1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11 
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/UniqueVector.h"
16 #include "llvm/CodeGen/LexicalScopes.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 
26 #include "LiveDebugValues.h"
27 
28 class VLocTracker;
29 class TransferTracker;
30 
31 // Forward dec of unit test class, so that we can peer into the LDV object.
32 class InstrRefLDVTest;
33 
34 namespace LiveDebugValues {
35 
36 class MLocTracker;
37 
38 using namespace llvm;
39 
40 /// Handle-class for a particular "location". This value-type uniquely
41 /// symbolises a register or stack location, allowing manipulation of locations
42 /// without concern for where that location is. Practically, this allows us to
43 /// treat the state of the machine at a particular point as an array of values,
44 /// rather than a map of values.
45 class LocIdx {
46   unsigned Location;
47 
48   // Default constructor is private, initializing to an illegal location number.
49   // Use only for "not an entry" elements in IndexedMaps.
50   LocIdx() : Location(UINT_MAX) {}
51 
52 public:
53 #define NUM_LOC_BITS 24
54   LocIdx(unsigned L) : Location(L) {
55     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
56   }
57 
58   static LocIdx MakeIllegalLoc() { return LocIdx(); }
59 
60   bool isIllegal() const { return Location == UINT_MAX; }
61 
62   uint64_t asU64() const { return Location; }
63 
64   bool operator==(unsigned L) const { return Location == L; }
65 
66   bool operator==(const LocIdx &L) const { return Location == L.Location; }
67 
68   bool operator!=(unsigned L) const { return !(*this == L); }
69 
70   bool operator!=(const LocIdx &L) const { return !(*this == L); }
71 
72   bool operator<(const LocIdx &Other) const {
73     return Location < Other.Location;
74   }
75 };
76 
77 // The location at which a spilled value resides. It consists of a register and
78 // an offset.
79 struct SpillLoc {
80   unsigned SpillBase;
81   StackOffset SpillOffset;
82   bool operator==(const SpillLoc &Other) const {
83     return std::make_pair(SpillBase, SpillOffset) ==
84            std::make_pair(Other.SpillBase, Other.SpillOffset);
85   }
86   bool operator<(const SpillLoc &Other) const {
87     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
88                            SpillOffset.getScalable()) <
89            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
90                            Other.SpillOffset.getScalable());
91   }
92 };
93 
94 /// Unique identifier for a value defined by an instruction, as a value type.
95 /// Casts back and forth to a uint64_t. Probably replacable with something less
96 /// bit-constrained. Each value identifies the instruction and machine location
97 /// where the value is defined, although there may be no corresponding machine
98 /// operand for it (ex: regmasks clobbering values). The instructions are
99 /// one-based, and definitions that are PHIs have instruction number zero.
100 ///
101 /// The obvious limits of a 1M block function or 1M instruction blocks are
102 /// problematic; but by that point we should probably have bailed out of
103 /// trying to analyse the function.
104 class ValueIDNum {
105   uint64_t BlockNo : 20;         /// The block where the def happens.
106   uint64_t InstNo : 20;          /// The Instruction where the def happens.
107                                  /// One based, is distance from start of block.
108   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
109 
110 public:
111   // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
112   // of values to work.
113   ValueIDNum() : BlockNo(0xFFFFF), InstNo(0xFFFFF), LocNo(0xFFFFFF) {}
114 
115   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
116       : BlockNo(Block), InstNo(Inst), LocNo(Loc) {}
117 
118   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
119       : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) {}
120 
121   uint64_t getBlock() const { return BlockNo; }
122   uint64_t getInst() const { return InstNo; }
123   uint64_t getLoc() const { return LocNo; }
124   bool isPHI() const { return InstNo == 0; }
125 
126   uint64_t asU64() const {
127     uint64_t TmpBlock = BlockNo;
128     uint64_t TmpInst = InstNo;
129     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
130   }
131 
132   static ValueIDNum fromU64(uint64_t v) {
133     uint64_t L = (v & 0x3FFF);
134     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
135   }
136 
137   bool operator<(const ValueIDNum &Other) const {
138     return asU64() < Other.asU64();
139   }
140 
141   bool operator==(const ValueIDNum &Other) const {
142     return std::tie(BlockNo, InstNo, LocNo) ==
143            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
144   }
145 
146   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
147 
148   std::string asString(const std::string &mlocname) const {
149     return Twine("Value{bb: ")
150         .concat(Twine(BlockNo).concat(
151             Twine(", inst: ")
152                 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
153                             .concat(Twine(", loc: ").concat(Twine(mlocname)))
154                             .concat(Twine("}")))))
155         .str();
156   }
157 
158   static ValueIDNum EmptyValue;
159 };
160 
161 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
162 /// the the value, and Boolean of whether or not it's indirect.
163 class DbgValueProperties {
164 public:
165   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
166       : DIExpr(DIExpr), Indirect(Indirect) {}
167 
168   /// Extract properties from an existing DBG_VALUE instruction.
169   DbgValueProperties(const MachineInstr &MI) {
170     assert(MI.isDebugValue());
171     DIExpr = MI.getDebugExpression();
172     Indirect = MI.getOperand(1).isImm();
173   }
174 
175   bool operator==(const DbgValueProperties &Other) const {
176     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
177   }
178 
179   bool operator!=(const DbgValueProperties &Other) const {
180     return !(*this == Other);
181   }
182 
183   const DIExpression *DIExpr;
184   bool Indirect;
185 };
186 
187 /// Class recording the (high level) _value_ of a variable. Identifies either
188 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
189 /// This class also stores meta-information about how the value is qualified.
190 /// Used to reason about variable values when performing the second
191 /// (DebugVariable specific) dataflow analysis.
192 class DbgValue {
193 public:
194   union {
195     /// If Kind is Def, the value number that this value is based on.
196     ValueIDNum ID;
197     /// If Kind is Const, the MachineOperand defining this value.
198     MachineOperand MO;
199     /// For a NoVal DbgValue, which block it was generated in.
200     unsigned BlockNo;
201   };
202   /// Qualifiers for the ValueIDNum above.
203   DbgValueProperties Properties;
204 
205   typedef enum {
206     Undef,    // Represents a DBG_VALUE $noreg in the transfer function only.
207     Def,      // This value is defined by an inst, or is a PHI value.
208     Const,    // A constant value contained in the MachineOperand field.
209     Proposed, // This is a tentative PHI value, which may be confirmed or
210               // invalidated later.
211     NoVal     // Empty DbgValue, generated during dataflow. BlockNo stores
212               // which block this was generated in.
213   } KindT;
214   /// Discriminator for whether this is a constant or an in-program value.
215   KindT Kind;
216 
217   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
218       : ID(Val), Properties(Prop), Kind(Kind) {
219     assert(Kind == Def || Kind == Proposed);
220   }
221 
222   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
223       : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
224     assert(Kind == NoVal);
225   }
226 
227   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
228       : MO(MO), Properties(Prop), Kind(Kind) {
229     assert(Kind == Const);
230   }
231 
232   DbgValue(const DbgValueProperties &Prop, KindT Kind)
233       : Properties(Prop), Kind(Kind) {
234     assert(Kind == Undef &&
235            "Empty DbgValue constructor must pass in Undef kind");
236   }
237 
238 #ifndef NDEBUG
239   void dump(const MLocTracker *MTrack) const;
240 #endif
241 
242   bool operator==(const DbgValue &Other) const {
243     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
244       return false;
245     else if (Kind == Proposed && ID != Other.ID)
246       return false;
247     else if (Kind == Def && ID != Other.ID)
248       return false;
249     else if (Kind == NoVal && BlockNo != Other.BlockNo)
250       return false;
251     else if (Kind == Const)
252       return MO.isIdenticalTo(Other.MO);
253 
254     return true;
255   }
256 
257   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
258 };
259 
260 class LocIdxToIndexFunctor {
261 public:
262   using argument_type = LocIdx;
263   unsigned operator()(const LocIdx &L) const { return L.asU64(); }
264 };
265 
266 /// Tracker for what values are in machine locations. Listens to the Things
267 /// being Done by various instructions, and maintains a table of what machine
268 /// locations have what values (as defined by a ValueIDNum).
269 ///
270 /// There are potentially a much larger number of machine locations on the
271 /// target machine than the actual working-set size of the function. On x86 for
272 /// example, we're extremely unlikely to want to track values through control
273 /// or debug registers. To avoid doing so, MLocTracker has several layers of
274 /// indirection going on, with two kinds of ``location'':
275 ///  * A LocID uniquely identifies a register or spill location, with a
276 ///    predictable value.
277 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
278 /// Whenever a location is def'd or used by a MachineInstr, we automagically
279 /// create a new LocIdx for a location, but not otherwise. This ensures we only
280 /// account for locations that are actually used or defined. The cost is another
281 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
282 /// fairly cheap, and the compiler tries to reduce the working-set at any one
283 /// time in the function anyway.
284 ///
285 /// Register mask operands completely blow this out of the water; I've just
286 /// piled hacks on top of hacks to get around that.
287 class MLocTracker {
288 public:
289   MachineFunction &MF;
290   const TargetInstrInfo &TII;
291   const TargetRegisterInfo &TRI;
292   const TargetLowering &TLI;
293 
294   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
295   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
296 
297   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
298   /// packed, entries only exist for locations that are being tracked.
299   LocToValueType LocIdxToIDNum;
300 
301   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
302   /// LocIdx key / number for that location. There are always at least as many
303   /// as the number of registers on the target -- if the value in the register
304   /// is not being tracked, then the LocIdx value will be zero. New entries are
305   /// appended if a new spill slot begins being tracked.
306   /// This, and the corresponding reverse map persist for the analysis of the
307   /// whole function, and is necessarying for decoding various vectors of
308   /// values.
309   std::vector<LocIdx> LocIDToLocIdx;
310 
311   /// Inverse map of LocIDToLocIdx.
312   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
313 
314   /// Unique-ification of spill slots. Used to number them -- their LocID
315   /// number is the index in SpillLocs minus one plus NumRegs.
316   UniqueVector<SpillLoc> SpillLocs;
317 
318   // If we discover a new machine location, assign it an mphi with this
319   // block number.
320   unsigned CurBB;
321 
322   /// Cached local copy of the number of registers the target has.
323   unsigned NumRegs;
324 
325   /// Collection of register mask operands that have been observed. Second part
326   /// of pair indicates the instruction that they happened in. Used to
327   /// reconstruct where defs happened if we start tracking a location later
328   /// on.
329   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
330 
331   /// Iterator for locations and the values they contain. Dereferencing
332   /// produces a struct/pair containing the LocIdx key for this location,
333   /// and a reference to the value currently stored. Simplifies the process
334   /// of seeking a particular location.
335   class MLocIterator {
336     LocToValueType &ValueMap;
337     LocIdx Idx;
338 
339   public:
340     class value_type {
341     public:
342       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
343       const LocIdx Idx;  /// Read-only index of this location.
344       ValueIDNum &Value; /// Reference to the stored value at this location.
345     };
346 
347     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
348         : ValueMap(ValueMap), Idx(Idx) {}
349 
350     bool operator==(const MLocIterator &Other) const {
351       assert(&ValueMap == &Other.ValueMap);
352       return Idx == Other.Idx;
353     }
354 
355     bool operator!=(const MLocIterator &Other) const {
356       return !(*this == Other);
357     }
358 
359     void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
360 
361     value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
362   };
363 
364   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
365               const TargetRegisterInfo &TRI, const TargetLowering &TLI);
366 
367   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
368   /// or spill number, and flag for whether it's a spill or not.
369   unsigned getLocID(Register RegOrSpill, bool isSpill) {
370     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
371   }
372 
373   /// Accessor for reading the value at Idx.
374   ValueIDNum getNumAtPos(LocIdx Idx) const {
375     assert(Idx.asU64() < LocIdxToIDNum.size());
376     return LocIdxToIDNum[Idx];
377   }
378 
379   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
380 
381   /// Reset all locations to contain a PHI value at the designated block. Used
382   /// sometimes for actual PHI values, othertimes to indicate the block entry
383   /// value (before any more information is known).
384   void setMPhis(unsigned NewCurBB) {
385     CurBB = NewCurBB;
386     for (auto Location : locations())
387       Location.Value = {CurBB, 0, Location.Idx};
388   }
389 
390   /// Load values for each location from array of ValueIDNums. Take current
391   /// bbnum just in case we read a value from a hitherto untouched register.
392   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
393     CurBB = NewCurBB;
394     // Iterate over all tracked locations, and load each locations live-in
395     // value into our local index.
396     for (auto Location : locations())
397       Location.Value = Locs[Location.Idx.asU64()];
398   }
399 
400   /// Wipe any un-necessary location records after traversing a block.
401   void reset(void) {
402     // We could reset all the location values too; however either loadFromArray
403     // or setMPhis should be called before this object is re-used. Just
404     // clear Masks, they're definitely not needed.
405     Masks.clear();
406   }
407 
408   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
409   /// the information in this pass uninterpretable.
410   void clear(void) {
411     reset();
412     LocIDToLocIdx.clear();
413     LocIdxToLocID.clear();
414     LocIdxToIDNum.clear();
415     // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
416     // 0
417     SpillLocs = decltype(SpillLocs)();
418 
419     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
420   }
421 
422   /// Set a locaiton to a certain value.
423   void setMLoc(LocIdx L, ValueIDNum Num) {
424     assert(L.asU64() < LocIdxToIDNum.size());
425     LocIdxToIDNum[L] = Num;
426   }
427 
428   /// Create a LocIdx for an untracked register ID. Initialize it to either an
429   /// mphi value representing a live-in, or a recent register mask clobber.
430   LocIdx trackRegister(unsigned ID);
431 
432   LocIdx lookupOrTrackRegister(unsigned ID) {
433     LocIdx &Index = LocIDToLocIdx[ID];
434     if (Index.isIllegal())
435       Index = trackRegister(ID);
436     return Index;
437   }
438 
439   /// Record a definition of the specified register at the given block / inst.
440   /// This doesn't take a ValueIDNum, because the definition and its location
441   /// are synonymous.
442   void defReg(Register R, unsigned BB, unsigned Inst) {
443     unsigned ID = getLocID(R, false);
444     LocIdx Idx = lookupOrTrackRegister(ID);
445     ValueIDNum ValueID = {BB, Inst, Idx};
446     LocIdxToIDNum[Idx] = ValueID;
447   }
448 
449   /// Set a register to a value number. To be used if the value number is
450   /// known in advance.
451   void setReg(Register R, ValueIDNum ValueID) {
452     unsigned ID = getLocID(R, false);
453     LocIdx Idx = lookupOrTrackRegister(ID);
454     LocIdxToIDNum[Idx] = ValueID;
455   }
456 
457   ValueIDNum readReg(Register R) {
458     unsigned ID = getLocID(R, false);
459     LocIdx Idx = lookupOrTrackRegister(ID);
460     return LocIdxToIDNum[Idx];
461   }
462 
463   /// Reset a register value to zero / empty. Needed to replicate the
464   /// VarLoc implementation where a copy to/from a register effectively
465   /// clears the contents of the source register. (Values can only have one
466   ///  machine location in VarLocBasedImpl).
467   void wipeRegister(Register R) {
468     unsigned ID = getLocID(R, false);
469     LocIdx Idx = LocIDToLocIdx[ID];
470     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
471   }
472 
473   /// Determine the LocIdx of an existing register.
474   LocIdx getRegMLoc(Register R) {
475     unsigned ID = getLocID(R, false);
476     return LocIDToLocIdx[ID];
477   }
478 
479   /// Record a RegMask operand being executed. Defs any register we currently
480   /// track, stores a pointer to the mask in case we have to account for it
481   /// later.
482   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
483 
484   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
485   LocIdx getOrTrackSpillLoc(SpillLoc L);
486 
487   /// Set the value stored in a spill slot.
488   void setSpill(SpillLoc L, ValueIDNum ValueID) {
489     LocIdx Idx = getOrTrackSpillLoc(L);
490     LocIdxToIDNum[Idx] = ValueID;
491   }
492 
493   /// Read whatever value is in a spill slot, or None if it isn't tracked.
494   Optional<ValueIDNum> readSpill(SpillLoc L) {
495     unsigned SpillID = SpillLocs.idFor(L);
496     if (SpillID == 0)
497       return None;
498 
499     unsigned LocID = getLocID(SpillID, true);
500     LocIdx Idx = LocIDToLocIdx[LocID];
501     return LocIdxToIDNum[Idx];
502   }
503 
504   /// Determine the LocIdx of a spill slot. Return None if it previously
505   /// hasn't had a value assigned.
506   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
507     unsigned SpillID = SpillLocs.idFor(L);
508     if (SpillID == 0)
509       return None;
510     unsigned LocNo = getLocID(SpillID, true);
511     return LocIDToLocIdx[LocNo];
512   }
513 
514   /// Return true if Idx is a spill machine location.
515   bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
516 
517   MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
518 
519   MLocIterator end() {
520     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
521   }
522 
523   /// Return a range over all locations currently tracked.
524   iterator_range<MLocIterator> locations() {
525     return llvm::make_range(begin(), end());
526   }
527 
528   std::string LocIdxToName(LocIdx Idx) const;
529 
530   std::string IDAsString(const ValueIDNum &Num) const;
531 
532 #ifndef NDEBUG
533   LLVM_DUMP_METHOD void dump();
534 
535   LLVM_DUMP_METHOD void dump_mloc_map();
536 #endif
537 
538   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
539   /// information in \pProperties, for variable Var. Don't insert it anywhere,
540   /// just return the builder for it.
541   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
542                               const DbgValueProperties &Properties);
543 };
544 
545 /// Types for recording sets of variable fragments that overlap. For a given
546 /// local variable, we record all other fragments of that variable that could
547 /// overlap it, to reduce search time.
548 using FragmentOfVar =
549     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
550 using OverlapMap =
551     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
552 
553 // XXX XXX docs
554 class InstrRefBasedLDV : public LDVImpl {
555 private:
556   friend class ::InstrRefLDVTest;
557 
558   using FragmentInfo = DIExpression::FragmentInfo;
559   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
560 
561   // Helper while building OverlapMap, a map of all fragments seen for a given
562   // DILocalVariable.
563   using VarToFragments =
564       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
565 
566   /// Machine location/value transfer function, a mapping of which locations
567   /// are assigned which new values.
568   using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
569 
570   /// Live in/out structure for the variable values: a per-block map of
571   /// variables to their values. XXX, better name?
572   using LiveIdxT =
573       DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
574 
575   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
576 
577   /// Type for a live-in value: the predecessor block, and its value.
578   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
579 
580   /// Vector (per block) of a collection (inner smallvector) of live-ins.
581   /// Used as the result type for the variable value dataflow problem.
582   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
583 
584   const TargetRegisterInfo *TRI;
585   const TargetInstrInfo *TII;
586   const TargetFrameLowering *TFI;
587   const MachineFrameInfo *MFI;
588   BitVector CalleeSavedRegs;
589   LexicalScopes LS;
590   TargetPassConfig *TPC;
591 
592   /// Object to track machine locations as we step through a block. Could
593   /// probably be a field rather than a pointer, as it's always used.
594   MLocTracker *MTracker;
595 
596   /// Number of the current block LiveDebugValues is stepping through.
597   unsigned CurBB;
598 
599   /// Number of the current instruction LiveDebugValues is evaluating.
600   unsigned CurInst;
601 
602   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
603   /// steps through a block. Reads the values at each location from the
604   /// MLocTracker object.
605   VLocTracker *VTracker;
606 
607   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
608   /// between locations during stepping, creates new DBG_VALUEs when values move
609   /// location.
610   TransferTracker *TTracker;
611 
612   /// Blocks which are artificial, i.e. blocks which exclusively contain
613   /// instructions without DebugLocs, or with line 0 locations.
614   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
615 
616   // Mapping of blocks to and from their RPOT order.
617   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
618   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
619   DenseMap<unsigned, unsigned> BBNumToRPO;
620 
621   /// Pair of MachineInstr, and its 1-based offset into the containing block.
622   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
623   /// Map from debug instruction number to the MachineInstr labelled with that
624   /// number, and its location within the function. Used to transform
625   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
626   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
627 
628   /// Record of where we observed a DBG_PHI instruction.
629   class DebugPHIRecord {
630   public:
631     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
632     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
633     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
634     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
635 
636     operator unsigned() const { return InstrNum; }
637   };
638 
639   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
640   /// DBG_PHI read and where. Populated and edited during the machine value
641   /// location problem -- we use LLVMs SSA Updater to fix changes by
642   /// optimizations that destroy PHI instructions.
643   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
644 
645   // Map of overlapping variable fragments.
646   OverlapMap OverlapFragments;
647   VarToFragments SeenFragments;
648 
649   /// Tests whether this instruction is a spill to a stack slot.
650   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
651 
652   /// Decide if @MI is a spill instruction and return true if it is. We use 2
653   /// criteria to make this decision:
654   /// - Is this instruction a store to a spill slot?
655   /// - Is there a register operand that is both used and killed?
656   /// TODO: Store optimization can fold spills into other stores (including
657   /// other spills). We do not handle this yet (more than one memory operand).
658   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
659                        unsigned &Reg);
660 
661   /// If a given instruction is identified as a spill, return the spill slot
662   /// and set \p Reg to the spilled register.
663   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
664                                           MachineFunction *MF, unsigned &Reg);
665 
666   /// Given a spill instruction, extract the register and offset used to
667   /// address the spill slot in a target independent way.
668   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
669 
670   /// Observe a single instruction while stepping through a block.
671   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
672                ValueIDNum **MLiveIns = nullptr);
673 
674   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
675   /// \returns true if MI was recognized and processed.
676   bool transferDebugValue(const MachineInstr &MI);
677 
678   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
679   /// \returns true if MI was recognized and processed.
680   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
681                              ValueIDNum **MLiveIns);
682 
683   /// Stores value-information about where this PHI occurred, and what
684   /// instruction number is associated with it.
685   /// \returns true if MI was recognized and processed.
686   bool transferDebugPHI(MachineInstr &MI);
687 
688   /// Examines whether \p MI is copy instruction, and notifies trackers.
689   /// \returns true if MI was recognized and processed.
690   bool transferRegisterCopy(MachineInstr &MI);
691 
692   /// Examines whether \p MI is stack spill or restore  instruction, and
693   /// notifies trackers. \returns true if MI was recognized and processed.
694   bool transferSpillOrRestoreInst(MachineInstr &MI);
695 
696   /// Examines \p MI for any registers that it defines, and notifies trackers.
697   void transferRegisterDef(MachineInstr &MI);
698 
699   /// Copy one location to the other, accounting for movement of subregisters
700   /// too.
701   void performCopy(Register Src, Register Dst);
702 
703   void accumulateFragmentMap(MachineInstr &MI);
704 
705   /// Determine the machine value number referred to by (potentially several)
706   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
707   /// DBG_PHIs, shifting the position where values in registers merge, and
708   /// forming another mini-ssa problem to solve.
709   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
710   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
711   /// \returns The machine value number at position Here, or None.
712   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
713                                       ValueIDNum **MLiveOuts,
714                                       ValueIDNum **MLiveIns, MachineInstr &Here,
715                                       uint64_t InstrNum);
716 
717   /// Step through the function, recording register definitions and movements
718   /// in an MLocTracker. Convert the observations into a per-block transfer
719   /// function in \p MLocTransfer, suitable for using with the machine value
720   /// location dataflow problem.
721   void
722   produceMLocTransferFunction(MachineFunction &MF,
723                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
724                               unsigned MaxNumBlocks);
725 
726   /// Solve the machine value location dataflow problem. Takes as input the
727   /// transfer functions in \p MLocTransfer. Writes the output live-in and
728   /// live-out arrays to the (initialized to zero) multidimensional arrays in
729   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
730   /// number, the inner by LocIdx.
731   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
732                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
733 
734   /// Perform a control flow join (lattice value meet) of the values in machine
735   /// locations at \p MBB. Follows the algorithm described in the file-comment,
736   /// reading live-outs of predecessors from \p OutLocs, the current live ins
737   /// from \p InLocs, and assigning the newly computed live ins back into
738   /// \p InLocs. \returns two bools -- the first indicates whether a change
739   /// was made, the second whether a lattice downgrade occurred. If the latter
740   /// is true, revisiting this block is necessary.
741   std::tuple<bool, bool>
742   mlocJoin(MachineBasicBlock &MBB,
743            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
744            ValueIDNum **OutLocs, ValueIDNum *InLocs);
745 
746   /// Solve the variable value dataflow problem, for a single lexical scope.
747   /// Uses the algorithm from the file comment to resolve control flow joins,
748   /// although there are extra hacks, see vlocJoin. Reads the
749   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
750   /// mlocDataflow) and reads the variable values transfer function from
751   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
752   /// with the live-ins permanently stored to \p Output once the fixedpoint is
753   /// reached.
754   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
755   /// that we should be tracking.
756   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
757   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
758   /// through.
759   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
760                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
761                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
762                     LiveInsT &Output, ValueIDNum **MOutLocs,
763                     ValueIDNum **MInLocs,
764                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
765 
766   /// Compute the live-ins to a block, considering control flow merges according
767   /// to the method in the file comment. Live out and live in variable values
768   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
769   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
770   /// are modified.
771   /// \p InLocsT Output argument, storage for calculated live-ins.
772   /// \returns two bools -- the first indicates whether a change
773   /// was made, the second whether a lattice downgrade occurred. If the latter
774   /// is true, revisiting this block is necessary.
775   std::tuple<bool, bool>
776   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
777            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
778            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
779            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
780            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
781            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
782            DenseMap<DebugVariable, DbgValue> &InLocsT);
783 
784   /// Continue exploration of the variable-value lattice, as explained in the
785   /// file-level comment. \p OldLiveInLocation contains the current
786   /// exploration position, from which we need to descend further. \p Values
787   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
788   /// the current block, and \p CandidateLocations a set of locations that
789   /// should be considered as PHI locations, if we reach the bottom of the
790   /// lattice. \returns true if we should downgrade; the value is the agreeing
791   /// value number in a non-backedge predecessor.
792   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
793                             const DbgValue &OldLiveInLocation,
794                             const SmallVectorImpl<InValueT> &Values,
795                             unsigned CurBlockRPONum);
796 
797   /// For the given block and live-outs feeding into it, try to find a
798   /// machine location where they all join. If a solution for all predecessors
799   /// can't be found, a location where all non-backedge-predecessors join
800   /// will be returned instead. While this method finds a join location, this
801   /// says nothing as to whether it should be used.
802   /// \returns Pair of value ID if found, and true when the correct value
803   /// is available on all predecessor edges, or false if it's only available
804   /// for non-backedge predecessors.
805   std::tuple<Optional<ValueIDNum>, bool>
806   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
807               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
808               ValueIDNum **MInLocs,
809               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
810 
811   /// Given the solutions to the two dataflow problems, machine value locations
812   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
813   /// TransferTracker class over the function to produce live-in and transfer
814   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
815   /// order given by AllVarsNumbering -- this could be any stable order, but
816   /// right now "order of appearence in function, when explored in RPO", so
817   /// that we can compare explictly against VarLocBasedImpl.
818   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
819                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
820                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
821                      const TargetPassConfig &TPC);
822 
823   /// Boilerplate computation of some initial sets, artifical blocks and
824   /// RPOT block ordering.
825   void initialSetup(MachineFunction &MF);
826 
827   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
828                     unsigned InputBBLimit, unsigned InputDbgValLimit) override;
829 
830 public:
831   /// Default construct and initialize the pass.
832   InstrRefBasedLDV();
833 
834   LLVM_DUMP_METHOD
835   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
836 
837   bool isCalleeSaved(LocIdx L) const;
838 };
839 
840 } // namespace LiveDebugValues
841 
842 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
843