1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11 
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/UniqueVector.h"
16 #include "llvm/CodeGen/LexicalScopes.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 
26 #include "LiveDebugValues.h"
27 
28 class TransferTracker;
29 
30 // Forward dec of unit test class, so that we can peer into the LDV object.
31 class InstrRefLDVTest;
32 
33 namespace LiveDebugValues {
34 
35 class MLocTracker;
36 
37 using namespace llvm;
38 
39 /// Handle-class for a particular "location". This value-type uniquely
40 /// symbolises a register or stack location, allowing manipulation of locations
41 /// without concern for where that location is. Practically, this allows us to
42 /// treat the state of the machine at a particular point as an array of values,
43 /// rather than a map of values.
44 class LocIdx {
45   unsigned Location;
46 
47   // Default constructor is private, initializing to an illegal location number.
48   // Use only for "not an entry" elements in IndexedMaps.
49   LocIdx() : Location(UINT_MAX) {}
50 
51 public:
52 #define NUM_LOC_BITS 24
53   LocIdx(unsigned L) : Location(L) {
54     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
55   }
56 
57   static LocIdx MakeIllegalLoc() { return LocIdx(); }
58   static LocIdx MakeTombstoneLoc() {
59     LocIdx L = LocIdx();
60     --L.Location;
61     return L;
62   }
63 
64   bool isIllegal() const { return Location == UINT_MAX; }
65 
66   uint64_t asU64() const { return Location; }
67 
68   bool operator==(unsigned L) const { return Location == L; }
69 
70   bool operator==(const LocIdx &L) const { return Location == L.Location; }
71 
72   bool operator!=(unsigned L) const { return !(*this == L); }
73 
74   bool operator!=(const LocIdx &L) const { return !(*this == L); }
75 
76   bool operator<(const LocIdx &Other) const {
77     return Location < Other.Location;
78   }
79 };
80 
81 // The location at which a spilled value resides. It consists of a register and
82 // an offset.
83 struct SpillLoc {
84   unsigned SpillBase;
85   StackOffset SpillOffset;
86   bool operator==(const SpillLoc &Other) const {
87     return std::make_pair(SpillBase, SpillOffset) ==
88            std::make_pair(Other.SpillBase, Other.SpillOffset);
89   }
90   bool operator<(const SpillLoc &Other) const {
91     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
92                            SpillOffset.getScalable()) <
93            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
94                            Other.SpillOffset.getScalable());
95   }
96 };
97 
98 /// Unique identifier for a value defined by an instruction, as a value type.
99 /// Casts back and forth to a uint64_t. Probably replacable with something less
100 /// bit-constrained. Each value identifies the instruction and machine location
101 /// where the value is defined, although there may be no corresponding machine
102 /// operand for it (ex: regmasks clobbering values). The instructions are
103 /// one-based, and definitions that are PHIs have instruction number zero.
104 ///
105 /// The obvious limits of a 1M block function or 1M instruction blocks are
106 /// problematic; but by that point we should probably have bailed out of
107 /// trying to analyse the function.
108 class ValueIDNum {
109   union {
110     struct {
111       uint64_t BlockNo : 20; /// The block where the def happens.
112       uint64_t InstNo : 20;  /// The Instruction where the def happens.
113                              /// One based, is distance from start of block.
114       uint64_t LocNo
115           : NUM_LOC_BITS; /// The machine location where the def happens.
116     } s;
117     uint64_t Value;
118   } u;
119 
120   static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
121 
122 public:
123   // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
124   // of values to work.
125   ValueIDNum() { u.Value = EmptyValue.asU64(); }
126 
127   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
128     u.s = {Block, Inst, Loc};
129   }
130 
131   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
132     u.s = {Block, Inst, Loc.asU64()};
133   }
134 
135   ValueIDNum &operator=(const ValueIDNum &Other) {
136     u.Value = Other.u.Value;
137     return *this;
138   }
139 
140   uint64_t getBlock() const { return u.s.BlockNo; }
141   uint64_t getInst() const { return u.s.InstNo; }
142   uint64_t getLoc() const { return u.s.LocNo; }
143   bool isPHI() const { return u.s.InstNo == 0; }
144 
145   uint64_t asU64() const { return u.Value; }
146 
147   static ValueIDNum fromU64(uint64_t v) {
148     ValueIDNum Val;
149     Val.u.Value = v;
150     return Val;
151   }
152 
153   bool operator<(const ValueIDNum &Other) const {
154     return asU64() < Other.asU64();
155   }
156 
157   bool operator==(const ValueIDNum &Other) const {
158     return u.Value == Other.u.Value;
159   }
160 
161   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
162 
163   std::string asString(const std::string &mlocname) const {
164     return Twine("Value{bb: ")
165         .concat(Twine(u.s.BlockNo)
166                     .concat(Twine(", inst: ")
167                                 .concat((u.s.InstNo ? Twine(u.s.InstNo)
168                                                     : Twine("live-in"))
169                                             .concat(Twine(", loc: ").concat(
170                                                 Twine(mlocname)))
171                                             .concat(Twine("}")))))
172         .str();
173   }
174 
175   static ValueIDNum EmptyValue;
176   static ValueIDNum TombstoneValue;
177 };
178 
179 /// Thin wrapper around an integer -- designed to give more type safety to
180 /// spill location numbers.
181 class SpillLocationNo {
182 public:
183   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
184   unsigned SpillNo;
185   unsigned id() const { return SpillNo; }
186 
187   bool operator<(const SpillLocationNo &Other) const {
188     return SpillNo < Other.SpillNo;
189   }
190 
191   bool operator==(const SpillLocationNo &Other) const {
192     return SpillNo == Other.SpillNo;
193   }
194   bool operator!=(const SpillLocationNo &Other) const {
195     return !(*this == Other);
196   }
197 };
198 
199 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
200 /// the the value, and Boolean of whether or not it's indirect.
201 class DbgValueProperties {
202 public:
203   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
204       : DIExpr(DIExpr), Indirect(Indirect) {}
205 
206   /// Extract properties from an existing DBG_VALUE instruction.
207   DbgValueProperties(const MachineInstr &MI) {
208     assert(MI.isDebugValue());
209     DIExpr = MI.getDebugExpression();
210     Indirect = MI.getOperand(1).isImm();
211   }
212 
213   bool operator==(const DbgValueProperties &Other) const {
214     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
215   }
216 
217   bool operator!=(const DbgValueProperties &Other) const {
218     return !(*this == Other);
219   }
220 
221   const DIExpression *DIExpr;
222   bool Indirect;
223 };
224 
225 /// Class recording the (high level) _value_ of a variable. Identifies either
226 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
227 /// This class also stores meta-information about how the value is qualified.
228 /// Used to reason about variable values when performing the second
229 /// (DebugVariable specific) dataflow analysis.
230 class DbgValue {
231 public:
232   /// If Kind is Def, the value number that this value is based on. VPHIs set
233   /// this field to EmptyValue if there is no machine-value for this VPHI, or
234   /// the corresponding machine-value if there is one.
235   ValueIDNum ID;
236   /// If Kind is Const, the MachineOperand defining this value.
237   Optional<MachineOperand> MO;
238   /// For a NoVal or VPHI DbgValue, which block it was generated in.
239   int BlockNo;
240 
241   /// Qualifiers for the ValueIDNum above.
242   DbgValueProperties Properties;
243 
244   typedef enum {
245     Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
246     Def,   // This value is defined by an inst, or is a PHI value.
247     Const, // A constant value contained in the MachineOperand field.
248     VPHI,  // Incoming values to BlockNo differ, those values must be joined by
249            // a PHI in this block.
250     NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
251            // before dominating blocks values are propagated in.
252   } KindT;
253   /// Discriminator for whether this is a constant or an in-program value.
254   KindT Kind;
255 
256   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
257       : ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) {
258     assert(Kind == Def);
259   }
260 
261   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
262       : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo),
263         Properties(Prop), Kind(Kind) {
264     assert(Kind == NoVal || Kind == VPHI);
265   }
266 
267   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
268       : ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop),
269         Kind(Kind) {
270     assert(Kind == Const);
271   }
272 
273   DbgValue(const DbgValueProperties &Prop, KindT Kind)
274     : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop),
275       Kind(Kind) {
276     assert(Kind == Undef &&
277            "Empty DbgValue constructor must pass in Undef kind");
278   }
279 
280 #ifndef NDEBUG
281   void dump(const MLocTracker *MTrack) const;
282 #endif
283 
284   bool operator==(const DbgValue &Other) const {
285     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
286       return false;
287     else if (Kind == Def && ID != Other.ID)
288       return false;
289     else if (Kind == NoVal && BlockNo != Other.BlockNo)
290       return false;
291     else if (Kind == Const)
292       return MO->isIdenticalTo(*Other.MO);
293     else if (Kind == VPHI && BlockNo != Other.BlockNo)
294       return false;
295     else if (Kind == VPHI && ID != Other.ID)
296       return false;
297 
298     return true;
299   }
300 
301   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
302 };
303 
304 class LocIdxToIndexFunctor {
305 public:
306   using argument_type = LocIdx;
307   unsigned operator()(const LocIdx &L) const { return L.asU64(); }
308 };
309 
310 /// Tracker for what values are in machine locations. Listens to the Things
311 /// being Done by various instructions, and maintains a table of what machine
312 /// locations have what values (as defined by a ValueIDNum).
313 ///
314 /// There are potentially a much larger number of machine locations on the
315 /// target machine than the actual working-set size of the function. On x86 for
316 /// example, we're extremely unlikely to want to track values through control
317 /// or debug registers. To avoid doing so, MLocTracker has several layers of
318 /// indirection going on, described below, to avoid unnecessarily tracking
319 /// any location.
320 ///
321 /// Here's a sort of diagram of the indexes, read from the bottom up:
322 ///
323 ///           Size on stack   Offset on stack
324 ///                 \              /
325 ///          Stack Idx (Where in slot is this?)
326 ///                         /
327 ///                        /
328 /// Slot Num (%stack.0)   /
329 /// FrameIdx => SpillNum /
330 ///              \      /
331 ///           SpillID (int)              Register number (int)
332 ///                      \                  /
333 ///                      LocationID => LocIdx
334 ///                                |
335 ///                       LocIdx => ValueIDNum
336 ///
337 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
338 /// values in numbered locations, so that later analyses can ignore whether the
339 /// location is a register or otherwise. To map a register / spill location to
340 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
341 /// build a LocationID for a stack slot, you need to combine identifiers for
342 /// which stack slot it is and where within that slot is being described.
343 ///
344 /// Register mask operands cause trouble by technically defining every register;
345 /// various hacks are used to avoid tracking registers that are never read and
346 /// only written by regmasks.
347 class MLocTracker {
348 public:
349   MachineFunction &MF;
350   const TargetInstrInfo &TII;
351   const TargetRegisterInfo &TRI;
352   const TargetLowering &TLI;
353 
354   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
355   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
356 
357   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
358   /// packed, entries only exist for locations that are being tracked.
359   LocToValueType LocIdxToIDNum;
360 
361   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
362   /// LocIdx key / number for that location. There are always at least as many
363   /// as the number of registers on the target -- if the value in the register
364   /// is not being tracked, then the LocIdx value will be zero. New entries are
365   /// appended if a new spill slot begins being tracked.
366   /// This, and the corresponding reverse map persist for the analysis of the
367   /// whole function, and is necessarying for decoding various vectors of
368   /// values.
369   std::vector<LocIdx> LocIDToLocIdx;
370 
371   /// Inverse map of LocIDToLocIdx.
372   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
373 
374   /// When clobbering register masks, we chose to not believe the machine model
375   /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
376   /// keep a set of them here.
377   SmallSet<Register, 8> SPAliases;
378 
379   /// Unique-ification of spill. Used to number them -- their LocID number is
380   /// the index in SpillLocs minus one plus NumRegs.
381   UniqueVector<SpillLoc> SpillLocs;
382 
383   // If we discover a new machine location, assign it an mphi with this
384   // block number.
385   unsigned CurBB;
386 
387   /// Cached local copy of the number of registers the target has.
388   unsigned NumRegs;
389 
390   /// Number of slot indexes the target has -- distinct segments of a stack
391   /// slot that can take on the value of a subregister, when a super-register
392   /// is written to the stack.
393   unsigned NumSlotIdxes;
394 
395   /// Collection of register mask operands that have been observed. Second part
396   /// of pair indicates the instruction that they happened in. Used to
397   /// reconstruct where defs happened if we start tracking a location later
398   /// on.
399   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
400 
401   /// Pair for describing a position within a stack slot -- first the size in
402   /// bits, then the offset.
403   typedef std::pair<unsigned short, unsigned short> StackSlotPos;
404 
405   /// Map from a size/offset pair describing a position in a stack slot, to a
406   /// numeric identifier for that position. Allows easier identification of
407   /// individual positions.
408   DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
409 
410   /// Inverse of StackSlotIdxes.
411   DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
412 
413   /// Iterator for locations and the values they contain. Dereferencing
414   /// produces a struct/pair containing the LocIdx key for this location,
415   /// and a reference to the value currently stored. Simplifies the process
416   /// of seeking a particular location.
417   class MLocIterator {
418     LocToValueType &ValueMap;
419     LocIdx Idx;
420 
421   public:
422     class value_type {
423     public:
424       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
425       const LocIdx Idx;  /// Read-only index of this location.
426       ValueIDNum &Value; /// Reference to the stored value at this location.
427     };
428 
429     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
430         : ValueMap(ValueMap), Idx(Idx) {}
431 
432     bool operator==(const MLocIterator &Other) const {
433       assert(&ValueMap == &Other.ValueMap);
434       return Idx == Other.Idx;
435     }
436 
437     bool operator!=(const MLocIterator &Other) const {
438       return !(*this == Other);
439     }
440 
441     void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
442 
443     value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
444   };
445 
446   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
447               const TargetRegisterInfo &TRI, const TargetLowering &TLI);
448 
449   /// Produce location ID number for a Register. Provides some small amount of
450   /// type safety.
451   /// \param Reg The register we're looking up.
452   unsigned getLocID(Register Reg) { return Reg.id(); }
453 
454   /// Produce location ID number for a spill position.
455   /// \param Spill The number of the spill we're fetching the location for.
456   /// \param SpillSubReg Subregister within the spill we're addressing.
457   unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
458     unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
459     unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
460     return getLocID(Spill, {Size, Offs});
461   }
462 
463   /// Produce location ID number for a spill position.
464   /// \param Spill The number of the spill we're fetching the location for.
465   /// \apram SpillIdx size/offset within the spill slot to be addressed.
466   unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
467     unsigned SlotNo = Spill.id() - 1;
468     SlotNo *= NumSlotIdxes;
469     assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
470     SlotNo += StackSlotIdxes[Idx];
471     SlotNo += NumRegs;
472     return SlotNo;
473   }
474 
475   /// Given a spill number, and a slot within the spill, calculate the ID number
476   /// for that location.
477   unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
478     unsigned SlotNo = Spill.id() - 1;
479     SlotNo *= NumSlotIdxes;
480     SlotNo += Idx;
481     SlotNo += NumRegs;
482     return SlotNo;
483   }
484 
485   /// Return the spill number that a location ID corresponds to.
486   SpillLocationNo locIDToSpill(unsigned ID) const {
487     assert(ID >= NumRegs);
488     ID -= NumRegs;
489     // Truncate away the index part, leaving only the spill number.
490     ID /= NumSlotIdxes;
491     return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
492   }
493 
494   /// Returns the spill-slot size/offs that a location ID corresponds to.
495   StackSlotPos locIDToSpillIdx(unsigned ID) const {
496     assert(ID >= NumRegs);
497     ID -= NumRegs;
498     unsigned Idx = ID % NumSlotIdxes;
499     return StackIdxesToPos.find(Idx)->second;
500   }
501 
502   unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
503 
504   /// Reset all locations to contain a PHI value at the designated block. Used
505   /// sometimes for actual PHI values, othertimes to indicate the block entry
506   /// value (before any more information is known).
507   void setMPhis(unsigned NewCurBB) {
508     CurBB = NewCurBB;
509     for (auto Location : locations())
510       Location.Value = {CurBB, 0, Location.Idx};
511   }
512 
513   /// Load values for each location from array of ValueIDNums. Take current
514   /// bbnum just in case we read a value from a hitherto untouched register.
515   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
516     CurBB = NewCurBB;
517     // Iterate over all tracked locations, and load each locations live-in
518     // value into our local index.
519     for (auto Location : locations())
520       Location.Value = Locs[Location.Idx.asU64()];
521   }
522 
523   /// Wipe any un-necessary location records after traversing a block.
524   void reset() {
525     // We could reset all the location values too; however either loadFromArray
526     // or setMPhis should be called before this object is re-used. Just
527     // clear Masks, they're definitely not needed.
528     Masks.clear();
529   }
530 
531   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
532   /// the information in this pass uninterpretable.
533   void clear() {
534     reset();
535     LocIDToLocIdx.clear();
536     LocIdxToLocID.clear();
537     LocIdxToIDNum.clear();
538     // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
539     // 0
540     SpillLocs = decltype(SpillLocs)();
541     StackSlotIdxes.clear();
542     StackIdxesToPos.clear();
543 
544     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
545   }
546 
547   /// Set a locaiton to a certain value.
548   void setMLoc(LocIdx L, ValueIDNum Num) {
549     assert(L.asU64() < LocIdxToIDNum.size());
550     LocIdxToIDNum[L] = Num;
551   }
552 
553   /// Read the value of a particular location
554   ValueIDNum readMLoc(LocIdx L) {
555     assert(L.asU64() < LocIdxToIDNum.size());
556     return LocIdxToIDNum[L];
557   }
558 
559   /// Create a LocIdx for an untracked register ID. Initialize it to either an
560   /// mphi value representing a live-in, or a recent register mask clobber.
561   LocIdx trackRegister(unsigned ID);
562 
563   LocIdx lookupOrTrackRegister(unsigned ID) {
564     LocIdx &Index = LocIDToLocIdx[ID];
565     if (Index.isIllegal())
566       Index = trackRegister(ID);
567     return Index;
568   }
569 
570   /// Is register R currently tracked by MLocTracker?
571   bool isRegisterTracked(Register R) {
572     LocIdx &Index = LocIDToLocIdx[R];
573     return !Index.isIllegal();
574   }
575 
576   /// Record a definition of the specified register at the given block / inst.
577   /// This doesn't take a ValueIDNum, because the definition and its location
578   /// are synonymous.
579   void defReg(Register R, unsigned BB, unsigned Inst) {
580     unsigned ID = getLocID(R);
581     LocIdx Idx = lookupOrTrackRegister(ID);
582     ValueIDNum ValueID = {BB, Inst, Idx};
583     LocIdxToIDNum[Idx] = ValueID;
584   }
585 
586   /// Set a register to a value number. To be used if the value number is
587   /// known in advance.
588   void setReg(Register R, ValueIDNum ValueID) {
589     unsigned ID = getLocID(R);
590     LocIdx Idx = lookupOrTrackRegister(ID);
591     LocIdxToIDNum[Idx] = ValueID;
592   }
593 
594   ValueIDNum readReg(Register R) {
595     unsigned ID = getLocID(R);
596     LocIdx Idx = lookupOrTrackRegister(ID);
597     return LocIdxToIDNum[Idx];
598   }
599 
600   /// Reset a register value to zero / empty. Needed to replicate the
601   /// VarLoc implementation where a copy to/from a register effectively
602   /// clears the contents of the source register. (Values can only have one
603   ///  machine location in VarLocBasedImpl).
604   void wipeRegister(Register R) {
605     unsigned ID = getLocID(R);
606     LocIdx Idx = LocIDToLocIdx[ID];
607     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
608   }
609 
610   /// Determine the LocIdx of an existing register.
611   LocIdx getRegMLoc(Register R) {
612     unsigned ID = getLocID(R);
613     assert(ID < LocIDToLocIdx.size());
614     assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
615     return LocIDToLocIdx[ID];
616   }
617 
618   /// Record a RegMask operand being executed. Defs any register we currently
619   /// track, stores a pointer to the mask in case we have to account for it
620   /// later.
621   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
622 
623   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
624   SpillLocationNo getOrTrackSpillLoc(SpillLoc L);
625 
626   // Get LocIdx of a spill ID.
627   LocIdx getSpillMLoc(unsigned SpillID) {
628     assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
629     return LocIDToLocIdx[SpillID];
630   }
631 
632   /// Return true if Idx is a spill machine location.
633   bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
634 
635   MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
636 
637   MLocIterator end() {
638     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
639   }
640 
641   /// Return a range over all locations currently tracked.
642   iterator_range<MLocIterator> locations() {
643     return llvm::make_range(begin(), end());
644   }
645 
646   std::string LocIdxToName(LocIdx Idx) const;
647 
648   std::string IDAsString(const ValueIDNum &Num) const;
649 
650 #ifndef NDEBUG
651   LLVM_DUMP_METHOD void dump();
652 
653   LLVM_DUMP_METHOD void dump_mloc_map();
654 #endif
655 
656   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
657   /// information in \pProperties, for variable Var. Don't insert it anywhere,
658   /// just return the builder for it.
659   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
660                               const DbgValueProperties &Properties);
661 };
662 
663 /// Types for recording sets of variable fragments that overlap. For a given
664 /// local variable, we record all other fragments of that variable that could
665 /// overlap it, to reduce search time.
666 using FragmentOfVar =
667     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
668 using OverlapMap =
669     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
670 
671 /// Collection of DBG_VALUEs observed when traversing a block. Records each
672 /// variable and the value the DBG_VALUE refers to. Requires the machine value
673 /// location dataflow algorithm to have run already, so that values can be
674 /// identified.
675 class VLocTracker {
676 public:
677   /// Map DebugVariable to the latest Value it's defined to have.
678   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
679   /// the order in this container.
680   /// We only retain the last DbgValue in each block for each variable, to
681   /// determine the blocks live-out variable value. The Vars container forms the
682   /// transfer function for this block, as part of the dataflow analysis. The
683   /// movement of values between locations inside of a block is handled at a
684   /// much later stage, in the TransferTracker class.
685   MapVector<DebugVariable, DbgValue> Vars;
686   DenseMap<DebugVariable, const DILocation *> Scopes;
687   MachineBasicBlock *MBB = nullptr;
688   const OverlapMap &OverlappingFragments;
689   DbgValueProperties EmptyProperties;
690 
691 public:
692   VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
693       : OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {}
694 
695   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
696               Optional<ValueIDNum> ID) {
697     assert(MI.isDebugValue() || MI.isDebugRef());
698     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
699                       MI.getDebugLoc()->getInlinedAt());
700     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
701                         : DbgValue(Properties, DbgValue::Undef);
702 
703     // Attempt insertion; overwrite if it's already mapped.
704     auto Result = Vars.insert(std::make_pair(Var, Rec));
705     if (!Result.second)
706       Result.first->second = Rec;
707     Scopes[Var] = MI.getDebugLoc().get();
708 
709     considerOverlaps(Var, MI.getDebugLoc().get());
710   }
711 
712   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
713     // Only DBG_VALUEs can define constant-valued variables.
714     assert(MI.isDebugValue());
715     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
716                       MI.getDebugLoc()->getInlinedAt());
717     DbgValueProperties Properties(MI);
718     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
719 
720     // Attempt insertion; overwrite if it's already mapped.
721     auto Result = Vars.insert(std::make_pair(Var, Rec));
722     if (!Result.second)
723       Result.first->second = Rec;
724     Scopes[Var] = MI.getDebugLoc().get();
725 
726     considerOverlaps(Var, MI.getDebugLoc().get());
727   }
728 
729   void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
730     auto Overlaps = OverlappingFragments.find(
731         {Var.getVariable(), Var.getFragmentOrDefault()});
732     if (Overlaps == OverlappingFragments.end())
733       return;
734 
735     // Otherwise: terminate any overlapped variable locations.
736     for (auto FragmentInfo : Overlaps->second) {
737       // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
738       // that it overlaps with everything, however its cannonical representation
739       // in a DebugVariable is as "None".
740       Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
741       if (DebugVariable::isDefaultFragment(FragmentInfo))
742         OptFragmentInfo = None;
743 
744       DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
745                                Var.getInlinedAt());
746       DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
747 
748       // Attempt insertion; overwrite if it's already mapped.
749       auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
750       if (!Result.second)
751         Result.first->second = Rec;
752       Scopes[Overlapped] = Loc;
753     }
754   }
755 };
756 
757 // XXX XXX docs
758 class InstrRefBasedLDV : public LDVImpl {
759 public:
760   friend class ::InstrRefLDVTest;
761 
762   using FragmentInfo = DIExpression::FragmentInfo;
763   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
764 
765   // Helper while building OverlapMap, a map of all fragments seen for a given
766   // DILocalVariable.
767   using VarToFragments =
768       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
769 
770   /// Machine location/value transfer function, a mapping of which locations
771   /// are assigned which new values.
772   using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
773 
774   /// Live in/out structure for the variable values: a per-block map of
775   /// variables to their values.
776   using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
777 
778   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
779 
780   /// Type for a live-in value: the predecessor block, and its value.
781   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
782 
783   /// Vector (per block) of a collection (inner smallvector) of live-ins.
784   /// Used as the result type for the variable value dataflow problem.
785   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
786 
787 private:
788   MachineDominatorTree *DomTree;
789   const TargetRegisterInfo *TRI;
790   const MachineRegisterInfo *MRI;
791   const TargetInstrInfo *TII;
792   const TargetFrameLowering *TFI;
793   const MachineFrameInfo *MFI;
794   BitVector CalleeSavedRegs;
795   LexicalScopes LS;
796   TargetPassConfig *TPC;
797 
798   // An empty DIExpression. Used default / placeholder DbgValueProperties
799   // objects, as we can't have null expressions.
800   const DIExpression *EmptyExpr;
801 
802   /// Object to track machine locations as we step through a block. Could
803   /// probably be a field rather than a pointer, as it's always used.
804   MLocTracker *MTracker = nullptr;
805 
806   /// Number of the current block LiveDebugValues is stepping through.
807   unsigned CurBB;
808 
809   /// Number of the current instruction LiveDebugValues is evaluating.
810   unsigned CurInst;
811 
812   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
813   /// steps through a block. Reads the values at each location from the
814   /// MLocTracker object.
815   VLocTracker *VTracker = nullptr;
816 
817   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
818   /// between locations during stepping, creates new DBG_VALUEs when values move
819   /// location.
820   TransferTracker *TTracker = nullptr;
821 
822   /// Blocks which are artificial, i.e. blocks which exclusively contain
823   /// instructions without DebugLocs, or with line 0 locations.
824   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
825 
826   // Mapping of blocks to and from their RPOT order.
827   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
828   DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
829   DenseMap<unsigned, unsigned> BBNumToRPO;
830 
831   /// Pair of MachineInstr, and its 1-based offset into the containing block.
832   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
833   /// Map from debug instruction number to the MachineInstr labelled with that
834   /// number, and its location within the function. Used to transform
835   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
836   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
837 
838   /// Record of where we observed a DBG_PHI instruction.
839   class DebugPHIRecord {
840   public:
841     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
842     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
843     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
844     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
845 
846     operator unsigned() const { return InstrNum; }
847   };
848 
849   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
850   /// DBG_PHI read and where. Populated and edited during the machine value
851   /// location problem -- we use LLVMs SSA Updater to fix changes by
852   /// optimizations that destroy PHI instructions.
853   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
854 
855   // Map of overlapping variable fragments.
856   OverlapMap OverlapFragments;
857   VarToFragments SeenFragments;
858 
859   /// True if we need to examine call instructions for stack clobbers. We
860   /// normally assume that they don't clobber SP, but stack probes on Windows
861   /// do.
862   bool AdjustsStackInCalls = false;
863 
864   /// If AdjustsStackInCalls is true, this holds the name of the target's stack
865   /// probe function, which is the function we expect will alter the stack
866   /// pointer.
867   StringRef StackProbeSymbolName;
868 
869   /// Tests whether this instruction is a spill to a stack slot.
870   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
871 
872   /// Decide if @MI is a spill instruction and return true if it is. We use 2
873   /// criteria to make this decision:
874   /// - Is this instruction a store to a spill slot?
875   /// - Is there a register operand that is both used and killed?
876   /// TODO: Store optimization can fold spills into other stores (including
877   /// other spills). We do not handle this yet (more than one memory operand).
878   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
879                        unsigned &Reg);
880 
881   /// If a given instruction is identified as a spill, return the spill slot
882   /// and set \p Reg to the spilled register.
883   Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
884                                           MachineFunction *MF, unsigned &Reg);
885 
886   /// Given a spill instruction, extract the spill slot information, ensure it's
887   /// tracked, and return the spill number.
888   SpillLocationNo extractSpillBaseRegAndOffset(const MachineInstr &MI);
889 
890   /// Observe a single instruction while stepping through a block.
891   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
892                ValueIDNum **MLiveIns = nullptr);
893 
894   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
895   /// \returns true if MI was recognized and processed.
896   bool transferDebugValue(const MachineInstr &MI);
897 
898   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
899   /// \returns true if MI was recognized and processed.
900   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
901                              ValueIDNum **MLiveIns);
902 
903   /// Stores value-information about where this PHI occurred, and what
904   /// instruction number is associated with it.
905   /// \returns true if MI was recognized and processed.
906   bool transferDebugPHI(MachineInstr &MI);
907 
908   /// Examines whether \p MI is copy instruction, and notifies trackers.
909   /// \returns true if MI was recognized and processed.
910   bool transferRegisterCopy(MachineInstr &MI);
911 
912   /// Examines whether \p MI is stack spill or restore  instruction, and
913   /// notifies trackers. \returns true if MI was recognized and processed.
914   bool transferSpillOrRestoreInst(MachineInstr &MI);
915 
916   /// Examines \p MI for any registers that it defines, and notifies trackers.
917   void transferRegisterDef(MachineInstr &MI);
918 
919   /// Copy one location to the other, accounting for movement of subregisters
920   /// too.
921   void performCopy(Register Src, Register Dst);
922 
923   void accumulateFragmentMap(MachineInstr &MI);
924 
925   /// Determine the machine value number referred to by (potentially several)
926   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
927   /// DBG_PHIs, shifting the position where values in registers merge, and
928   /// forming another mini-ssa problem to solve.
929   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
930   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
931   /// \returns The machine value number at position Here, or None.
932   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
933                                       ValueIDNum **MLiveOuts,
934                                       ValueIDNum **MLiveIns, MachineInstr &Here,
935                                       uint64_t InstrNum);
936 
937   /// Step through the function, recording register definitions and movements
938   /// in an MLocTracker. Convert the observations into a per-block transfer
939   /// function in \p MLocTransfer, suitable for using with the machine value
940   /// location dataflow problem.
941   void
942   produceMLocTransferFunction(MachineFunction &MF,
943                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
944                               unsigned MaxNumBlocks);
945 
946   /// Solve the machine value location dataflow problem. Takes as input the
947   /// transfer functions in \p MLocTransfer. Writes the output live-in and
948   /// live-out arrays to the (initialized to zero) multidimensional arrays in
949   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
950   /// number, the inner by LocIdx.
951   void buildMLocValueMap(MachineFunction &MF, ValueIDNum **MInLocs,
952                          ValueIDNum **MOutLocs,
953                          SmallVectorImpl<MLocTransferMap> &MLocTransfer);
954 
955   /// Examine the stack indexes (i.e. offsets within the stack) to find the
956   /// basic units of interference -- like reg units, but for the stack.
957   void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
958 
959   /// Install PHI values into the live-in array for each block, according to
960   /// the IDF of each register.
961   void placeMLocPHIs(MachineFunction &MF,
962                      SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
963                      ValueIDNum **MInLocs,
964                      SmallVectorImpl<MLocTransferMap> &MLocTransfer);
965 
966   /// Propagate variable values to blocks in the common case where there's
967   /// only one value assigned to the variable. This function has better
968   /// performance as it doesn't have to find the dominance frontier between
969   /// different assignments.
970   void placePHIsForSingleVarDefinition(
971           const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
972           MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
973           const DebugVariable &Var, LiveInsT &Output);
974 
975   /// Calculate the iterated-dominance-frontier for a set of defs, using the
976   /// existing LLVM facilities for this. Works for a single "value" or
977   /// machine/variable location.
978   /// \p AllBlocks Set of blocks where we might consume the value.
979   /// \p DefBlocks Set of blocks where the value/location is defined.
980   /// \p PHIBlocks Output set of blocks where PHIs must be placed.
981   void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
982                          const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
983                          SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
984 
985   /// Perform a control flow join (lattice value meet) of the values in machine
986   /// locations at \p MBB. Follows the algorithm described in the file-comment,
987   /// reading live-outs of predecessors from \p OutLocs, the current live ins
988   /// from \p InLocs, and assigning the newly computed live ins back into
989   /// \p InLocs. \returns two bools -- the first indicates whether a change
990   /// was made, the second whether a lattice downgrade occurred. If the latter
991   /// is true, revisiting this block is necessary.
992   bool mlocJoin(MachineBasicBlock &MBB,
993                 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
994                 ValueIDNum **OutLocs, ValueIDNum *InLocs);
995 
996   /// Solve the variable value dataflow problem, for a single lexical scope.
997   /// Uses the algorithm from the file comment to resolve control flow joins
998   /// using PHI placement and value propagation. Reads the locations of machine
999   /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1000   /// and reads the variable values transfer function from \p AllTheVlocs.
1001   /// Live-in and Live-out variable values are stored locally, with the live-ins
1002   /// permanently stored to \p Output once a fixedpoint is reached.
1003   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1004   /// that we should be tracking.
1005   /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1006   /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1007   /// locations through.
1008   void buildVLocValueMap(const DILocation *DILoc,
1009                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1010                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1011                     LiveInsT &Output, ValueIDNum **MOutLocs,
1012                     ValueIDNum **MInLocs,
1013                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1014 
1015   /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1016   /// live-in values coming from predecessors live-outs, and replaces any PHIs
1017   /// already present in this blocks live-ins with a live-through value if the
1018   /// PHI isn't needed.
1019   /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1020   /// \returns true if any live-ins change value, either from value propagation
1021   ///          or PHI elimination.
1022   bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1023                 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1024                 DbgValue &LiveIn);
1025 
1026   /// For the given block and live-outs feeding into it, try to find a
1027   /// machine location where all the variable values join together.
1028   /// \returns Value ID of a machine PHI if an appropriate one is available.
1029   Optional<ValueIDNum>
1030   pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
1031               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1032               const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1033 
1034   /// Given the solutions to the two dataflow problems, machine value locations
1035   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1036   /// TransferTracker class over the function to produce live-in and transfer
1037   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1038   /// order given by AllVarsNumbering -- this could be any stable order, but
1039   /// right now "order of appearence in function, when explored in RPO", so
1040   /// that we can compare explictly against VarLocBasedImpl.
1041   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1042                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1043                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
1044                      const TargetPassConfig &TPC);
1045 
1046   /// Boilerplate computation of some initial sets, artifical blocks and
1047   /// RPOT block ordering.
1048   void initialSetup(MachineFunction &MF);
1049 
1050   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1051                     TargetPassConfig *TPC, unsigned InputBBLimit,
1052                     unsigned InputDbgValLimit) override;
1053 
1054 public:
1055   /// Default construct and initialize the pass.
1056   InstrRefBasedLDV();
1057 
1058   LLVM_DUMP_METHOD
1059   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1060 
1061   bool isCalleeSaved(LocIdx L) const;
1062 
1063   bool hasFoldedStackStore(const MachineInstr &MI) {
1064     // Instruction must have a memory operand that's a stack slot, and isn't
1065     // aliased, meaning it's a spill from regalloc instead of a variable.
1066     // If it's aliased, we can't guarantee its value.
1067     if (!MI.hasOneMemOperand())
1068       return false;
1069     auto *MemOperand = *MI.memoperands_begin();
1070     return MemOperand->isStore() &&
1071            MemOperand->getPseudoValue() &&
1072            MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1073            && !MemOperand->getPseudoValue()->isAliased(MFI);
1074   }
1075 
1076   Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1077 };
1078 
1079 } // namespace LiveDebugValues
1080 
1081 namespace llvm {
1082 using namespace LiveDebugValues;
1083 
1084 template <> struct DenseMapInfo<LocIdx> {
1085   static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
1086   static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
1087 
1088   static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
1089 
1090   static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
1091 };
1092 
1093 template <> struct DenseMapInfo<ValueIDNum> {
1094   static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
1095   static inline ValueIDNum getTombstoneKey() {
1096     return ValueIDNum::TombstoneValue;
1097   }
1098 
1099   static unsigned getHashValue(const ValueIDNum &Val) {
1100     return hash_value(Val.asU64());
1101   }
1102 
1103   static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
1104     return A == B;
1105   }
1106 };
1107 
1108 } // end namespace llvm
1109 
1110 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
1111