 133 // The last position corresponds to the virt reg seeking allocation. 134 // Exception to all that is the progression feature, which is just a scalar (see 135 // its documentation for details). 136 // Note on naming: the "_by_max" are normalized using the largest value of that 137 // tensor, as observed in the current decision making stage (i.e. for the 138 // current call to the advisor's tryFindEvictionCandidate) 139 // 140 // The feature list format: type, name, shape, documentation. 141 // Note: we can really just use int64 and float, hence the modeling of some 142 // bools as int64 values. 143 #define RA_EVICT_FEATURES_LIST(M) \ 144 M(int64_t, mask, PerLiveRangeShape, \ 145 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ 146 "it " \ 147 "can't be evicted)") \ 148 M(int64_t, is_free, PerLiveRangeShape, \ 149 "boolean values, 1 if this phys reg is actually free (no interferences)") \ 150 M(float, nr_urgent, PerLiveRangeShape, \ 151 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ 152 "to break cascades") \ 153 M(float, nr_broken_hints, PerLiveRangeShape, \ 154 "if this position were evicted, how many broken hints would there be") \ 155 M(int64_t, is_hint, PerLiveRangeShape, \ 156 "is this a preferred phys reg for the candidate") \ 157 M(int64_t, is_local, PerLiveRangeShape, \ 158 "is this live range local to a basic block") \ 159 M(float, nr_rematerializable, PerLiveRangeShape, \ 160 "nr rematerializable ranges") \ 161 M(float, nr_defs_and_uses, PerLiveRangeShape, \ 162 "bb freq - weighed nr defs and uses") \ 163 M(float, weighed_reads_by_max, PerLiveRangeShape, \ 164 "bb freq - weighed nr of reads, normalized") \ 165 M(float, weighed_writes_by_max, PerLiveRangeShape, \ 166 "bb feq - weighed nr of writes, normalized") \ 167 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ 168 "bb freq - weighed nr of uses that are both read and writes, normalized") \ 169 M(float, weighed_indvars_by_max, PerLiveRangeShape, \ 170 "bb freq - weighed nr of uses that are indvars, normalized") \ 171 M(float, hint_weights_by_max, PerLiveRangeShape, \ 172 "bb freq - weighed nr of uses that are hints, normalized") \ 173 M(float, start_bb_freq_by_max, PerLiveRangeShape, \ 174 "the freq in the start block, normalized") \ 175 M(float, end_bb_freq_by_max, PerLiveRangeShape, \ 176 "freq of end block, normalized") \ 177 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ 178 "hottest BB freq, normalized") \ 179 M(float, liverange_size, PerLiveRangeShape, \ 180 "size (instr index diff) of the LR") \ 181 M(float, use_def_density, PerLiveRangeShape, \ 182 "the max weight, as computed by the manual heuristic") \ 183 M(int64_t, max_stage, PerLiveRangeShape, \ 184 "largest stage of an interval in this LR") \ 185 M(int64_t, min_stage, PerLiveRangeShape, \ 186 "lowest stage of an interval in this LR") \ 187 M(float, progress, {1}, "ratio of current queue size to initial size") 188 189 // The model learns to pick one of the mask == 1 interferences. This is the name 190 // of the output tensor. 191 // The contract with the model is that the output will be guaranteed to be to a 192 // mask == 1 position. 193 // Using a macro here to avoid 'not used' warnings (and keep cond compilation to 194 // a minimum) 195 #define DecisionName "index_to_evict" 196 197 // Named features index. 198 enum FeatureIDs { 199 #define _FEATURE_IDX(_, name, __, ___) name, 200 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) 201 #undef _FEATURE_IDX 202 FeatureCount 203 }; 204 205 // The ML advisor will typically have a sparse input to the evaluator, because 206 // various phys regs won't be available. It's easier (maintenance-wise) to 207 // bulk-reset the state of the evaluator each time we are about to use it again. 208 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { 209 size_t Ret = sizeof(T); 210 for (const auto V : Shape) 211 Ret *= V; 212 return Ret; 213 } 214 215 void resetInputs(MLModelRunner &Runner) { 216 #define _RESET(TYPE, NAME, SHAPE, __) \ 217 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ 218 getTotalSize<TYPE>(SHAPE)); 219 RA_EVICT_FEATURES_LIST(_RESET) 220 #undef _RESET 221 } 222 223 // Per-live interval components that get aggregated into the feature values that 224 // will be passed to the evaluator. 225 struct LIFeatureComponents { 226 double R = 0; 227 double W = 0; 228 double RW = 0; 229 double IndVarUpdates = 0; 230 double HintWeights = 0.0; 231 int64_t NrDefsAndUses = 0; 232 float HottestBlockFreq = 0.0; 233 bool IsRemat = false; 234 }; 235 236 using CandidateRegList = 237 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; 238 using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>; 239 240 /// The ML evictor (commonalities between release and development mode) 241 class MLEvictAdvisor : public RegAllocEvictionAdvisor { 242 public: 243 MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, MLModelRunner *Runner, 244 const MachineBlockFrequencyInfo &MBFI, 245 const MachineLoopInfo &Loops); 246 247 protected: 248 const RegAllocEvictionAdvisor &getDefaultAdvisor() const { 249 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); 250 } 251 252 // The assumption is that if the Runner could not be constructed, we emit-ed 253 // error, and we shouldn't be asking for it here. 254 const MLModelRunner &getRunner() const { return *Runner; } 255 256 /// This just calls Evaluate on the Runner, but in the development mode case, 257 /// if we're just capturing the log of the default advisor, it needs to call 258 /// the latter instead, so we need to pass all the necessary parameters for 259 /// it. In the development case, it will also log. 260 virtual int64_t tryFindEvictionCandidatePosition( 261 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 262 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const; 263 264 /// Load the features of the given VirtReg (allocated or not) at column Pos, 265 /// but if that can't be evicted, return false instead. 266 bool 267 loadInterferenceFeatures(LiveInterval &VirtReg, MCRegister PhysReg, 268 bool IsHint, const SmallVirtRegSet &FixedRegisters, 269 std::array<float, FeatureIDs::FeatureCount> &Largest, 270 size_t Pos) const; 271 272 private: 273 static float getInitialQueueSize(const MachineFunction &MF); 274 275 MCRegister tryFindEvictionCandidate( 276 LiveInterval &VirtReg, const AllocationOrder &Order, 277 uint8_t CostPerUseLimit, 278 const SmallVirtRegSet &FixedRegisters) const override; 279 280 void extractFeatures(const SmallVectorImpl<LiveInterval *> &Intervals, 281 std::array<float, FeatureIDs::FeatureCount> &Largest, 282 size_t Pos, int64_t IsHint, int64_t LocalIntfsCount, 283 float NrUrgent) const; 284 285 // Point-in-time: we didn't learn this, so we always delegate to the default. 286 bool canEvictHintInterference( 287 LiveInterval &VirtReg, MCRegister PhysReg, 288 const SmallVirtRegSet &FixedRegisters) const override { 289 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, 290 FixedRegisters); 291 } 292 293 const LIFeatureComponents 294 getLIFeatureComponents(const LiveInterval &LI) const; 295 296 // Hold on to a default advisor for: 297 // 1) the implementation of canEvictHintInterference, because we didn't learn 298 // that nuance yet; 299 // 2) for bootstrapping (logging) in the development mode case. 300 const DefaultEvictionAdvisor DefaultAdvisor; 301 MLModelRunner *const Runner; 302 const MachineBlockFrequencyInfo &MBFI; 303 const MachineLoopInfo &Loops; 304 305 // Indices of those features we don't want to normalize. 306 // This could be static and shared, but its initialization is non-trivial. 307 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; 308 const float InitialQSize; 309 }; 310 311 // =================================== 312 // Release (AOT) - specifics 313 // =================================== 314 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 315 const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{ 316 #define _GETNAME(_, NAME, __, ___) #NAME, 317 RA_EVICT_FEATURES_LIST(_GETNAME) 318 #undef _GETNAME 319 }; 320 class ReleaseModeEvictionAdvisorAnalysis final 321 : public RegAllocEvictionAdvisorAnalysis { 322 public: 323 ReleaseModeEvictionAdvisorAnalysis() 324 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {} 325 // support for isa<> and dyn_cast. 326 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 327 return R->getAdvisorMode() == AdvisorMode::Release; 328 } 329 330 private: 331 void getAnalysisUsage(AnalysisUsage &AU) const override { 332 AU.addRequired<MachineBlockFrequencyInfo>(); 333 AU.addRequired<MachineLoopInfo>(); 334 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 335 } 336 337 std::unique_ptr<RegAllocEvictionAdvisor> 338 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 339 if (!Runner) 340 Runner = std::make_unique<ReleaseModeModelRunner<RegallocEvictModel>>( 341 MF.getFunction().getContext(), FeatureNames, DecisionName); 342 return std::make_unique<MLEvictAdvisor>( 343 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 344 getAnalysis<MachineLoopInfo>()); 345 } 346 std::unique_ptr<ReleaseModeModelRunner<RegallocEvictModel>> Runner; 347 }; 348 #endif 349 350 // =================================== 351 // Development mode-specifics 352 // =================================== 353 // 354 // Features we log 355 #ifdef LLVM_HAVE_TF_API 356 #define _DECL_FEATURES(type, name, shape, _) \ 357 TensorSpec::createSpec<type>(#name, shape), 358 359 static const std::vector<TensorSpec> InputFeatures{ 360 {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}, 361 }; 362 #undef _DECL_FEATURES 363 static const TensorSpec Output = 364 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 365 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); 366 367 // Features we bind on the model. The tensor names have a prefix, and we also 368 // need to include some tensors that are expected to be present by the training 369 // algo. 370 // TODO: can we just get rid of these? 371 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ 372 TensorSpec::createSpec<type>(std::string("action_") + #name, shape), 373 374 static const std::vector<TensorSpec> TrainingInputFeatures{ 375 {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 376 TensorSpec::createSpec<float>("action_discount", {1}), 377 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 378 TensorSpec::createSpec<float>("action_reward", {1})}}; 379 #undef _DECL_TRAIN_FEATURES 380 381 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { 382 public: 383 DevelopmentModeEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 384 MLModelRunner *Runner, 385 const MachineBlockFrequencyInfo &MBFI, 386 const MachineLoopInfo &Loops, Logger *Log) 387 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} 388 389 private: 390 int64_t tryFindEvictionCandidatePosition( 391 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 392 uint8_t CostPerUseLimit, 393 const SmallVirtRegSet &FixedRegisters) const override; 394 395 Logger *const Log; 396 }; 397 398 class DevelopmentModeEvictionAdvisorAnalysis final 399 : public RegAllocEvictionAdvisorAnalysis { 400 public: 401 DevelopmentModeEvictionAdvisorAnalysis() 402 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {} 403 // support for isa<> and dyn_cast. 404 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 405 return R->getAdvisorMode() == AdvisorMode::Development; 406 } 407 408 /// get the logger for the given function, or nullptr if we didn't collect 409 /// one. This is used to inject the score by the RegAllocScoring pass. 410 Logger *getLogger(const MachineFunction &MF) const { 411 auto I = LogMap.find(MF.getName()); 412 if (I == LogMap.end()) 413 return nullptr; 414 return I->second.get(); 415 } 416 417 private: 418 void getAnalysisUsage(AnalysisUsage &AU) const override { 419 AU.addRequired<MachineBlockFrequencyInfo>(); 420 AU.addRequired<MachineLoopInfo>(); 421 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 422 } 423 424 // Save all the logs (when requested). 425 bool doFinalization(Module &M) override { 426 if (TrainingLog.empty()) 427 return false; 428 std::error_code EC; 429 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); 430 if (EC) { 431 M.getContext().emitError(EC.message() + ":" + TrainingLog); 432 return false; 433 } 434 Logger::flushLogs(*OS, LogMap); 435 return false; 436 } 437 438 std::unique_ptr<RegAllocEvictionAdvisor> 439 getAdvisor(MachineFunction &MF, const RAGreedy &RA) override { 440 LLVMContext &Ctx = MF.getFunction().getContext(); 441 if (ModelUnderTraining.empty() && TrainingLog.empty()) { 442 Ctx.emitError("Regalloc development mode should be requested with at " 443 "least logging enabled and/or a training model"); 444 return nullptr; 445 } 446 if (!Runner) { 447 if (ModelUnderTraining.empty()) 448 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); 449 else 450 Runner = ModelUnderTrainingRunner::createAndEnsureValid( 451 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); 452 if (!Runner) { 453 Ctx.emitError("Regalloc: could not set up the model runner"); 454 return nullptr; 455 } 456 } 457 458 Logger *Log = nullptr; 459 if (!TrainingLog.empty()) { 460 std::vector<LoggedFeatureSpec> LFS; 461 for (const auto &FS : InputFeatures) 462 LFS.push_back({FS, None}); 463 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) 464 if (MUTR->outputLoggedFeatureSpecs().size() > 1) 465 append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs())); 466 // We always log the output; in particular, if we're not evaluating, we 467 // don't have an output spec json file. That's why we handle the 468 // 'normal' output separately. 469 LFS.push_back({Output, None}); 470 auto I = LogMap.insert(std::make_pair( 471 MF.getFunction().getName(), 472 std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true))); 473 assert(I.second); 474 Log = I.first->second.get(); 475 } 476 return std::make_unique<DevelopmentModeEvictAdvisor>( 477 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), 478 getAnalysis<MachineLoopInfo>(), Log); 479 } 480 481 std::unique_ptr<MLModelRunner> Runner; 482 StringMap<std::unique_ptr<Logger>> LogMap; 483 }; 484 #endif //#ifdef LLVM_HAVE_TF_API 485 } // namespace 486 487 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { 488 auto &MRI = MF.getRegInfo(); 489 float Ret = 0.0; 490 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 491 Register Reg = Register::index2VirtReg(I); 492 if (MRI.reg_nodbg_empty(Reg)) 493 continue; 494 ++Ret; 495 } 496 return Ret; 497 } 498 499 MLEvictAdvisor::MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, 500 MLModelRunner *Runner, 501 const MachineBlockFrequencyInfo &MBFI, 502 const MachineLoopInfo &Loops) 503 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), 504 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), 505 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { 506 assert(this->Runner); 507 DoNotNormalize.set(FeatureIDs::mask); 508 DoNotNormalize.set(FeatureIDs::is_free); 509 DoNotNormalize.set(FeatureIDs::is_hint); 510 DoNotNormalize.set(FeatureIDs::is_local); 511 DoNotNormalize.set(FeatureIDs::min_stage); 512 DoNotNormalize.set(FeatureIDs::max_stage); 513 DoNotNormalize.set(FeatureIDs::progress); 514 } 515 516 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( 517 LiveInterval &, const AllocationOrder &, unsigned, uint8_t, 518 const SmallVirtRegSet &) const { 519 int64_t Ret = Runner->evaluate<int64_t>(); 520 assert(Ret >= 0); 521 assert(Ret <= CandidateVirtRegPos); 522 return Ret; 523 } 524 525 bool MLEvictAdvisor::loadInterferenceFeatures( 526 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 527 const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest, 528 size_t Pos) const { 529 // It is only possible to evict virtual register interference. 530 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { 531 // leave unavailable 532 return false; 533 } 534 535 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 536 int64_t LocalIntfs = 0; 537 float NrUrgent = 0.0f; 538 539 // The cascade tracking is the same as in the default advisor 540 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 541 542 SmallVector<LiveInterval *, MaxInterferences> InterferingIntervals; 543 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 544 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 545 // Different from the default heuristic, we don't make any assumptions about 546 // what having more than 10 results in the query may mean. 547 const auto &IFIntervals = Q.interferingVRegs(); 548 if (IFIntervals.empty() && InterferingIntervals.empty()) 549 continue; 550 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); 551 for (LiveInterval *Intf : reverse(IFIntervals)) { 552 assert(Register::isVirtualRegister(Intf->reg()) && 553 "Only expecting virtual register interference from query"); 554 // This is the same set of legality checks as in the default case: don't 555 // try to evict fixed regs or 'done' ones. Also don't break cascades, 556 // except in the urgent case, with the same nuances used in the default 557 // heuristic. 558 // We could try sharing this between the advisors, but it may end up 559 // more complex than it is right now. 560 if (FixedRegisters.count(Intf->reg())) 561 return false; 562 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 563 return false; 564 bool Urgent = 565 !VirtReg.isSpillable() && 566 (Intf->isSpillable() || 567 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 568 RegClassInfo.getNumAllocatableRegs( 569 MRI->getRegClass(Intf->reg()))); 570 // Only evict older cascades or live ranges without a cascade. 571 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 572 if (Cascade <= IntfCascade) { 573 if (!Urgent) 574 return false; 575 ++NrUrgent; 576 } 577 578 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && 579 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); 580 } 581 } 582 // OK, so if we made it this far, this LR is an eviction candidate, load its 583 // features. 584 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, 585 NrUrgent); 586 return true; 587 } 588 589 MCRegister MLEvictAdvisor::tryFindEvictionCandidate( 590 LiveInterval &VirtReg, const AllocationOrder &Order, 591 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 592 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 593 if (!MaybeOrderLimit) 594 return MCRegister::NoRegister; 595 unsigned OrderLimit = *MaybeOrderLimit; 596 597 // The heuristic sets initial costs such as, if CostPerUseLimit is 598 // max<uint8_t>, then any of the costs of the legally-evictable intervals 599 // would be lower. When that happens, one of those will be selected. 600 // Therefore, we allow the candidate be selected, unless the candidate is 601 // unspillable, in which case it would be incorrect to not find a register for 602 // it. 603 const bool MustFindEviction = 604 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); 605 // Number of available candidates - if 0, no need to continue. 606 size_t Available = 0; 607 // Make sure we don't have leftover partial state from an attempt where we had 608 // no available candidates and bailed out early. 609 resetInputs(*Runner); 610 611 // Track the index->register mapping because AllocationOrder doesn't do that 612 // and we'd have to scan it. 613 // Also track their mask, to write asserts/debug. 614 CandidateRegList Regs; 615 Regs.fill({0, false}); 616 617 // Track the largest value of features seen during this eviction session. We 618 // only normalize (some of) the float features, but it's just simpler to 619 // dimension 'Largest' to all the features, especially since we have the 620 // 'DoNotNormalize' list. 621 FeaturesListNormalizer Largest; 622 Largest.fill(0.0); 623 624 // Same overal idea as in the default eviction policy - we visit the values of 625 // AllocationOrder one at a time. If it's not legally available, we mask off 626 // the corresponding feature column (==do nothing because we already reset all 627 // the features to 0) 628 // Use Pos to capture the column we load features at - in AllocationOrder 629 // order. 630 size_t Pos = 0; 631 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 632 ++I, ++Pos) { 633 MCRegister PhysReg = *I; 634 assert(!Regs[Pos].second); 635 assert(PhysReg); 636 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { 637 continue; 638 } 639 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, 640 Largest, Pos)) { 641 ++Available; 642 Regs[Pos] = std::make_pair(PhysReg, true); 643 } 644 } 645 if (Available == 0) { 646 // Nothing to decide, nothing to learn. 647 assert(!MustFindEviction); 648 return MCRegister::NoRegister; 649 } 650 const size_t ValidPosLimit = Pos; 651 // If we must find eviction, the candidate should be masked out of the 652 // decision making process. 653 Regs[CandidateVirtRegPos].second = !MustFindEviction; 654 if (!MustFindEviction) 655 extractFeatures(SmallVector<LiveInterval *, 1>(1, &VirtReg), Largest, 656 CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0, 657 /*NrUrgent*/ 0.0); 658 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " 659 "nothing to allocate initially."); 660 // Normalize the features. 661 for (auto &V : Largest) 662 V = V ? V : 1.0; 663 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; 664 ++FeatureIndex) { 665 if (DoNotNormalize.test(FeatureIndex)) 666 continue; 667 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { 668 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; 669 } 670 } 671 *Runner->getTensor<float>(FeatureIDs::progress) = 672 static_cast<float>(RA.getQueueSize()) / InitialQSize; 673 674 // Get a decision. 675 size_t CandidatePos = tryFindEvictionCandidatePosition( 676 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 677 // The contract with the ML side is that CandidatePos is mask == 1 (i.e. 678 // Regs[CandidatePos].second) 679 assert(Regs[CandidatePos].second); 680 if (CandidatePos == CandidateVirtRegPos) { 681 assert(!MustFindEviction); 682 return MCRegister::NoRegister; 683 } 684 assert(CandidatePos < ValidPosLimit); 685 (void)ValidPosLimit; 686 return Regs[CandidatePos].first; 687 } 688 689 const LIFeatureComponents 690 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { 691 LIFeatureComponents Ret; 692 SmallPtrSet<MachineInstr *, 8> Visited; 693 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 694 695 for (MachineRegisterInfo::reg_instr_nodbg_iterator 696 I = MRI->reg_instr_nodbg_begin(LI.reg()), 697 E = MRI->reg_instr_nodbg_end(); 698 I != E;) { 699 MachineInstr *MI = &*(I++); 700 701 ++Ret.NrDefsAndUses; 702 if (!Visited.insert(MI).second) 703 continue; 704 705 if (MI->isIdentityCopy() || MI->isImplicitDef()) 706 continue; 707 708 bool Reads, Writes; 709 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); 710 711 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); 712 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); 713 714 Ret.R += (Reads && !Writes) * Freq; 715 Ret.W += (!Reads && Writes) * Freq; 716 Ret.RW += (Reads && Writes) * Freq; 717 718 auto *MBB = MI->getParent(); 719 auto *Loop = Loops.getLoopFor(MBB); 720 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; 721 722 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) 723 Ret.IndVarUpdates += Freq; 724 725 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) 726 Ret.HintWeights += Freq; 727 } 728 Ret.IsRemat = VirtRegAuxInfo::isRematerializable( 729 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); 730 return Ret; 731 } 732 733 // Overall, this currently mimics what we do for weight calculation, but instead 734 // of accummulating the various features, we keep them separate. 735 void MLEvictAdvisor::extractFeatures( 736 const SmallVectorImpl<LiveInterval *> &Intervals, 737 std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos, 738 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const { 739 int64_t NrDefsAndUses = 0; 740 int64_t NrBrokenHints = 0; 741 double R = 0.0; 742 double W = 0.0; 743 double RW = 0.0; 744 double IndVarUpdates = 0.0; 745 double HintWeights = 0.0; 746 float StartBBFreq = 0.0; 747 float EndBBFreq = 0.0; 748 float HottestBlockFreq = 0.0; 749 int32_t NrRematerializable = 0; 750 float TotalWeight = 0.0; 751 752 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); 753 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); 754 int64_t MaxStage = 0; 755 int64_t MinStage = 756 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); 757 758 for (const auto *L : Intervals) { 759 const LiveInterval &LI = *L; 760 MaxStage = std::max<int64_t>( 761 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 762 MinStage = std::min<int64_t>( 763 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 764 765 TotalWeight = std::max(TotalWeight, LI.weight()); 766 767 if (LI.beginIndex() < StartSI) 768 StartSI = LI.beginIndex(); 769 770 if (LI.endIndex() > EndSI) 771 EndSI = LI.endIndex(); 772 const LIFeatureComponents LIFC = getLIFeatureComponents(LI); 773 NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); 774 775 NrDefsAndUses += LIFC.NrDefsAndUses; 776 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); 777 R += LIFC.R; 778 W += LIFC.W; 779 RW += LIFC.RW; 780 781 IndVarUpdates += LIFC.IndVarUpdates; 782 783 HintWeights += LIFC.HintWeights; 784 NrRematerializable += LIFC.IsRemat; 785 } 786 size_t Size = 0; 787 if (!Intervals.empty()) { 788 StartBBFreq = 789 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); 790 if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) 791 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); 792 EndBBFreq = 793 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); 794 Size = StartSI.distance(EndSI); 795 } 796 // Set the features at the column 'Pos'. 797 #define SET(ID, TYPE, VAL) \ 798 do { \ 799 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ 800 if (!DoNotNormalize.test(FeatureIDs::ID)) \ 801 Largest[FeatureIDs::ID] = \ 802 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ 803 } while (false) 804 SET(mask, int64_t, 1); 805 SET(is_free, int64_t, Intervals.empty()); 806 SET(nr_urgent, float, NrUrgent); 807 SET(nr_broken_hints, float, NrBrokenHints); 808 SET(is_hint, int64_t, IsHint); 809 SET(is_local, int64_t, LocalIntfsCount); 810 SET(nr_rematerializable, float, NrRematerializable); 811 SET(nr_defs_and_uses, float, NrDefsAndUses); 812 SET(weighed_reads_by_max, float, R); 813 SET(weighed_writes_by_max, float, W); 814 SET(weighed_read_writes_by_max, float, RW); 815 SET(weighed_indvars_by_max, float, IndVarUpdates); 816 SET(hint_weights_by_max, float, HintWeights); 817 SET(start_bb_freq_by_max, float, StartBBFreq); 818 SET(end_bb_freq_by_max, float, EndBBFreq); 819 SET(hottest_bb_freq_by_max, float, HottestBlockFreq); 820 SET(liverange_size, float, Size); 821 SET(use_def_density, float, TotalWeight); 822 SET(max_stage, int64_t, MaxStage); 823 SET(min_stage, int64_t, MinStage); 824 #undef SET 825 } 826 827 // Development mode-specific implementations 828 #ifdef LLVM_HAVE_TF_API 829 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { 830 return new DevelopmentModeEvictionAdvisorAnalysis(); 831 } 832 833 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( 834 LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit, 835 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 836 int64_t Ret = 0; 837 if (isa<ModelUnderTrainingRunner>(getRunner())) { 838 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( 839 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 840 } else { 841 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( 842 VirtReg, Order, CostPerUseLimit, FixedRegisters); 843 // Find the index of the selected PhysReg. We need it for logging, otherwise 844 // this is wasted cycles (but so would starting development mode without a 845 // model nor logging) 846 if (!PhysReg) 847 Ret = CandidateVirtRegPos; 848 else 849 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); 850 I != E; ++I, ++Ret) 851 if (*I == PhysReg) 852 break; 853 } 854 if (TrainingLog.empty()) 855 return Ret; 856 size_t CurrentFeature = 0; 857 for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) { 858 Log->logSpecifiedTensorValue( 859 CurrentFeature, reinterpret_cast<const char *>( 860 getRunner().getTensorUntyped(CurrentFeature))); 861 } 862 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) 863 for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size(); 864 ++I, ++CurrentFeature) 865 Log->logSpecifiedTensorValue( 866 CurrentFeature, 867 reinterpret_cast<const char *>( 868 MUTR->lastEvaluationResult()->getUntypedTensorValue(I))); 869 // The output is right after the features and the extra outputs 870 Log->logInt64Value(CurrentFeature, &Ret); 871 return Ret; 872 } 873 874 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { 875 if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>( 876 &getAnalysis<RegAllocEvictionAdvisorAnalysis>())) 877 if (auto *Log = DevModeAnalysis->getLogger(MF)) 878 Log->logFloatFinalReward(static_cast<float>( 879 calculateRegAllocScore( 880 MF, getAnalysis<MachineBlockFrequencyInfo>(), 881 getAnalysis<AAResultsWrapperPass>().getAAResults()) 882 .getScore())); 883 884 return false; 885 } 886 #endif // #ifdef LLVM_HAVE_TF_API 887 888 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 889 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { 890 return new ReleaseModeEvictionAdvisorAnalysis(); 891 } 892 #endif 893 894 // In all cases except development mode, we don't need scoring. 895 #if !defined(LLVM_HAVE_TF_API) 896 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } 897 #endif 898