1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/UniqueVector.h" 16 #include "llvm/CodeGen/LexicalScopes.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 26 #include "LiveDebugValues.h" 27 28 class TransferTracker; 29 30 // Forward dec of unit test class, so that we can peer into the LDV object. 31 class InstrRefLDVTest; 32 33 namespace LiveDebugValues { 34 35 class MLocTracker; 36 37 using namespace llvm; 38 39 /// Handle-class for a particular "location". This value-type uniquely 40 /// symbolises a register or stack location, allowing manipulation of locations 41 /// without concern for where that location is. Practically, this allows us to 42 /// treat the state of the machine at a particular point as an array of values, 43 /// rather than a map of values. 44 class LocIdx { 45 unsigned Location; 46 47 // Default constructor is private, initializing to an illegal location number. 48 // Use only for "not an entry" elements in IndexedMaps. 49 LocIdx() : Location(UINT_MAX) {} 50 51 public: 52 #define NUM_LOC_BITS 24 53 LocIdx(unsigned L) : Location(L) { 54 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 55 } 56 57 static LocIdx MakeIllegalLoc() { return LocIdx(); } 58 static LocIdx MakeTombstoneLoc() { 59 LocIdx L = LocIdx(); 60 --L.Location; 61 return L; 62 } 63 64 bool isIllegal() const { return Location == UINT_MAX; } 65 66 uint64_t asU64() const { return Location; } 67 68 bool operator==(unsigned L) const { return Location == L; } 69 70 bool operator==(const LocIdx &L) const { return Location == L.Location; } 71 72 bool operator!=(unsigned L) const { return !(*this == L); } 73 74 bool operator!=(const LocIdx &L) const { return !(*this == L); } 75 76 bool operator<(const LocIdx &Other) const { 77 return Location < Other.Location; 78 } 79 }; 80 81 // The location at which a spilled value resides. It consists of a register and 82 // an offset. 83 struct SpillLoc { 84 unsigned SpillBase; 85 StackOffset SpillOffset; 86 bool operator==(const SpillLoc &Other) const { 87 return std::make_pair(SpillBase, SpillOffset) == 88 std::make_pair(Other.SpillBase, Other.SpillOffset); 89 } 90 bool operator<(const SpillLoc &Other) const { 91 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 92 SpillOffset.getScalable()) < 93 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 94 Other.SpillOffset.getScalable()); 95 } 96 }; 97 98 /// Unique identifier for a value defined by an instruction, as a value type. 99 /// Casts back and forth to a uint64_t. Probably replacable with something less 100 /// bit-constrained. Each value identifies the instruction and machine location 101 /// where the value is defined, although there may be no corresponding machine 102 /// operand for it (ex: regmasks clobbering values). The instructions are 103 /// one-based, and definitions that are PHIs have instruction number zero. 104 /// 105 /// The obvious limits of a 1M block function or 1M instruction blocks are 106 /// problematic; but by that point we should probably have bailed out of 107 /// trying to analyse the function. 108 class ValueIDNum { 109 union { 110 struct { 111 uint64_t BlockNo : 20; /// The block where the def happens. 112 uint64_t InstNo : 20; /// The Instruction where the def happens. 113 /// One based, is distance from start of block. 114 uint64_t LocNo 115 : NUM_LOC_BITS; /// The machine location where the def happens. 116 } s; 117 uint64_t Value; 118 } u; 119 120 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); 121 122 public: 123 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 124 // of values to work. 125 ValueIDNum() { u.Value = EmptyValue.asU64(); } 126 127 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { 128 u.s = {Block, Inst, Loc}; 129 } 130 131 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { 132 u.s = {Block, Inst, Loc.asU64()}; 133 } 134 135 uint64_t getBlock() const { return u.s.BlockNo; } 136 uint64_t getInst() const { return u.s.InstNo; } 137 uint64_t getLoc() const { return u.s.LocNo; } 138 bool isPHI() const { return u.s.InstNo == 0; } 139 140 uint64_t asU64() const { return u.Value; } 141 142 static ValueIDNum fromU64(uint64_t v) { 143 ValueIDNum Val; 144 Val.u.Value = v; 145 return Val; 146 } 147 148 bool operator<(const ValueIDNum &Other) const { 149 return asU64() < Other.asU64(); 150 } 151 152 bool operator==(const ValueIDNum &Other) const { 153 return u.Value == Other.u.Value; 154 } 155 156 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 157 158 std::string asString(const std::string &mlocname) const { 159 return Twine("Value{bb: ") 160 .concat(Twine(u.s.BlockNo) 161 .concat(Twine(", inst: ") 162 .concat((u.s.InstNo ? Twine(u.s.InstNo) 163 : Twine("live-in")) 164 .concat(Twine(", loc: ").concat( 165 Twine(mlocname))) 166 .concat(Twine("}"))))) 167 .str(); 168 } 169 170 static ValueIDNum EmptyValue; 171 static ValueIDNum TombstoneValue; 172 }; 173 174 /// Type for a table of values in a block. 175 using ValueTable = std::unique_ptr<ValueIDNum[]>; 176 177 /// Type for a table-of-table-of-values, i.e., the collection of either 178 /// live-in or live-out values for each block in the function. 179 using FuncValueTable = std::unique_ptr<ValueTable[]>; 180 181 /// Thin wrapper around an integer -- designed to give more type safety to 182 /// spill location numbers. 183 class SpillLocationNo { 184 public: 185 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 186 unsigned SpillNo; 187 unsigned id() const { return SpillNo; } 188 189 bool operator<(const SpillLocationNo &Other) const { 190 return SpillNo < Other.SpillNo; 191 } 192 193 bool operator==(const SpillLocationNo &Other) const { 194 return SpillNo == Other.SpillNo; 195 } 196 bool operator!=(const SpillLocationNo &Other) const { 197 return !(*this == Other); 198 } 199 }; 200 201 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 202 /// the the value, and Boolean of whether or not it's indirect. 203 class DbgValueProperties { 204 public: 205 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 206 : DIExpr(DIExpr), Indirect(Indirect) {} 207 208 /// Extract properties from an existing DBG_VALUE instruction. 209 DbgValueProperties(const MachineInstr &MI) { 210 assert(MI.isDebugValue()); 211 DIExpr = MI.getDebugExpression(); 212 Indirect = MI.getOperand(1).isImm(); 213 } 214 215 bool operator==(const DbgValueProperties &Other) const { 216 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 217 } 218 219 bool operator!=(const DbgValueProperties &Other) const { 220 return !(*this == Other); 221 } 222 223 const DIExpression *DIExpr; 224 bool Indirect; 225 }; 226 227 /// Class recording the (high level) _value_ of a variable. Identifies either 228 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 229 /// This class also stores meta-information about how the value is qualified. 230 /// Used to reason about variable values when performing the second 231 /// (DebugVariable specific) dataflow analysis. 232 class DbgValue { 233 public: 234 /// If Kind is Def, the value number that this value is based on. VPHIs set 235 /// this field to EmptyValue if there is no machine-value for this VPHI, or 236 /// the corresponding machine-value if there is one. 237 ValueIDNum ID; 238 /// If Kind is Const, the MachineOperand defining this value. 239 Optional<MachineOperand> MO; 240 /// For a NoVal or VPHI DbgValue, which block it was generated in. 241 int BlockNo; 242 243 /// Qualifiers for the ValueIDNum above. 244 DbgValueProperties Properties; 245 246 typedef enum { 247 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 248 Def, // This value is defined by an inst, or is a PHI value. 249 Const, // A constant value contained in the MachineOperand field. 250 VPHI, // Incoming values to BlockNo differ, those values must be joined by 251 // a PHI in this block. 252 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 253 // before dominating blocks values are propagated in. 254 } KindT; 255 /// Discriminator for whether this is a constant or an in-program value. 256 KindT Kind; 257 258 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 259 : ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) { 260 assert(Kind == Def); 261 } 262 263 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 264 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo), 265 Properties(Prop), Kind(Kind) { 266 assert(Kind == NoVal || Kind == VPHI); 267 } 268 269 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 270 : ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop), 271 Kind(Kind) { 272 assert(Kind == Const); 273 } 274 275 DbgValue(const DbgValueProperties &Prop, KindT Kind) 276 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop), 277 Kind(Kind) { 278 assert(Kind == Undef && 279 "Empty DbgValue constructor must pass in Undef kind"); 280 } 281 282 #ifndef NDEBUG 283 void dump(const MLocTracker *MTrack) const; 284 #endif 285 286 bool operator==(const DbgValue &Other) const { 287 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 288 return false; 289 else if (Kind == Def && ID != Other.ID) 290 return false; 291 else if (Kind == NoVal && BlockNo != Other.BlockNo) 292 return false; 293 else if (Kind == Const) 294 return MO->isIdenticalTo(*Other.MO); 295 else if (Kind == VPHI && BlockNo != Other.BlockNo) 296 return false; 297 else if (Kind == VPHI && ID != Other.ID) 298 return false; 299 300 return true; 301 } 302 303 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 304 }; 305 306 class LocIdxToIndexFunctor { 307 public: 308 using argument_type = LocIdx; 309 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 310 }; 311 312 /// Tracker for what values are in machine locations. Listens to the Things 313 /// being Done by various instructions, and maintains a table of what machine 314 /// locations have what values (as defined by a ValueIDNum). 315 /// 316 /// There are potentially a much larger number of machine locations on the 317 /// target machine than the actual working-set size of the function. On x86 for 318 /// example, we're extremely unlikely to want to track values through control 319 /// or debug registers. To avoid doing so, MLocTracker has several layers of 320 /// indirection going on, described below, to avoid unnecessarily tracking 321 /// any location. 322 /// 323 /// Here's a sort of diagram of the indexes, read from the bottom up: 324 /// 325 /// Size on stack Offset on stack 326 /// \ / 327 /// Stack Idx (Where in slot is this?) 328 /// / 329 /// / 330 /// Slot Num (%stack.0) / 331 /// FrameIdx => SpillNum / 332 /// \ / 333 /// SpillID (int) Register number (int) 334 /// \ / 335 /// LocationID => LocIdx 336 /// | 337 /// LocIdx => ValueIDNum 338 /// 339 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of 340 /// values in numbered locations, so that later analyses can ignore whether the 341 /// location is a register or otherwise. To map a register / spill location to 342 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to 343 /// build a LocationID for a stack slot, you need to combine identifiers for 344 /// which stack slot it is and where within that slot is being described. 345 /// 346 /// Register mask operands cause trouble by technically defining every register; 347 /// various hacks are used to avoid tracking registers that are never read and 348 /// only written by regmasks. 349 class MLocTracker { 350 public: 351 MachineFunction &MF; 352 const TargetInstrInfo &TII; 353 const TargetRegisterInfo &TRI; 354 const TargetLowering &TLI; 355 356 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 357 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 358 359 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 360 /// packed, entries only exist for locations that are being tracked. 361 LocToValueType LocIdxToIDNum; 362 363 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 364 /// LocIdx key / number for that location. There are always at least as many 365 /// as the number of registers on the target -- if the value in the register 366 /// is not being tracked, then the LocIdx value will be zero. New entries are 367 /// appended if a new spill slot begins being tracked. 368 /// This, and the corresponding reverse map persist for the analysis of the 369 /// whole function, and is necessarying for decoding various vectors of 370 /// values. 371 std::vector<LocIdx> LocIDToLocIdx; 372 373 /// Inverse map of LocIDToLocIdx. 374 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 375 376 /// When clobbering register masks, we chose to not believe the machine model 377 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 378 /// keep a set of them here. 379 SmallSet<Register, 8> SPAliases; 380 381 /// Unique-ification of spill. Used to number them -- their LocID number is 382 /// the index in SpillLocs minus one plus NumRegs. 383 UniqueVector<SpillLoc> SpillLocs; 384 385 // If we discover a new machine location, assign it an mphi with this 386 // block number. 387 unsigned CurBB; 388 389 /// Cached local copy of the number of registers the target has. 390 unsigned NumRegs; 391 392 /// Number of slot indexes the target has -- distinct segments of a stack 393 /// slot that can take on the value of a subregister, when a super-register 394 /// is written to the stack. 395 unsigned NumSlotIdxes; 396 397 /// Collection of register mask operands that have been observed. Second part 398 /// of pair indicates the instruction that they happened in. Used to 399 /// reconstruct where defs happened if we start tracking a location later 400 /// on. 401 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 402 403 /// Pair for describing a position within a stack slot -- first the size in 404 /// bits, then the offset. 405 typedef std::pair<unsigned short, unsigned short> StackSlotPos; 406 407 /// Map from a size/offset pair describing a position in a stack slot, to a 408 /// numeric identifier for that position. Allows easier identification of 409 /// individual positions. 410 DenseMap<StackSlotPos, unsigned> StackSlotIdxes; 411 412 /// Inverse of StackSlotIdxes. 413 DenseMap<unsigned, StackSlotPos> StackIdxesToPos; 414 415 /// Iterator for locations and the values they contain. Dereferencing 416 /// produces a struct/pair containing the LocIdx key for this location, 417 /// and a reference to the value currently stored. Simplifies the process 418 /// of seeking a particular location. 419 class MLocIterator { 420 LocToValueType &ValueMap; 421 LocIdx Idx; 422 423 public: 424 class value_type { 425 public: 426 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 427 const LocIdx Idx; /// Read-only index of this location. 428 ValueIDNum &Value; /// Reference to the stored value at this location. 429 }; 430 431 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 432 : ValueMap(ValueMap), Idx(Idx) {} 433 434 bool operator==(const MLocIterator &Other) const { 435 assert(&ValueMap == &Other.ValueMap); 436 return Idx == Other.Idx; 437 } 438 439 bool operator!=(const MLocIterator &Other) const { 440 return !(*this == Other); 441 } 442 443 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 444 445 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 446 }; 447 448 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 449 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 450 451 /// Produce location ID number for a Register. Provides some small amount of 452 /// type safety. 453 /// \param Reg The register we're looking up. 454 unsigned getLocID(Register Reg) { return Reg.id(); } 455 456 /// Produce location ID number for a spill position. 457 /// \param Spill The number of the spill we're fetching the location for. 458 /// \param SpillSubReg Subregister within the spill we're addressing. 459 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { 460 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); 461 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); 462 return getLocID(Spill, {Size, Offs}); 463 } 464 465 /// Produce location ID number for a spill position. 466 /// \param Spill The number of the spill we're fetching the location for. 467 /// \apram SpillIdx size/offset within the spill slot to be addressed. 468 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { 469 unsigned SlotNo = Spill.id() - 1; 470 SlotNo *= NumSlotIdxes; 471 assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end()); 472 SlotNo += StackSlotIdxes[Idx]; 473 SlotNo += NumRegs; 474 return SlotNo; 475 } 476 477 /// Given a spill number, and a slot within the spill, calculate the ID number 478 /// for that location. 479 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { 480 unsigned SlotNo = Spill.id() - 1; 481 SlotNo *= NumSlotIdxes; 482 SlotNo += Idx; 483 SlotNo += NumRegs; 484 return SlotNo; 485 } 486 487 /// Return the spill number that a location ID corresponds to. 488 SpillLocationNo locIDToSpill(unsigned ID) const { 489 assert(ID >= NumRegs); 490 ID -= NumRegs; 491 // Truncate away the index part, leaving only the spill number. 492 ID /= NumSlotIdxes; 493 return SpillLocationNo(ID + 1); // The UniqueVector is one-based. 494 } 495 496 /// Returns the spill-slot size/offs that a location ID corresponds to. 497 StackSlotPos locIDToSpillIdx(unsigned ID) const { 498 assert(ID >= NumRegs); 499 ID -= NumRegs; 500 unsigned Idx = ID % NumSlotIdxes; 501 return StackIdxesToPos.find(Idx)->second; 502 } 503 504 unsigned getNumLocs() const { return LocIdxToIDNum.size(); } 505 506 /// Reset all locations to contain a PHI value at the designated block. Used 507 /// sometimes for actual PHI values, othertimes to indicate the block entry 508 /// value (before any more information is known). 509 void setMPhis(unsigned NewCurBB) { 510 CurBB = NewCurBB; 511 for (auto Location : locations()) 512 Location.Value = {CurBB, 0, Location.Idx}; 513 } 514 515 /// Load values for each location from array of ValueIDNums. Take current 516 /// bbnum just in case we read a value from a hitherto untouched register. 517 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { 518 CurBB = NewCurBB; 519 // Iterate over all tracked locations, and load each locations live-in 520 // value into our local index. 521 for (auto Location : locations()) 522 Location.Value = Locs[Location.Idx.asU64()]; 523 } 524 525 /// Wipe any un-necessary location records after traversing a block. 526 void reset() { 527 // We could reset all the location values too; however either loadFromArray 528 // or setMPhis should be called before this object is re-used. Just 529 // clear Masks, they're definitely not needed. 530 Masks.clear(); 531 } 532 533 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 534 /// the information in this pass uninterpretable. 535 void clear() { 536 reset(); 537 LocIDToLocIdx.clear(); 538 LocIdxToLocID.clear(); 539 LocIdxToIDNum.clear(); 540 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 541 // 0 542 SpillLocs = decltype(SpillLocs)(); 543 StackSlotIdxes.clear(); 544 StackIdxesToPos.clear(); 545 546 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 547 } 548 549 /// Set a locaiton to a certain value. 550 void setMLoc(LocIdx L, ValueIDNum Num) { 551 assert(L.asU64() < LocIdxToIDNum.size()); 552 LocIdxToIDNum[L] = Num; 553 } 554 555 /// Read the value of a particular location 556 ValueIDNum readMLoc(LocIdx L) { 557 assert(L.asU64() < LocIdxToIDNum.size()); 558 return LocIdxToIDNum[L]; 559 } 560 561 /// Create a LocIdx for an untracked register ID. Initialize it to either an 562 /// mphi value representing a live-in, or a recent register mask clobber. 563 LocIdx trackRegister(unsigned ID); 564 565 LocIdx lookupOrTrackRegister(unsigned ID) { 566 LocIdx &Index = LocIDToLocIdx[ID]; 567 if (Index.isIllegal()) 568 Index = trackRegister(ID); 569 return Index; 570 } 571 572 /// Is register R currently tracked by MLocTracker? 573 bool isRegisterTracked(Register R) { 574 LocIdx &Index = LocIDToLocIdx[R]; 575 return !Index.isIllegal(); 576 } 577 578 /// Record a definition of the specified register at the given block / inst. 579 /// This doesn't take a ValueIDNum, because the definition and its location 580 /// are synonymous. 581 void defReg(Register R, unsigned BB, unsigned Inst) { 582 unsigned ID = getLocID(R); 583 LocIdx Idx = lookupOrTrackRegister(ID); 584 ValueIDNum ValueID = {BB, Inst, Idx}; 585 LocIdxToIDNum[Idx] = ValueID; 586 } 587 588 /// Set a register to a value number. To be used if the value number is 589 /// known in advance. 590 void setReg(Register R, ValueIDNum ValueID) { 591 unsigned ID = getLocID(R); 592 LocIdx Idx = lookupOrTrackRegister(ID); 593 LocIdxToIDNum[Idx] = ValueID; 594 } 595 596 ValueIDNum readReg(Register R) { 597 unsigned ID = getLocID(R); 598 LocIdx Idx = lookupOrTrackRegister(ID); 599 return LocIdxToIDNum[Idx]; 600 } 601 602 /// Reset a register value to zero / empty. Needed to replicate the 603 /// VarLoc implementation where a copy to/from a register effectively 604 /// clears the contents of the source register. (Values can only have one 605 /// machine location in VarLocBasedImpl). 606 void wipeRegister(Register R) { 607 unsigned ID = getLocID(R); 608 LocIdx Idx = LocIDToLocIdx[ID]; 609 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 610 } 611 612 /// Determine the LocIdx of an existing register. 613 LocIdx getRegMLoc(Register R) { 614 unsigned ID = getLocID(R); 615 assert(ID < LocIDToLocIdx.size()); 616 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap. 617 return LocIDToLocIdx[ID]; 618 } 619 620 /// Record a RegMask operand being executed. Defs any register we currently 621 /// track, stores a pointer to the mask in case we have to account for it 622 /// later. 623 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 624 625 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 626 /// Returns None when in scenarios where a spill slot could be tracked, but 627 /// we would likely run into resource limitations. 628 Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); 629 630 // Get LocIdx of a spill ID. 631 LocIdx getSpillMLoc(unsigned SpillID) { 632 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap. 633 return LocIDToLocIdx[SpillID]; 634 } 635 636 /// Return true if Idx is a spill machine location. 637 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 638 639 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 640 641 MLocIterator end() { 642 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 643 } 644 645 /// Return a range over all locations currently tracked. 646 iterator_range<MLocIterator> locations() { 647 return llvm::make_range(begin(), end()); 648 } 649 650 std::string LocIdxToName(LocIdx Idx) const; 651 652 std::string IDAsString(const ValueIDNum &Num) const; 653 654 #ifndef NDEBUG 655 LLVM_DUMP_METHOD void dump(); 656 657 LLVM_DUMP_METHOD void dump_mloc_map(); 658 #endif 659 660 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 661 /// information in \pProperties, for variable Var. Don't insert it anywhere, 662 /// just return the builder for it. 663 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 664 const DbgValueProperties &Properties); 665 }; 666 667 /// Types for recording sets of variable fragments that overlap. For a given 668 /// local variable, we record all other fragments of that variable that could 669 /// overlap it, to reduce search time. 670 using FragmentOfVar = 671 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 672 using OverlapMap = 673 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 674 675 /// Collection of DBG_VALUEs observed when traversing a block. Records each 676 /// variable and the value the DBG_VALUE refers to. Requires the machine value 677 /// location dataflow algorithm to have run already, so that values can be 678 /// identified. 679 class VLocTracker { 680 public: 681 /// Map DebugVariable to the latest Value it's defined to have. 682 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 683 /// the order in this container. 684 /// We only retain the last DbgValue in each block for each variable, to 685 /// determine the blocks live-out variable value. The Vars container forms the 686 /// transfer function for this block, as part of the dataflow analysis. The 687 /// movement of values between locations inside of a block is handled at a 688 /// much later stage, in the TransferTracker class. 689 MapVector<DebugVariable, DbgValue> Vars; 690 SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes; 691 MachineBasicBlock *MBB = nullptr; 692 const OverlapMap &OverlappingFragments; 693 DbgValueProperties EmptyProperties; 694 695 public: 696 VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr) 697 : OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {} 698 699 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 700 Optional<ValueIDNum> ID) { 701 assert(MI.isDebugValue() || MI.isDebugRef()); 702 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 703 MI.getDebugLoc()->getInlinedAt()); 704 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 705 : DbgValue(Properties, DbgValue::Undef); 706 707 // Attempt insertion; overwrite if it's already mapped. 708 auto Result = Vars.insert(std::make_pair(Var, Rec)); 709 if (!Result.second) 710 Result.first->second = Rec; 711 Scopes[Var] = MI.getDebugLoc().get(); 712 713 considerOverlaps(Var, MI.getDebugLoc().get()); 714 } 715 716 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 717 // Only DBG_VALUEs can define constant-valued variables. 718 assert(MI.isDebugValue()); 719 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 720 MI.getDebugLoc()->getInlinedAt()); 721 DbgValueProperties Properties(MI); 722 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 723 724 // Attempt insertion; overwrite if it's already mapped. 725 auto Result = Vars.insert(std::make_pair(Var, Rec)); 726 if (!Result.second) 727 Result.first->second = Rec; 728 Scopes[Var] = MI.getDebugLoc().get(); 729 730 considerOverlaps(Var, MI.getDebugLoc().get()); 731 } 732 733 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { 734 auto Overlaps = OverlappingFragments.find( 735 {Var.getVariable(), Var.getFragmentOrDefault()}); 736 if (Overlaps == OverlappingFragments.end()) 737 return; 738 739 // Otherwise: terminate any overlapped variable locations. 740 for (auto FragmentInfo : Overlaps->second) { 741 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so 742 // that it overlaps with everything, however its cannonical representation 743 // in a DebugVariable is as "None". 744 Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; 745 if (DebugVariable::isDefaultFragment(FragmentInfo)) 746 OptFragmentInfo = None; 747 748 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, 749 Var.getInlinedAt()); 750 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); 751 752 // Attempt insertion; overwrite if it's already mapped. 753 auto Result = Vars.insert(std::make_pair(Overlapped, Rec)); 754 if (!Result.second) 755 Result.first->second = Rec; 756 Scopes[Overlapped] = Loc; 757 } 758 } 759 760 void clear() { 761 Vars.clear(); 762 Scopes.clear(); 763 } 764 }; 765 766 // XXX XXX docs 767 class InstrRefBasedLDV : public LDVImpl { 768 public: 769 friend class ::InstrRefLDVTest; 770 771 using FragmentInfo = DIExpression::FragmentInfo; 772 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 773 774 // Helper while building OverlapMap, a map of all fragments seen for a given 775 // DILocalVariable. 776 using VarToFragments = 777 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 778 779 /// Machine location/value transfer function, a mapping of which locations 780 /// are assigned which new values. 781 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; 782 783 /// Live in/out structure for the variable values: a per-block map of 784 /// variables to their values. 785 using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; 786 787 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 788 789 /// Type for a live-in value: the predecessor block, and its value. 790 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 791 792 /// Vector (per block) of a collection (inner smallvector) of live-ins. 793 /// Used as the result type for the variable value dataflow problem. 794 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 795 796 /// Mapping from lexical scopes to a DILocation in that scope. 797 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; 798 799 /// Mapping from lexical scopes to variables in that scope. 800 using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>; 801 802 /// Mapping from lexical scopes to blocks where variables in that scope are 803 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's 804 /// just a block where an assignment happens. 805 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; 806 807 private: 808 MachineDominatorTree *DomTree; 809 const TargetRegisterInfo *TRI; 810 const MachineRegisterInfo *MRI; 811 const TargetInstrInfo *TII; 812 const TargetFrameLowering *TFI; 813 const MachineFrameInfo *MFI; 814 BitVector CalleeSavedRegs; 815 LexicalScopes LS; 816 TargetPassConfig *TPC; 817 818 // An empty DIExpression. Used default / placeholder DbgValueProperties 819 // objects, as we can't have null expressions. 820 const DIExpression *EmptyExpr; 821 822 /// Object to track machine locations as we step through a block. Could 823 /// probably be a field rather than a pointer, as it's always used. 824 MLocTracker *MTracker = nullptr; 825 826 /// Number of the current block LiveDebugValues is stepping through. 827 unsigned CurBB; 828 829 /// Number of the current instruction LiveDebugValues is evaluating. 830 unsigned CurInst; 831 832 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 833 /// steps through a block. Reads the values at each location from the 834 /// MLocTracker object. 835 VLocTracker *VTracker = nullptr; 836 837 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 838 /// between locations during stepping, creates new DBG_VALUEs when values move 839 /// location. 840 TransferTracker *TTracker = nullptr; 841 842 /// Blocks which are artificial, i.e. blocks which exclusively contain 843 /// instructions without DebugLocs, or with line 0 locations. 844 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; 845 846 // Mapping of blocks to and from their RPOT order. 847 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 848 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 849 DenseMap<unsigned, unsigned> BBNumToRPO; 850 851 /// Pair of MachineInstr, and its 1-based offset into the containing block. 852 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 853 /// Map from debug instruction number to the MachineInstr labelled with that 854 /// number, and its location within the function. Used to transform 855 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 856 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 857 858 /// Record of where we observed a DBG_PHI instruction. 859 class DebugPHIRecord { 860 public: 861 /// Instruction number of this DBG_PHI. 862 uint64_t InstrNum; 863 /// Block where DBG_PHI occurred. 864 MachineBasicBlock *MBB; 865 /// The value number read by the DBG_PHI -- or None if it didn't refer to 866 /// a value. 867 Optional<ValueIDNum> ValueRead; 868 /// Register/Stack location the DBG_PHI reads -- or None if it referred to 869 /// something unexpected. 870 Optional<LocIdx> ReadLoc; 871 872 operator unsigned() const { return InstrNum; } 873 }; 874 875 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 876 /// DBG_PHI read and where. Populated and edited during the machine value 877 /// location problem -- we use LLVMs SSA Updater to fix changes by 878 /// optimizations that destroy PHI instructions. 879 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 880 881 // Map of overlapping variable fragments. 882 OverlapMap OverlapFragments; 883 VarToFragments SeenFragments; 884 885 /// Mapping of DBG_INSTR_REF instructions to their values, for those 886 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve 887 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches 888 /// the result. 889 DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs; 890 891 /// True if we need to examine call instructions for stack clobbers. We 892 /// normally assume that they don't clobber SP, but stack probes on Windows 893 /// do. 894 bool AdjustsStackInCalls = false; 895 896 /// If AdjustsStackInCalls is true, this holds the name of the target's stack 897 /// probe function, which is the function we expect will alter the stack 898 /// pointer. 899 StringRef StackProbeSymbolName; 900 901 /// Tests whether this instruction is a spill to a stack slot. 902 Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, 903 MachineFunction *MF); 904 905 /// Decide if @MI is a spill instruction and return true if it is. We use 2 906 /// criteria to make this decision: 907 /// - Is this instruction a store to a spill slot? 908 /// - Is there a register operand that is both used and killed? 909 /// TODO: Store optimization can fold spills into other stores (including 910 /// other spills). We do not handle this yet (more than one memory operand). 911 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 912 unsigned &Reg); 913 914 /// If a given instruction is identified as a spill, return the spill slot 915 /// and set \p Reg to the spilled register. 916 Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, 917 MachineFunction *MF, unsigned &Reg); 918 919 /// Given a spill instruction, extract the spill slot information, ensure it's 920 /// tracked, and return the spill number. 921 Optional<SpillLocationNo> 922 extractSpillBaseRegAndOffset(const MachineInstr &MI); 923 924 /// Observe a single instruction while stepping through a block. 925 void process(MachineInstr &MI, const ValueTable *MLiveOuts, 926 const ValueTable *MLiveIns); 927 928 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 929 /// \returns true if MI was recognized and processed. 930 bool transferDebugValue(const MachineInstr &MI); 931 932 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 933 /// \returns true if MI was recognized and processed. 934 bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts, 935 const ValueTable *MLiveIns); 936 937 /// Stores value-information about where this PHI occurred, and what 938 /// instruction number is associated with it. 939 /// \returns true if MI was recognized and processed. 940 bool transferDebugPHI(MachineInstr &MI); 941 942 /// Examines whether \p MI is copy instruction, and notifies trackers. 943 /// \returns true if MI was recognized and processed. 944 bool transferRegisterCopy(MachineInstr &MI); 945 946 /// Examines whether \p MI is stack spill or restore instruction, and 947 /// notifies trackers. \returns true if MI was recognized and processed. 948 bool transferSpillOrRestoreInst(MachineInstr &MI); 949 950 /// Examines \p MI for any registers that it defines, and notifies trackers. 951 void transferRegisterDef(MachineInstr &MI); 952 953 /// Copy one location to the other, accounting for movement of subregisters 954 /// too. 955 void performCopy(Register Src, Register Dst); 956 957 void accumulateFragmentMap(MachineInstr &MI); 958 959 /// Determine the machine value number referred to by (potentially several) 960 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 961 /// DBG_PHIs, shifting the position where values in registers merge, and 962 /// forming another mini-ssa problem to solve. 963 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 964 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 965 /// \returns The machine value number at position Here, or None. 966 Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 967 const ValueTable *MLiveOuts, 968 const ValueTable *MLiveIns, 969 MachineInstr &Here, uint64_t InstrNum); 970 971 Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, 972 const ValueTable *MLiveOuts, 973 const ValueTable *MLiveIns, 974 MachineInstr &Here, 975 uint64_t InstrNum); 976 977 /// Step through the function, recording register definitions and movements 978 /// in an MLocTracker. Convert the observations into a per-block transfer 979 /// function in \p MLocTransfer, suitable for using with the machine value 980 /// location dataflow problem. 981 void 982 produceMLocTransferFunction(MachineFunction &MF, 983 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 984 unsigned MaxNumBlocks); 985 986 /// Solve the machine value location dataflow problem. Takes as input the 987 /// transfer functions in \p MLocTransfer. Writes the output live-in and 988 /// live-out arrays to the (initialized to zero) multidimensional arrays in 989 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 990 /// number, the inner by LocIdx. 991 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, 992 FuncValueTable &MOutLocs, 993 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 994 995 /// Examine the stack indexes (i.e. offsets within the stack) to find the 996 /// basic units of interference -- like reg units, but for the stack. 997 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); 998 999 /// Install PHI values into the live-in array for each block, according to 1000 /// the IDF of each register. 1001 void placeMLocPHIs(MachineFunction &MF, 1002 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1003 FuncValueTable &MInLocs, 1004 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1005 1006 /// Propagate variable values to blocks in the common case where there's 1007 /// only one value assigned to the variable. This function has better 1008 /// performance as it doesn't have to find the dominance frontier between 1009 /// different assignments. 1010 void placePHIsForSingleVarDefinition( 1011 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 1012 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 1013 const DebugVariable &Var, LiveInsT &Output); 1014 1015 /// Calculate the iterated-dominance-frontier for a set of defs, using the 1016 /// existing LLVM facilities for this. Works for a single "value" or 1017 /// machine/variable location. 1018 /// \p AllBlocks Set of blocks where we might consume the value. 1019 /// \p DefBlocks Set of blocks where the value/location is defined. 1020 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 1021 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1022 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1023 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 1024 1025 /// Perform a control flow join (lattice value meet) of the values in machine 1026 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1027 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1028 /// from \p InLocs, and assigning the newly computed live ins back into 1029 /// \p InLocs. \returns two bools -- the first indicates whether a change 1030 /// was made, the second whether a lattice downgrade occurred. If the latter 1031 /// is true, revisiting this block is necessary. 1032 bool mlocJoin(MachineBasicBlock &MBB, 1033 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1034 FuncValueTable &OutLocs, ValueTable &InLocs); 1035 1036 /// Produce a set of blocks that are in the current lexical scope. This means 1037 /// those blocks that contain instructions "in" the scope, blocks where 1038 /// assignments to variables in scope occur, and artificial blocks that are 1039 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for 1040 /// more commentry on what "in scope" means. 1041 /// \p DILoc A location in the scope that we're fetching blocks for. 1042 /// \p Output Set to put in-scope-blocks into. 1043 /// \p AssignBlocks Blocks known to contain assignments of variables in scope. 1044 void 1045 getBlocksForScope(const DILocation *DILoc, 1046 SmallPtrSetImpl<const MachineBasicBlock *> &Output, 1047 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); 1048 1049 /// Solve the variable value dataflow problem, for a single lexical scope. 1050 /// Uses the algorithm from the file comment to resolve control flow joins 1051 /// using PHI placement and value propagation. Reads the locations of machine 1052 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 1053 /// and reads the variable values transfer function from \p AllTheVlocs. 1054 /// Live-in and Live-out variable values are stored locally, with the live-ins 1055 /// permanently stored to \p Output once a fixedpoint is reached. 1056 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1057 /// that we should be tracking. 1058 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 1059 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 1060 /// locations through. 1061 void buildVLocValueMap(const DILocation *DILoc, 1062 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1063 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1064 LiveInsT &Output, FuncValueTable &MOutLocs, 1065 FuncValueTable &MInLocs, 1066 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1067 1068 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 1069 /// live-in values coming from predecessors live-outs, and replaces any PHIs 1070 /// already present in this blocks live-ins with a live-through value if the 1071 /// PHI isn't needed. 1072 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 1073 /// \returns true if any live-ins change value, either from value propagation 1074 /// or PHI elimination. 1075 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 1076 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1077 DbgValue &LiveIn); 1078 1079 /// For the given block and live-outs feeding into it, try to find a 1080 /// machine location where all the variable values join together. 1081 /// \returns Value ID of a machine PHI if an appropriate one is available. 1082 Optional<ValueIDNum> 1083 pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var, 1084 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 1085 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1086 1087 /// Take collections of DBG_VALUE instructions stored in TTracker, and 1088 /// install them into their output blocks. Preserves a stable order of 1089 /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through 1090 /// the AllVarsNumbering order. 1091 bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1092 1093 /// Boilerplate computation of some initial sets, artifical blocks and 1094 /// RPOT block ordering. 1095 void initialSetup(MachineFunction &MF); 1096 1097 /// Produce a map of the last lexical scope that uses a block, using the 1098 /// scopes DFSOut number. Mapping is block-number to DFSOut. 1099 /// \p EjectionMap Pre-allocated vector in which to install the built ma. 1100 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. 1101 /// \p AssignBlocks Map of blocks where assignments happen for a scope. 1102 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, 1103 const ScopeToDILocT &ScopeToDILocation, 1104 ScopeToAssignBlocksT &AssignBlocks); 1105 1106 /// When determining per-block variable values and emitting to DBG_VALUEs, 1107 /// this function explores by lexical scope depth. Doing so means that per 1108 /// block information can be fully computed before exploration finishes, 1109 /// allowing us to emit it and free data structures earlier than otherwise. 1110 /// It's also good for locality. 1111 bool depthFirstVLocAndEmit( 1112 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, 1113 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks, 1114 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, 1115 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, 1116 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 1117 const TargetPassConfig &TPC); 1118 1119 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1120 TargetPassConfig *TPC, unsigned InputBBLimit, 1121 unsigned InputDbgValLimit) override; 1122 1123 public: 1124 /// Default construct and initialize the pass. 1125 InstrRefBasedLDV(); 1126 1127 LLVM_DUMP_METHOD 1128 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1129 1130 bool isCalleeSaved(LocIdx L) const; 1131 1132 bool hasFoldedStackStore(const MachineInstr &MI) { 1133 // Instruction must have a memory operand that's a stack slot, and isn't 1134 // aliased, meaning it's a spill from regalloc instead of a variable. 1135 // If it's aliased, we can't guarantee its value. 1136 if (!MI.hasOneMemOperand()) 1137 return false; 1138 auto *MemOperand = *MI.memoperands_begin(); 1139 return MemOperand->isStore() && 1140 MemOperand->getPseudoValue() && 1141 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack 1142 && !MemOperand->getPseudoValue()->isAliased(MFI); 1143 } 1144 1145 Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); 1146 }; 1147 1148 } // namespace LiveDebugValues 1149 1150 namespace llvm { 1151 using namespace LiveDebugValues; 1152 1153 template <> struct DenseMapInfo<LocIdx> { 1154 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } 1155 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } 1156 1157 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } 1158 1159 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } 1160 }; 1161 1162 template <> struct DenseMapInfo<ValueIDNum> { 1163 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } 1164 static inline ValueIDNum getTombstoneKey() { 1165 return ValueIDNum::TombstoneValue; 1166 } 1167 1168 static unsigned getHashValue(const ValueIDNum &Val) { 1169 return hash_value(Val.asU64()); 1170 } 1171 1172 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { 1173 return A == B; 1174 } 1175 }; 1176 1177 } // end namespace llvm 1178 1179 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 1180