1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/BinaryFormat/Dwarf.h" 88 #include "llvm/CodeGen/LexicalScopes.h" 89 #include "llvm/CodeGen/MachineBasicBlock.h" 90 #include "llvm/CodeGen/MachineDominators.h" 91 #include "llvm/CodeGen/MachineFrameInfo.h" 92 #include "llvm/CodeGen/MachineFunction.h" 93 #include "llvm/CodeGen/MachineInstr.h" 94 #include "llvm/CodeGen/MachineInstrBuilder.h" 95 #include "llvm/CodeGen/MachineInstrBundle.h" 96 #include "llvm/CodeGen/MachineMemOperand.h" 97 #include "llvm/CodeGen/MachineOperand.h" 98 #include "llvm/CodeGen/PseudoSourceValue.h" 99 #include "llvm/CodeGen/TargetFrameLowering.h" 100 #include "llvm/CodeGen/TargetInstrInfo.h" 101 #include "llvm/CodeGen/TargetLowering.h" 102 #include "llvm/CodeGen/TargetPassConfig.h" 103 #include "llvm/CodeGen/TargetRegisterInfo.h" 104 #include "llvm/CodeGen/TargetSubtargetInfo.h" 105 #include "llvm/Config/llvm-config.h" 106 #include "llvm/IR/DebugInfoMetadata.h" 107 #include "llvm/IR/DebugLoc.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/MC/MCRegisterInfo.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/Debug.h" 113 #include "llvm/Support/GenericIteratedDominanceFrontier.h" 114 #include "llvm/Support/TypeSize.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetMachine.h" 117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <climits> 121 #include <cstdint> 122 #include <functional> 123 #include <queue> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 #include "InstrRefBasedImpl.h" 129 #include "LiveDebugValues.h" 130 131 using namespace llvm; 132 using namespace LiveDebugValues; 133 134 // SSAUpdaterImple sets DEBUG_TYPE, change it. 135 #undef DEBUG_TYPE 136 #define DEBUG_TYPE "livedebugvalues" 137 138 // Act more like the VarLoc implementation, by propagating some locations too 139 // far and ignoring some transfers. 140 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 141 cl::desc("Act like old LiveDebugValues did"), 142 cl::init(false)); 143 144 // Limit for the maximum number of stack slots we should track, past which we 145 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all 146 // stack slots which leads to high memory consumption, and in some scenarios 147 // (such as asan with very many locals) the working set of the function can be 148 // very large, causing many spills. In these scenarios, it is very unlikely that 149 // the developer has hundreds of variables live at the same time that they're 150 // carefully thinking about -- instead, they probably autogenerated the code. 151 // When this happens, gracefully stop tracking excess spill slots, rather than 152 // consuming all the developer's memory. 153 static cl::opt<unsigned> 154 StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden, 155 cl::desc("livedebugvalues-stack-ws-limit"), 156 cl::init(250)); 157 158 /// Tracker for converting machine value locations and variable values into 159 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 160 /// specifying block live-in locations and transfers within blocks. 161 /// 162 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 163 /// and must be initialized with the set of variable values that are live-in to 164 /// the block. The caller then repeatedly calls process(). TransferTracker picks 165 /// out variable locations for the live-in variable values (if there _is_ a 166 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 167 /// stepped through, transfers of values between machine locations are 168 /// identified and if profitable, a DBG_VALUE created. 169 /// 170 /// This is where debug use-before-defs would be resolved: a variable with an 171 /// unavailable value could materialize in the middle of a block, when the 172 /// value becomes available. Or, we could detect clobbers and re-specify the 173 /// variable in a backup location. (XXX these are unimplemented). 174 class TransferTracker { 175 public: 176 const TargetInstrInfo *TII; 177 const TargetLowering *TLI; 178 /// This machine location tracker is assumed to always contain the up-to-date 179 /// value mapping for all machine locations. TransferTracker only reads 180 /// information from it. (XXX make it const?) 181 MLocTracker *MTracker; 182 MachineFunction &MF; 183 bool ShouldEmitDebugEntryValues; 184 185 /// Record of all changes in variable locations at a block position. Awkwardly 186 /// we allow inserting either before or after the point: MBB != nullptr 187 /// indicates it's before, otherwise after. 188 struct Transfer { 189 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 190 MachineBasicBlock *MBB; /// non-null if we should insert after. 191 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 192 }; 193 194 struct LocAndProperties { 195 LocIdx Loc; 196 DbgValueProperties Properties; 197 }; 198 199 /// Collection of transfers (DBG_VALUEs) to be inserted. 200 SmallVector<Transfer, 32> Transfers; 201 202 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 203 /// between TransferTrackers view of variable locations and MLocTrackers. For 204 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 205 /// does not. 206 SmallVector<ValueIDNum, 32> VarLocs; 207 208 /// Map from LocIdxes to which DebugVariables are based that location. 209 /// Mantained while stepping through the block. Not accurate if 210 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 211 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 212 213 /// Map from DebugVariable to it's current location and qualifying meta 214 /// information. To be used in conjunction with ActiveMLocs to construct 215 /// enough information for the DBG_VALUEs for a particular LocIdx. 216 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 217 218 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 219 SmallVector<MachineInstr *, 4> PendingDbgValues; 220 221 /// Record of a use-before-def: created when a value that's live-in to the 222 /// current block isn't available in any machine location, but it will be 223 /// defined in this block. 224 struct UseBeforeDef { 225 /// Value of this variable, def'd in block. 226 ValueIDNum ID; 227 /// Identity of this variable. 228 DebugVariable Var; 229 /// Additional variable properties. 230 DbgValueProperties Properties; 231 }; 232 233 /// Map from instruction index (within the block) to the set of UseBeforeDefs 234 /// that become defined at that instruction. 235 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 236 237 /// The set of variables that are in UseBeforeDefs and can become a location 238 /// once the relevant value is defined. An element being erased from this 239 /// collection prevents the use-before-def materializing. 240 DenseSet<DebugVariable> UseBeforeDefVariables; 241 242 const TargetRegisterInfo &TRI; 243 const BitVector &CalleeSavedRegs; 244 245 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 246 MachineFunction &MF, const TargetRegisterInfo &TRI, 247 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 248 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 249 CalleeSavedRegs(CalleeSavedRegs) { 250 TLI = MF.getSubtarget().getTargetLowering(); 251 auto &TM = TPC.getTM<TargetMachine>(); 252 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 253 } 254 255 /// Load object with live-in variable values. \p mlocs contains the live-in 256 /// values in each machine location, while \p vlocs the live-in variable 257 /// values. This method picks variable locations for the live-in variables, 258 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 259 /// object fields to track variable locations as we step through the block. 260 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 261 void 262 loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, 263 const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 264 unsigned NumLocs) { 265 ActiveMLocs.clear(); 266 ActiveVLocs.clear(); 267 VarLocs.clear(); 268 VarLocs.reserve(NumLocs); 269 UseBeforeDefs.clear(); 270 UseBeforeDefVariables.clear(); 271 272 auto isCalleeSaved = [&](LocIdx L) { 273 unsigned Reg = MTracker->LocIdxToLocID[L]; 274 if (Reg >= MTracker->NumRegs) 275 return false; 276 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 277 if (CalleeSavedRegs.test(*RAI)) 278 return true; 279 return false; 280 }; 281 282 // Map of the preferred location for each value. 283 DenseMap<ValueIDNum, LocIdx> ValueToLoc; 284 285 // Initialized the preferred-location map with illegal locations, to be 286 // filled in later. 287 for (auto &VLoc : VLocs) 288 if (VLoc.second.Kind == DbgValue::Def) 289 ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()}); 290 291 ActiveMLocs.reserve(VLocs.size()); 292 ActiveVLocs.reserve(VLocs.size()); 293 294 // Produce a map of value numbers to the current machine locs they live 295 // in. When emulating VarLocBasedImpl, there should only be one 296 // location; when not, we get to pick. 297 for (auto Location : MTracker->locations()) { 298 LocIdx Idx = Location.Idx; 299 ValueIDNum &VNum = MLocs[Idx.asU64()]; 300 VarLocs.push_back(VNum); 301 302 // Is there a variable that wants a location for this value? If not, skip. 303 auto VIt = ValueToLoc.find(VNum); 304 if (VIt == ValueToLoc.end()) 305 continue; 306 307 LocIdx CurLoc = VIt->second; 308 // In order of preference, pick: 309 // * Callee saved registers, 310 // * Other registers, 311 // * Spill slots. 312 if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) || 313 (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) { 314 // Insert, or overwrite if insertion failed. 315 VIt->second = Idx; 316 } 317 } 318 319 // Now map variables to their picked LocIdxes. 320 for (const auto &Var : VLocs) { 321 if (Var.second.Kind == DbgValue::Const) { 322 PendingDbgValues.push_back( 323 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 324 continue; 325 } 326 327 // If the value has no location, we can't make a variable location. 328 const ValueIDNum &Num = Var.second.ID; 329 auto ValuesPreferredLoc = ValueToLoc.find(Num); 330 if (ValuesPreferredLoc->second.isIllegal()) { 331 // If it's a def that occurs in this block, register it as a 332 // use-before-def to be resolved as we step through the block. 333 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 334 addUseBeforeDef(Var.first, Var.second.Properties, Num); 335 else 336 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 337 continue; 338 } 339 340 LocIdx M = ValuesPreferredLoc->second; 341 auto NewValue = LocAndProperties{M, Var.second.Properties}; 342 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 343 if (!Result.second) 344 Result.first->second = NewValue; 345 ActiveMLocs[M].insert(Var.first); 346 PendingDbgValues.push_back( 347 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 348 } 349 flushDbgValues(MBB.begin(), &MBB); 350 } 351 352 /// Record that \p Var has value \p ID, a value that becomes available 353 /// later in the function. 354 void addUseBeforeDef(const DebugVariable &Var, 355 const DbgValueProperties &Properties, ValueIDNum ID) { 356 UseBeforeDef UBD = {ID, Var, Properties}; 357 UseBeforeDefs[ID.getInst()].push_back(UBD); 358 UseBeforeDefVariables.insert(Var); 359 } 360 361 /// After the instruction at index \p Inst and position \p pos has been 362 /// processed, check whether it defines a variable value in a use-before-def. 363 /// If so, and the variable value hasn't changed since the start of the 364 /// block, create a DBG_VALUE. 365 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 366 auto MIt = UseBeforeDefs.find(Inst); 367 if (MIt == UseBeforeDefs.end()) 368 return; 369 370 for (auto &Use : MIt->second) { 371 LocIdx L = Use.ID.getLoc(); 372 373 // If something goes very wrong, we might end up labelling a COPY 374 // instruction or similar with an instruction number, where it doesn't 375 // actually define a new value, instead it moves a value. In case this 376 // happens, discard. 377 if (MTracker->readMLoc(L) != Use.ID) 378 continue; 379 380 // If a different debug instruction defined the variable value / location 381 // since the start of the block, don't materialize this use-before-def. 382 if (!UseBeforeDefVariables.count(Use.Var)) 383 continue; 384 385 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 386 } 387 flushDbgValues(pos, nullptr); 388 } 389 390 /// Helper to move created DBG_VALUEs into Transfers collection. 391 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 392 if (PendingDbgValues.size() == 0) 393 return; 394 395 // Pick out the instruction start position. 396 MachineBasicBlock::instr_iterator BundleStart; 397 if (MBB && Pos == MBB->begin()) 398 BundleStart = MBB->instr_begin(); 399 else 400 BundleStart = getBundleStart(Pos->getIterator()); 401 402 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 403 PendingDbgValues.clear(); 404 } 405 406 bool isEntryValueVariable(const DebugVariable &Var, 407 const DIExpression *Expr) const { 408 if (!Var.getVariable()->isParameter()) 409 return false; 410 411 if (Var.getInlinedAt()) 412 return false; 413 414 if (Expr->getNumElements() > 0) 415 return false; 416 417 return true; 418 } 419 420 bool isEntryValueValue(const ValueIDNum &Val) const { 421 // Must be in entry block (block number zero), and be a PHI / live-in value. 422 if (Val.getBlock() || !Val.isPHI()) 423 return false; 424 425 // Entry values must enter in a register. 426 if (MTracker->isSpill(Val.getLoc())) 427 return false; 428 429 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 430 Register FP = TRI.getFrameRegister(MF); 431 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 432 return Reg != SP && Reg != FP; 433 } 434 435 bool recoverAsEntryValue(const DebugVariable &Var, 436 const DbgValueProperties &Prop, 437 const ValueIDNum &Num) { 438 // Is this variable location a candidate to be an entry value. First, 439 // should we be trying this at all? 440 if (!ShouldEmitDebugEntryValues) 441 return false; 442 443 // Is the variable appropriate for entry values (i.e., is a parameter). 444 if (!isEntryValueVariable(Var, Prop.DIExpr)) 445 return false; 446 447 // Is the value assigned to this variable still the entry value? 448 if (!isEntryValueValue(Num)) 449 return false; 450 451 // Emit a variable location using an entry value expression. 452 DIExpression *NewExpr = 453 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 454 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 455 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 456 457 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 458 return true; 459 } 460 461 /// Change a variable value after encountering a DBG_VALUE inside a block. 462 void redefVar(const MachineInstr &MI) { 463 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 464 MI.getDebugLoc()->getInlinedAt()); 465 DbgValueProperties Properties(MI); 466 467 const MachineOperand &MO = MI.getOperand(0); 468 469 // Ignore non-register locations, we don't transfer those. 470 if (!MO.isReg() || MO.getReg() == 0) { 471 auto It = ActiveVLocs.find(Var); 472 if (It != ActiveVLocs.end()) { 473 ActiveMLocs[It->second.Loc].erase(Var); 474 ActiveVLocs.erase(It); 475 } 476 // Any use-before-defs no longer apply. 477 UseBeforeDefVariables.erase(Var); 478 return; 479 } 480 481 Register Reg = MO.getReg(); 482 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 483 redefVar(MI, Properties, NewLoc); 484 } 485 486 /// Handle a change in variable location within a block. Terminate the 487 /// variables current location, and record the value it now refers to, so 488 /// that we can detect location transfers later on. 489 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 490 Optional<LocIdx> OptNewLoc) { 491 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 492 MI.getDebugLoc()->getInlinedAt()); 493 // Any use-before-defs no longer apply. 494 UseBeforeDefVariables.erase(Var); 495 496 // Erase any previous location, 497 auto It = ActiveVLocs.find(Var); 498 if (It != ActiveVLocs.end()) 499 ActiveMLocs[It->second.Loc].erase(Var); 500 501 // If there _is_ no new location, all we had to do was erase. 502 if (!OptNewLoc) 503 return; 504 LocIdx NewLoc = *OptNewLoc; 505 506 // Check whether our local copy of values-by-location in #VarLocs is out of 507 // date. Wipe old tracking data for the location if it's been clobbered in 508 // the meantime. 509 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 510 for (auto &P : ActiveMLocs[NewLoc]) { 511 ActiveVLocs.erase(P); 512 } 513 ActiveMLocs[NewLoc.asU64()].clear(); 514 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 515 } 516 517 ActiveMLocs[NewLoc].insert(Var); 518 if (It == ActiveVLocs.end()) { 519 ActiveVLocs.insert( 520 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 521 } else { 522 It->second.Loc = NewLoc; 523 It->second.Properties = Properties; 524 } 525 } 526 527 /// Account for a location \p mloc being clobbered. Examine the variable 528 /// locations that will be terminated: and try to recover them by using 529 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 530 /// explicitly terminate a location if it can't be recovered. 531 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 532 bool MakeUndef = true) { 533 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 534 if (ActiveMLocIt == ActiveMLocs.end()) 535 return; 536 537 // What was the old variable value? 538 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 539 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 540 541 // Examine the remaining variable locations: if we can find the same value 542 // again, we can recover the location. 543 Optional<LocIdx> NewLoc = None; 544 for (auto Loc : MTracker->locations()) 545 if (Loc.Value == OldValue) 546 NewLoc = Loc.Idx; 547 548 // If there is no location, and we weren't asked to make the variable 549 // explicitly undef, then stop here. 550 if (!NewLoc && !MakeUndef) { 551 // Try and recover a few more locations with entry values. 552 for (auto &Var : ActiveMLocIt->second) { 553 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 554 recoverAsEntryValue(Var, Prop, OldValue); 555 } 556 flushDbgValues(Pos, nullptr); 557 return; 558 } 559 560 // Examine all the variables based on this location. 561 DenseSet<DebugVariable> NewMLocs; 562 for (auto &Var : ActiveMLocIt->second) { 563 auto ActiveVLocIt = ActiveVLocs.find(Var); 564 // Re-state the variable location: if there's no replacement then NewLoc 565 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 566 // identifying the alternative location will be emitted. 567 const DbgValueProperties &Properties = ActiveVLocIt->second.Properties; 568 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 569 570 // Update machine locations <=> variable locations maps. Defer updating 571 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 572 if (!NewLoc) { 573 ActiveVLocs.erase(ActiveVLocIt); 574 } else { 575 ActiveVLocIt->second.Loc = *NewLoc; 576 NewMLocs.insert(Var); 577 } 578 } 579 580 // Commit any deferred ActiveMLoc changes. 581 if (!NewMLocs.empty()) 582 for (auto &Var : NewMLocs) 583 ActiveMLocs[*NewLoc].insert(Var); 584 585 // We lazily track what locations have which values; if we've found a new 586 // location for the clobbered value, remember it. 587 if (NewLoc) 588 VarLocs[NewLoc->asU64()] = OldValue; 589 590 flushDbgValues(Pos, nullptr); 591 592 // Re-find ActiveMLocIt, iterator could have been invalidated. 593 ActiveMLocIt = ActiveMLocs.find(MLoc); 594 ActiveMLocIt->second.clear(); 595 } 596 597 /// Transfer variables based on \p Src to be based on \p Dst. This handles 598 /// both register copies as well as spills and restores. Creates DBG_VALUEs 599 /// describing the movement. 600 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 601 // Does Src still contain the value num we expect? If not, it's been 602 // clobbered in the meantime, and our variable locations are stale. 603 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 604 return; 605 606 // assert(ActiveMLocs[Dst].size() == 0); 607 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 608 609 // Move set of active variables from one location to another. 610 auto MovingVars = ActiveMLocs[Src]; 611 ActiveMLocs[Dst] = MovingVars; 612 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 613 614 // For each variable based on Src; create a location at Dst. 615 for (auto &Var : MovingVars) { 616 auto ActiveVLocIt = ActiveVLocs.find(Var); 617 assert(ActiveVLocIt != ActiveVLocs.end()); 618 ActiveVLocIt->second.Loc = Dst; 619 620 MachineInstr *MI = 621 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 622 PendingDbgValues.push_back(MI); 623 } 624 ActiveMLocs[Src].clear(); 625 flushDbgValues(Pos, nullptr); 626 627 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 628 // about the old location. 629 if (EmulateOldLDV) 630 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 631 } 632 633 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 634 const DebugVariable &Var, 635 const DbgValueProperties &Properties) { 636 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 637 Var.getVariable()->getScope(), 638 const_cast<DILocation *>(Var.getInlinedAt())); 639 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 640 MIB.add(MO); 641 if (Properties.Indirect) 642 MIB.addImm(0); 643 else 644 MIB.addReg(0); 645 MIB.addMetadata(Var.getVariable()); 646 MIB.addMetadata(Properties.DIExpr); 647 return MIB; 648 } 649 }; 650 651 //===----------------------------------------------------------------------===// 652 // Implementation 653 //===----------------------------------------------------------------------===// 654 655 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 656 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; 657 658 #ifndef NDEBUG 659 void DbgValue::dump(const MLocTracker *MTrack) const { 660 if (Kind == Const) { 661 MO->dump(); 662 } else if (Kind == NoVal) { 663 dbgs() << "NoVal(" << BlockNo << ")"; 664 } else if (Kind == VPHI) { 665 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 666 } else { 667 assert(Kind == Def); 668 dbgs() << MTrack->IDAsString(ID); 669 } 670 if (Properties.Indirect) 671 dbgs() << " indir"; 672 if (Properties.DIExpr) 673 dbgs() << " " << *Properties.DIExpr; 674 } 675 #endif 676 677 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 678 const TargetRegisterInfo &TRI, 679 const TargetLowering &TLI) 680 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 681 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 682 NumRegs = TRI.getNumRegs(); 683 reset(); 684 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 685 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 686 687 // Always track SP. This avoids the implicit clobbering caused by regmasks 688 // from affectings its values. (LiveDebugValues disbelieves calls and 689 // regmasks that claim to clobber SP). 690 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 691 if (SP) { 692 unsigned ID = getLocID(SP); 693 (void)lookupOrTrackRegister(ID); 694 695 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 696 SPAliases.insert(*RAI); 697 } 698 699 // Build some common stack positions -- full registers being spilt to the 700 // stack. 701 StackSlotIdxes.insert({{8, 0}, 0}); 702 StackSlotIdxes.insert({{16, 0}, 1}); 703 StackSlotIdxes.insert({{32, 0}, 2}); 704 StackSlotIdxes.insert({{64, 0}, 3}); 705 StackSlotIdxes.insert({{128, 0}, 4}); 706 StackSlotIdxes.insert({{256, 0}, 5}); 707 StackSlotIdxes.insert({{512, 0}, 6}); 708 709 // Traverse all the subregister idxes, and ensure there's an index for them. 710 // Duplicates are no problem: we're interested in their position in the 711 // stack slot, we don't want to type the slot. 712 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 713 unsigned Size = TRI.getSubRegIdxSize(I); 714 unsigned Offs = TRI.getSubRegIdxOffset(I); 715 unsigned Idx = StackSlotIdxes.size(); 716 717 // Some subregs have -1, -2 and so forth fed into their fields, to mean 718 // special backend things. Ignore those. 719 if (Size > 60000 || Offs > 60000) 720 continue; 721 722 StackSlotIdxes.insert({{Size, Offs}, Idx}); 723 } 724 725 for (auto &Idx : StackSlotIdxes) 726 StackIdxesToPos[Idx.second] = Idx.first; 727 728 NumSlotIdxes = StackSlotIdxes.size(); 729 } 730 731 LocIdx MLocTracker::trackRegister(unsigned ID) { 732 assert(ID != 0); 733 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 734 LocIdxToIDNum.grow(NewIdx); 735 LocIdxToLocID.grow(NewIdx); 736 737 // Default: it's an mphi. 738 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 739 // Was this reg ever touched by a regmask? 740 for (const auto &MaskPair : reverse(Masks)) { 741 if (MaskPair.first->clobbersPhysReg(ID)) { 742 // There was an earlier def we skipped. 743 ValNum = {CurBB, MaskPair.second, NewIdx}; 744 break; 745 } 746 } 747 748 LocIdxToIDNum[NewIdx] = ValNum; 749 LocIdxToLocID[NewIdx] = ID; 750 return NewIdx; 751 } 752 753 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 754 unsigned InstID) { 755 // Def any register we track have that isn't preserved. The regmask 756 // terminates the liveness of a register, meaning its value can't be 757 // relied upon -- we represent this by giving it a new value. 758 for (auto Location : locations()) { 759 unsigned ID = LocIdxToLocID[Location.Idx]; 760 // Don't clobber SP, even if the mask says it's clobbered. 761 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 762 defReg(ID, CurBB, InstID); 763 } 764 Masks.push_back(std::make_pair(MO, InstID)); 765 } 766 767 Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 768 SpillLocationNo SpillID(SpillLocs.idFor(L)); 769 770 if (SpillID.id() == 0) { 771 // If there is no location, and we have reached the limit of how many stack 772 // slots to track, then don't track this one. 773 if (SpillLocs.size() >= StackWorkingSetLimit) 774 return None; 775 776 // Spill location is untracked: create record for this one, and all 777 // subregister slots too. 778 SpillID = SpillLocationNo(SpillLocs.insert(L)); 779 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 780 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 781 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 782 LocIdxToIDNum.grow(Idx); 783 LocIdxToLocID.grow(Idx); 784 LocIDToLocIdx.push_back(Idx); 785 LocIdxToLocID[Idx] = L; 786 // Initialize to PHI value; corresponds to the location's live-in value 787 // during transfer function construction. 788 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 789 } 790 } 791 return SpillID; 792 } 793 794 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 795 unsigned ID = LocIdxToLocID[Idx]; 796 if (ID >= NumRegs) { 797 StackSlotPos Pos = locIDToSpillIdx(ID); 798 ID -= NumRegs; 799 unsigned Slot = ID / NumSlotIdxes; 800 return Twine("slot ") 801 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 802 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 803 .str(); 804 } else { 805 return TRI.getRegAsmName(ID).str(); 806 } 807 } 808 809 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 810 std::string DefName = LocIdxToName(Num.getLoc()); 811 return Num.asString(DefName); 812 } 813 814 #ifndef NDEBUG 815 LLVM_DUMP_METHOD void MLocTracker::dump() { 816 for (auto Location : locations()) { 817 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 818 std::string DefName = Location.Value.asString(MLocName); 819 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 820 } 821 } 822 823 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 824 for (auto Location : locations()) { 825 std::string foo = LocIdxToName(Location.Idx); 826 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 827 } 828 } 829 #endif 830 831 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 832 const DebugVariable &Var, 833 const DbgValueProperties &Properties) { 834 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 835 Var.getVariable()->getScope(), 836 const_cast<DILocation *>(Var.getInlinedAt())); 837 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 838 839 const DIExpression *Expr = Properties.DIExpr; 840 if (!MLoc) { 841 // No location -> DBG_VALUE $noreg 842 MIB.addReg(0); 843 MIB.addReg(0); 844 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 845 unsigned LocID = LocIdxToLocID[*MLoc]; 846 SpillLocationNo SpillID = locIDToSpill(LocID); 847 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 848 unsigned short Offset = StackIdx.second; 849 850 // TODO: support variables that are located in spill slots, with non-zero 851 // offsets from the start of the spill slot. It would require some more 852 // complex DIExpression calculations. This doesn't seem to be produced by 853 // LLVM right now, so don't try and support it. 854 // Accept no-subregister slots and subregisters where the offset is zero. 855 // The consumer should already have type information to work out how large 856 // the variable is. 857 if (Offset == 0) { 858 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 859 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 860 Spill.SpillOffset); 861 unsigned Base = Spill.SpillBase; 862 MIB.addReg(Base); 863 MIB.addImm(0); 864 865 // Being on the stack makes this location indirect; if it was _already_ 866 // indirect though, we need to add extra indirection. See this test for 867 // a scenario where this happens: 868 // llvm/test/DebugInfo/X86/spill-nontrivial-param.ll 869 if (Properties.Indirect) { 870 std::vector<uint64_t> Elts = {dwarf::DW_OP_deref}; 871 Expr = DIExpression::append(Expr, Elts); 872 } 873 } else { 874 // This is a stack location with a weird subregister offset: emit an undef 875 // DBG_VALUE instead. 876 MIB.addReg(0); 877 MIB.addReg(0); 878 } 879 } else { 880 // Non-empty, non-stack slot, must be a plain register. 881 unsigned LocID = LocIdxToLocID[*MLoc]; 882 MIB.addReg(LocID); 883 if (Properties.Indirect) 884 MIB.addImm(0); 885 else 886 MIB.addReg(0); 887 } 888 889 MIB.addMetadata(Var.getVariable()); 890 MIB.addMetadata(Expr); 891 return MIB; 892 } 893 894 /// Default construct and initialize the pass. 895 InstrRefBasedLDV::InstrRefBasedLDV() = default; 896 897 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 898 unsigned Reg = MTracker->LocIdxToLocID[L]; 899 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 900 if (CalleeSavedRegs.test(*RAI)) 901 return true; 902 return false; 903 } 904 905 //===----------------------------------------------------------------------===// 906 // Debug Range Extension Implementation 907 //===----------------------------------------------------------------------===// 908 909 #ifndef NDEBUG 910 // Something to restore in the future. 911 // void InstrRefBasedLDV::printVarLocInMBB(..) 912 #endif 913 914 Optional<SpillLocationNo> 915 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 916 assert(MI.hasOneMemOperand() && 917 "Spill instruction does not have exactly one memory operand?"); 918 auto MMOI = MI.memoperands_begin(); 919 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 920 assert(PVal->kind() == PseudoSourceValue::FixedStack && 921 "Inconsistent memory operand in spill instruction"); 922 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 923 const MachineBasicBlock *MBB = MI.getParent(); 924 Register Reg; 925 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 926 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 927 } 928 929 Optional<LocIdx> 930 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 931 Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI); 932 if (!SpillLoc) 933 return None; 934 935 // Where in the stack slot is this value defined -- i.e., what size of value 936 // is this? An important question, because it could be loaded into a register 937 // from the stack at some point. Happily the memory operand will tell us 938 // the size written to the stack. 939 auto *MemOperand = *MI.memoperands_begin(); 940 unsigned SizeInBits = MemOperand->getSizeInBits(); 941 942 // Find that position in the stack indexes we're tracking. 943 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 944 if (IdxIt == MTracker->StackSlotIdxes.end()) 945 // That index is not tracked. This is suprising, and unlikely to ever 946 // occur, but the safe action is to indicate the variable is optimised out. 947 return None; 948 949 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second); 950 return MTracker->getSpillMLoc(SpillID); 951 } 952 953 /// End all previous ranges related to @MI and start a new range from @MI 954 /// if it is a DBG_VALUE instr. 955 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 956 if (!MI.isDebugValue()) 957 return false; 958 959 const DILocalVariable *Var = MI.getDebugVariable(); 960 const DIExpression *Expr = MI.getDebugExpression(); 961 const DILocation *DebugLoc = MI.getDebugLoc(); 962 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 963 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 964 "Expected inlined-at fields to agree"); 965 966 DebugVariable V(Var, Expr, InlinedAt); 967 DbgValueProperties Properties(MI); 968 969 // If there are no instructions in this lexical scope, do no location tracking 970 // at all, this variable shouldn't get a legitimate location range. 971 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 972 if (Scope == nullptr) 973 return true; // handled it; by doing nothing 974 975 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 976 // contribute to locations in this block, but don't propagate further. 977 // Interpret it like a DBG_VALUE $noreg. 978 if (MI.isDebugValueList()) { 979 if (VTracker) 980 VTracker->defVar(MI, Properties, None); 981 if (TTracker) 982 TTracker->redefVar(MI, Properties, None); 983 return true; 984 } 985 986 const MachineOperand &MO = MI.getOperand(0); 987 988 // MLocTracker needs to know that this register is read, even if it's only 989 // read by a debug inst. 990 if (MO.isReg() && MO.getReg() != 0) 991 (void)MTracker->readReg(MO.getReg()); 992 993 // If we're preparing for the second analysis (variables), the machine value 994 // locations are already solved, and we report this DBG_VALUE and the value 995 // it refers to to VLocTracker. 996 if (VTracker) { 997 if (MO.isReg()) { 998 // Feed defVar the new variable location, or if this is a 999 // DBG_VALUE $noreg, feed defVar None. 1000 if (MO.getReg()) 1001 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 1002 else 1003 VTracker->defVar(MI, Properties, None); 1004 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1005 MI.getOperand(0).isCImm()) { 1006 VTracker->defVar(MI, MI.getOperand(0)); 1007 } 1008 } 1009 1010 // If performing final tracking of transfers, report this variable definition 1011 // to the TransferTracker too. 1012 if (TTracker) 1013 TTracker->redefVar(MI); 1014 return true; 1015 } 1016 1017 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 1018 const ValueTable *MLiveOuts, 1019 const ValueTable *MLiveIns) { 1020 if (!MI.isDebugRef()) 1021 return false; 1022 1023 // Only handle this instruction when we are building the variable value 1024 // transfer function. 1025 if (!VTracker && !TTracker) 1026 return false; 1027 1028 unsigned InstNo = MI.getOperand(0).getImm(); 1029 unsigned OpNo = MI.getOperand(1).getImm(); 1030 1031 const DILocalVariable *Var = MI.getDebugVariable(); 1032 const DIExpression *Expr = MI.getDebugExpression(); 1033 const DILocation *DebugLoc = MI.getDebugLoc(); 1034 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1035 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1036 "Expected inlined-at fields to agree"); 1037 1038 DebugVariable V(Var, Expr, InlinedAt); 1039 1040 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1041 if (Scope == nullptr) 1042 return true; // Handled by doing nothing. This variable is never in scope. 1043 1044 const MachineFunction &MF = *MI.getParent()->getParent(); 1045 1046 // Various optimizations may have happened to the value during codegen, 1047 // recorded in the value substitution table. Apply any substitutions to 1048 // the instruction / operand number in this DBG_INSTR_REF, and collect 1049 // any subregister extractions performed during optimization. 1050 1051 // Create dummy substitution with Src set, for lookup. 1052 auto SoughtSub = 1053 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1054 1055 SmallVector<unsigned, 4> SeenSubregs; 1056 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1057 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1058 LowerBoundIt->Src == SoughtSub.Src) { 1059 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1060 SoughtSub.Src = LowerBoundIt->Dest; 1061 if (unsigned Subreg = LowerBoundIt->Subreg) 1062 SeenSubregs.push_back(Subreg); 1063 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1064 } 1065 1066 // Default machine value number is <None> -- if no instruction defines 1067 // the corresponding value, it must have been optimized out. 1068 Optional<ValueIDNum> NewID = None; 1069 1070 // Try to lookup the instruction number, and find the machine value number 1071 // that it defines. It could be an instruction, or a PHI. 1072 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1073 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1074 DebugPHINumToValue.end(), InstNo); 1075 if (InstrIt != DebugInstrNumToInstr.end()) { 1076 const MachineInstr &TargetInstr = *InstrIt->second.first; 1077 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1078 1079 // Pick out the designated operand. It might be a memory reference, if 1080 // a register def was folded into a stack store. 1081 if (OpNo == MachineFunction::DebugOperandMemNumber && 1082 TargetInstr.hasOneMemOperand()) { 1083 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1084 if (L) 1085 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1086 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1087 // Permit the debug-info to be completely wrong: identifying a nonexistant 1088 // operand, or one that is not a register definition, means something 1089 // unexpected happened during optimisation. Broken debug-info, however, 1090 // shouldn't crash the compiler -- instead leave the variable value as 1091 // None, which will make it appear "optimised out". 1092 if (OpNo < TargetInstr.getNumOperands()) { 1093 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1094 1095 if (MO.isReg() && MO.isDef() && MO.getReg()) { 1096 unsigned LocID = MTracker->getLocID(MO.getReg()); 1097 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1098 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1099 } 1100 } 1101 1102 if (!NewID) { 1103 LLVM_DEBUG( 1104 { dbgs() << "Seen instruction reference to illegal operand\n"; }); 1105 } 1106 } 1107 // else: NewID is left as None. 1108 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1109 // It's actually a PHI value. Which value it is might not be obvious, use 1110 // the resolver helper to find out. 1111 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1112 MI, InstNo); 1113 } 1114 1115 // Apply any subregister extractions, in reverse. We might have seen code 1116 // like this: 1117 // CALL64 @foo, implicit-def $rax 1118 // %0:gr64 = COPY $rax 1119 // %1:gr32 = COPY %0.sub_32bit 1120 // %2:gr16 = COPY %1.sub_16bit 1121 // %3:gr8 = COPY %2.sub_8bit 1122 // In which case each copy would have been recorded as a substitution with 1123 // a subregister qualifier. Apply those qualifiers now. 1124 if (NewID && !SeenSubregs.empty()) { 1125 unsigned Offset = 0; 1126 unsigned Size = 0; 1127 1128 // Look at each subregister that we passed through, and progressively 1129 // narrow in, accumulating any offsets that occur. Substitutions should 1130 // only ever be the same or narrower width than what they read from; 1131 // iterate in reverse order so that we go from wide to small. 1132 for (unsigned Subreg : reverse(SeenSubregs)) { 1133 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1134 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1135 Offset += ThisOffset; 1136 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1137 } 1138 1139 // If that worked, look for an appropriate subregister with the register 1140 // where the define happens. Don't look at values that were defined during 1141 // a stack write: we can't currently express register locations within 1142 // spills. 1143 LocIdx L = NewID->getLoc(); 1144 if (NewID && !MTracker->isSpill(L)) { 1145 // Find the register class for the register where this def happened. 1146 // FIXME: no index for this? 1147 Register Reg = MTracker->LocIdxToLocID[L]; 1148 const TargetRegisterClass *TRC = nullptr; 1149 for (auto *TRCI : TRI->regclasses()) 1150 if (TRCI->contains(Reg)) 1151 TRC = TRCI; 1152 assert(TRC && "Couldn't find target register class?"); 1153 1154 // If the register we have isn't the right size or in the right place, 1155 // Try to find a subregister inside it. 1156 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1157 if (Size != MainRegSize || Offset) { 1158 // Enumerate all subregisters, searching. 1159 Register NewReg = 0; 1160 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1161 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1162 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1163 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1164 if (SubregSize == Size && SubregOffset == Offset) { 1165 NewReg = *SRI; 1166 break; 1167 } 1168 } 1169 1170 // If we didn't find anything: there's no way to express our value. 1171 if (!NewReg) { 1172 NewID = None; 1173 } else { 1174 // Re-state the value as being defined within the subregister 1175 // that we found. 1176 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1177 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1178 } 1179 } 1180 } else { 1181 // If we can't handle subregisters, unset the new value. 1182 NewID = None; 1183 } 1184 } 1185 1186 // We, we have a value number or None. Tell the variable value tracker about 1187 // it. The rest of this LiveDebugValues implementation acts exactly the same 1188 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1189 // aren't immediately available). 1190 DbgValueProperties Properties(Expr, false); 1191 if (VTracker) 1192 VTracker->defVar(MI, Properties, NewID); 1193 1194 // If we're on the final pass through the function, decompose this INSTR_REF 1195 // into a plain DBG_VALUE. 1196 if (!TTracker) 1197 return true; 1198 1199 // Pick a location for the machine value number, if such a location exists. 1200 // (This information could be stored in TransferTracker to make it faster). 1201 Optional<LocIdx> FoundLoc = None; 1202 for (auto Location : MTracker->locations()) { 1203 LocIdx CurL = Location.Idx; 1204 ValueIDNum ID = MTracker->readMLoc(CurL); 1205 if (NewID && ID == NewID) { 1206 // If this is the first location with that value, pick it. Otherwise, 1207 // consider whether it's a "longer term" location. 1208 if (!FoundLoc) { 1209 FoundLoc = CurL; 1210 continue; 1211 } 1212 1213 if (MTracker->isSpill(CurL)) 1214 FoundLoc = CurL; // Spills are a longer term location. 1215 else if (!MTracker->isSpill(*FoundLoc) && 1216 !MTracker->isSpill(CurL) && 1217 !isCalleeSaved(*FoundLoc) && 1218 isCalleeSaved(CurL)) 1219 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1220 } 1221 } 1222 1223 // Tell transfer tracker that the variable value has changed. 1224 TTracker->redefVar(MI, Properties, FoundLoc); 1225 1226 // If there was a value with no location; but the value is defined in a 1227 // later instruction in this block, this is a block-local use-before-def. 1228 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1229 NewID->getInst() > CurInst) 1230 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1231 1232 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1233 // This DBG_VALUE is potentially a $noreg / undefined location, if 1234 // FoundLoc is None. 1235 // (XXX -- could morph the DBG_INSTR_REF in the future). 1236 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1237 TTracker->PendingDbgValues.push_back(DbgMI); 1238 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1239 return true; 1240 } 1241 1242 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1243 if (!MI.isDebugPHI()) 1244 return false; 1245 1246 // Analyse these only when solving the machine value location problem. 1247 if (VTracker || TTracker) 1248 return true; 1249 1250 // First operand is the value location, either a stack slot or register. 1251 // Second is the debug instruction number of the original PHI. 1252 const MachineOperand &MO = MI.getOperand(0); 1253 unsigned InstrNum = MI.getOperand(1).getImm(); 1254 1255 auto EmitBadPHI = [this, &MI, InstrNum](void) -> bool { 1256 // Helper lambda to do any accounting when we fail to find a location for 1257 // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a 1258 // dead stack slot, for example. 1259 // Record a DebugPHIRecord with an empty value + location. 1260 DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None}); 1261 return true; 1262 }; 1263 1264 if (MO.isReg() && MO.getReg()) { 1265 // The value is whatever's currently in the register. Read and record it, 1266 // to be analysed later. 1267 Register Reg = MO.getReg(); 1268 ValueIDNum Num = MTracker->readReg(Reg); 1269 auto PHIRec = DebugPHIRecord( 1270 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1271 DebugPHINumToValue.push_back(PHIRec); 1272 1273 // Ensure this register is tracked. 1274 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1275 MTracker->lookupOrTrackRegister(*RAI); 1276 } else if (MO.isFI()) { 1277 // The value is whatever's in this stack slot. 1278 unsigned FI = MO.getIndex(); 1279 1280 // If the stack slot is dead, then this was optimized away. 1281 // FIXME: stack slot colouring should account for slots that get merged. 1282 if (MFI->isDeadObjectIndex(FI)) 1283 return EmitBadPHI(); 1284 1285 // Identify this spill slot, ensure it's tracked. 1286 Register Base; 1287 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1288 SpillLoc SL = {Base, Offs}; 1289 Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL); 1290 1291 // We might be able to find a value, but have chosen not to, to avoid 1292 // tracking too much stack information. 1293 if (!SpillNo) 1294 return EmitBadPHI(); 1295 1296 // Any stack location DBG_PHI should have an associate bit-size. 1297 assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?"); 1298 unsigned slotBitSize = MI.getOperand(2).getImm(); 1299 1300 unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0}); 1301 LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); 1302 ValueIDNum Result = MTracker->readMLoc(SpillLoc); 1303 1304 // Record this DBG_PHI for later analysis. 1305 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc}); 1306 DebugPHINumToValue.push_back(DbgPHI); 1307 } else { 1308 // Else: if the operand is neither a legal register or a stack slot, then 1309 // we're being fed illegal debug-info. Record an empty PHI, so that any 1310 // debug users trying to read this number will be put off trying to 1311 // interpret the value. 1312 LLVM_DEBUG( 1313 { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; }); 1314 return EmitBadPHI(); 1315 } 1316 1317 return true; 1318 } 1319 1320 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1321 // Meta Instructions do not affect the debug liveness of any register they 1322 // define. 1323 if (MI.isImplicitDef()) { 1324 // Except when there's an implicit def, and the location it's defining has 1325 // no value number. The whole point of an implicit def is to announce that 1326 // the register is live, without be specific about it's value. So define 1327 // a value if there isn't one already. 1328 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1329 // Has a legitimate value -> ignore the implicit def. 1330 if (Num.getLoc() != 0) 1331 return; 1332 // Otherwise, def it here. 1333 } else if (MI.isMetaInstruction()) 1334 return; 1335 1336 // We always ignore SP defines on call instructions, they don't actually 1337 // change the value of the stack pointer... except for win32's _chkstk. This 1338 // is rare: filter quickly for the common case (no stack adjustments, not a 1339 // call, etc). If it is a call that modifies SP, recognise the SP register 1340 // defs. 1341 bool CallChangesSP = false; 1342 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() && 1343 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data())) 1344 CallChangesSP = true; 1345 1346 // Test whether we should ignore a def of this register due to it being part 1347 // of the stack pointer. 1348 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { 1349 if (CallChangesSP) 1350 return false; 1351 return MI.isCall() && MTracker->SPAliases.count(R); 1352 }; 1353 1354 // Find the regs killed by MI, and find regmasks of preserved regs. 1355 // Max out the number of statically allocated elements in `DeadRegs`, as this 1356 // prevents fallback to std::set::count() operations. 1357 SmallSet<uint32_t, 32> DeadRegs; 1358 SmallVector<const uint32_t *, 4> RegMasks; 1359 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1360 for (const MachineOperand &MO : MI.operands()) { 1361 // Determine whether the operand is a register def. 1362 if (MO.isReg() && MO.isDef() && MO.getReg() && 1363 Register::isPhysicalRegister(MO.getReg()) && 1364 !IgnoreSPAlias(MO.getReg())) { 1365 // Remove ranges of all aliased registers. 1366 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1367 // FIXME: Can we break out of this loop early if no insertion occurs? 1368 DeadRegs.insert(*RAI); 1369 } else if (MO.isRegMask()) { 1370 RegMasks.push_back(MO.getRegMask()); 1371 RegMaskPtrs.push_back(&MO); 1372 } 1373 } 1374 1375 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1376 for (uint32_t DeadReg : DeadRegs) 1377 MTracker->defReg(DeadReg, CurBB, CurInst); 1378 1379 for (auto *MO : RegMaskPtrs) 1380 MTracker->writeRegMask(MO, CurBB, CurInst); 1381 1382 // If this instruction writes to a spill slot, def that slot. 1383 if (hasFoldedStackStore(MI)) { 1384 if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) { 1385 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1386 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I); 1387 LocIdx L = MTracker->getSpillMLoc(SpillID); 1388 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1389 } 1390 } 1391 } 1392 1393 if (!TTracker) 1394 return; 1395 1396 // When committing variable values to locations: tell transfer tracker that 1397 // we've clobbered things. It may be able to recover the variable from a 1398 // different location. 1399 1400 // Inform TTracker about any direct clobbers. 1401 for (uint32_t DeadReg : DeadRegs) { 1402 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1403 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1404 } 1405 1406 // Look for any clobbers performed by a register mask. Only test locations 1407 // that are actually being tracked. 1408 if (!RegMaskPtrs.empty()) { 1409 for (auto L : MTracker->locations()) { 1410 // Stack locations can't be clobbered by regmasks. 1411 if (MTracker->isSpill(L.Idx)) 1412 continue; 1413 1414 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1415 if (IgnoreSPAlias(Reg)) 1416 continue; 1417 1418 for (auto *MO : RegMaskPtrs) 1419 if (MO->clobbersPhysReg(Reg)) 1420 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1421 } 1422 } 1423 1424 // Tell TTracker about any folded stack store. 1425 if (hasFoldedStackStore(MI)) { 1426 if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) { 1427 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1428 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I); 1429 LocIdx L = MTracker->getSpillMLoc(SpillID); 1430 TTracker->clobberMloc(L, MI.getIterator(), true); 1431 } 1432 } 1433 } 1434 } 1435 1436 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1437 // In all circumstances, re-def all aliases. It's definitely a new value now. 1438 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1439 MTracker->defReg(*RAI, CurBB, CurInst); 1440 1441 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1442 MTracker->setReg(DstRegNum, SrcValue); 1443 1444 // Copy subregisters from one location to another. 1445 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1446 unsigned SrcSubReg = SRI.getSubReg(); 1447 unsigned SubRegIdx = SRI.getSubRegIndex(); 1448 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1449 if (!DstSubReg) 1450 continue; 1451 1452 // Do copy. There are two matching subregisters, the source value should 1453 // have been def'd when the super-reg was, the latter might not be tracked 1454 // yet. 1455 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1456 // mphi values if it wasn't tracked. 1457 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1458 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1459 (void)SrcL; 1460 (void)DstL; 1461 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1462 1463 MTracker->setReg(DstSubReg, CpyValue); 1464 } 1465 } 1466 1467 Optional<SpillLocationNo> 1468 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1469 MachineFunction *MF) { 1470 // TODO: Handle multiple stores folded into one. 1471 if (!MI.hasOneMemOperand()) 1472 return None; 1473 1474 // Reject any memory operand that's aliased -- we can't guarantee its value. 1475 auto MMOI = MI.memoperands_begin(); 1476 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1477 if (PVal->isAliased(MFI)) 1478 return None; 1479 1480 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1481 return None; // This is not a spill instruction, since no valid size was 1482 // returned from either function. 1483 1484 return extractSpillBaseRegAndOffset(MI); 1485 } 1486 1487 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1488 MachineFunction *MF, unsigned &Reg) { 1489 if (!isSpillInstruction(MI, MF)) 1490 return false; 1491 1492 int FI; 1493 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1494 return Reg != 0; 1495 } 1496 1497 Optional<SpillLocationNo> 1498 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1499 MachineFunction *MF, unsigned &Reg) { 1500 if (!MI.hasOneMemOperand()) 1501 return None; 1502 1503 // FIXME: Handle folded restore instructions with more than one memory 1504 // operand. 1505 if (MI.getRestoreSize(TII)) { 1506 Reg = MI.getOperand(0).getReg(); 1507 return extractSpillBaseRegAndOffset(MI); 1508 } 1509 return None; 1510 } 1511 1512 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1513 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1514 // limitations under the new model. Therefore, when comparing them, compare 1515 // versions that don't attempt spills or restores at all. 1516 if (EmulateOldLDV) 1517 return false; 1518 1519 // Strictly limit ourselves to plain loads and stores, not all instructions 1520 // that can access the stack. 1521 int DummyFI = -1; 1522 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1523 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1524 return false; 1525 1526 MachineFunction *MF = MI.getMF(); 1527 unsigned Reg; 1528 1529 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1530 1531 // Strictly limit ourselves to plain loads and stores, not all instructions 1532 // that can access the stack. 1533 int FIDummy; 1534 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1535 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1536 return false; 1537 1538 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1539 // written to, terminate that variable location. The value in memory 1540 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1541 if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) { 1542 // Un-set this location and clobber, so that earlier locations don't 1543 // continue past this store. 1544 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1545 unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx); 1546 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1547 if (!MLoc) 1548 continue; 1549 1550 // We need to over-write the stack slot with something (here, a def at 1551 // this instruction) to ensure no values are preserved in this stack slot 1552 // after the spill. It also prevents TTracker from trying to recover the 1553 // location and re-installing it in the same place. 1554 ValueIDNum Def(CurBB, CurInst, *MLoc); 1555 MTracker->setMLoc(*MLoc, Def); 1556 if (TTracker) 1557 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1558 } 1559 } 1560 1561 // Try to recognise spill and restore instructions that may transfer a value. 1562 if (isLocationSpill(MI, MF, Reg)) { 1563 // isLocationSpill returning true should guarantee we can extract a 1564 // location. 1565 SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI); 1566 1567 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1568 auto ReadValue = MTracker->readReg(SrcReg); 1569 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1570 MTracker->setMLoc(DstLoc, ReadValue); 1571 1572 if (TTracker) { 1573 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1574 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1575 } 1576 }; 1577 1578 // Then, transfer subreg bits. 1579 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1580 // Ensure this reg is tracked, 1581 (void)MTracker->lookupOrTrackRegister(*SRI); 1582 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1583 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1584 DoTransfer(*SRI, SpillID); 1585 } 1586 1587 // Directly lookup size of main source reg, and transfer. 1588 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1589 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1590 DoTransfer(Reg, SpillID); 1591 } else { 1592 Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg); 1593 if (!Loc) 1594 return false; 1595 1596 // Assumption: we're reading from the base of the stack slot, not some 1597 // offset into it. It seems very unlikely LLVM would ever generate 1598 // restores where this wasn't true. This then becomes a question of what 1599 // subregisters in the destination register line up with positions in the 1600 // stack slot. 1601 1602 // Def all registers that alias the destination. 1603 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1604 MTracker->defReg(*RAI, CurBB, CurInst); 1605 1606 // Now find subregisters within the destination register, and load values 1607 // from stack slot positions. 1608 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1609 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1610 auto ReadValue = MTracker->readMLoc(SrcIdx); 1611 MTracker->setReg(DestReg, ReadValue); 1612 }; 1613 1614 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1615 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1616 unsigned SpillID = MTracker->getLocID(*Loc, Subreg); 1617 DoTransfer(*SRI, SpillID); 1618 } 1619 1620 // Directly look up this registers slot idx by size, and transfer. 1621 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1622 unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0}); 1623 DoTransfer(Reg, SpillID); 1624 } 1625 return true; 1626 } 1627 1628 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1629 auto DestSrc = TII->isCopyInstr(MI); 1630 if (!DestSrc) 1631 return false; 1632 1633 const MachineOperand *DestRegOp = DestSrc->Destination; 1634 const MachineOperand *SrcRegOp = DestSrc->Source; 1635 1636 auto isCalleeSavedReg = [&](unsigned Reg) { 1637 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1638 if (CalleeSavedRegs.test(*RAI)) 1639 return true; 1640 return false; 1641 }; 1642 1643 Register SrcReg = SrcRegOp->getReg(); 1644 Register DestReg = DestRegOp->getReg(); 1645 1646 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1647 if (SrcReg == DestReg) 1648 return true; 1649 1650 // For emulating VarLocBasedImpl: 1651 // We want to recognize instructions where destination register is callee 1652 // saved register. If register that could be clobbered by the call is 1653 // included, there would be a great chance that it is going to be clobbered 1654 // soon. It is more likely that previous register, which is callee saved, is 1655 // going to stay unclobbered longer, even if it is killed. 1656 // 1657 // For InstrRefBasedImpl, we can track multiple locations per value, so 1658 // ignore this condition. 1659 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1660 return false; 1661 1662 // InstrRefBasedImpl only followed killing copies. 1663 if (EmulateOldLDV && !SrcRegOp->isKill()) 1664 return false; 1665 1666 // Copy MTracker info, including subregs if available. 1667 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1668 1669 // Only produce a transfer of DBG_VALUE within a block where old LDV 1670 // would have. We might make use of the additional value tracking in some 1671 // other way, later. 1672 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1673 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1674 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1675 1676 // VarLocBasedImpl would quit tracking the old location after copying. 1677 if (EmulateOldLDV && SrcReg != DestReg) 1678 MTracker->defReg(SrcReg, CurBB, CurInst); 1679 1680 // Finally, the copy might have clobbered variables based on the destination 1681 // register. Tell TTracker about it, in case a backup location exists. 1682 if (TTracker) { 1683 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1684 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1685 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1686 } 1687 } 1688 1689 return true; 1690 } 1691 1692 /// Accumulate a mapping between each DILocalVariable fragment and other 1693 /// fragments of that DILocalVariable which overlap. This reduces work during 1694 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1695 /// known-to-overlap fragments are present". 1696 /// \param MI A previously unprocessed debug instruction to analyze for 1697 /// fragment usage. 1698 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1699 assert(MI.isDebugValue() || MI.isDebugRef()); 1700 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1701 MI.getDebugLoc()->getInlinedAt()); 1702 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1703 1704 // If this is the first sighting of this variable, then we are guaranteed 1705 // there are currently no overlapping fragments either. Initialize the set 1706 // of seen fragments, record no overlaps for the current one, and return. 1707 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1708 if (SeenIt == SeenFragments.end()) { 1709 SmallSet<FragmentInfo, 4> OneFragment; 1710 OneFragment.insert(ThisFragment); 1711 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1712 1713 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1714 return; 1715 } 1716 1717 // If this particular Variable/Fragment pair already exists in the overlap 1718 // map, it has already been accounted for. 1719 auto IsInOLapMap = 1720 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1721 if (!IsInOLapMap.second) 1722 return; 1723 1724 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1725 auto &AllSeenFragments = SeenIt->second; 1726 1727 // Otherwise, examine all other seen fragments for this variable, with "this" 1728 // fragment being a previously unseen fragment. Record any pair of 1729 // overlapping fragments. 1730 for (auto &ASeenFragment : AllSeenFragments) { 1731 // Does this previously seen fragment overlap? 1732 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1733 // Yes: Mark the current fragment as being overlapped. 1734 ThisFragmentsOverlaps.push_back(ASeenFragment); 1735 // Mark the previously seen fragment as being overlapped by the current 1736 // one. 1737 auto ASeenFragmentsOverlaps = 1738 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1739 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1740 "Previously seen var fragment has no vector of overlaps"); 1741 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1742 } 1743 } 1744 1745 AllSeenFragments.insert(ThisFragment); 1746 } 1747 1748 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts, 1749 const ValueTable *MLiveIns) { 1750 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1751 // none of these should we interpret it's register defs as new value 1752 // definitions. 1753 if (transferDebugValue(MI)) 1754 return; 1755 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1756 return; 1757 if (transferDebugPHI(MI)) 1758 return; 1759 if (transferRegisterCopy(MI)) 1760 return; 1761 if (transferSpillOrRestoreInst(MI)) 1762 return; 1763 transferRegisterDef(MI); 1764 } 1765 1766 void InstrRefBasedLDV::produceMLocTransferFunction( 1767 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1768 unsigned MaxNumBlocks) { 1769 // Because we try to optimize around register mask operands by ignoring regs 1770 // that aren't currently tracked, we set up something ugly for later: RegMask 1771 // operands that are seen earlier than the first use of a register, still need 1772 // to clobber that register in the transfer function. But this information 1773 // isn't actively recorded. Instead, we track each RegMask used in each block, 1774 // and accumulated the clobbered but untracked registers in each block into 1775 // the following bitvector. Later, if new values are tracked, we can add 1776 // appropriate clobbers. 1777 SmallVector<BitVector, 32> BlockMasks; 1778 BlockMasks.resize(MaxNumBlocks); 1779 1780 // Reserve one bit per register for the masks described above. 1781 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1782 for (auto &BV : BlockMasks) 1783 BV.resize(TRI->getNumRegs(), true); 1784 1785 // Step through all instructions and inhale the transfer function. 1786 for (auto &MBB : MF) { 1787 // Object fields that are read by trackers to know where we are in the 1788 // function. 1789 CurBB = MBB.getNumber(); 1790 CurInst = 1; 1791 1792 // Set all machine locations to a PHI value. For transfer function 1793 // production only, this signifies the live-in value to the block. 1794 MTracker->reset(); 1795 MTracker->setMPhis(CurBB); 1796 1797 // Step through each instruction in this block. 1798 for (auto &MI : MBB) { 1799 // Pass in an empty unique_ptr for the value tables when accumulating the 1800 // machine transfer function. 1801 process(MI, nullptr, nullptr); 1802 1803 // Also accumulate fragment map. 1804 if (MI.isDebugValue() || MI.isDebugRef()) 1805 accumulateFragmentMap(MI); 1806 1807 // Create a map from the instruction number (if present) to the 1808 // MachineInstr and its position. 1809 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1810 auto InstrAndPos = std::make_pair(&MI, CurInst); 1811 auto InsertResult = 1812 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1813 1814 // There should never be duplicate instruction numbers. 1815 assert(InsertResult.second); 1816 (void)InsertResult; 1817 } 1818 1819 ++CurInst; 1820 } 1821 1822 // Produce the transfer function, a map of machine location to new value. If 1823 // any machine location has the live-in phi value from the start of the 1824 // block, it's live-through and doesn't need recording in the transfer 1825 // function. 1826 for (auto Location : MTracker->locations()) { 1827 LocIdx Idx = Location.Idx; 1828 ValueIDNum &P = Location.Value; 1829 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1830 continue; 1831 1832 // Insert-or-update. 1833 auto &TransferMap = MLocTransfer[CurBB]; 1834 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1835 if (!Result.second) 1836 Result.first->second = P; 1837 } 1838 1839 // Accumulate any bitmask operands into the clobberred reg mask for this 1840 // block. 1841 for (auto &P : MTracker->Masks) { 1842 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1843 } 1844 } 1845 1846 // Compute a bitvector of all the registers that are tracked in this block. 1847 BitVector UsedRegs(TRI->getNumRegs()); 1848 for (auto Location : MTracker->locations()) { 1849 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1850 // Ignore stack slots, and aliases of the stack pointer. 1851 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1852 continue; 1853 UsedRegs.set(ID); 1854 } 1855 1856 // Check that any regmask-clobber of a register that gets tracked, is not 1857 // live-through in the transfer function. It needs to be clobbered at the 1858 // very least. 1859 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1860 BitVector &BV = BlockMasks[I]; 1861 BV.flip(); 1862 BV &= UsedRegs; 1863 // This produces all the bits that we clobber, but also use. Check that 1864 // they're all clobbered or at least set in the designated transfer 1865 // elem. 1866 for (unsigned Bit : BV.set_bits()) { 1867 unsigned ID = MTracker->getLocID(Bit); 1868 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1869 auto &TransferMap = MLocTransfer[I]; 1870 1871 // Install a value representing the fact that this location is effectively 1872 // written to in this block. As there's no reserved value, instead use 1873 // a value number that is never generated. Pick the value number for the 1874 // first instruction in the block, def'ing this location, which we know 1875 // this block never used anyway. 1876 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1877 auto Result = 1878 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1879 if (!Result.second) { 1880 ValueIDNum &ValueID = Result.first->second; 1881 if (ValueID.getBlock() == I && ValueID.isPHI()) 1882 // It was left as live-through. Set it to clobbered. 1883 ValueID = NotGeneratedNum; 1884 } 1885 } 1886 } 1887 } 1888 1889 bool InstrRefBasedLDV::mlocJoin( 1890 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1891 FuncValueTable &OutLocs, ValueTable &InLocs) { 1892 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1893 bool Changed = false; 1894 1895 // Handle value-propagation when control flow merges on entry to a block. For 1896 // any location without a PHI already placed, the location has the same value 1897 // as its predecessors. If a PHI is placed, test to see whether it's now a 1898 // redundant PHI that we can eliminate. 1899 1900 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1901 for (auto Pred : MBB.predecessors()) 1902 BlockOrders.push_back(Pred); 1903 1904 // Visit predecessors in RPOT order. 1905 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1906 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1907 }; 1908 llvm::sort(BlockOrders, Cmp); 1909 1910 // Skip entry block. 1911 if (BlockOrders.size() == 0) 1912 return false; 1913 1914 // Step through all machine locations, look at each predecessor and test 1915 // whether we can eliminate redundant PHIs. 1916 for (auto Location : MTracker->locations()) { 1917 LocIdx Idx = Location.Idx; 1918 1919 // Pick out the first predecessors live-out value for this location. It's 1920 // guaranteed to not be a backedge, as we order by RPO. 1921 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1922 1923 // If we've already eliminated a PHI here, do no further checking, just 1924 // propagate the first live-in value into this block. 1925 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1926 if (InLocs[Idx.asU64()] != FirstVal) { 1927 InLocs[Idx.asU64()] = FirstVal; 1928 Changed |= true; 1929 } 1930 continue; 1931 } 1932 1933 // We're now examining a PHI to see whether it's un-necessary. Loop around 1934 // the other live-in values and test whether they're all the same. 1935 bool Disagree = false; 1936 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1937 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1938 const ValueIDNum &PredLiveOut = 1939 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1940 1941 // Incoming values agree, continue trying to eliminate this PHI. 1942 if (FirstVal == PredLiveOut) 1943 continue; 1944 1945 // We can also accept a PHI value that feeds back into itself. 1946 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1947 continue; 1948 1949 // Live-out of a predecessor disagrees with the first predecessor. 1950 Disagree = true; 1951 } 1952 1953 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1954 if (!Disagree) { 1955 InLocs[Idx.asU64()] = FirstVal; 1956 Changed |= true; 1957 } 1958 } 1959 1960 // TODO: Reimplement NumInserted and NumRemoved. 1961 return Changed; 1962 } 1963 1964 void InstrRefBasedLDV::findStackIndexInterference( 1965 SmallVectorImpl<unsigned> &Slots) { 1966 // We could spend a bit of time finding the exact, minimal, set of stack 1967 // indexes that interfere with each other, much like reg units. Or, we can 1968 // rely on the fact that: 1969 // * The smallest / lowest index will interfere with everything at zero 1970 // offset, which will be the largest set of registers, 1971 // * Most indexes with non-zero offset will end up being interference units 1972 // anyway. 1973 // So just pick those out and return them. 1974 1975 // We can rely on a single-byte stack index existing already, because we 1976 // initialize them in MLocTracker. 1977 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1978 assert(It != MTracker->StackSlotIdxes.end()); 1979 Slots.push_back(It->second); 1980 1981 // Find anything that has a non-zero offset and add that too. 1982 for (auto &Pair : MTracker->StackSlotIdxes) { 1983 // Is offset zero? If so, ignore. 1984 if (!Pair.first.second) 1985 continue; 1986 Slots.push_back(Pair.second); 1987 } 1988 } 1989 1990 void InstrRefBasedLDV::placeMLocPHIs( 1991 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1992 FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1993 SmallVector<unsigned, 4> StackUnits; 1994 findStackIndexInterference(StackUnits); 1995 1996 // To avoid repeatedly running the PHI placement algorithm, leverage the 1997 // fact that a def of register MUST also def its register units. Find the 1998 // units for registers, place PHIs for them, and then replicate them for 1999 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 2000 // arguments) don't lead to register units being tracked, just place PHIs for 2001 // those registers directly. Stack slots have their own form of "unit", 2002 // store them to one side. 2003 SmallSet<Register, 32> RegUnitsToPHIUp; 2004 SmallSet<LocIdx, 32> NormalLocsToPHI; 2005 SmallSet<SpillLocationNo, 32> StackSlots; 2006 for (auto Location : MTracker->locations()) { 2007 LocIdx L = Location.Idx; 2008 if (MTracker->isSpill(L)) { 2009 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 2010 continue; 2011 } 2012 2013 Register R = MTracker->LocIdxToLocID[L]; 2014 SmallSet<Register, 8> FoundRegUnits; 2015 bool AnyIllegal = false; 2016 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 2017 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 2018 if (!MTracker->isRegisterTracked(*URoot)) { 2019 // Not all roots were loaded into the tracking map: this register 2020 // isn't actually def'd anywhere, we only read from it. Generate PHIs 2021 // for this reg, but don't iterate units. 2022 AnyIllegal = true; 2023 } else { 2024 FoundRegUnits.insert(*URoot); 2025 } 2026 } 2027 } 2028 2029 if (AnyIllegal) { 2030 NormalLocsToPHI.insert(L); 2031 continue; 2032 } 2033 2034 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 2035 } 2036 2037 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 2038 // collection. 2039 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2040 auto CollectPHIsForLoc = [&](LocIdx L) { 2041 // Collect the set of defs. 2042 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2043 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2044 MachineBasicBlock *MBB = OrderToBB[I]; 2045 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 2046 if (TransferFunc.find(L) != TransferFunc.end()) 2047 DefBlocks.insert(MBB); 2048 } 2049 2050 // The entry block defs the location too: it's the live-in / argument value. 2051 // Only insert if there are other defs though; everything is trivially live 2052 // through otherwise. 2053 if (!DefBlocks.empty()) 2054 DefBlocks.insert(&*MF.begin()); 2055 2056 // Ask the SSA construction algorithm where we should put PHIs. Clear 2057 // anything that might have been hanging around from earlier. 2058 PHIBlocks.clear(); 2059 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 2060 }; 2061 2062 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 2063 for (const MachineBasicBlock *MBB : PHIBlocks) 2064 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 2065 }; 2066 2067 // For locations with no reg units, just place PHIs. 2068 for (LocIdx L : NormalLocsToPHI) { 2069 CollectPHIsForLoc(L); 2070 // Install those PHI values into the live-in value array. 2071 InstallPHIsAtLoc(L); 2072 } 2073 2074 // For stack slots, calculate PHIs for the equivalent of the units, then 2075 // install for each index. 2076 for (SpillLocationNo Slot : StackSlots) { 2077 for (unsigned Idx : StackUnits) { 2078 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2079 LocIdx L = MTracker->getSpillMLoc(SpillID); 2080 CollectPHIsForLoc(L); 2081 InstallPHIsAtLoc(L); 2082 2083 // Find anything that aliases this stack index, install PHIs for it too. 2084 unsigned Size, Offset; 2085 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2086 for (auto &Pair : MTracker->StackSlotIdxes) { 2087 unsigned ThisSize, ThisOffset; 2088 std::tie(ThisSize, ThisOffset) = Pair.first; 2089 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2090 continue; 2091 2092 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2093 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2094 InstallPHIsAtLoc(ThisL); 2095 } 2096 } 2097 } 2098 2099 // For reg units, place PHIs, and then place them for any aliasing registers. 2100 for (Register R : RegUnitsToPHIUp) { 2101 LocIdx L = MTracker->lookupOrTrackRegister(R); 2102 CollectPHIsForLoc(L); 2103 2104 // Install those PHI values into the live-in value array. 2105 InstallPHIsAtLoc(L); 2106 2107 // Now find aliases and install PHIs for those. 2108 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2109 // Super-registers that are "above" the largest register read/written by 2110 // the function will alias, but will not be tracked. 2111 if (!MTracker->isRegisterTracked(*RAI)) 2112 continue; 2113 2114 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2115 InstallPHIsAtLoc(AliasLoc); 2116 } 2117 } 2118 } 2119 2120 void InstrRefBasedLDV::buildMLocValueMap( 2121 MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs, 2122 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2123 std::priority_queue<unsigned int, std::vector<unsigned int>, 2124 std::greater<unsigned int>> 2125 Worklist, Pending; 2126 2127 // We track what is on the current and pending worklist to avoid inserting 2128 // the same thing twice. We could avoid this with a custom priority queue, 2129 // but this is probably not worth it. 2130 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2131 2132 // Initialize worklist with every block to be visited. Also produce list of 2133 // all blocks. 2134 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2135 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2136 Worklist.push(I); 2137 OnWorklist.insert(OrderToBB[I]); 2138 AllBlocks.insert(OrderToBB[I]); 2139 } 2140 2141 // Initialize entry block to PHIs. These represent arguments. 2142 for (auto Location : MTracker->locations()) 2143 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2144 2145 MTracker->reset(); 2146 2147 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2148 // any machine-location that isn't live-through a block to be def'd in that 2149 // block. 2150 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2151 2152 // Propagate values to eliminate redundant PHIs. At the same time, this 2153 // produces the table of Block x Location => Value for the entry to each 2154 // block. 2155 // The kind of PHIs we can eliminate are, for example, where one path in a 2156 // conditional spills and restores a register, and the register still has 2157 // the same value once control flow joins, unbeknowns to the PHI placement 2158 // code. Propagating values allows us to identify such un-necessary PHIs and 2159 // remove them. 2160 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2161 while (!Worklist.empty() || !Pending.empty()) { 2162 // Vector for storing the evaluated block transfer function. 2163 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2164 2165 while (!Worklist.empty()) { 2166 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2167 CurBB = MBB->getNumber(); 2168 Worklist.pop(); 2169 2170 // Join the values in all predecessor blocks. 2171 bool InLocsChanged; 2172 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2173 InLocsChanged |= Visited.insert(MBB).second; 2174 2175 // Don't examine transfer function if we've visited this loc at least 2176 // once, and inlocs haven't changed. 2177 if (!InLocsChanged) 2178 continue; 2179 2180 // Load the current set of live-ins into MLocTracker. 2181 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2182 2183 // Each element of the transfer function can be a new def, or a read of 2184 // a live-in value. Evaluate each element, and store to "ToRemap". 2185 ToRemap.clear(); 2186 for (auto &P : MLocTransfer[CurBB]) { 2187 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2188 // This is a movement of whatever was live in. Read it. 2189 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2190 ToRemap.push_back(std::make_pair(P.first, NewID)); 2191 } else { 2192 // It's a def. Just set it. 2193 assert(P.second.getBlock() == CurBB); 2194 ToRemap.push_back(std::make_pair(P.first, P.second)); 2195 } 2196 } 2197 2198 // Commit the transfer function changes into mloc tracker, which 2199 // transforms the contents of the MLocTracker into the live-outs. 2200 for (auto &P : ToRemap) 2201 MTracker->setMLoc(P.first, P.second); 2202 2203 // Now copy out-locs from mloc tracker into out-loc vector, checking 2204 // whether changes have occurred. These changes can have come from both 2205 // the transfer function, and mlocJoin. 2206 bool OLChanged = false; 2207 for (auto Location : MTracker->locations()) { 2208 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2209 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2210 } 2211 2212 MTracker->reset(); 2213 2214 // No need to examine successors again if out-locs didn't change. 2215 if (!OLChanged) 2216 continue; 2217 2218 // All successors should be visited: put any back-edges on the pending 2219 // list for the next pass-through, and any other successors to be 2220 // visited this pass, if they're not going to be already. 2221 for (auto s : MBB->successors()) { 2222 // Does branching to this successor represent a back-edge? 2223 if (BBToOrder[s] > BBToOrder[MBB]) { 2224 // No: visit it during this dataflow iteration. 2225 if (OnWorklist.insert(s).second) 2226 Worklist.push(BBToOrder[s]); 2227 } else { 2228 // Yes: visit it on the next iteration. 2229 if (OnPending.insert(s).second) 2230 Pending.push(BBToOrder[s]); 2231 } 2232 } 2233 } 2234 2235 Worklist.swap(Pending); 2236 std::swap(OnPending, OnWorklist); 2237 OnPending.clear(); 2238 // At this point, pending must be empty, since it was just the empty 2239 // worklist 2240 assert(Pending.empty() && "Pending should be empty"); 2241 } 2242 2243 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2244 // redundant PHIs. 2245 } 2246 2247 void InstrRefBasedLDV::BlockPHIPlacement( 2248 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2249 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2250 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2251 // Apply IDF calculator to the designated set of location defs, storing 2252 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2253 // InstrRefBasedLDV object. 2254 IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase()); 2255 2256 IDF.setLiveInBlocks(AllBlocks); 2257 IDF.setDefiningBlocks(DefBlocks); 2258 IDF.calculate(PHIBlocks); 2259 } 2260 2261 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2262 const MachineBasicBlock &MBB, const DebugVariable &Var, 2263 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 2264 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2265 // Collect a set of locations from predecessor where its live-out value can 2266 // be found. 2267 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2268 SmallVector<const DbgValueProperties *, 4> Properties; 2269 unsigned NumLocs = MTracker->getNumLocs(); 2270 2271 // No predecessors means no PHIs. 2272 if (BlockOrders.empty()) 2273 return None; 2274 2275 for (auto p : BlockOrders) { 2276 unsigned ThisBBNum = p->getNumber(); 2277 auto OutValIt = LiveOuts.find(p); 2278 if (OutValIt == LiveOuts.end()) 2279 // If we have a predecessor not in scope, we'll never find a PHI position. 2280 return None; 2281 const DbgValue &OutVal = *OutValIt->second; 2282 2283 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2284 // Consts and no-values cannot have locations we can join on. 2285 return None; 2286 2287 Properties.push_back(&OutVal.Properties); 2288 2289 // Create new empty vector of locations. 2290 Locs.resize(Locs.size() + 1); 2291 2292 // If the live-in value is a def, find the locations where that value is 2293 // present. Do the same for VPHIs where we know the VPHI value. 2294 if (OutVal.Kind == DbgValue::Def || 2295 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2296 OutVal.ID != ValueIDNum::EmptyValue)) { 2297 ValueIDNum ValToLookFor = OutVal.ID; 2298 // Search the live-outs of the predecessor for the specified value. 2299 for (unsigned int I = 0; I < NumLocs; ++I) { 2300 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2301 Locs.back().push_back(LocIdx(I)); 2302 } 2303 } else { 2304 assert(OutVal.Kind == DbgValue::VPHI); 2305 // For VPHIs where we don't know the location, we definitely can't find 2306 // a join loc. 2307 if (OutVal.BlockNo != MBB.getNumber()) 2308 return None; 2309 2310 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2311 // a value that's live-through the whole loop. (It has to be a backedge, 2312 // because a block can't dominate itself). We can accept as a PHI location 2313 // any location where the other predecessors agree, _and_ the machine 2314 // locations feed back into themselves. Therefore, add all self-looping 2315 // machine-value PHI locations. 2316 for (unsigned int I = 0; I < NumLocs; ++I) { 2317 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2318 if (MOutLocs[ThisBBNum][I] == MPHI) 2319 Locs.back().push_back(LocIdx(I)); 2320 } 2321 } 2322 } 2323 2324 // We should have found locations for all predecessors, or returned. 2325 assert(Locs.size() == BlockOrders.size()); 2326 2327 // Check that all properties are the same. We can't pick a location if they're 2328 // not. 2329 const DbgValueProperties *Properties0 = Properties[0]; 2330 for (auto *Prop : Properties) 2331 if (*Prop != *Properties0) 2332 return None; 2333 2334 // Starting with the first set of locations, take the intersection with 2335 // subsequent sets. 2336 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2337 for (unsigned int I = 1; I < Locs.size(); ++I) { 2338 auto &LocVec = Locs[I]; 2339 SmallVector<LocIdx, 4> NewCandidates; 2340 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2341 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2342 CandidateLocs = NewCandidates; 2343 } 2344 if (CandidateLocs.empty()) 2345 return None; 2346 2347 // We now have a set of LocIdxes that contain the right output value in 2348 // each of the predecessors. Pick the lowest; if there's a register loc, 2349 // that'll be it. 2350 LocIdx L = *CandidateLocs.begin(); 2351 2352 // Return a PHI-value-number for the found location. 2353 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2354 return PHIVal; 2355 } 2356 2357 bool InstrRefBasedLDV::vlocJoin( 2358 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2359 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2360 DbgValue &LiveIn) { 2361 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2362 bool Changed = false; 2363 2364 // Order predecessors by RPOT order, for exploring them in that order. 2365 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2366 2367 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2368 return BBToOrder[A] < BBToOrder[B]; 2369 }; 2370 2371 llvm::sort(BlockOrders, Cmp); 2372 2373 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2374 2375 // Collect all the incoming DbgValues for this variable, from predecessor 2376 // live-out values. 2377 SmallVector<InValueT, 8> Values; 2378 bool Bail = false; 2379 int BackEdgesStart = 0; 2380 for (auto p : BlockOrders) { 2381 // If the predecessor isn't in scope / to be explored, we'll never be 2382 // able to join any locations. 2383 if (!BlocksToExplore.contains(p)) { 2384 Bail = true; 2385 break; 2386 } 2387 2388 // All Live-outs will have been initialized. 2389 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2390 2391 // Keep track of where back-edges begin in the Values vector. Relies on 2392 // BlockOrders being sorted by RPO. 2393 unsigned ThisBBRPONum = BBToOrder[p]; 2394 if (ThisBBRPONum < CurBlockRPONum) 2395 ++BackEdgesStart; 2396 2397 Values.push_back(std::make_pair(p, &OutLoc)); 2398 } 2399 2400 // If there were no values, or one of the predecessors couldn't have a 2401 // value, then give up immediately. It's not safe to produce a live-in 2402 // value. Leave as whatever it was before. 2403 if (Bail || Values.size() == 0) 2404 return false; 2405 2406 // All (non-entry) blocks have at least one non-backedge predecessor. 2407 // Pick the variable value from the first of these, to compare against 2408 // all others. 2409 const DbgValue &FirstVal = *Values[0].second; 2410 2411 // If the old live-in value is not a PHI then either a) no PHI is needed 2412 // here, or b) we eliminated the PHI that was here. If so, we can just 2413 // propagate in the first parent's incoming value. 2414 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2415 Changed = LiveIn != FirstVal; 2416 if (Changed) 2417 LiveIn = FirstVal; 2418 return Changed; 2419 } 2420 2421 // Scan for variable values that can never be resolved: if they have 2422 // different DIExpressions, different indirectness, or are mixed constants / 2423 // non-constants. 2424 for (auto &V : Values) { 2425 if (V.second->Properties != FirstVal.Properties) 2426 return false; 2427 if (V.second->Kind == DbgValue::NoVal) 2428 return false; 2429 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2430 return false; 2431 } 2432 2433 // Try to eliminate this PHI. Do the incoming values all agree? 2434 bool Disagree = false; 2435 for (auto &V : Values) { 2436 if (*V.second == FirstVal) 2437 continue; // No disagreement. 2438 2439 // Eliminate if a backedge feeds a VPHI back into itself. 2440 if (V.second->Kind == DbgValue::VPHI && 2441 V.second->BlockNo == MBB.getNumber() && 2442 // Is this a backedge? 2443 std::distance(Values.begin(), &V) >= BackEdgesStart) 2444 continue; 2445 2446 Disagree = true; 2447 } 2448 2449 // No disagreement -> live-through value. 2450 if (!Disagree) { 2451 Changed = LiveIn != FirstVal; 2452 if (Changed) 2453 LiveIn = FirstVal; 2454 return Changed; 2455 } else { 2456 // Otherwise use a VPHI. 2457 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2458 Changed = LiveIn != VPHI; 2459 if (Changed) 2460 LiveIn = VPHI; 2461 return Changed; 2462 } 2463 } 2464 2465 void InstrRefBasedLDV::getBlocksForScope( 2466 const DILocation *DILoc, 2467 SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore, 2468 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) { 2469 // Get the set of "normal" in-lexical-scope blocks. 2470 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2471 2472 // VarLoc LiveDebugValues tracks variable locations that are defined in 2473 // blocks not in scope. This is something we could legitimately ignore, but 2474 // lets allow it for now for the sake of coverage. 2475 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2476 2477 // Storage for artificial blocks we intend to add to BlocksToExplore. 2478 DenseSet<const MachineBasicBlock *> ToAdd; 2479 2480 // To avoid needlessly dropping large volumes of variable locations, propagate 2481 // variables through aritifical blocks, i.e. those that don't have any 2482 // instructions in scope at all. To accurately replicate VarLoc 2483 // LiveDebugValues, this means exploring all artificial successors too. 2484 // Perform a depth-first-search to enumerate those blocks. 2485 for (auto *MBB : BlocksToExplore) { 2486 // Depth-first-search state: each node is a block and which successor 2487 // we're currently exploring. 2488 SmallVector<std::pair<const MachineBasicBlock *, 2489 MachineBasicBlock::const_succ_iterator>, 2490 8> 2491 DFS; 2492 2493 // Find any artificial successors not already tracked. 2494 for (auto *succ : MBB->successors()) { 2495 if (BlocksToExplore.count(succ)) 2496 continue; 2497 if (!ArtificialBlocks.count(succ)) 2498 continue; 2499 ToAdd.insert(succ); 2500 DFS.push_back({succ, succ->succ_begin()}); 2501 } 2502 2503 // Search all those blocks, depth first. 2504 while (!DFS.empty()) { 2505 const MachineBasicBlock *CurBB = DFS.back().first; 2506 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2507 // Walk back if we've explored this blocks successors to the end. 2508 if (CurSucc == CurBB->succ_end()) { 2509 DFS.pop_back(); 2510 continue; 2511 } 2512 2513 // If the current successor is artificial and unexplored, descend into 2514 // it. 2515 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2516 ToAdd.insert(*CurSucc); 2517 DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()}); 2518 continue; 2519 } 2520 2521 ++CurSucc; 2522 } 2523 }; 2524 2525 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2526 } 2527 2528 void InstrRefBasedLDV::buildVLocValueMap( 2529 const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2530 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2531 FuncValueTable &MOutLocs, FuncValueTable &MInLocs, 2532 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2533 // This method is much like buildMLocValueMap: but focuses on a single 2534 // LexicalScope at a time. Pick out a set of blocks and variables that are 2535 // to have their value assignments solved, then run our dataflow algorithm 2536 // until a fixedpoint is reached. 2537 std::priority_queue<unsigned int, std::vector<unsigned int>, 2538 std::greater<unsigned int>> 2539 Worklist, Pending; 2540 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2541 2542 // The set of blocks we'll be examining. 2543 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2544 2545 // The order in which to examine them (RPO). 2546 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2547 2548 // RPO ordering function. 2549 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2550 return BBToOrder[A] < BBToOrder[B]; 2551 }; 2552 2553 getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks); 2554 2555 // Single block scope: not interesting! No propagation at all. Note that 2556 // this could probably go above ArtificialBlocks without damage, but 2557 // that then produces output differences from original-live-debug-values, 2558 // which propagates from a single block into many artificial ones. 2559 if (BlocksToExplore.size() == 1) 2560 return; 2561 2562 // Convert a const set to a non-const set. LexicalScopes 2563 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2564 // (Neither of them mutate anything). 2565 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2566 for (const auto *MBB : BlocksToExplore) 2567 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2568 2569 // Picks out relevants blocks RPO order and sort them. 2570 for (auto *MBB : BlocksToExplore) 2571 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2572 2573 llvm::sort(BlockOrders, Cmp); 2574 unsigned NumBlocks = BlockOrders.size(); 2575 2576 // Allocate some vectors for storing the live ins and live outs. Large. 2577 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2578 LiveIns.reserve(NumBlocks); 2579 LiveOuts.reserve(NumBlocks); 2580 2581 // Initialize all values to start as NoVals. This signifies "it's live 2582 // through, but we don't know what it is". 2583 DbgValueProperties EmptyProperties(EmptyExpr, false); 2584 for (unsigned int I = 0; I < NumBlocks; ++I) { 2585 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2586 LiveIns.push_back(EmptyDbgValue); 2587 LiveOuts.push_back(EmptyDbgValue); 2588 } 2589 2590 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2591 // vlocJoin. 2592 LiveIdxT LiveOutIdx, LiveInIdx; 2593 LiveOutIdx.reserve(NumBlocks); 2594 LiveInIdx.reserve(NumBlocks); 2595 for (unsigned I = 0; I < NumBlocks; ++I) { 2596 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2597 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2598 } 2599 2600 // Loop over each variable and place PHIs for it, then propagate values 2601 // between blocks. This keeps the locality of working on one lexical scope at 2602 // at time, but avoids re-processing variable values because some other 2603 // variable has been assigned. 2604 for (auto &Var : VarsWeCareAbout) { 2605 // Re-initialize live-ins and live-outs, to clear the remains of previous 2606 // variables live-ins / live-outs. 2607 for (unsigned int I = 0; I < NumBlocks; ++I) { 2608 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2609 LiveIns[I] = EmptyDbgValue; 2610 LiveOuts[I] = EmptyDbgValue; 2611 } 2612 2613 // Place PHIs for variable values, using the LLVM IDF calculator. 2614 // Collect the set of blocks where variables are def'd. 2615 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2616 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2617 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2618 if (TransferFunc.find(Var) != TransferFunc.end()) 2619 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2620 } 2621 2622 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2623 2624 // Request the set of PHIs we should insert for this variable. If there's 2625 // only one value definition, things are very simple. 2626 if (DefBlocks.size() == 1) { 2627 placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(), 2628 AllTheVLocs, Var, Output); 2629 continue; 2630 } 2631 2632 // Otherwise: we need to place PHIs through SSA and propagate values. 2633 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2634 2635 // Insert PHIs into the per-block live-in tables for this variable. 2636 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2637 unsigned BlockNo = PHIMBB->getNumber(); 2638 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2639 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2640 } 2641 2642 for (auto *MBB : BlockOrders) { 2643 Worklist.push(BBToOrder[MBB]); 2644 OnWorklist.insert(MBB); 2645 } 2646 2647 // Iterate over all the blocks we selected, propagating the variables value. 2648 // This loop does two things: 2649 // * Eliminates un-necessary VPHIs in vlocJoin, 2650 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2651 // stores the result to the blocks live-outs. 2652 // Always evaluate the transfer function on the first iteration, and when 2653 // the live-ins change thereafter. 2654 bool FirstTrip = true; 2655 while (!Worklist.empty() || !Pending.empty()) { 2656 while (!Worklist.empty()) { 2657 auto *MBB = OrderToBB[Worklist.top()]; 2658 CurBB = MBB->getNumber(); 2659 Worklist.pop(); 2660 2661 auto LiveInsIt = LiveInIdx.find(MBB); 2662 assert(LiveInsIt != LiveInIdx.end()); 2663 DbgValue *LiveIn = LiveInsIt->second; 2664 2665 // Join values from predecessors. Updates LiveInIdx, and writes output 2666 // into JoinedInLocs. 2667 bool InLocsChanged = 2668 vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn); 2669 2670 SmallVector<const MachineBasicBlock *, 8> Preds; 2671 for (const auto *Pred : MBB->predecessors()) 2672 Preds.push_back(Pred); 2673 2674 // If this block's live-in value is a VPHI, try to pick a machine-value 2675 // for it. This makes the machine-value available and propagated 2676 // through all blocks by the time value propagation finishes. We can't 2677 // do this any earlier as it needs to read the block live-outs. 2678 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2679 // There's a small possibility that on a preceeding path, a VPHI is 2680 // eliminated and transitions from VPHI-with-location to 2681 // live-through-value. As a result, the selected location of any VPHI 2682 // might change, so we need to re-compute it on each iteration. 2683 Optional<ValueIDNum> ValueNum = 2684 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2685 2686 if (ValueNum) { 2687 InLocsChanged |= LiveIn->ID != *ValueNum; 2688 LiveIn->ID = *ValueNum; 2689 } 2690 } 2691 2692 if (!InLocsChanged && !FirstTrip) 2693 continue; 2694 2695 DbgValue *LiveOut = LiveOutIdx[MBB]; 2696 bool OLChanged = false; 2697 2698 // Do transfer function. 2699 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2700 auto TransferIt = VTracker.Vars.find(Var); 2701 if (TransferIt != VTracker.Vars.end()) { 2702 // Erase on empty transfer (DBG_VALUE $noreg). 2703 if (TransferIt->second.Kind == DbgValue::Undef) { 2704 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2705 if (*LiveOut != NewVal) { 2706 *LiveOut = NewVal; 2707 OLChanged = true; 2708 } 2709 } else { 2710 // Insert new variable value; or overwrite. 2711 if (*LiveOut != TransferIt->second) { 2712 *LiveOut = TransferIt->second; 2713 OLChanged = true; 2714 } 2715 } 2716 } else { 2717 // Just copy live-ins to live-outs, for anything not transferred. 2718 if (*LiveOut != *LiveIn) { 2719 *LiveOut = *LiveIn; 2720 OLChanged = true; 2721 } 2722 } 2723 2724 // If no live-out value changed, there's no need to explore further. 2725 if (!OLChanged) 2726 continue; 2727 2728 // We should visit all successors. Ensure we'll visit any non-backedge 2729 // successors during this dataflow iteration; book backedge successors 2730 // to be visited next time around. 2731 for (auto s : MBB->successors()) { 2732 // Ignore out of scope / not-to-be-explored successors. 2733 if (LiveInIdx.find(s) == LiveInIdx.end()) 2734 continue; 2735 2736 if (BBToOrder[s] > BBToOrder[MBB]) { 2737 if (OnWorklist.insert(s).second) 2738 Worklist.push(BBToOrder[s]); 2739 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2740 Pending.push(BBToOrder[s]); 2741 } 2742 } 2743 } 2744 Worklist.swap(Pending); 2745 std::swap(OnWorklist, OnPending); 2746 OnPending.clear(); 2747 assert(Pending.empty()); 2748 FirstTrip = false; 2749 } 2750 2751 // Save live-ins to output vector. Ignore any that are still marked as being 2752 // VPHIs with no location -- those are variables that we know the value of, 2753 // but are not actually available in the register file. 2754 for (auto *MBB : BlockOrders) { 2755 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2756 if (BlockLiveIn->Kind == DbgValue::NoVal) 2757 continue; 2758 if (BlockLiveIn->Kind == DbgValue::VPHI && 2759 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2760 continue; 2761 if (BlockLiveIn->Kind == DbgValue::VPHI) 2762 BlockLiveIn->Kind = DbgValue::Def; 2763 assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() == 2764 Var.getFragment() && "Fragment info missing during value prop"); 2765 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2766 } 2767 } // Per-variable loop. 2768 2769 BlockOrders.clear(); 2770 BlocksToExplore.clear(); 2771 } 2772 2773 void InstrRefBasedLDV::placePHIsForSingleVarDefinition( 2774 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 2775 MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 2776 const DebugVariable &Var, LiveInsT &Output) { 2777 // If there is a single definition of the variable, then working out it's 2778 // value everywhere is very simple: it's every block dominated by the 2779 // definition. At the dominance frontier, the usual algorithm would: 2780 // * Place PHIs, 2781 // * Propagate values into them, 2782 // * Find there's no incoming variable value from the other incoming branches 2783 // of the dominance frontier, 2784 // * Specify there's no variable value in blocks past the frontier. 2785 // This is a common case, hence it's worth special-casing it. 2786 2787 // Pick out the variables value from the block transfer function. 2788 VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()]; 2789 auto ValueIt = VLocs.Vars.find(Var); 2790 const DbgValue &Value = ValueIt->second; 2791 2792 // If it's an explicit assignment of "undef", that means there is no location 2793 // anyway, anywhere. 2794 if (Value.Kind == DbgValue::Undef) 2795 return; 2796 2797 // Assign the variable value to entry to each dominated block that's in scope. 2798 // Skip the definition block -- it's assigned the variable value in the middle 2799 // of the block somewhere. 2800 for (auto *ScopeBlock : InScopeBlocks) { 2801 if (!DomTree->properlyDominates(AssignMBB, ScopeBlock)) 2802 continue; 2803 2804 Output[ScopeBlock->getNumber()].push_back({Var, Value}); 2805 } 2806 2807 // All blocks that aren't dominated have no live-in value, thus no variable 2808 // value will be given to them. 2809 } 2810 2811 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2812 void InstrRefBasedLDV::dump_mloc_transfer( 2813 const MLocTransferMap &mloc_transfer) const { 2814 for (auto &P : mloc_transfer) { 2815 std::string foo = MTracker->LocIdxToName(P.first); 2816 std::string bar = MTracker->IDAsString(P.second); 2817 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2818 } 2819 } 2820 #endif 2821 2822 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2823 // Build some useful data structures. 2824 2825 LLVMContext &Context = MF.getFunction().getContext(); 2826 EmptyExpr = DIExpression::get(Context, {}); 2827 2828 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2829 if (const DebugLoc &DL = MI.getDebugLoc()) 2830 return DL.getLine() != 0; 2831 return false; 2832 }; 2833 // Collect a set of all the artificial blocks. 2834 for (auto &MBB : MF) 2835 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2836 ArtificialBlocks.insert(&MBB); 2837 2838 // Compute mappings of block <=> RPO order. 2839 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2840 unsigned int RPONumber = 0; 2841 for (MachineBasicBlock *MBB : RPOT) { 2842 OrderToBB[RPONumber] = MBB; 2843 BBToOrder[MBB] = RPONumber; 2844 BBNumToRPO[MBB->getNumber()] = RPONumber; 2845 ++RPONumber; 2846 } 2847 2848 // Order value substitutions by their "source" operand pair, for quick lookup. 2849 llvm::sort(MF.DebugValueSubstitutions); 2850 2851 #ifdef EXPENSIVE_CHECKS 2852 // As an expensive check, test whether there are any duplicate substitution 2853 // sources in the collection. 2854 if (MF.DebugValueSubstitutions.size() > 2) { 2855 for (auto It = MF.DebugValueSubstitutions.begin(); 2856 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2857 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2858 "substitution seen"); 2859 } 2860 } 2861 #endif 2862 } 2863 2864 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered 2865 // lexical scope it's used in. When exploring in DFS order and we pass that 2866 // scope, the block can be processed and any tracking information freed. 2867 void InstrRefBasedLDV::makeDepthFirstEjectionMap( 2868 SmallVectorImpl<unsigned> &EjectionMap, 2869 const ScopeToDILocT &ScopeToDILocation, 2870 ScopeToAssignBlocksT &ScopeToAssignBlocks) { 2871 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2872 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; 2873 auto *TopScope = LS.getCurrentFunctionScope(); 2874 2875 // Unlike lexical scope explorers, we explore in reverse order, to find the 2876 // "last" lexical scope used for each block early. 2877 WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1}); 2878 2879 while (!WorkStack.empty()) { 2880 auto &ScopePosition = WorkStack.back(); 2881 LexicalScope *WS = ScopePosition.first; 2882 ssize_t ChildNum = ScopePosition.second--; 2883 2884 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); 2885 if (ChildNum >= 0) { 2886 // If ChildNum is positive, there are remaining children to explore. 2887 // Push the child and its children-count onto the stack. 2888 auto &ChildScope = Children[ChildNum]; 2889 WorkStack.push_back( 2890 std::make_pair(ChildScope, ChildScope->getChildren().size() - 1)); 2891 } else { 2892 WorkStack.pop_back(); 2893 2894 // We've explored all children and any later blocks: examine all blocks 2895 // in our scope. If they haven't yet had an ejection number set, then 2896 // this scope will be the last to use that block. 2897 auto DILocationIt = ScopeToDILocation.find(WS); 2898 if (DILocationIt != ScopeToDILocation.end()) { 2899 getBlocksForScope(DILocationIt->second, BlocksToExplore, 2900 ScopeToAssignBlocks.find(WS)->second); 2901 for (auto *MBB : BlocksToExplore) { 2902 unsigned BBNum = MBB->getNumber(); 2903 if (EjectionMap[BBNum] == 0) 2904 EjectionMap[BBNum] = WS->getDFSOut(); 2905 } 2906 2907 BlocksToExplore.clear(); 2908 } 2909 } 2910 } 2911 } 2912 2913 bool InstrRefBasedLDV::depthFirstVLocAndEmit( 2914 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, 2915 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks, 2916 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, 2917 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, 2918 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2919 const TargetPassConfig &TPC) { 2920 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2921 unsigned NumLocs = MTracker->getNumLocs(); 2922 VTracker = nullptr; 2923 2924 // No scopes? No variable locations. 2925 if (!LS.getCurrentFunctionScope()) 2926 return false; 2927 2928 // Build map from block number to the last scope that uses the block. 2929 SmallVector<unsigned, 16> EjectionMap; 2930 EjectionMap.resize(MaxNumBlocks, 0); 2931 makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation, 2932 ScopeToAssignBlocks); 2933 2934 // Helper lambda for ejecting a block -- if nothing is going to use the block, 2935 // we can translate the variable location information into DBG_VALUEs and then 2936 // free all of InstrRefBasedLDV's data structures. 2937 auto EjectBlock = [&](MachineBasicBlock &MBB) -> void { 2938 unsigned BBNum = MBB.getNumber(); 2939 AllTheVLocs[BBNum].clear(); 2940 2941 // Prime the transfer-tracker, and then step through all the block 2942 // instructions, installing transfers. 2943 MTracker->reset(); 2944 MTracker->loadFromArray(MInLocs[BBNum], BBNum); 2945 TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs); 2946 2947 CurBB = BBNum; 2948 CurInst = 1; 2949 for (auto &MI : MBB) { 2950 process(MI, MOutLocs.get(), MInLocs.get()); 2951 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2952 ++CurInst; 2953 } 2954 2955 // Free machine-location tables for this block. 2956 MInLocs[BBNum].reset(); 2957 MOutLocs[BBNum].reset(); 2958 // We don't need live-in variable values for this block either. 2959 Output[BBNum].clear(); 2960 AllTheVLocs[BBNum].clear(); 2961 }; 2962 2963 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2964 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; 2965 WorkStack.push_back({LS.getCurrentFunctionScope(), 0}); 2966 unsigned HighestDFSIn = 0; 2967 2968 // Proceed to explore in depth first order. 2969 while (!WorkStack.empty()) { 2970 auto &ScopePosition = WorkStack.back(); 2971 LexicalScope *WS = ScopePosition.first; 2972 ssize_t ChildNum = ScopePosition.second++; 2973 2974 // We obesrve scopes with children twice here, once descending in, once 2975 // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure 2976 // we don't process a scope twice. Additionally, ignore scopes that don't 2977 // have a DILocation -- by proxy, this means we never tracked any variable 2978 // assignments in that scope. 2979 auto DILocIt = ScopeToDILocation.find(WS); 2980 if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) { 2981 const DILocation *DILoc = DILocIt->second; 2982 auto &VarsWeCareAbout = ScopeToVars.find(WS)->second; 2983 auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second; 2984 2985 buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs, 2986 MInLocs, AllTheVLocs); 2987 } 2988 2989 HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn()); 2990 2991 // Descend into any scope nests. 2992 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); 2993 if (ChildNum < (ssize_t)Children.size()) { 2994 // There are children to explore -- push onto stack and continue. 2995 auto &ChildScope = Children[ChildNum]; 2996 WorkStack.push_back(std::make_pair(ChildScope, 0)); 2997 } else { 2998 WorkStack.pop_back(); 2999 3000 // We've explored a leaf, or have explored all the children of a scope. 3001 // Try to eject any blocks where this is the last scope it's relevant to. 3002 auto DILocationIt = ScopeToDILocation.find(WS); 3003 if (DILocationIt == ScopeToDILocation.end()) 3004 continue; 3005 3006 getBlocksForScope(DILocationIt->second, BlocksToExplore, 3007 ScopeToAssignBlocks.find(WS)->second); 3008 for (auto *MBB : BlocksToExplore) 3009 if (WS->getDFSOut() == EjectionMap[MBB->getNumber()]) 3010 EjectBlock(const_cast<MachineBasicBlock &>(*MBB)); 3011 3012 BlocksToExplore.clear(); 3013 } 3014 } 3015 3016 // Some artificial blocks may not have been ejected, meaning they're not 3017 // connected to an actual legitimate scope. This can technically happen 3018 // with things like the entry block. In theory, we shouldn't need to do 3019 // anything for such out-of-scope blocks, but for the sake of being similar 3020 // to VarLocBasedLDV, eject these too. 3021 for (auto *MBB : ArtificialBlocks) 3022 if (MOutLocs[MBB->getNumber()]) 3023 EjectBlock(*MBB); 3024 3025 return emitTransfers(AllVarsNumbering); 3026 } 3027 3028 bool InstrRefBasedLDV::emitTransfers( 3029 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 3030 // Go through all the transfers recorded in the TransferTracker -- this is 3031 // both the live-ins to a block, and any movements of values that happen 3032 // in the middle. 3033 for (const auto &P : TTracker->Transfers) { 3034 // We have to insert DBG_VALUEs in a consistent order, otherwise they 3035 // appear in DWARF in different orders. Use the order that they appear 3036 // when walking through each block / each instruction, stored in 3037 // AllVarsNumbering. 3038 SmallVector<std::pair<unsigned, MachineInstr *>> Insts; 3039 for (MachineInstr *MI : P.Insts) { 3040 DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(), 3041 MI->getDebugLoc()->getInlinedAt()); 3042 Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI); 3043 } 3044 llvm::sort(Insts, 3045 [](const auto &A, const auto &B) { return A.first < B.first; }); 3046 3047 // Insert either before or after the designated point... 3048 if (P.MBB) { 3049 MachineBasicBlock &MBB = *P.MBB; 3050 for (const auto &Pair : Insts) 3051 MBB.insert(P.Pos, Pair.second); 3052 } else { 3053 // Terminators, like tail calls, can clobber things. Don't try and place 3054 // transfers after them. 3055 if (P.Pos->isTerminator()) 3056 continue; 3057 3058 MachineBasicBlock &MBB = *P.Pos->getParent(); 3059 for (const auto &Pair : Insts) 3060 MBB.insertAfterBundle(P.Pos, Pair.second); 3061 } 3062 } 3063 3064 return TTracker->Transfers.size() != 0; 3065 } 3066 3067 /// Calculate the liveness information for the given machine function and 3068 /// extend ranges across basic blocks. 3069 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 3070 MachineDominatorTree *DomTree, 3071 TargetPassConfig *TPC, 3072 unsigned InputBBLimit, 3073 unsigned InputDbgValLimit) { 3074 // No subprogram means this function contains no debuginfo. 3075 if (!MF.getFunction().getSubprogram()) 3076 return false; 3077 3078 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 3079 this->TPC = TPC; 3080 3081 this->DomTree = DomTree; 3082 TRI = MF.getSubtarget().getRegisterInfo(); 3083 MRI = &MF.getRegInfo(); 3084 TII = MF.getSubtarget().getInstrInfo(); 3085 TFI = MF.getSubtarget().getFrameLowering(); 3086 TFI->getCalleeSaves(MF, CalleeSavedRegs); 3087 MFI = &MF.getFrameInfo(); 3088 LS.initialize(MF); 3089 3090 const auto &STI = MF.getSubtarget(); 3091 AdjustsStackInCalls = MFI->adjustsStack() && 3092 STI.getFrameLowering()->stackProbeFunctionModifiesSP(); 3093 if (AdjustsStackInCalls) 3094 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); 3095 3096 MTracker = 3097 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3098 VTracker = nullptr; 3099 TTracker = nullptr; 3100 3101 SmallVector<MLocTransferMap, 32> MLocTransfer; 3102 SmallVector<VLocTracker, 8> vlocs; 3103 LiveInsT SavedLiveIns; 3104 3105 int MaxNumBlocks = -1; 3106 for (auto &MBB : MF) 3107 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3108 assert(MaxNumBlocks >= 0); 3109 ++MaxNumBlocks; 3110 3111 MLocTransfer.resize(MaxNumBlocks); 3112 vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr)); 3113 SavedLiveIns.resize(MaxNumBlocks); 3114 3115 initialSetup(MF); 3116 3117 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 3118 3119 // Allocate and initialize two array-of-arrays for the live-in and live-out 3120 // machine values. The outer dimension is the block number; while the inner 3121 // dimension is a LocIdx from MLocTracker. 3122 FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks); 3123 FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks); 3124 unsigned NumLocs = MTracker->getNumLocs(); 3125 for (int i = 0; i < MaxNumBlocks; ++i) { 3126 // These all auto-initialize to ValueIDNum::EmptyValue 3127 MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs); 3128 MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs); 3129 } 3130 3131 // Solve the machine value dataflow problem using the MLocTransfer function, 3132 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3133 // both live-ins and live-outs for decision making in the variable value 3134 // dataflow problem. 3135 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 3136 3137 // Patch up debug phi numbers, turning unknown block-live-in values into 3138 // either live-through machine values, or PHIs. 3139 for (auto &DBG_PHI : DebugPHINumToValue) { 3140 // Identify unresolved block-live-ins. 3141 if (!DBG_PHI.ValueRead) 3142 continue; 3143 3144 ValueIDNum &Num = *DBG_PHI.ValueRead; 3145 if (!Num.isPHI()) 3146 continue; 3147 3148 unsigned BlockNo = Num.getBlock(); 3149 LocIdx LocNo = Num.getLoc(); 3150 Num = MInLocs[BlockNo][LocNo.asU64()]; 3151 } 3152 // Later, we'll be looking up ranges of instruction numbers. 3153 llvm::sort(DebugPHINumToValue); 3154 3155 // Walk back through each block / instruction, collecting DBG_VALUE 3156 // instructions and recording what machine value their operands refer to. 3157 for (auto &OrderPair : OrderToBB) { 3158 MachineBasicBlock &MBB = *OrderPair.second; 3159 CurBB = MBB.getNumber(); 3160 VTracker = &vlocs[CurBB]; 3161 VTracker->MBB = &MBB; 3162 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 3163 CurInst = 1; 3164 for (auto &MI : MBB) { 3165 process(MI, MOutLocs.get(), MInLocs.get()); 3166 ++CurInst; 3167 } 3168 MTracker->reset(); 3169 } 3170 3171 // Number all variables in the order that they appear, to be used as a stable 3172 // insertion order later. 3173 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3174 3175 // Map from one LexicalScope to all the variables in that scope. 3176 ScopeToVarsT ScopeToVars; 3177 3178 // Map from One lexical scope to all blocks where assignments happen for 3179 // that scope. 3180 ScopeToAssignBlocksT ScopeToAssignBlocks; 3181 3182 // Store map of DILocations that describes scopes. 3183 ScopeToDILocT ScopeToDILocation; 3184 3185 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3186 // the order is unimportant, it just has to be stable. 3187 unsigned VarAssignCount = 0; 3188 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3189 auto *MBB = OrderToBB[I]; 3190 auto *VTracker = &vlocs[MBB->getNumber()]; 3191 // Collect each variable with a DBG_VALUE in this block. 3192 for (auto &idx : VTracker->Vars) { 3193 const auto &Var = idx.first; 3194 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3195 assert(ScopeLoc != nullptr); 3196 auto *Scope = LS.findLexicalScope(ScopeLoc); 3197 3198 // No insts in scope -> shouldn't have been recorded. 3199 assert(Scope != nullptr); 3200 3201 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3202 ScopeToVars[Scope].insert(Var); 3203 ScopeToAssignBlocks[Scope].insert(VTracker->MBB); 3204 ScopeToDILocation[Scope] = ScopeLoc; 3205 ++VarAssignCount; 3206 } 3207 } 3208 3209 bool Changed = false; 3210 3211 // If we have an extremely large number of variable assignments and blocks, 3212 // bail out at this point. We've burnt some time doing analysis already, 3213 // however we should cut our losses. 3214 if ((unsigned)MaxNumBlocks > InputBBLimit && 3215 VarAssignCount > InputDbgValLimit) { 3216 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3217 << " has " << MaxNumBlocks << " basic blocks and " 3218 << VarAssignCount 3219 << " variable assignments, exceeding limits.\n"); 3220 } else { 3221 // Optionally, solve the variable value problem and emit to blocks by using 3222 // a lexical-scope-depth search. It should be functionally identical to 3223 // the "else" block of this condition. 3224 Changed = depthFirstVLocAndEmit( 3225 MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks, 3226 SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC); 3227 } 3228 3229 delete MTracker; 3230 delete TTracker; 3231 MTracker = nullptr; 3232 VTracker = nullptr; 3233 TTracker = nullptr; 3234 3235 ArtificialBlocks.clear(); 3236 OrderToBB.clear(); 3237 BBToOrder.clear(); 3238 BBNumToRPO.clear(); 3239 DebugInstrNumToInstr.clear(); 3240 DebugPHINumToValue.clear(); 3241 OverlapFragments.clear(); 3242 SeenFragments.clear(); 3243 SeenDbgPHIs.clear(); 3244 3245 return Changed; 3246 } 3247 3248 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3249 return new InstrRefBasedLDV(); 3250 } 3251 3252 namespace { 3253 class LDVSSABlock; 3254 class LDVSSAUpdater; 3255 3256 // Pick a type to identify incoming block values as we construct SSA. We 3257 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3258 // expects to zero-initialize the type. 3259 typedef uint64_t BlockValueNum; 3260 3261 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3262 /// this PHI is in, the value number it would have, and the expected incoming 3263 /// values from parent blocks. 3264 class LDVSSAPhi { 3265 public: 3266 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3267 LDVSSABlock *ParentBlock; 3268 BlockValueNum PHIValNum; 3269 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3270 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3271 3272 LDVSSABlock *getParent() { return ParentBlock; } 3273 }; 3274 3275 /// Thin wrapper around a block predecessor iterator. Only difference from a 3276 /// normal block iterator is that it dereferences to an LDVSSABlock. 3277 class LDVSSABlockIterator { 3278 public: 3279 MachineBasicBlock::pred_iterator PredIt; 3280 LDVSSAUpdater &Updater; 3281 3282 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3283 LDVSSAUpdater &Updater) 3284 : PredIt(PredIt), Updater(Updater) {} 3285 3286 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3287 return OtherIt.PredIt != PredIt; 3288 } 3289 3290 LDVSSABlockIterator &operator++() { 3291 ++PredIt; 3292 return *this; 3293 } 3294 3295 LDVSSABlock *operator*(); 3296 }; 3297 3298 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3299 /// we need to track the PHI value(s) that we may have observed as necessary 3300 /// in this block. 3301 class LDVSSABlock { 3302 public: 3303 MachineBasicBlock &BB; 3304 LDVSSAUpdater &Updater; 3305 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3306 /// List of PHIs in this block. There should only ever be one. 3307 PHIListT PHIList; 3308 3309 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3310 : BB(BB), Updater(Updater) {} 3311 3312 LDVSSABlockIterator succ_begin() { 3313 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3314 } 3315 3316 LDVSSABlockIterator succ_end() { 3317 return LDVSSABlockIterator(BB.succ_end(), Updater); 3318 } 3319 3320 /// SSAUpdater has requested a PHI: create that within this block record. 3321 LDVSSAPhi *newPHI(BlockValueNum Value) { 3322 PHIList.emplace_back(Value, this); 3323 return &PHIList.back(); 3324 } 3325 3326 /// SSAUpdater wishes to know what PHIs already exist in this block. 3327 PHIListT &phis() { return PHIList; } 3328 }; 3329 3330 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3331 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3332 // SSAUpdaterTraits<LDVSSAUpdater>. 3333 class LDVSSAUpdater { 3334 public: 3335 /// Map of value numbers to PHI records. 3336 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3337 /// Map of which blocks generate Undef values -- blocks that are not 3338 /// dominated by any Def. 3339 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3340 /// Map of machine blocks to our own records of them. 3341 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3342 /// Machine location where any PHI must occur. 3343 LocIdx Loc; 3344 /// Table of live-in machine value numbers for blocks / locations. 3345 const ValueTable *MLiveIns; 3346 3347 LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns) 3348 : Loc(L), MLiveIns(MLiveIns) {} 3349 3350 void reset() { 3351 for (auto &Block : BlockMap) 3352 delete Block.second; 3353 3354 PHIs.clear(); 3355 UndefMap.clear(); 3356 BlockMap.clear(); 3357 } 3358 3359 ~LDVSSAUpdater() { reset(); } 3360 3361 /// For a given MBB, create a wrapper block for it. Stores it in the 3362 /// LDVSSAUpdater block map. 3363 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3364 auto it = BlockMap.find(BB); 3365 if (it == BlockMap.end()) { 3366 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3367 it = BlockMap.find(BB); 3368 } 3369 return it->second; 3370 } 3371 3372 /// Find the live-in value number for the given block. Looks up the value at 3373 /// the PHI location on entry. 3374 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3375 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3376 } 3377 }; 3378 3379 LDVSSABlock *LDVSSABlockIterator::operator*() { 3380 return Updater.getSSALDVBlock(*PredIt); 3381 } 3382 3383 #ifndef NDEBUG 3384 3385 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3386 out << "SSALDVPHI " << PHI.PHIValNum; 3387 return out; 3388 } 3389 3390 #endif 3391 3392 } // namespace 3393 3394 namespace llvm { 3395 3396 /// Template specialization to give SSAUpdater access to CFG and value 3397 /// information. SSAUpdater calls methods in these traits, passing in the 3398 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3399 /// It also provides methods to create PHI nodes and track them. 3400 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3401 public: 3402 using BlkT = LDVSSABlock; 3403 using ValT = BlockValueNum; 3404 using PhiT = LDVSSAPhi; 3405 using BlkSucc_iterator = LDVSSABlockIterator; 3406 3407 // Methods to access block successors -- dereferencing to our wrapper class. 3408 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3409 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3410 3411 /// Iterator for PHI operands. 3412 class PHI_iterator { 3413 private: 3414 LDVSSAPhi *PHI; 3415 unsigned Idx; 3416 3417 public: 3418 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3419 : PHI(P), Idx(0) {} 3420 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3421 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3422 3423 PHI_iterator &operator++() { 3424 Idx++; 3425 return *this; 3426 } 3427 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3428 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3429 3430 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3431 3432 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3433 }; 3434 3435 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3436 3437 static inline PHI_iterator PHI_end(PhiT *PHI) { 3438 return PHI_iterator(PHI, true); 3439 } 3440 3441 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3442 /// vector. 3443 static void FindPredecessorBlocks(LDVSSABlock *BB, 3444 SmallVectorImpl<LDVSSABlock *> *Preds) { 3445 for (MachineBasicBlock *Pred : BB->BB.predecessors()) 3446 Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); 3447 } 3448 3449 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3450 /// register. For LiveDebugValues, represents a block identified as not having 3451 /// any DBG_PHI predecessors. 3452 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3453 // Create a value number for this block -- it needs to be unique and in the 3454 // "undef" collection, so that we know it's not real. Use a number 3455 // representing a PHI into this block. 3456 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3457 Updater->UndefMap[&BB->BB] = Num; 3458 return Num; 3459 } 3460 3461 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3462 /// SSAUpdater will populate it with information about incoming values. The 3463 /// value number of this PHI is whatever the machine value number problem 3464 /// solution determined it to be. This includes non-phi values if SSAUpdater 3465 /// tries to create a PHI where the incoming values are identical. 3466 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3467 LDVSSAUpdater *Updater) { 3468 BlockValueNum PHIValNum = Updater->getValue(BB); 3469 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3470 Updater->PHIs[PHIValNum] = PHI; 3471 return PHIValNum; 3472 } 3473 3474 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3475 /// the specified predecessor block. 3476 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3477 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3478 } 3479 3480 /// ValueIsPHI - Check if the instruction that defines the specified value 3481 /// is a PHI instruction. 3482 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3483 auto PHIIt = Updater->PHIs.find(Val); 3484 if (PHIIt == Updater->PHIs.end()) 3485 return nullptr; 3486 return PHIIt->second; 3487 } 3488 3489 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3490 /// operands, i.e., it was just added. 3491 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3492 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3493 if (PHI && PHI->IncomingValues.size() == 0) 3494 return PHI; 3495 return nullptr; 3496 } 3497 3498 /// GetPHIValue - For the specified PHI instruction, return the value 3499 /// that it defines. 3500 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3501 }; 3502 3503 } // end namespace llvm 3504 3505 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs( 3506 MachineFunction &MF, const ValueTable *MLiveOuts, 3507 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) { 3508 assert(MLiveOuts && MLiveIns && 3509 "Tried to resolve DBG_PHI before location " 3510 "tables allocated?"); 3511 3512 // This function will be called twice per DBG_INSTR_REF, and might end up 3513 // computing lots of SSA information: memoize it. 3514 auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here); 3515 if (SeenDbgPHIIt != SeenDbgPHIs.end()) 3516 return SeenDbgPHIIt->second; 3517 3518 Optional<ValueIDNum> Result = 3519 resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum); 3520 SeenDbgPHIs.insert({&Here, Result}); 3521 return Result; 3522 } 3523 3524 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl( 3525 MachineFunction &MF, const ValueTable *MLiveOuts, 3526 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) { 3527 // Pick out records of DBG_PHI instructions that have been observed. If there 3528 // are none, then we cannot compute a value number. 3529 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3530 DebugPHINumToValue.end(), InstrNum); 3531 auto LowerIt = RangePair.first; 3532 auto UpperIt = RangePair.second; 3533 3534 // No DBG_PHI means there can be no location. 3535 if (LowerIt == UpperIt) 3536 return None; 3537 3538 // If any DBG_PHIs referred to a location we didn't understand, don't try to 3539 // compute a value. There might be scenarios where we could recover a value 3540 // for some range of DBG_INSTR_REFs, but at this point we can have high 3541 // confidence that we've seen a bug. 3542 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3543 for (const DebugPHIRecord &DBG_PHI : DBGPHIRange) 3544 if (!DBG_PHI.ValueRead) 3545 return None; 3546 3547 // If there's only one DBG_PHI, then that is our value number. 3548 if (std::distance(LowerIt, UpperIt) == 1) 3549 return *LowerIt->ValueRead; 3550 3551 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3552 // technically possible for us to merge values in different registers in each 3553 // block, but highly unlikely that LLVM will generate such code after register 3554 // allocation. 3555 LocIdx Loc = *LowerIt->ReadLoc; 3556 3557 // We have several DBG_PHIs, and a use position (the Here inst). All each 3558 // DBG_PHI does is identify a value at a program position. We can treat each 3559 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3560 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3561 // determine which Def is used at the Use, and any PHIs that happen along 3562 // the way. 3563 // Adapted LLVM SSA Updater: 3564 LDVSSAUpdater Updater(Loc, MLiveIns); 3565 // Map of which Def or PHI is the current value in each block. 3566 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3567 // Set of PHIs that we have created along the way. 3568 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3569 3570 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3571 // for the SSAUpdater. 3572 for (const auto &DBG_PHI : DBGPHIRange) { 3573 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3574 const ValueIDNum &Num = *DBG_PHI.ValueRead; 3575 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3576 } 3577 3578 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3579 const auto &AvailIt = AvailableValues.find(HereBlock); 3580 if (AvailIt != AvailableValues.end()) { 3581 // Actually, we already know what the value is -- the Use is in the same 3582 // block as the Def. 3583 return ValueIDNum::fromU64(AvailIt->second); 3584 } 3585 3586 // Otherwise, we must use the SSA Updater. It will identify the value number 3587 // that we are to use, and the PHIs that must happen along the way. 3588 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3589 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3590 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3591 3592 // We have the number for a PHI, or possibly live-through value, to be used 3593 // at this Use. There are a number of things we have to check about it though: 3594 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3595 // Use was not completely dominated by DBG_PHIs and we should abort. 3596 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3597 // we've left SSA form. Validate that the inputs to each PHI are the 3598 // expected values. 3599 // * Is a PHI we've created actually a merging of values, or are all the 3600 // predecessor values the same, leading to a non-PHI machine value number? 3601 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3602 // the ValidatedValues collection below to sort this out. 3603 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3604 3605 // Define all the input DBG_PHI values in ValidatedValues. 3606 for (const auto &DBG_PHI : DBGPHIRange) { 3607 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3608 const ValueIDNum &Num = *DBG_PHI.ValueRead; 3609 ValidatedValues.insert(std::make_pair(Block, Num)); 3610 } 3611 3612 // Sort PHIs to validate into RPO-order. 3613 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3614 for (auto &PHI : CreatedPHIs) 3615 SortedPHIs.push_back(PHI); 3616 3617 std::sort( 3618 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3619 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3620 }); 3621 3622 for (auto &PHI : SortedPHIs) { 3623 ValueIDNum ThisBlockValueNum = 3624 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3625 3626 // Are all these things actually defined? 3627 for (auto &PHIIt : PHI->IncomingValues) { 3628 // Any undef input means DBG_PHIs didn't dominate the use point. 3629 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3630 return None; 3631 3632 ValueIDNum ValueToCheck; 3633 const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3634 3635 auto VVal = ValidatedValues.find(PHIIt.first); 3636 if (VVal == ValidatedValues.end()) { 3637 // We cross a loop, and this is a backedge. LLVMs tail duplication 3638 // happens so late that DBG_PHI instructions should not be able to 3639 // migrate into loops -- meaning we can only be live-through this 3640 // loop. 3641 ValueToCheck = ThisBlockValueNum; 3642 } else { 3643 // Does the block have as a live-out, in the location we're examining, 3644 // the value that we expect? If not, it's been moved or clobbered. 3645 ValueToCheck = VVal->second; 3646 } 3647 3648 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3649 return None; 3650 } 3651 3652 // Record this value as validated. 3653 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3654 } 3655 3656 // All the PHIs are valid: we can return what the SSAUpdater said our value 3657 // number was. 3658 return Result; 3659 } 3660