1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/UniqueVector.h" 16 #include "llvm/CodeGen/LexicalScopes.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 26 #include "LiveDebugValues.h" 27 28 class TransferTracker; 29 30 // Forward dec of unit test class, so that we can peer into the LDV object. 31 class InstrRefLDVTest; 32 33 namespace LiveDebugValues { 34 35 class MLocTracker; 36 37 using namespace llvm; 38 39 /// Handle-class for a particular "location". This value-type uniquely 40 /// symbolises a register or stack location, allowing manipulation of locations 41 /// without concern for where that location is. Practically, this allows us to 42 /// treat the state of the machine at a particular point as an array of values, 43 /// rather than a map of values. 44 class LocIdx { 45 unsigned Location; 46 47 // Default constructor is private, initializing to an illegal location number. 48 // Use only for "not an entry" elements in IndexedMaps. 49 LocIdx() : Location(UINT_MAX) {} 50 51 public: 52 #define NUM_LOC_BITS 24 53 LocIdx(unsigned L) : Location(L) { 54 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 55 } 56 57 static LocIdx MakeIllegalLoc() { return LocIdx(); } 58 59 bool isIllegal() const { return Location == UINT_MAX; } 60 61 uint64_t asU64() const { return Location; } 62 63 bool operator==(unsigned L) const { return Location == L; } 64 65 bool operator==(const LocIdx &L) const { return Location == L.Location; } 66 67 bool operator!=(unsigned L) const { return !(*this == L); } 68 69 bool operator!=(const LocIdx &L) const { return !(*this == L); } 70 71 bool operator<(const LocIdx &Other) const { 72 return Location < Other.Location; 73 } 74 }; 75 76 // The location at which a spilled value resides. It consists of a register and 77 // an offset. 78 struct SpillLoc { 79 unsigned SpillBase; 80 StackOffset SpillOffset; 81 bool operator==(const SpillLoc &Other) const { 82 return std::make_pair(SpillBase, SpillOffset) == 83 std::make_pair(Other.SpillBase, Other.SpillOffset); 84 } 85 bool operator<(const SpillLoc &Other) const { 86 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 87 SpillOffset.getScalable()) < 88 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 89 Other.SpillOffset.getScalable()); 90 } 91 }; 92 93 /// Unique identifier for a value defined by an instruction, as a value type. 94 /// Casts back and forth to a uint64_t. Probably replacable with something less 95 /// bit-constrained. Each value identifies the instruction and machine location 96 /// where the value is defined, although there may be no corresponding machine 97 /// operand for it (ex: regmasks clobbering values). The instructions are 98 /// one-based, and definitions that are PHIs have instruction number zero. 99 /// 100 /// The obvious limits of a 1M block function or 1M instruction blocks are 101 /// problematic; but by that point we should probably have bailed out of 102 /// trying to analyse the function. 103 class ValueIDNum { 104 uint64_t BlockNo : 20; /// The block where the def happens. 105 uint64_t InstNo : 20; /// The Instruction where the def happens. 106 /// One based, is distance from start of block. 107 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 108 109 public: 110 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 111 // of values to work. 112 ValueIDNum() : BlockNo(0xFFFFF), InstNo(0xFFFFF), LocNo(0xFFFFFF) {} 113 114 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 115 : BlockNo(Block), InstNo(Inst), LocNo(Loc) {} 116 117 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 118 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) {} 119 120 uint64_t getBlock() const { return BlockNo; } 121 uint64_t getInst() const { return InstNo; } 122 uint64_t getLoc() const { return LocNo; } 123 bool isPHI() const { return InstNo == 0; } 124 125 uint64_t asU64() const { 126 uint64_t TmpBlock = BlockNo; 127 uint64_t TmpInst = InstNo; 128 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 129 } 130 131 static ValueIDNum fromU64(uint64_t v) { 132 uint64_t L = (v & 0x3FFF); 133 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 134 } 135 136 bool operator<(const ValueIDNum &Other) const { 137 return asU64() < Other.asU64(); 138 } 139 140 bool operator==(const ValueIDNum &Other) const { 141 return std::tie(BlockNo, InstNo, LocNo) == 142 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 143 } 144 145 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 146 147 std::string asString(const std::string &mlocname) const { 148 return Twine("Value{bb: ") 149 .concat(Twine(BlockNo).concat( 150 Twine(", inst: ") 151 .concat((InstNo ? Twine(InstNo) : Twine("live-in")) 152 .concat(Twine(", loc: ").concat(Twine(mlocname))) 153 .concat(Twine("}"))))) 154 .str(); 155 } 156 157 static ValueIDNum EmptyValue; 158 }; 159 160 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 161 /// the the value, and Boolean of whether or not it's indirect. 162 class DbgValueProperties { 163 public: 164 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 165 : DIExpr(DIExpr), Indirect(Indirect) {} 166 167 /// Extract properties from an existing DBG_VALUE instruction. 168 DbgValueProperties(const MachineInstr &MI) { 169 assert(MI.isDebugValue()); 170 DIExpr = MI.getDebugExpression(); 171 Indirect = MI.getOperand(1).isImm(); 172 } 173 174 bool operator==(const DbgValueProperties &Other) const { 175 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 176 } 177 178 bool operator!=(const DbgValueProperties &Other) const { 179 return !(*this == Other); 180 } 181 182 const DIExpression *DIExpr; 183 bool Indirect; 184 }; 185 186 /// Class recording the (high level) _value_ of a variable. Identifies either 187 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 188 /// This class also stores meta-information about how the value is qualified. 189 /// Used to reason about variable values when performing the second 190 /// (DebugVariable specific) dataflow analysis. 191 class DbgValue { 192 public: 193 /// If Kind is Def, the value number that this value is based on. VPHIs set 194 /// this field to EmptyValue if there is no machine-value for this VPHI, or 195 /// the corresponding machine-value if there is one. 196 ValueIDNum ID; 197 /// If Kind is Const, the MachineOperand defining this value. 198 Optional<MachineOperand> MO; 199 /// For a NoVal or VPHI DbgValue, which block it was generated in. 200 int BlockNo; 201 202 /// Qualifiers for the ValueIDNum above. 203 DbgValueProperties Properties; 204 205 typedef enum { 206 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 207 Def, // This value is defined by an inst, or is a PHI value. 208 Const, // A constant value contained in the MachineOperand field. 209 VPHI, // Incoming values to BlockNo differ, those values must be joined by 210 // a PHI in this block. 211 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 212 // before dominating blocks values are propagated in. 213 } KindT; 214 /// Discriminator for whether this is a constant or an in-program value. 215 KindT Kind; 216 217 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 218 : ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) { 219 assert(Kind == Def); 220 } 221 222 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 223 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo), 224 Properties(Prop), Kind(Kind) { 225 assert(Kind == NoVal || Kind == VPHI); 226 } 227 228 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 229 : ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop), 230 Kind(Kind) { 231 assert(Kind == Const); 232 } 233 234 DbgValue(const DbgValueProperties &Prop, KindT Kind) 235 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop), 236 Kind(Kind) { 237 assert(Kind == Undef && 238 "Empty DbgValue constructor must pass in Undef kind"); 239 } 240 241 #ifndef NDEBUG 242 void dump(const MLocTracker *MTrack) const; 243 #endif 244 245 bool operator==(const DbgValue &Other) const { 246 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 247 return false; 248 else if (Kind == Def && ID != Other.ID) 249 return false; 250 else if (Kind == NoVal && BlockNo != Other.BlockNo) 251 return false; 252 else if (Kind == Const) 253 return MO->isIdenticalTo(*Other.MO); 254 else if (Kind == VPHI && BlockNo != Other.BlockNo) 255 return false; 256 else if (Kind == VPHI && ID != Other.ID) 257 return false; 258 259 return true; 260 } 261 262 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 263 }; 264 265 class LocIdxToIndexFunctor { 266 public: 267 using argument_type = LocIdx; 268 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 269 }; 270 271 /// Tracker for what values are in machine locations. Listens to the Things 272 /// being Done by various instructions, and maintains a table of what machine 273 /// locations have what values (as defined by a ValueIDNum). 274 /// 275 /// There are potentially a much larger number of machine locations on the 276 /// target machine than the actual working-set size of the function. On x86 for 277 /// example, we're extremely unlikely to want to track values through control 278 /// or debug registers. To avoid doing so, MLocTracker has several layers of 279 /// indirection going on, with two kinds of ``location'': 280 /// * A LocID uniquely identifies a register or spill location, with a 281 /// predictable value. 282 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 283 /// Whenever a location is def'd or used by a MachineInstr, we automagically 284 /// create a new LocIdx for a location, but not otherwise. This ensures we only 285 /// account for locations that are actually used or defined. The cost is another 286 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 287 /// fairly cheap, and the compiler tries to reduce the working-set at any one 288 /// time in the function anyway. 289 /// 290 /// Register mask operands completely blow this out of the water; I've just 291 /// piled hacks on top of hacks to get around that. 292 class MLocTracker { 293 public: 294 MachineFunction &MF; 295 const TargetInstrInfo &TII; 296 const TargetRegisterInfo &TRI; 297 const TargetLowering &TLI; 298 299 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 300 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 301 302 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 303 /// packed, entries only exist for locations that are being tracked. 304 LocToValueType LocIdxToIDNum; 305 306 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 307 /// LocIdx key / number for that location. There are always at least as many 308 /// as the number of registers on the target -- if the value in the register 309 /// is not being tracked, then the LocIdx value will be zero. New entries are 310 /// appended if a new spill slot begins being tracked. 311 /// This, and the corresponding reverse map persist for the analysis of the 312 /// whole function, and is necessarying for decoding various vectors of 313 /// values. 314 std::vector<LocIdx> LocIDToLocIdx; 315 316 /// Inverse map of LocIDToLocIdx. 317 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 318 319 /// When clobbering register masks, we chose to not believe the machine model 320 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 321 /// keep a set of them here. 322 SmallSet<Register, 8> SPAliases; 323 324 /// Unique-ification of spill slots. Used to number them -- their LocID 325 /// number is the index in SpillLocs minus one plus NumRegs. 326 UniqueVector<SpillLoc> SpillLocs; 327 328 // If we discover a new machine location, assign it an mphi with this 329 // block number. 330 unsigned CurBB; 331 332 /// Cached local copy of the number of registers the target has. 333 unsigned NumRegs; 334 335 /// Collection of register mask operands that have been observed. Second part 336 /// of pair indicates the instruction that they happened in. Used to 337 /// reconstruct where defs happened if we start tracking a location later 338 /// on. 339 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 340 341 /// Iterator for locations and the values they contain. Dereferencing 342 /// produces a struct/pair containing the LocIdx key for this location, 343 /// and a reference to the value currently stored. Simplifies the process 344 /// of seeking a particular location. 345 class MLocIterator { 346 LocToValueType &ValueMap; 347 LocIdx Idx; 348 349 public: 350 class value_type { 351 public: 352 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 353 const LocIdx Idx; /// Read-only index of this location. 354 ValueIDNum &Value; /// Reference to the stored value at this location. 355 }; 356 357 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 358 : ValueMap(ValueMap), Idx(Idx) {} 359 360 bool operator==(const MLocIterator &Other) const { 361 assert(&ValueMap == &Other.ValueMap); 362 return Idx == Other.Idx; 363 } 364 365 bool operator!=(const MLocIterator &Other) const { 366 return !(*this == Other); 367 } 368 369 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 370 371 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 372 }; 373 374 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 375 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 376 377 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 378 /// or spill number, and flag for whether it's a spill or not. 379 unsigned getLocID(Register RegOrSpill, bool isSpill) { 380 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); 381 } 382 383 /// Accessor for reading the value at Idx. 384 ValueIDNum getNumAtPos(LocIdx Idx) const { 385 assert(Idx.asU64() < LocIdxToIDNum.size()); 386 return LocIdxToIDNum[Idx]; 387 } 388 389 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 390 391 /// Reset all locations to contain a PHI value at the designated block. Used 392 /// sometimes for actual PHI values, othertimes to indicate the block entry 393 /// value (before any more information is known). 394 void setMPhis(unsigned NewCurBB) { 395 CurBB = NewCurBB; 396 for (auto Location : locations()) 397 Location.Value = {CurBB, 0, Location.Idx}; 398 } 399 400 /// Load values for each location from array of ValueIDNums. Take current 401 /// bbnum just in case we read a value from a hitherto untouched register. 402 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 403 CurBB = NewCurBB; 404 // Iterate over all tracked locations, and load each locations live-in 405 // value into our local index. 406 for (auto Location : locations()) 407 Location.Value = Locs[Location.Idx.asU64()]; 408 } 409 410 /// Wipe any un-necessary location records after traversing a block. 411 void reset(void) { 412 // We could reset all the location values too; however either loadFromArray 413 // or setMPhis should be called before this object is re-used. Just 414 // clear Masks, they're definitely not needed. 415 Masks.clear(); 416 } 417 418 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 419 /// the information in this pass uninterpretable. 420 void clear(void) { 421 reset(); 422 LocIDToLocIdx.clear(); 423 LocIdxToLocID.clear(); 424 LocIdxToIDNum.clear(); 425 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 426 // 0 427 SpillLocs = decltype(SpillLocs)(); 428 429 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 430 } 431 432 /// Set a locaiton to a certain value. 433 void setMLoc(LocIdx L, ValueIDNum Num) { 434 assert(L.asU64() < LocIdxToIDNum.size()); 435 LocIdxToIDNum[L] = Num; 436 } 437 438 /// Create a LocIdx for an untracked register ID. Initialize it to either an 439 /// mphi value representing a live-in, or a recent register mask clobber. 440 LocIdx trackRegister(unsigned ID); 441 442 LocIdx lookupOrTrackRegister(unsigned ID) { 443 LocIdx &Index = LocIDToLocIdx[ID]; 444 if (Index.isIllegal()) 445 Index = trackRegister(ID); 446 return Index; 447 } 448 449 /// Is register R currently tracked by MLocTracker? 450 bool isRegisterTracked(Register R) { 451 LocIdx &Index = LocIDToLocIdx[R]; 452 return !Index.isIllegal(); 453 } 454 455 /// Record a definition of the specified register at the given block / inst. 456 /// This doesn't take a ValueIDNum, because the definition and its location 457 /// are synonymous. 458 void defReg(Register R, unsigned BB, unsigned Inst) { 459 unsigned ID = getLocID(R, false); 460 LocIdx Idx = lookupOrTrackRegister(ID); 461 ValueIDNum ValueID = {BB, Inst, Idx}; 462 LocIdxToIDNum[Idx] = ValueID; 463 } 464 465 /// Set a register to a value number. To be used if the value number is 466 /// known in advance. 467 void setReg(Register R, ValueIDNum ValueID) { 468 unsigned ID = getLocID(R, false); 469 LocIdx Idx = lookupOrTrackRegister(ID); 470 LocIdxToIDNum[Idx] = ValueID; 471 } 472 473 ValueIDNum readReg(Register R) { 474 unsigned ID = getLocID(R, false); 475 LocIdx Idx = lookupOrTrackRegister(ID); 476 return LocIdxToIDNum[Idx]; 477 } 478 479 /// Reset a register value to zero / empty. Needed to replicate the 480 /// VarLoc implementation where a copy to/from a register effectively 481 /// clears the contents of the source register. (Values can only have one 482 /// machine location in VarLocBasedImpl). 483 void wipeRegister(Register R) { 484 unsigned ID = getLocID(R, false); 485 LocIdx Idx = LocIDToLocIdx[ID]; 486 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 487 } 488 489 /// Determine the LocIdx of an existing register. 490 LocIdx getRegMLoc(Register R) { 491 unsigned ID = getLocID(R, false); 492 return LocIDToLocIdx[ID]; 493 } 494 495 /// Record a RegMask operand being executed. Defs any register we currently 496 /// track, stores a pointer to the mask in case we have to account for it 497 /// later. 498 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 499 500 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 501 LocIdx getOrTrackSpillLoc(SpillLoc L); 502 503 /// Set the value stored in a spill slot. 504 void setSpill(SpillLoc L, ValueIDNum ValueID) { 505 LocIdx Idx = getOrTrackSpillLoc(L); 506 LocIdxToIDNum[Idx] = ValueID; 507 } 508 509 /// Read whatever value is in a spill slot, or None if it isn't tracked. 510 Optional<ValueIDNum> readSpill(SpillLoc L) { 511 unsigned SpillID = SpillLocs.idFor(L); 512 if (SpillID == 0) 513 return None; 514 515 unsigned LocID = getLocID(SpillID, true); 516 LocIdx Idx = LocIDToLocIdx[LocID]; 517 return LocIdxToIDNum[Idx]; 518 } 519 520 /// Determine the LocIdx of a spill slot. Return None if it previously 521 /// hasn't had a value assigned. 522 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 523 unsigned SpillID = SpillLocs.idFor(L); 524 if (SpillID == 0) 525 return None; 526 unsigned LocNo = getLocID(SpillID, true); 527 return LocIDToLocIdx[LocNo]; 528 } 529 530 /// Return true if Idx is a spill machine location. 531 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 532 533 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 534 535 MLocIterator end() { 536 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 537 } 538 539 /// Return a range over all locations currently tracked. 540 iterator_range<MLocIterator> locations() { 541 return llvm::make_range(begin(), end()); 542 } 543 544 std::string LocIdxToName(LocIdx Idx) const; 545 546 std::string IDAsString(const ValueIDNum &Num) const; 547 548 #ifndef NDEBUG 549 LLVM_DUMP_METHOD void dump(); 550 551 LLVM_DUMP_METHOD void dump_mloc_map(); 552 #endif 553 554 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 555 /// information in \pProperties, for variable Var. Don't insert it anywhere, 556 /// just return the builder for it. 557 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 558 const DbgValueProperties &Properties); 559 }; 560 561 /// Collection of DBG_VALUEs observed when traversing a block. Records each 562 /// variable and the value the DBG_VALUE refers to. Requires the machine value 563 /// location dataflow algorithm to have run already, so that values can be 564 /// identified. 565 class VLocTracker { 566 public: 567 /// Map DebugVariable to the latest Value it's defined to have. 568 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 569 /// the order in this container. 570 /// We only retain the last DbgValue in each block for each variable, to 571 /// determine the blocks live-out variable value. The Vars container forms the 572 /// transfer function for this block, as part of the dataflow analysis. The 573 /// movement of values between locations inside of a block is handled at a 574 /// much later stage, in the TransferTracker class. 575 MapVector<DebugVariable, DbgValue> Vars; 576 DenseMap<DebugVariable, const DILocation *> Scopes; 577 MachineBasicBlock *MBB = nullptr; 578 579 public: 580 VLocTracker() {} 581 582 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 583 Optional<ValueIDNum> ID) { 584 assert(MI.isDebugValue() || MI.isDebugRef()); 585 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 586 MI.getDebugLoc()->getInlinedAt()); 587 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 588 : DbgValue(Properties, DbgValue::Undef); 589 590 // Attempt insertion; overwrite if it's already mapped. 591 auto Result = Vars.insert(std::make_pair(Var, Rec)); 592 if (!Result.second) 593 Result.first->second = Rec; 594 Scopes[Var] = MI.getDebugLoc().get(); 595 } 596 597 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 598 // Only DBG_VALUEs can define constant-valued variables. 599 assert(MI.isDebugValue()); 600 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 601 MI.getDebugLoc()->getInlinedAt()); 602 DbgValueProperties Properties(MI); 603 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 604 605 // Attempt insertion; overwrite if it's already mapped. 606 auto Result = Vars.insert(std::make_pair(Var, Rec)); 607 if (!Result.second) 608 Result.first->second = Rec; 609 Scopes[Var] = MI.getDebugLoc().get(); 610 } 611 }; 612 613 /// Types for recording sets of variable fragments that overlap. For a given 614 /// local variable, we record all other fragments of that variable that could 615 /// overlap it, to reduce search time. 616 using FragmentOfVar = 617 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 618 using OverlapMap = 619 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 620 621 // XXX XXX docs 622 class InstrRefBasedLDV : public LDVImpl { 623 public: 624 friend class ::InstrRefLDVTest; 625 626 using FragmentInfo = DIExpression::FragmentInfo; 627 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 628 629 // Helper while building OverlapMap, a map of all fragments seen for a given 630 // DILocalVariable. 631 using VarToFragments = 632 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 633 634 /// Machine location/value transfer function, a mapping of which locations 635 /// are assigned which new values. 636 using MLocTransferMap = std::map<LocIdx, ValueIDNum>; 637 638 /// Live in/out structure for the variable values: a per-block map of 639 /// variables to their values. 640 using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; 641 642 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 643 644 /// Type for a live-in value: the predecessor block, and its value. 645 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 646 647 /// Vector (per block) of a collection (inner smallvector) of live-ins. 648 /// Used as the result type for the variable value dataflow problem. 649 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 650 651 private: 652 MachineDominatorTree *DomTree; 653 const TargetRegisterInfo *TRI; 654 const TargetInstrInfo *TII; 655 const TargetFrameLowering *TFI; 656 const MachineFrameInfo *MFI; 657 BitVector CalleeSavedRegs; 658 LexicalScopes LS; 659 TargetPassConfig *TPC; 660 661 // An empty DIExpression. Used default / placeholder DbgValueProperties 662 // objects, as we can't have null expressions. 663 const DIExpression *EmptyExpr; 664 665 /// Object to track machine locations as we step through a block. Could 666 /// probably be a field rather than a pointer, as it's always used. 667 MLocTracker *MTracker; 668 669 /// Number of the current block LiveDebugValues is stepping through. 670 unsigned CurBB; 671 672 /// Number of the current instruction LiveDebugValues is evaluating. 673 unsigned CurInst; 674 675 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 676 /// steps through a block. Reads the values at each location from the 677 /// MLocTracker object. 678 VLocTracker *VTracker; 679 680 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 681 /// between locations during stepping, creates new DBG_VALUEs when values move 682 /// location. 683 TransferTracker *TTracker; 684 685 /// Blocks which are artificial, i.e. blocks which exclusively contain 686 /// instructions without DebugLocs, or with line 0 locations. 687 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 688 689 // Mapping of blocks to and from their RPOT order. 690 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 691 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 692 DenseMap<unsigned, unsigned> BBNumToRPO; 693 694 /// Pair of MachineInstr, and its 1-based offset into the containing block. 695 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 696 /// Map from debug instruction number to the MachineInstr labelled with that 697 /// number, and its location within the function. Used to transform 698 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 699 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 700 701 /// Record of where we observed a DBG_PHI instruction. 702 class DebugPHIRecord { 703 public: 704 uint64_t InstrNum; ///< Instruction number of this DBG_PHI. 705 MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred. 706 ValueIDNum ValueRead; ///< The value number read by the DBG_PHI. 707 LocIdx ReadLoc; ///< Register/Stack location the DBG_PHI reads. 708 709 operator unsigned() const { return InstrNum; } 710 }; 711 712 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 713 /// DBG_PHI read and where. Populated and edited during the machine value 714 /// location problem -- we use LLVMs SSA Updater to fix changes by 715 /// optimizations that destroy PHI instructions. 716 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 717 718 // Map of overlapping variable fragments. 719 OverlapMap OverlapFragments; 720 VarToFragments SeenFragments; 721 722 /// Tests whether this instruction is a spill to a stack slot. 723 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 724 725 /// Decide if @MI is a spill instruction and return true if it is. We use 2 726 /// criteria to make this decision: 727 /// - Is this instruction a store to a spill slot? 728 /// - Is there a register operand that is both used and killed? 729 /// TODO: Store optimization can fold spills into other stores (including 730 /// other spills). We do not handle this yet (more than one memory operand). 731 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 732 unsigned &Reg); 733 734 /// If a given instruction is identified as a spill, return the spill slot 735 /// and set \p Reg to the spilled register. 736 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 737 MachineFunction *MF, unsigned &Reg); 738 739 /// Given a spill instruction, extract the register and offset used to 740 /// address the spill slot in a target independent way. 741 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 742 743 /// Observe a single instruction while stepping through a block. 744 void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr, 745 ValueIDNum **MLiveIns = nullptr); 746 747 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 748 /// \returns true if MI was recognized and processed. 749 bool transferDebugValue(const MachineInstr &MI); 750 751 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 752 /// \returns true if MI was recognized and processed. 753 bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts, 754 ValueIDNum **MLiveIns); 755 756 /// Stores value-information about where this PHI occurred, and what 757 /// instruction number is associated with it. 758 /// \returns true if MI was recognized and processed. 759 bool transferDebugPHI(MachineInstr &MI); 760 761 /// Examines whether \p MI is copy instruction, and notifies trackers. 762 /// \returns true if MI was recognized and processed. 763 bool transferRegisterCopy(MachineInstr &MI); 764 765 /// Examines whether \p MI is stack spill or restore instruction, and 766 /// notifies trackers. \returns true if MI was recognized and processed. 767 bool transferSpillOrRestoreInst(MachineInstr &MI); 768 769 /// Examines \p MI for any registers that it defines, and notifies trackers. 770 void transferRegisterDef(MachineInstr &MI); 771 772 /// Copy one location to the other, accounting for movement of subregisters 773 /// too. 774 void performCopy(Register Src, Register Dst); 775 776 void accumulateFragmentMap(MachineInstr &MI); 777 778 /// Determine the machine value number referred to by (potentially several) 779 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 780 /// DBG_PHIs, shifting the position where values in registers merge, and 781 /// forming another mini-ssa problem to solve. 782 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 783 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 784 /// \returns The machine value number at position Here, or None. 785 Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 786 ValueIDNum **MLiveOuts, 787 ValueIDNum **MLiveIns, MachineInstr &Here, 788 uint64_t InstrNum); 789 790 /// Step through the function, recording register definitions and movements 791 /// in an MLocTracker. Convert the observations into a per-block transfer 792 /// function in \p MLocTransfer, suitable for using with the machine value 793 /// location dataflow problem. 794 void 795 produceMLocTransferFunction(MachineFunction &MF, 796 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 797 unsigned MaxNumBlocks); 798 799 /// Solve the machine value location dataflow problem. Takes as input the 800 /// transfer functions in \p MLocTransfer. Writes the output live-in and 801 /// live-out arrays to the (initialized to zero) multidimensional arrays in 802 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 803 /// number, the inner by LocIdx. 804 void buildMLocValueMap(MachineFunction &MF, ValueIDNum **MInLocs, 805 ValueIDNum **MOutLocs, 806 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 807 808 /// Install PHI values into the live-in array for each block, according to 809 /// the IDF of each register. 810 void placeMLocPHIs(MachineFunction &MF, 811 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 812 ValueIDNum **MInLocs, 813 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 814 815 /// Calculate the iterated-dominance-frontier for a set of defs, using the 816 /// existing LLVM facilities for this. Works for a single "value" or 817 /// machine/variable location. 818 /// \p AllBlocks Set of blocks where we might consume the value. 819 /// \p DefBlocks Set of blocks where the value/location is defined. 820 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 821 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 822 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 823 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 824 825 /// Perform a control flow join (lattice value meet) of the values in machine 826 /// locations at \p MBB. Follows the algorithm described in the file-comment, 827 /// reading live-outs of predecessors from \p OutLocs, the current live ins 828 /// from \p InLocs, and assigning the newly computed live ins back into 829 /// \p InLocs. \returns two bools -- the first indicates whether a change 830 /// was made, the second whether a lattice downgrade occurred. If the latter 831 /// is true, revisiting this block is necessary. 832 bool mlocJoin(MachineBasicBlock &MBB, 833 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 834 ValueIDNum **OutLocs, ValueIDNum *InLocs); 835 836 /// Solve the variable value dataflow problem, for a single lexical scope. 837 /// Uses the algorithm from the file comment to resolve control flow joins 838 /// using PHI placement and value propagation. Reads the locations of machine 839 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 840 /// and reads the variable values transfer function from \p AllTheVlocs. 841 /// Live-in and Live-out variable values are stored locally, with the live-ins 842 /// permanently stored to \p Output once a fixedpoint is reached. 843 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 844 /// that we should be tracking. 845 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 846 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 847 /// locations through. 848 void buildVLocValueMap(const DILocation *DILoc, 849 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 850 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 851 LiveInsT &Output, ValueIDNum **MOutLocs, 852 ValueIDNum **MInLocs, 853 SmallVectorImpl<VLocTracker> &AllTheVLocs); 854 855 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 856 /// live-in values coming from predecessors live-outs, and replaces any PHIs 857 /// already present in this blocks live-ins with a live-through value if the 858 /// PHI isn't needed. 859 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 860 /// \returns true if any live-ins change value, either from value propagation 861 /// or PHI elimination. 862 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 863 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 864 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 865 DbgValue &LiveIn); 866 867 /// For the given block and live-outs feeding into it, try to find a 868 /// machine location where all the variable values join together. 869 /// \returns Value ID of a machine PHI if an appropriate one is available. 870 Optional<ValueIDNum> 871 pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var, 872 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 873 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 874 875 /// Given the solutions to the two dataflow problems, machine value locations 876 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 877 /// TransferTracker class over the function to produce live-in and transfer 878 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 879 /// order given by AllVarsNumbering -- this could be any stable order, but 880 /// right now "order of appearence in function, when explored in RPO", so 881 /// that we can compare explictly against VarLocBasedImpl. 882 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 883 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 884 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 885 const TargetPassConfig &TPC); 886 887 /// Boilerplate computation of some initial sets, artifical blocks and 888 /// RPOT block ordering. 889 void initialSetup(MachineFunction &MF); 890 891 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 892 TargetPassConfig *TPC, unsigned InputBBLimit, 893 unsigned InputDbgValLimit) override; 894 895 public: 896 /// Default construct and initialize the pass. 897 InstrRefBasedLDV(); 898 899 LLVM_DUMP_METHOD 900 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 901 902 bool isCalleeSaved(LocIdx L) const; 903 }; 904 905 } // namespace LiveDebugValues 906 907 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 908