1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the ML eviction advisor and reward injection pass
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RegAllocEvictionAdvisor.h"
14 #include "llvm/Analysis/MLModelRunner.h"
15 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
16 #include "llvm/Analysis/NoInferenceModelRunner.h"
17 #include "llvm/Analysis/Utils/TFUtils.h"
18 #include "llvm/CodeGen/CalcSpillWeights.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/RegisterClassInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Config/config.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/PassRegistry.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Target/TargetMachine.h"
31 
32 #include <memory>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "ml-regalloc"
37 
38 #if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
39 namespace {
40 // This is the maximum number of interfererring ranges. That's the number of
41 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
42 // For X86, that's 32.
43 // TODO: find a way to get this, statically, in a programmatic way.
44 static const int64_t MaxInterferences = 32;
45 
46 // Logically, we can think of the feature set given to the evaluator as a 2D
47 // matrix. The rows are the features (see next). The columns correspond to the
48 // interferences. We treat the candidate virt reg as an 'interference', too, as
49 // its feature set is the same as that of the interferring ranges. So we'll have
50 // MaxInterferences + 1 columns and by convention, we will use the last column
51 // for the virt reg seeking allocation.
52 static const int64_t CandidateVirtRegPos = MaxInterferences;
53 static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
54 
55 // Most features are as described above, so we'll reuse this vector in defining
56 // them.
57 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
58 
59 // --------------
60 // Features table
61 // --------------
62 // For each interfering live range (incl. the candidate) we collect a number of
63 // features. However, because the features are of different types (and because
64 // of ML best practices), we organize the tensors per feature, not per
65 // candidate. Each such tensor has a scalar value corresponding to the
66 // interferring live range at that position, in the order in AllocationOrder.
67 // The last position corresponds to the virt reg seeking allocation.
68 // Exception to all that is the progression feature, which is just a scalar (see
69 // its documentation for details).
70 // Note on naming: the "_by_max" are normalized using the largest value of that
71 // tensor, as observed in the current decision making stage (i.e. for the
72 // current call to the advisor's tryFindEvictionCandidate)
73 //
74 // The feature list format: type, name, shape, documentation.
75 // Note: we can really just use int64 and float, hence the modeling of some
76 // bools as int64 values.
77 #define RA_EVICT_FEATURES_LIST(M)                                              \
78   M(int64_t, mask, PerLiveRangeShape,                                          \
79     "boolean values, 0 for unavailable candidates (i.e. if a position is 0, "  \
80     "it "                                                                      \
81     "can't be evicted)")                                                       \
82   M(int64_t, is_free, PerLiveRangeShape,                                       \
83     "boolean values, 1 if this phys reg is actually free (no interferences)")  \
84   M(float, nr_urgent, PerLiveRangeShape,                                       \
85     "number of 'urgent' intervals, normalized. Urgent are those that are OK "  \
86     "to break cascades")                                                       \
87   M(float, nr_broken_hints, PerLiveRangeShape,                                 \
88     "if this position were evicted, how many broken hints would there be")     \
89   M(int64_t, is_hint, PerLiveRangeShape,                                       \
90     "is this a preferred phys reg for the candidate")                          \
91   M(int64_t, is_local, PerLiveRangeShape,                                      \
92     "is this live range local to a basic block")                               \
93   M(float, nr_rematerializable, PerLiveRangeShape,                             \
94     "nr rematerializable ranges")                                              \
95   M(float, nr_defs_and_uses, PerLiveRangeShape,                                \
96     "bb freq - weighed nr defs and uses")                                      \
97   M(float, weighed_reads_by_max, PerLiveRangeShape,                            \
98     "bb freq - weighed nr of reads, normalized")                               \
99   M(float, weighed_writes_by_max, PerLiveRangeShape,                           \
100     "bb feq - weighed nr of writes, normalized")                               \
101   M(float, weighed_read_writes_by_max, PerLiveRangeShape,                      \
102     "bb freq - weighed nr of uses that are both read and writes, normalized")  \
103   M(float, weighed_indvars_by_max, PerLiveRangeShape,                          \
104     "bb freq - weighed nr of uses that are indvars, normalized")               \
105   M(float, hint_weights_by_max, PerLiveRangeShape,                             \
106     "bb freq - weighed nr of uses that are hints, normalized")                 \
107   M(float, start_bb_freq_by_max, PerLiveRangeShape,                            \
108     "the freq in the start block, normalized")                                 \
109   M(float, end_bb_freq_by_max, PerLiveRangeShape,                              \
110     "freq of end block, normalized")                                           \
111   M(float, hottest_bb_freq_by_max, PerLiveRangeShape,                          \
112     "hottest BB freq, normalized")                                             \
113   M(float, liverange_size, PerLiveRangeShape,                                  \
114     "size (instr index diff) of the LR")                                       \
115   M(float, use_def_density, PerLiveRangeShape,                                 \
116     "the max weight, as computed by the manual heuristic")                     \
117   M(int64_t, max_stage, PerLiveRangeShape,                                     \
118     "largest stage of an interval in this LR")                                 \
119   M(int64_t, min_stage, PerLiveRangeShape,                                     \
120     "lowest stage of an interval in this LR")                                  \
121   M(float, progress, {1}, "ratio of current queue size to initial size")
122 
123 // The model learns to pick one of the mask == 1 interferences. This is the name
124 // of the output tensor.
125 // The contract with the model is that the output will be guaranteed to be to a
126 // mask == 1 position.
127 const char *const DecisionName = "index_to_evict";
128 
129 // Named features index.
130 enum FeatureIDs {
131 #define _FEATURE_IDX(_, name, __, ___) name,
132   RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
133 #undef _FEATURE_IDX
134       FeatureCount
135 };
136 
137 // The ML advisor will typically have a sparse input to the evaluator, because
138 // various phys regs won't be available. It's easier (maintenance-wise) to
139 // bulk-reset the state of the evaluator each time we are about to use it again.
140 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
141   size_t Ret = sizeof(T);
142   for (const auto V : Shape)
143     Ret *= V;
144   return Ret;
145 }
146 
147 void resetInputs(MLModelRunner &Runner) {
148 #define _RESET(TYPE, NAME, SHAPE, __)                                          \
149   std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0,                    \
150               getTotalSize<TYPE>(SHAPE));
151   RA_EVICT_FEATURES_LIST(_RESET)
152 #undef _RESET
153 }
154 
155 // Development mode-specifics
156 #ifdef LLVM_HAVE_TF_API
157 #define _DECL_FEATURES(type, name, shape, _)                                   \
158   TensorSpec::createSpec<type>(#name, shape),
159 
160 static const std::vector<TensorSpec> InputFeatures{
161     {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}};
162 #undef _DECL_FEATURES
163 static const TensorSpec Output =
164     TensorSpec::createSpec<int64_t>(DecisionName, {1});
165 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
166 
167 #endif //#ifdef LLVM_HAVE_TF_API
168 } // namespace
169 #endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
170