1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 /// * Variables to the values they should have,
42 /// * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value. The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 /// Overlapping fragments
75 /// Entry values
76 /// Add back DEBUG statements for debugging this
77 /// Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130
131 using namespace llvm;
132 using namespace LiveDebugValues;
133
134 // SSAUpdaterImple sets DEBUG_TYPE, change it.
135 #undef DEBUG_TYPE
136 #define DEBUG_TYPE "livedebugvalues"
137
138 // Act more like the VarLoc implementation, by propagating some locations too
139 // far and ignoring some transfers.
140 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
141 cl::desc("Act like old LiveDebugValues did"),
142 cl::init(false));
143
144 // Limit for the maximum number of stack slots we should track, past which we
145 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
146 // stack slots which leads to high memory consumption, and in some scenarios
147 // (such as asan with very many locals) the working set of the function can be
148 // very large, causing many spills. In these scenarios, it is very unlikely that
149 // the developer has hundreds of variables live at the same time that they're
150 // carefully thinking about -- instead, they probably autogenerated the code.
151 // When this happens, gracefully stop tracking excess spill slots, rather than
152 // consuming all the developer's memory.
153 static cl::opt<unsigned>
154 StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
155 cl::desc("livedebugvalues-stack-ws-limit"),
156 cl::init(250));
157
158 /// Tracker for converting machine value locations and variable values into
159 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
160 /// specifying block live-in locations and transfers within blocks.
161 ///
162 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
163 /// and must be initialized with the set of variable values that are live-in to
164 /// the block. The caller then repeatedly calls process(). TransferTracker picks
165 /// out variable locations for the live-in variable values (if there _is_ a
166 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
167 /// stepped through, transfers of values between machine locations are
168 /// identified and if profitable, a DBG_VALUE created.
169 ///
170 /// This is where debug use-before-defs would be resolved: a variable with an
171 /// unavailable value could materialize in the middle of a block, when the
172 /// value becomes available. Or, we could detect clobbers and re-specify the
173 /// variable in a backup location. (XXX these are unimplemented).
174 class TransferTracker {
175 public:
176 const TargetInstrInfo *TII;
177 const TargetLowering *TLI;
178 /// This machine location tracker is assumed to always contain the up-to-date
179 /// value mapping for all machine locations. TransferTracker only reads
180 /// information from it. (XXX make it const?)
181 MLocTracker *MTracker;
182 MachineFunction &MF;
183 bool ShouldEmitDebugEntryValues;
184
185 /// Record of all changes in variable locations at a block position. Awkwardly
186 /// we allow inserting either before or after the point: MBB != nullptr
187 /// indicates it's before, otherwise after.
188 struct Transfer {
189 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
190 MachineBasicBlock *MBB; /// non-null if we should insert after.
191 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
192 };
193
194 struct LocAndProperties {
195 LocIdx Loc;
196 DbgValueProperties Properties;
197 };
198
199 /// Collection of transfers (DBG_VALUEs) to be inserted.
200 SmallVector<Transfer, 32> Transfers;
201
202 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
203 /// between TransferTrackers view of variable locations and MLocTrackers. For
204 /// example, MLocTracker observes all clobbers, but TransferTracker lazily
205 /// does not.
206 SmallVector<ValueIDNum, 32> VarLocs;
207
208 /// Map from LocIdxes to which DebugVariables are based that location.
209 /// Mantained while stepping through the block. Not accurate if
210 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
211 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
212
213 /// Map from DebugVariable to it's current location and qualifying meta
214 /// information. To be used in conjunction with ActiveMLocs to construct
215 /// enough information for the DBG_VALUEs for a particular LocIdx.
216 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
217
218 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
219 SmallVector<MachineInstr *, 4> PendingDbgValues;
220
221 /// Record of a use-before-def: created when a value that's live-in to the
222 /// current block isn't available in any machine location, but it will be
223 /// defined in this block.
224 struct UseBeforeDef {
225 /// Value of this variable, def'd in block.
226 ValueIDNum ID;
227 /// Identity of this variable.
228 DebugVariable Var;
229 /// Additional variable properties.
230 DbgValueProperties Properties;
231 };
232
233 /// Map from instruction index (within the block) to the set of UseBeforeDefs
234 /// that become defined at that instruction.
235 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
236
237 /// The set of variables that are in UseBeforeDefs and can become a location
238 /// once the relevant value is defined. An element being erased from this
239 /// collection prevents the use-before-def materializing.
240 DenseSet<DebugVariable> UseBeforeDefVariables;
241
242 const TargetRegisterInfo &TRI;
243 const BitVector &CalleeSavedRegs;
244
TransferTracker(const TargetInstrInfo * TII,MLocTracker * MTracker,MachineFunction & MF,const TargetRegisterInfo & TRI,const BitVector & CalleeSavedRegs,const TargetPassConfig & TPC)245 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
246 MachineFunction &MF, const TargetRegisterInfo &TRI,
247 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
248 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
249 CalleeSavedRegs(CalleeSavedRegs) {
250 TLI = MF.getSubtarget().getTargetLowering();
251 auto &TM = TPC.getTM<TargetMachine>();
252 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
253 }
254
255 /// Load object with live-in variable values. \p mlocs contains the live-in
256 /// values in each machine location, while \p vlocs the live-in variable
257 /// values. This method picks variable locations for the live-in variables,
258 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
259 /// object fields to track variable locations as we step through the block.
260 /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
261 void
loadInlocs(MachineBasicBlock & MBB,ValueTable & MLocs,const SmallVectorImpl<std::pair<DebugVariable,DbgValue>> & VLocs,unsigned NumLocs)262 loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs,
263 const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
264 unsigned NumLocs) {
265 ActiveMLocs.clear();
266 ActiveVLocs.clear();
267 VarLocs.clear();
268 VarLocs.reserve(NumLocs);
269 UseBeforeDefs.clear();
270 UseBeforeDefVariables.clear();
271
272 auto isCalleeSaved = [&](LocIdx L) {
273 unsigned Reg = MTracker->LocIdxToLocID[L];
274 if (Reg >= MTracker->NumRegs)
275 return false;
276 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
277 if (CalleeSavedRegs.test(*RAI))
278 return true;
279 return false;
280 };
281
282 // Map of the preferred location for each value.
283 DenseMap<ValueIDNum, LocIdx> ValueToLoc;
284
285 // Initialized the preferred-location map with illegal locations, to be
286 // filled in later.
287 for (const auto &VLoc : VLocs)
288 if (VLoc.second.Kind == DbgValue::Def)
289 ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
290
291 ActiveMLocs.reserve(VLocs.size());
292 ActiveVLocs.reserve(VLocs.size());
293
294 // Produce a map of value numbers to the current machine locs they live
295 // in. When emulating VarLocBasedImpl, there should only be one
296 // location; when not, we get to pick.
297 for (auto Location : MTracker->locations()) {
298 LocIdx Idx = Location.Idx;
299 ValueIDNum &VNum = MLocs[Idx.asU64()];
300 VarLocs.push_back(VNum);
301
302 // Is there a variable that wants a location for this value? If not, skip.
303 auto VIt = ValueToLoc.find(VNum);
304 if (VIt == ValueToLoc.end())
305 continue;
306
307 LocIdx CurLoc = VIt->second;
308 // In order of preference, pick:
309 // * Callee saved registers,
310 // * Other registers,
311 // * Spill slots.
312 if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
313 (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
314 // Insert, or overwrite if insertion failed.
315 VIt->second = Idx;
316 }
317 }
318
319 // Now map variables to their picked LocIdxes.
320 for (const auto &Var : VLocs) {
321 if (Var.second.Kind == DbgValue::Const) {
322 PendingDbgValues.push_back(
323 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
324 continue;
325 }
326
327 // If the value has no location, we can't make a variable location.
328 const ValueIDNum &Num = Var.second.ID;
329 auto ValuesPreferredLoc = ValueToLoc.find(Num);
330 if (ValuesPreferredLoc->second.isIllegal()) {
331 // If it's a def that occurs in this block, register it as a
332 // use-before-def to be resolved as we step through the block.
333 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
334 addUseBeforeDef(Var.first, Var.second.Properties, Num);
335 else
336 recoverAsEntryValue(Var.first, Var.second.Properties, Num);
337 continue;
338 }
339
340 LocIdx M = ValuesPreferredLoc->second;
341 auto NewValue = LocAndProperties{M, Var.second.Properties};
342 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
343 if (!Result.second)
344 Result.first->second = NewValue;
345 ActiveMLocs[M].insert(Var.first);
346 PendingDbgValues.push_back(
347 MTracker->emitLoc(M, Var.first, Var.second.Properties));
348 }
349 flushDbgValues(MBB.begin(), &MBB);
350 }
351
352 /// Record that \p Var has value \p ID, a value that becomes available
353 /// later in the function.
addUseBeforeDef(const DebugVariable & Var,const DbgValueProperties & Properties,ValueIDNum ID)354 void addUseBeforeDef(const DebugVariable &Var,
355 const DbgValueProperties &Properties, ValueIDNum ID) {
356 UseBeforeDef UBD = {ID, Var, Properties};
357 UseBeforeDefs[ID.getInst()].push_back(UBD);
358 UseBeforeDefVariables.insert(Var);
359 }
360
361 /// After the instruction at index \p Inst and position \p pos has been
362 /// processed, check whether it defines a variable value in a use-before-def.
363 /// If so, and the variable value hasn't changed since the start of the
364 /// block, create a DBG_VALUE.
checkInstForNewValues(unsigned Inst,MachineBasicBlock::iterator pos)365 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
366 auto MIt = UseBeforeDefs.find(Inst);
367 if (MIt == UseBeforeDefs.end())
368 return;
369
370 for (auto &Use : MIt->second) {
371 LocIdx L = Use.ID.getLoc();
372
373 // If something goes very wrong, we might end up labelling a COPY
374 // instruction or similar with an instruction number, where it doesn't
375 // actually define a new value, instead it moves a value. In case this
376 // happens, discard.
377 if (MTracker->readMLoc(L) != Use.ID)
378 continue;
379
380 // If a different debug instruction defined the variable value / location
381 // since the start of the block, don't materialize this use-before-def.
382 if (!UseBeforeDefVariables.count(Use.Var))
383 continue;
384
385 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
386 }
387 flushDbgValues(pos, nullptr);
388 }
389
390 /// Helper to move created DBG_VALUEs into Transfers collection.
flushDbgValues(MachineBasicBlock::iterator Pos,MachineBasicBlock * MBB)391 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
392 if (PendingDbgValues.size() == 0)
393 return;
394
395 // Pick out the instruction start position.
396 MachineBasicBlock::instr_iterator BundleStart;
397 if (MBB && Pos == MBB->begin())
398 BundleStart = MBB->instr_begin();
399 else
400 BundleStart = getBundleStart(Pos->getIterator());
401
402 Transfers.push_back({BundleStart, MBB, PendingDbgValues});
403 PendingDbgValues.clear();
404 }
405
isEntryValueVariable(const DebugVariable & Var,const DIExpression * Expr) const406 bool isEntryValueVariable(const DebugVariable &Var,
407 const DIExpression *Expr) const {
408 if (!Var.getVariable()->isParameter())
409 return false;
410
411 if (Var.getInlinedAt())
412 return false;
413
414 if (Expr->getNumElements() > 0)
415 return false;
416
417 return true;
418 }
419
isEntryValueValue(const ValueIDNum & Val) const420 bool isEntryValueValue(const ValueIDNum &Val) const {
421 // Must be in entry block (block number zero), and be a PHI / live-in value.
422 if (Val.getBlock() || !Val.isPHI())
423 return false;
424
425 // Entry values must enter in a register.
426 if (MTracker->isSpill(Val.getLoc()))
427 return false;
428
429 Register SP = TLI->getStackPointerRegisterToSaveRestore();
430 Register FP = TRI.getFrameRegister(MF);
431 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
432 return Reg != SP && Reg != FP;
433 }
434
recoverAsEntryValue(const DebugVariable & Var,const DbgValueProperties & Prop,const ValueIDNum & Num)435 bool recoverAsEntryValue(const DebugVariable &Var,
436 const DbgValueProperties &Prop,
437 const ValueIDNum &Num) {
438 // Is this variable location a candidate to be an entry value. First,
439 // should we be trying this at all?
440 if (!ShouldEmitDebugEntryValues)
441 return false;
442
443 // Is the variable appropriate for entry values (i.e., is a parameter).
444 if (!isEntryValueVariable(Var, Prop.DIExpr))
445 return false;
446
447 // Is the value assigned to this variable still the entry value?
448 if (!isEntryValueValue(Num))
449 return false;
450
451 // Emit a variable location using an entry value expression.
452 DIExpression *NewExpr =
453 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
454 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
455 MachineOperand MO = MachineOperand::CreateReg(Reg, false);
456
457 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
458 return true;
459 }
460
461 /// Change a variable value after encountering a DBG_VALUE inside a block.
redefVar(const MachineInstr & MI)462 void redefVar(const MachineInstr &MI) {
463 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
464 MI.getDebugLoc()->getInlinedAt());
465 DbgValueProperties Properties(MI);
466
467 const MachineOperand &MO = MI.getOperand(0);
468
469 // Ignore non-register locations, we don't transfer those.
470 if (!MO.isReg() || MO.getReg() == 0) {
471 auto It = ActiveVLocs.find(Var);
472 if (It != ActiveVLocs.end()) {
473 ActiveMLocs[It->second.Loc].erase(Var);
474 ActiveVLocs.erase(It);
475 }
476 // Any use-before-defs no longer apply.
477 UseBeforeDefVariables.erase(Var);
478 return;
479 }
480
481 Register Reg = MO.getReg();
482 LocIdx NewLoc = MTracker->getRegMLoc(Reg);
483 redefVar(MI, Properties, NewLoc);
484 }
485
486 /// Handle a change in variable location within a block. Terminate the
487 /// variables current location, and record the value it now refers to, so
488 /// that we can detect location transfers later on.
redefVar(const MachineInstr & MI,const DbgValueProperties & Properties,Optional<LocIdx> OptNewLoc)489 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
490 Optional<LocIdx> OptNewLoc) {
491 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
492 MI.getDebugLoc()->getInlinedAt());
493 // Any use-before-defs no longer apply.
494 UseBeforeDefVariables.erase(Var);
495
496 // Erase any previous location,
497 auto It = ActiveVLocs.find(Var);
498 if (It != ActiveVLocs.end())
499 ActiveMLocs[It->second.Loc].erase(Var);
500
501 // If there _is_ no new location, all we had to do was erase.
502 if (!OptNewLoc)
503 return;
504 LocIdx NewLoc = *OptNewLoc;
505
506 // Check whether our local copy of values-by-location in #VarLocs is out of
507 // date. Wipe old tracking data for the location if it's been clobbered in
508 // the meantime.
509 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
510 for (const auto &P : ActiveMLocs[NewLoc]) {
511 ActiveVLocs.erase(P);
512 }
513 ActiveMLocs[NewLoc.asU64()].clear();
514 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
515 }
516
517 ActiveMLocs[NewLoc].insert(Var);
518 if (It == ActiveVLocs.end()) {
519 ActiveVLocs.insert(
520 std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
521 } else {
522 It->second.Loc = NewLoc;
523 It->second.Properties = Properties;
524 }
525 }
526
527 /// Account for a location \p mloc being clobbered. Examine the variable
528 /// locations that will be terminated: and try to recover them by using
529 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
530 /// explicitly terminate a location if it can't be recovered.
clobberMloc(LocIdx MLoc,MachineBasicBlock::iterator Pos,bool MakeUndef=true)531 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
532 bool MakeUndef = true) {
533 auto ActiveMLocIt = ActiveMLocs.find(MLoc);
534 if (ActiveMLocIt == ActiveMLocs.end())
535 return;
536
537 // What was the old variable value?
538 ValueIDNum OldValue = VarLocs[MLoc.asU64()];
539 clobberMloc(MLoc, OldValue, Pos, MakeUndef);
540 }
541 /// Overload that takes an explicit value \p OldValue for when the value in
542 /// \p MLoc has changed and the TransferTracker's locations have not been
543 /// updated yet.
clobberMloc(LocIdx MLoc,ValueIDNum OldValue,MachineBasicBlock::iterator Pos,bool MakeUndef=true)544 void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
545 MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
546 auto ActiveMLocIt = ActiveMLocs.find(MLoc);
547 if (ActiveMLocIt == ActiveMLocs.end())
548 return;
549
550 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
551
552 // Examine the remaining variable locations: if we can find the same value
553 // again, we can recover the location.
554 Optional<LocIdx> NewLoc = None;
555 for (auto Loc : MTracker->locations())
556 if (Loc.Value == OldValue)
557 NewLoc = Loc.Idx;
558
559 // If there is no location, and we weren't asked to make the variable
560 // explicitly undef, then stop here.
561 if (!NewLoc && !MakeUndef) {
562 // Try and recover a few more locations with entry values.
563 for (const auto &Var : ActiveMLocIt->second) {
564 auto &Prop = ActiveVLocs.find(Var)->second.Properties;
565 recoverAsEntryValue(Var, Prop, OldValue);
566 }
567 flushDbgValues(Pos, nullptr);
568 return;
569 }
570
571 // Examine all the variables based on this location.
572 DenseSet<DebugVariable> NewMLocs;
573 for (const auto &Var : ActiveMLocIt->second) {
574 auto ActiveVLocIt = ActiveVLocs.find(Var);
575 // Re-state the variable location: if there's no replacement then NewLoc
576 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
577 // identifying the alternative location will be emitted.
578 const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
579 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
580
581 // Update machine locations <=> variable locations maps. Defer updating
582 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
583 if (!NewLoc) {
584 ActiveVLocs.erase(ActiveVLocIt);
585 } else {
586 ActiveVLocIt->second.Loc = *NewLoc;
587 NewMLocs.insert(Var);
588 }
589 }
590
591 // Commit any deferred ActiveMLoc changes.
592 if (!NewMLocs.empty())
593 for (auto &Var : NewMLocs)
594 ActiveMLocs[*NewLoc].insert(Var);
595
596 // We lazily track what locations have which values; if we've found a new
597 // location for the clobbered value, remember it.
598 if (NewLoc)
599 VarLocs[NewLoc->asU64()] = OldValue;
600
601 flushDbgValues(Pos, nullptr);
602
603 // Re-find ActiveMLocIt, iterator could have been invalidated.
604 ActiveMLocIt = ActiveMLocs.find(MLoc);
605 ActiveMLocIt->second.clear();
606 }
607
608 /// Transfer variables based on \p Src to be based on \p Dst. This handles
609 /// both register copies as well as spills and restores. Creates DBG_VALUEs
610 /// describing the movement.
transferMlocs(LocIdx Src,LocIdx Dst,MachineBasicBlock::iterator Pos)611 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
612 // Does Src still contain the value num we expect? If not, it's been
613 // clobbered in the meantime, and our variable locations are stale.
614 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
615 return;
616
617 // assert(ActiveMLocs[Dst].size() == 0);
618 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
619
620 // Move set of active variables from one location to another.
621 auto MovingVars = ActiveMLocs[Src];
622 ActiveMLocs[Dst] = MovingVars;
623 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
624
625 // For each variable based on Src; create a location at Dst.
626 for (const auto &Var : MovingVars) {
627 auto ActiveVLocIt = ActiveVLocs.find(Var);
628 assert(ActiveVLocIt != ActiveVLocs.end());
629 ActiveVLocIt->second.Loc = Dst;
630
631 MachineInstr *MI =
632 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
633 PendingDbgValues.push_back(MI);
634 }
635 ActiveMLocs[Src].clear();
636 flushDbgValues(Pos, nullptr);
637
638 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
639 // about the old location.
640 if (EmulateOldLDV)
641 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
642 }
643
emitMOLoc(const MachineOperand & MO,const DebugVariable & Var,const DbgValueProperties & Properties)644 MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
645 const DebugVariable &Var,
646 const DbgValueProperties &Properties) {
647 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
648 Var.getVariable()->getScope(),
649 const_cast<DILocation *>(Var.getInlinedAt()));
650 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
651 MIB.add(MO);
652 if (Properties.Indirect)
653 MIB.addImm(0);
654 else
655 MIB.addReg(0);
656 MIB.addMetadata(Var.getVariable());
657 MIB.addMetadata(Properties.DIExpr);
658 return MIB;
659 }
660 };
661
662 //===----------------------------------------------------------------------===//
663 // Implementation
664 //===----------------------------------------------------------------------===//
665
666 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
667 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
668
669 #ifndef NDEBUG
dump(const MLocTracker * MTrack) const670 void DbgValue::dump(const MLocTracker *MTrack) const {
671 if (Kind == Const) {
672 MO->dump();
673 } else if (Kind == NoVal) {
674 dbgs() << "NoVal(" << BlockNo << ")";
675 } else if (Kind == VPHI) {
676 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
677 } else {
678 assert(Kind == Def);
679 dbgs() << MTrack->IDAsString(ID);
680 }
681 if (Properties.Indirect)
682 dbgs() << " indir";
683 if (Properties.DIExpr)
684 dbgs() << " " << *Properties.DIExpr;
685 }
686 #endif
687
MLocTracker(MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const TargetLowering & TLI)688 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
689 const TargetRegisterInfo &TRI,
690 const TargetLowering &TLI)
691 : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
692 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
693 NumRegs = TRI.getNumRegs();
694 reset();
695 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
696 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
697
698 // Always track SP. This avoids the implicit clobbering caused by regmasks
699 // from affectings its values. (LiveDebugValues disbelieves calls and
700 // regmasks that claim to clobber SP).
701 Register SP = TLI.getStackPointerRegisterToSaveRestore();
702 if (SP) {
703 unsigned ID = getLocID(SP);
704 (void)lookupOrTrackRegister(ID);
705
706 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
707 SPAliases.insert(*RAI);
708 }
709
710 // Build some common stack positions -- full registers being spilt to the
711 // stack.
712 StackSlotIdxes.insert({{8, 0}, 0});
713 StackSlotIdxes.insert({{16, 0}, 1});
714 StackSlotIdxes.insert({{32, 0}, 2});
715 StackSlotIdxes.insert({{64, 0}, 3});
716 StackSlotIdxes.insert({{128, 0}, 4});
717 StackSlotIdxes.insert({{256, 0}, 5});
718 StackSlotIdxes.insert({{512, 0}, 6});
719
720 // Traverse all the subregister idxes, and ensure there's an index for them.
721 // Duplicates are no problem: we're interested in their position in the
722 // stack slot, we don't want to type the slot.
723 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
724 unsigned Size = TRI.getSubRegIdxSize(I);
725 unsigned Offs = TRI.getSubRegIdxOffset(I);
726 unsigned Idx = StackSlotIdxes.size();
727
728 // Some subregs have -1, -2 and so forth fed into their fields, to mean
729 // special backend things. Ignore those.
730 if (Size > 60000 || Offs > 60000)
731 continue;
732
733 StackSlotIdxes.insert({{Size, Offs}, Idx});
734 }
735
736 // There may also be strange register class sizes (think x86 fp80s).
737 for (const TargetRegisterClass *RC : TRI.regclasses()) {
738 unsigned Size = TRI.getRegSizeInBits(*RC);
739
740 // We might see special reserved values as sizes, and classes for other
741 // stuff the machine tries to model. If it's more than 512 bits, then it
742 // is very unlikely to be a register than can be spilt.
743 if (Size > 512)
744 continue;
745
746 unsigned Idx = StackSlotIdxes.size();
747 StackSlotIdxes.insert({{Size, 0}, Idx});
748 }
749
750 for (auto &Idx : StackSlotIdxes)
751 StackIdxesToPos[Idx.second] = Idx.first;
752
753 NumSlotIdxes = StackSlotIdxes.size();
754 }
755
trackRegister(unsigned ID)756 LocIdx MLocTracker::trackRegister(unsigned ID) {
757 assert(ID != 0);
758 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
759 LocIdxToIDNum.grow(NewIdx);
760 LocIdxToLocID.grow(NewIdx);
761
762 // Default: it's an mphi.
763 ValueIDNum ValNum = {CurBB, 0, NewIdx};
764 // Was this reg ever touched by a regmask?
765 for (const auto &MaskPair : reverse(Masks)) {
766 if (MaskPair.first->clobbersPhysReg(ID)) {
767 // There was an earlier def we skipped.
768 ValNum = {CurBB, MaskPair.second, NewIdx};
769 break;
770 }
771 }
772
773 LocIdxToIDNum[NewIdx] = ValNum;
774 LocIdxToLocID[NewIdx] = ID;
775 return NewIdx;
776 }
777
writeRegMask(const MachineOperand * MO,unsigned CurBB,unsigned InstID)778 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
779 unsigned InstID) {
780 // Def any register we track have that isn't preserved. The regmask
781 // terminates the liveness of a register, meaning its value can't be
782 // relied upon -- we represent this by giving it a new value.
783 for (auto Location : locations()) {
784 unsigned ID = LocIdxToLocID[Location.Idx];
785 // Don't clobber SP, even if the mask says it's clobbered.
786 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
787 defReg(ID, CurBB, InstID);
788 }
789 Masks.push_back(std::make_pair(MO, InstID));
790 }
791
getOrTrackSpillLoc(SpillLoc L)792 Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
793 SpillLocationNo SpillID(SpillLocs.idFor(L));
794
795 if (SpillID.id() == 0) {
796 // If there is no location, and we have reached the limit of how many stack
797 // slots to track, then don't track this one.
798 if (SpillLocs.size() >= StackWorkingSetLimit)
799 return None;
800
801 // Spill location is untracked: create record for this one, and all
802 // subregister slots too.
803 SpillID = SpillLocationNo(SpillLocs.insert(L));
804 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
805 unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
806 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
807 LocIdxToIDNum.grow(Idx);
808 LocIdxToLocID.grow(Idx);
809 LocIDToLocIdx.push_back(Idx);
810 LocIdxToLocID[Idx] = L;
811 // Initialize to PHI value; corresponds to the location's live-in value
812 // during transfer function construction.
813 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
814 }
815 }
816 return SpillID;
817 }
818
LocIdxToName(LocIdx Idx) const819 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
820 unsigned ID = LocIdxToLocID[Idx];
821 if (ID >= NumRegs) {
822 StackSlotPos Pos = locIDToSpillIdx(ID);
823 ID -= NumRegs;
824 unsigned Slot = ID / NumSlotIdxes;
825 return Twine("slot ")
826 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
827 .concat(Twine(" offs ").concat(Twine(Pos.second))))))
828 .str();
829 } else {
830 return TRI.getRegAsmName(ID).str();
831 }
832 }
833
IDAsString(const ValueIDNum & Num) const834 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
835 std::string DefName = LocIdxToName(Num.getLoc());
836 return Num.asString(DefName);
837 }
838
839 #ifndef NDEBUG
dump()840 LLVM_DUMP_METHOD void MLocTracker::dump() {
841 for (auto Location : locations()) {
842 std::string MLocName = LocIdxToName(Location.Value.getLoc());
843 std::string DefName = Location.Value.asString(MLocName);
844 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
845 }
846 }
847
dump_mloc_map()848 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
849 for (auto Location : locations()) {
850 std::string foo = LocIdxToName(Location.Idx);
851 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
852 }
853 }
854 #endif
855
emitLoc(Optional<LocIdx> MLoc,const DebugVariable & Var,const DbgValueProperties & Properties)856 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
857 const DebugVariable &Var,
858 const DbgValueProperties &Properties) {
859 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
860 Var.getVariable()->getScope(),
861 const_cast<DILocation *>(Var.getInlinedAt()));
862 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
863
864 const DIExpression *Expr = Properties.DIExpr;
865 if (!MLoc) {
866 // No location -> DBG_VALUE $noreg
867 MIB.addReg(0);
868 MIB.addReg(0);
869 } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
870 unsigned LocID = LocIdxToLocID[*MLoc];
871 SpillLocationNo SpillID = locIDToSpill(LocID);
872 StackSlotPos StackIdx = locIDToSpillIdx(LocID);
873 unsigned short Offset = StackIdx.second;
874
875 // TODO: support variables that are located in spill slots, with non-zero
876 // offsets from the start of the spill slot. It would require some more
877 // complex DIExpression calculations. This doesn't seem to be produced by
878 // LLVM right now, so don't try and support it.
879 // Accept no-subregister slots and subregisters where the offset is zero.
880 // The consumer should already have type information to work out how large
881 // the variable is.
882 if (Offset == 0) {
883 const SpillLoc &Spill = SpillLocs[SpillID.id()];
884 unsigned Base = Spill.SpillBase;
885 MIB.addReg(Base);
886
887 // There are several ways we can dereference things, and several inputs
888 // to consider:
889 // * NRVO variables will appear with IsIndirect set, but should have
890 // nothing else in their DIExpressions,
891 // * Variables with DW_OP_stack_value in their expr already need an
892 // explicit dereference of the stack location,
893 // * Values that don't match the variable size need DW_OP_deref_size,
894 // * Everything else can just become a simple location expression.
895
896 // We need to use deref_size whenever there's a mismatch between the
897 // size of value and the size of variable portion being read.
898 // Additionally, we should use it whenever dealing with stack_value
899 // fragments, to avoid the consumer having to determine the deref size
900 // from DW_OP_piece.
901 bool UseDerefSize = false;
902 unsigned ValueSizeInBits = getLocSizeInBits(*MLoc);
903 unsigned DerefSizeInBytes = ValueSizeInBits / 8;
904 if (auto Fragment = Var.getFragment()) {
905 unsigned VariableSizeInBits = Fragment->SizeInBits;
906 if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
907 UseDerefSize = true;
908 } else if (auto Size = Var.getVariable()->getSizeInBits()) {
909 if (*Size != ValueSizeInBits) {
910 UseDerefSize = true;
911 }
912 }
913
914 if (Properties.Indirect) {
915 // This is something like an NRVO variable, where the pointer has been
916 // spilt to the stack, or a dbg.addr pointing at a coroutine frame
917 // field. It should end up being a memory location, with the pointer
918 // to the variable loaded off the stack with a deref. It can't be a
919 // DW_OP_stack_value expression.
920 assert(!Expr->isImplicit());
921 Expr = TRI.prependOffsetExpression(
922 Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
923 Spill.SpillOffset);
924 MIB.addImm(0);
925 } else if (UseDerefSize) {
926 // We're loading a value off the stack that's not the same size as the
927 // variable. Add / subtract stack offset, explicitly deref with a size,
928 // and add DW_OP_stack_value if not already present.
929 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size,
930 DerefSizeInBytes};
931 Expr = DIExpression::prependOpcodes(Expr, Ops, true);
932 unsigned Flags = DIExpression::StackValue | DIExpression::ApplyOffset;
933 Expr = TRI.prependOffsetExpression(Expr, Flags, Spill.SpillOffset);
934 MIB.addReg(0);
935 } else if (Expr->isComplex()) {
936 // A variable with no size ambiguity, but with extra elements in it's
937 // expression. Manually dereference the stack location.
938 assert(Expr->isComplex());
939 Expr = TRI.prependOffsetExpression(
940 Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
941 Spill.SpillOffset);
942 MIB.addReg(0);
943 } else {
944 // A plain value that has been spilt to the stack, with no further
945 // context. Request a location expression, marking the DBG_VALUE as
946 // IsIndirect.
947 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
948 Spill.SpillOffset);
949 MIB.addImm(0);
950 }
951 } else {
952 // This is a stack location with a weird subregister offset: emit an undef
953 // DBG_VALUE instead.
954 MIB.addReg(0);
955 MIB.addReg(0);
956 }
957 } else {
958 // Non-empty, non-stack slot, must be a plain register.
959 unsigned LocID = LocIdxToLocID[*MLoc];
960 MIB.addReg(LocID);
961 if (Properties.Indirect)
962 MIB.addImm(0);
963 else
964 MIB.addReg(0);
965 }
966
967 MIB.addMetadata(Var.getVariable());
968 MIB.addMetadata(Expr);
969 return MIB;
970 }
971
972 /// Default construct and initialize the pass.
973 InstrRefBasedLDV::InstrRefBasedLDV() = default;
974
isCalleeSaved(LocIdx L) const975 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
976 unsigned Reg = MTracker->LocIdxToLocID[L];
977 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
978 if (CalleeSavedRegs.test(*RAI))
979 return true;
980 return false;
981 }
982
983 //===----------------------------------------------------------------------===//
984 // Debug Range Extension Implementation
985 //===----------------------------------------------------------------------===//
986
987 #ifndef NDEBUG
988 // Something to restore in the future.
989 // void InstrRefBasedLDV::printVarLocInMBB(..)
990 #endif
991
992 Optional<SpillLocationNo>
extractSpillBaseRegAndOffset(const MachineInstr & MI)993 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
994 assert(MI.hasOneMemOperand() &&
995 "Spill instruction does not have exactly one memory operand?");
996 auto MMOI = MI.memoperands_begin();
997 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
998 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
999 "Inconsistent memory operand in spill instruction");
1000 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1001 const MachineBasicBlock *MBB = MI.getParent();
1002 Register Reg;
1003 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1004 return MTracker->getOrTrackSpillLoc({Reg, Offset});
1005 }
1006
1007 Optional<LocIdx>
findLocationForMemOperand(const MachineInstr & MI)1008 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1009 Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1010 if (!SpillLoc)
1011 return None;
1012
1013 // Where in the stack slot is this value defined -- i.e., what size of value
1014 // is this? An important question, because it could be loaded into a register
1015 // from the stack at some point. Happily the memory operand will tell us
1016 // the size written to the stack.
1017 auto *MemOperand = *MI.memoperands_begin();
1018 unsigned SizeInBits = MemOperand->getSizeInBits();
1019
1020 // Find that position in the stack indexes we're tracking.
1021 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1022 if (IdxIt == MTracker->StackSlotIdxes.end())
1023 // That index is not tracked. This is suprising, and unlikely to ever
1024 // occur, but the safe action is to indicate the variable is optimised out.
1025 return None;
1026
1027 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1028 return MTracker->getSpillMLoc(SpillID);
1029 }
1030
1031 /// End all previous ranges related to @MI and start a new range from @MI
1032 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI)1033 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1034 if (!MI.isDebugValue())
1035 return false;
1036
1037 const DILocalVariable *Var = MI.getDebugVariable();
1038 const DIExpression *Expr = MI.getDebugExpression();
1039 const DILocation *DebugLoc = MI.getDebugLoc();
1040 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1041 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1042 "Expected inlined-at fields to agree");
1043
1044 DebugVariable V(Var, Expr, InlinedAt);
1045 DbgValueProperties Properties(MI);
1046
1047 // If there are no instructions in this lexical scope, do no location tracking
1048 // at all, this variable shouldn't get a legitimate location range.
1049 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1050 if (Scope == nullptr)
1051 return true; // handled it; by doing nothing
1052
1053 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
1054 // contribute to locations in this block, but don't propagate further.
1055 // Interpret it like a DBG_VALUE $noreg.
1056 if (MI.isDebugValueList()) {
1057 if (VTracker)
1058 VTracker->defVar(MI, Properties, None);
1059 if (TTracker)
1060 TTracker->redefVar(MI, Properties, None);
1061 return true;
1062 }
1063
1064 const MachineOperand &MO = MI.getOperand(0);
1065
1066 // MLocTracker needs to know that this register is read, even if it's only
1067 // read by a debug inst.
1068 if (MO.isReg() && MO.getReg() != 0)
1069 (void)MTracker->readReg(MO.getReg());
1070
1071 // If we're preparing for the second analysis (variables), the machine value
1072 // locations are already solved, and we report this DBG_VALUE and the value
1073 // it refers to to VLocTracker.
1074 if (VTracker) {
1075 if (MO.isReg()) {
1076 // Feed defVar the new variable location, or if this is a
1077 // DBG_VALUE $noreg, feed defVar None.
1078 if (MO.getReg())
1079 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1080 else
1081 VTracker->defVar(MI, Properties, None);
1082 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1083 MI.getOperand(0).isCImm()) {
1084 VTracker->defVar(MI, MI.getOperand(0));
1085 }
1086 }
1087
1088 // If performing final tracking of transfers, report this variable definition
1089 // to the TransferTracker too.
1090 if (TTracker)
1091 TTracker->redefVar(MI);
1092 return true;
1093 }
1094
transferDebugInstrRef(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1095 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1096 const ValueTable *MLiveOuts,
1097 const ValueTable *MLiveIns) {
1098 if (!MI.isDebugRef())
1099 return false;
1100
1101 // Only handle this instruction when we are building the variable value
1102 // transfer function.
1103 if (!VTracker && !TTracker)
1104 return false;
1105
1106 unsigned InstNo = MI.getOperand(0).getImm();
1107 unsigned OpNo = MI.getOperand(1).getImm();
1108
1109 const DILocalVariable *Var = MI.getDebugVariable();
1110 const DIExpression *Expr = MI.getDebugExpression();
1111 const DILocation *DebugLoc = MI.getDebugLoc();
1112 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1113 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1114 "Expected inlined-at fields to agree");
1115
1116 DebugVariable V(Var, Expr, InlinedAt);
1117
1118 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1119 if (Scope == nullptr)
1120 return true; // Handled by doing nothing. This variable is never in scope.
1121
1122 const MachineFunction &MF = *MI.getParent()->getParent();
1123
1124 // Various optimizations may have happened to the value during codegen,
1125 // recorded in the value substitution table. Apply any substitutions to
1126 // the instruction / operand number in this DBG_INSTR_REF, and collect
1127 // any subregister extractions performed during optimization.
1128
1129 // Create dummy substitution with Src set, for lookup.
1130 auto SoughtSub =
1131 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1132
1133 SmallVector<unsigned, 4> SeenSubregs;
1134 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1135 while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1136 LowerBoundIt->Src == SoughtSub.Src) {
1137 std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1138 SoughtSub.Src = LowerBoundIt->Dest;
1139 if (unsigned Subreg = LowerBoundIt->Subreg)
1140 SeenSubregs.push_back(Subreg);
1141 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1142 }
1143
1144 // Default machine value number is <None> -- if no instruction defines
1145 // the corresponding value, it must have been optimized out.
1146 Optional<ValueIDNum> NewID = None;
1147
1148 // Try to lookup the instruction number, and find the machine value number
1149 // that it defines. It could be an instruction, or a PHI.
1150 auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1151 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1152 DebugPHINumToValue.end(), InstNo);
1153 if (InstrIt != DebugInstrNumToInstr.end()) {
1154 const MachineInstr &TargetInstr = *InstrIt->second.first;
1155 uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1156
1157 // Pick out the designated operand. It might be a memory reference, if
1158 // a register def was folded into a stack store.
1159 if (OpNo == MachineFunction::DebugOperandMemNumber &&
1160 TargetInstr.hasOneMemOperand()) {
1161 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1162 if (L)
1163 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1164 } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1165 // Permit the debug-info to be completely wrong: identifying a nonexistant
1166 // operand, or one that is not a register definition, means something
1167 // unexpected happened during optimisation. Broken debug-info, however,
1168 // shouldn't crash the compiler -- instead leave the variable value as
1169 // None, which will make it appear "optimised out".
1170 if (OpNo < TargetInstr.getNumOperands()) {
1171 const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1172
1173 if (MO.isReg() && MO.isDef() && MO.getReg()) {
1174 unsigned LocID = MTracker->getLocID(MO.getReg());
1175 LocIdx L = MTracker->LocIDToLocIdx[LocID];
1176 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1177 }
1178 }
1179
1180 if (!NewID) {
1181 LLVM_DEBUG(
1182 { dbgs() << "Seen instruction reference to illegal operand\n"; });
1183 }
1184 }
1185 // else: NewID is left as None.
1186 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1187 // It's actually a PHI value. Which value it is might not be obvious, use
1188 // the resolver helper to find out.
1189 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1190 MI, InstNo);
1191 }
1192
1193 // Apply any subregister extractions, in reverse. We might have seen code
1194 // like this:
1195 // CALL64 @foo, implicit-def $rax
1196 // %0:gr64 = COPY $rax
1197 // %1:gr32 = COPY %0.sub_32bit
1198 // %2:gr16 = COPY %1.sub_16bit
1199 // %3:gr8 = COPY %2.sub_8bit
1200 // In which case each copy would have been recorded as a substitution with
1201 // a subregister qualifier. Apply those qualifiers now.
1202 if (NewID && !SeenSubregs.empty()) {
1203 unsigned Offset = 0;
1204 unsigned Size = 0;
1205
1206 // Look at each subregister that we passed through, and progressively
1207 // narrow in, accumulating any offsets that occur. Substitutions should
1208 // only ever be the same or narrower width than what they read from;
1209 // iterate in reverse order so that we go from wide to small.
1210 for (unsigned Subreg : reverse(SeenSubregs)) {
1211 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1212 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1213 Offset += ThisOffset;
1214 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1215 }
1216
1217 // If that worked, look for an appropriate subregister with the register
1218 // where the define happens. Don't look at values that were defined during
1219 // a stack write: we can't currently express register locations within
1220 // spills.
1221 LocIdx L = NewID->getLoc();
1222 if (NewID && !MTracker->isSpill(L)) {
1223 // Find the register class for the register where this def happened.
1224 // FIXME: no index for this?
1225 Register Reg = MTracker->LocIdxToLocID[L];
1226 const TargetRegisterClass *TRC = nullptr;
1227 for (const auto *TRCI : TRI->regclasses())
1228 if (TRCI->contains(Reg))
1229 TRC = TRCI;
1230 assert(TRC && "Couldn't find target register class?");
1231
1232 // If the register we have isn't the right size or in the right place,
1233 // Try to find a subregister inside it.
1234 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1235 if (Size != MainRegSize || Offset) {
1236 // Enumerate all subregisters, searching.
1237 Register NewReg = 0;
1238 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1239 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1240 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1241 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1242 if (SubregSize == Size && SubregOffset == Offset) {
1243 NewReg = *SRI;
1244 break;
1245 }
1246 }
1247
1248 // If we didn't find anything: there's no way to express our value.
1249 if (!NewReg) {
1250 NewID = None;
1251 } else {
1252 // Re-state the value as being defined within the subregister
1253 // that we found.
1254 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1255 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1256 }
1257 }
1258 } else {
1259 // If we can't handle subregisters, unset the new value.
1260 NewID = None;
1261 }
1262 }
1263
1264 // We, we have a value number or None. Tell the variable value tracker about
1265 // it. The rest of this LiveDebugValues implementation acts exactly the same
1266 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1267 // aren't immediately available).
1268 DbgValueProperties Properties(Expr, false);
1269 if (VTracker)
1270 VTracker->defVar(MI, Properties, NewID);
1271
1272 // If we're on the final pass through the function, decompose this INSTR_REF
1273 // into a plain DBG_VALUE.
1274 if (!TTracker)
1275 return true;
1276
1277 // Pick a location for the machine value number, if such a location exists.
1278 // (This information could be stored in TransferTracker to make it faster).
1279 Optional<LocIdx> FoundLoc = None;
1280 for (auto Location : MTracker->locations()) {
1281 LocIdx CurL = Location.Idx;
1282 ValueIDNum ID = MTracker->readMLoc(CurL);
1283 if (NewID && ID == NewID) {
1284 // If this is the first location with that value, pick it. Otherwise,
1285 // consider whether it's a "longer term" location.
1286 if (!FoundLoc) {
1287 FoundLoc = CurL;
1288 continue;
1289 }
1290
1291 if (MTracker->isSpill(CurL))
1292 FoundLoc = CurL; // Spills are a longer term location.
1293 else if (!MTracker->isSpill(*FoundLoc) &&
1294 !MTracker->isSpill(CurL) &&
1295 !isCalleeSaved(*FoundLoc) &&
1296 isCalleeSaved(CurL))
1297 FoundLoc = CurL; // Callee saved regs are longer term than normal.
1298 }
1299 }
1300
1301 // Tell transfer tracker that the variable value has changed.
1302 TTracker->redefVar(MI, Properties, FoundLoc);
1303
1304 // If there was a value with no location; but the value is defined in a
1305 // later instruction in this block, this is a block-local use-before-def.
1306 if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1307 NewID->getInst() > CurInst)
1308 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1309
1310 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1311 // This DBG_VALUE is potentially a $noreg / undefined location, if
1312 // FoundLoc is None.
1313 // (XXX -- could morph the DBG_INSTR_REF in the future).
1314 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1315 TTracker->PendingDbgValues.push_back(DbgMI);
1316 TTracker->flushDbgValues(MI.getIterator(), nullptr);
1317 return true;
1318 }
1319
transferDebugPHI(MachineInstr & MI)1320 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1321 if (!MI.isDebugPHI())
1322 return false;
1323
1324 // Analyse these only when solving the machine value location problem.
1325 if (VTracker || TTracker)
1326 return true;
1327
1328 // First operand is the value location, either a stack slot or register.
1329 // Second is the debug instruction number of the original PHI.
1330 const MachineOperand &MO = MI.getOperand(0);
1331 unsigned InstrNum = MI.getOperand(1).getImm();
1332
1333 auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1334 // Helper lambda to do any accounting when we fail to find a location for
1335 // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1336 // dead stack slot, for example.
1337 // Record a DebugPHIRecord with an empty value + location.
1338 DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None});
1339 return true;
1340 };
1341
1342 if (MO.isReg() && MO.getReg()) {
1343 // The value is whatever's currently in the register. Read and record it,
1344 // to be analysed later.
1345 Register Reg = MO.getReg();
1346 ValueIDNum Num = MTracker->readReg(Reg);
1347 auto PHIRec = DebugPHIRecord(
1348 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1349 DebugPHINumToValue.push_back(PHIRec);
1350
1351 // Ensure this register is tracked.
1352 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1353 MTracker->lookupOrTrackRegister(*RAI);
1354 } else if (MO.isFI()) {
1355 // The value is whatever's in this stack slot.
1356 unsigned FI = MO.getIndex();
1357
1358 // If the stack slot is dead, then this was optimized away.
1359 // FIXME: stack slot colouring should account for slots that get merged.
1360 if (MFI->isDeadObjectIndex(FI))
1361 return EmitBadPHI();
1362
1363 // Identify this spill slot, ensure it's tracked.
1364 Register Base;
1365 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1366 SpillLoc SL = {Base, Offs};
1367 Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1368
1369 // We might be able to find a value, but have chosen not to, to avoid
1370 // tracking too much stack information.
1371 if (!SpillNo)
1372 return EmitBadPHI();
1373
1374 // Any stack location DBG_PHI should have an associate bit-size.
1375 assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1376 unsigned slotBitSize = MI.getOperand(2).getImm();
1377
1378 unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1379 LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1380 ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1381
1382 // Record this DBG_PHI for later analysis.
1383 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1384 DebugPHINumToValue.push_back(DbgPHI);
1385 } else {
1386 // Else: if the operand is neither a legal register or a stack slot, then
1387 // we're being fed illegal debug-info. Record an empty PHI, so that any
1388 // debug users trying to read this number will be put off trying to
1389 // interpret the value.
1390 LLVM_DEBUG(
1391 { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1392 return EmitBadPHI();
1393 }
1394
1395 return true;
1396 }
1397
transferRegisterDef(MachineInstr & MI)1398 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1399 // Meta Instructions do not affect the debug liveness of any register they
1400 // define.
1401 if (MI.isImplicitDef()) {
1402 // Except when there's an implicit def, and the location it's defining has
1403 // no value number. The whole point of an implicit def is to announce that
1404 // the register is live, without be specific about it's value. So define
1405 // a value if there isn't one already.
1406 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1407 // Has a legitimate value -> ignore the implicit def.
1408 if (Num.getLoc() != 0)
1409 return;
1410 // Otherwise, def it here.
1411 } else if (MI.isMetaInstruction())
1412 return;
1413
1414 // We always ignore SP defines on call instructions, they don't actually
1415 // change the value of the stack pointer... except for win32's _chkstk. This
1416 // is rare: filter quickly for the common case (no stack adjustments, not a
1417 // call, etc). If it is a call that modifies SP, recognise the SP register
1418 // defs.
1419 bool CallChangesSP = false;
1420 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1421 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1422 CallChangesSP = true;
1423
1424 // Test whether we should ignore a def of this register due to it being part
1425 // of the stack pointer.
1426 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1427 if (CallChangesSP)
1428 return false;
1429 return MI.isCall() && MTracker->SPAliases.count(R);
1430 };
1431
1432 // Find the regs killed by MI, and find regmasks of preserved regs.
1433 // Max out the number of statically allocated elements in `DeadRegs`, as this
1434 // prevents fallback to std::set::count() operations.
1435 SmallSet<uint32_t, 32> DeadRegs;
1436 SmallVector<const uint32_t *, 4> RegMasks;
1437 SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1438 for (const MachineOperand &MO : MI.operands()) {
1439 // Determine whether the operand is a register def.
1440 if (MO.isReg() && MO.isDef() && MO.getReg() &&
1441 Register::isPhysicalRegister(MO.getReg()) &&
1442 !IgnoreSPAlias(MO.getReg())) {
1443 // Remove ranges of all aliased registers.
1444 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1445 // FIXME: Can we break out of this loop early if no insertion occurs?
1446 DeadRegs.insert(*RAI);
1447 } else if (MO.isRegMask()) {
1448 RegMasks.push_back(MO.getRegMask());
1449 RegMaskPtrs.push_back(&MO);
1450 }
1451 }
1452
1453 // Tell MLocTracker about all definitions, of regmasks and otherwise.
1454 for (uint32_t DeadReg : DeadRegs)
1455 MTracker->defReg(DeadReg, CurBB, CurInst);
1456
1457 for (const auto *MO : RegMaskPtrs)
1458 MTracker->writeRegMask(MO, CurBB, CurInst);
1459
1460 // If this instruction writes to a spill slot, def that slot.
1461 if (hasFoldedStackStore(MI)) {
1462 if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1463 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1464 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1465 LocIdx L = MTracker->getSpillMLoc(SpillID);
1466 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1467 }
1468 }
1469 }
1470
1471 if (!TTracker)
1472 return;
1473
1474 // When committing variable values to locations: tell transfer tracker that
1475 // we've clobbered things. It may be able to recover the variable from a
1476 // different location.
1477
1478 // Inform TTracker about any direct clobbers.
1479 for (uint32_t DeadReg : DeadRegs) {
1480 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1481 TTracker->clobberMloc(Loc, MI.getIterator(), false);
1482 }
1483
1484 // Look for any clobbers performed by a register mask. Only test locations
1485 // that are actually being tracked.
1486 if (!RegMaskPtrs.empty()) {
1487 for (auto L : MTracker->locations()) {
1488 // Stack locations can't be clobbered by regmasks.
1489 if (MTracker->isSpill(L.Idx))
1490 continue;
1491
1492 Register Reg = MTracker->LocIdxToLocID[L.Idx];
1493 if (IgnoreSPAlias(Reg))
1494 continue;
1495
1496 for (const auto *MO : RegMaskPtrs)
1497 if (MO->clobbersPhysReg(Reg))
1498 TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1499 }
1500 }
1501
1502 // Tell TTracker about any folded stack store.
1503 if (hasFoldedStackStore(MI)) {
1504 if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1505 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1506 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1507 LocIdx L = MTracker->getSpillMLoc(SpillID);
1508 TTracker->clobberMloc(L, MI.getIterator(), true);
1509 }
1510 }
1511 }
1512 }
1513
performCopy(Register SrcRegNum,Register DstRegNum)1514 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1515 // In all circumstances, re-def all aliases. It's definitely a new value now.
1516 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1517 MTracker->defReg(*RAI, CurBB, CurInst);
1518
1519 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1520 MTracker->setReg(DstRegNum, SrcValue);
1521
1522 // Copy subregisters from one location to another.
1523 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1524 unsigned SrcSubReg = SRI.getSubReg();
1525 unsigned SubRegIdx = SRI.getSubRegIndex();
1526 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1527 if (!DstSubReg)
1528 continue;
1529
1530 // Do copy. There are two matching subregisters, the source value should
1531 // have been def'd when the super-reg was, the latter might not be tracked
1532 // yet.
1533 // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1534 // mphi values if it wasn't tracked.
1535 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1536 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1537 (void)SrcL;
1538 (void)DstL;
1539 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1540
1541 MTracker->setReg(DstSubReg, CpyValue);
1542 }
1543 }
1544
1545 Optional<SpillLocationNo>
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1546 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1547 MachineFunction *MF) {
1548 // TODO: Handle multiple stores folded into one.
1549 if (!MI.hasOneMemOperand())
1550 return None;
1551
1552 // Reject any memory operand that's aliased -- we can't guarantee its value.
1553 auto MMOI = MI.memoperands_begin();
1554 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1555 if (PVal->isAliased(MFI))
1556 return None;
1557
1558 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1559 return None; // This is not a spill instruction, since no valid size was
1560 // returned from either function.
1561
1562 return extractSpillBaseRegAndOffset(MI);
1563 }
1564
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1565 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1566 MachineFunction *MF, unsigned &Reg) {
1567 if (!isSpillInstruction(MI, MF))
1568 return false;
1569
1570 int FI;
1571 Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1572 return Reg != 0;
1573 }
1574
1575 Optional<SpillLocationNo>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1576 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1577 MachineFunction *MF, unsigned &Reg) {
1578 if (!MI.hasOneMemOperand())
1579 return None;
1580
1581 // FIXME: Handle folded restore instructions with more than one memory
1582 // operand.
1583 if (MI.getRestoreSize(TII)) {
1584 Reg = MI.getOperand(0).getReg();
1585 return extractSpillBaseRegAndOffset(MI);
1586 }
1587 return None;
1588 }
1589
transferSpillOrRestoreInst(MachineInstr & MI)1590 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1591 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
1592 // limitations under the new model. Therefore, when comparing them, compare
1593 // versions that don't attempt spills or restores at all.
1594 if (EmulateOldLDV)
1595 return false;
1596
1597 // Strictly limit ourselves to plain loads and stores, not all instructions
1598 // that can access the stack.
1599 int DummyFI = -1;
1600 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1601 !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1602 return false;
1603
1604 MachineFunction *MF = MI.getMF();
1605 unsigned Reg;
1606
1607 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1608
1609 // Strictly limit ourselves to plain loads and stores, not all instructions
1610 // that can access the stack.
1611 int FIDummy;
1612 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1613 !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1614 return false;
1615
1616 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1617 // written to, terminate that variable location. The value in memory
1618 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1619 if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
1620 // Un-set this location and clobber, so that earlier locations don't
1621 // continue past this store.
1622 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1623 unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
1624 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1625 if (!MLoc)
1626 continue;
1627
1628 // We need to over-write the stack slot with something (here, a def at
1629 // this instruction) to ensure no values are preserved in this stack slot
1630 // after the spill. It also prevents TTracker from trying to recover the
1631 // location and re-installing it in the same place.
1632 ValueIDNum Def(CurBB, CurInst, *MLoc);
1633 MTracker->setMLoc(*MLoc, Def);
1634 if (TTracker)
1635 TTracker->clobberMloc(*MLoc, MI.getIterator());
1636 }
1637 }
1638
1639 // Try to recognise spill and restore instructions that may transfer a value.
1640 if (isLocationSpill(MI, MF, Reg)) {
1641 // isLocationSpill returning true should guarantee we can extract a
1642 // location.
1643 SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
1644
1645 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1646 auto ReadValue = MTracker->readReg(SrcReg);
1647 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1648 MTracker->setMLoc(DstLoc, ReadValue);
1649
1650 if (TTracker) {
1651 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1652 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1653 }
1654 };
1655
1656 // Then, transfer subreg bits.
1657 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1658 // Ensure this reg is tracked,
1659 (void)MTracker->lookupOrTrackRegister(*SRI);
1660 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1661 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1662 DoTransfer(*SRI, SpillID);
1663 }
1664
1665 // Directly lookup size of main source reg, and transfer.
1666 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1667 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1668 DoTransfer(Reg, SpillID);
1669 } else {
1670 Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
1671 if (!Loc)
1672 return false;
1673
1674 // Assumption: we're reading from the base of the stack slot, not some
1675 // offset into it. It seems very unlikely LLVM would ever generate
1676 // restores where this wasn't true. This then becomes a question of what
1677 // subregisters in the destination register line up with positions in the
1678 // stack slot.
1679
1680 // Def all registers that alias the destination.
1681 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1682 MTracker->defReg(*RAI, CurBB, CurInst);
1683
1684 // Now find subregisters within the destination register, and load values
1685 // from stack slot positions.
1686 auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1687 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1688 auto ReadValue = MTracker->readMLoc(SrcIdx);
1689 MTracker->setReg(DestReg, ReadValue);
1690 };
1691
1692 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1693 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1694 unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
1695 DoTransfer(*SRI, SpillID);
1696 }
1697
1698 // Directly look up this registers slot idx by size, and transfer.
1699 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1700 unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
1701 DoTransfer(Reg, SpillID);
1702 }
1703 return true;
1704 }
1705
transferRegisterCopy(MachineInstr & MI)1706 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1707 auto DestSrc = TII->isCopyInstr(MI);
1708 if (!DestSrc)
1709 return false;
1710
1711 const MachineOperand *DestRegOp = DestSrc->Destination;
1712 const MachineOperand *SrcRegOp = DestSrc->Source;
1713
1714 auto isCalleeSavedReg = [&](unsigned Reg) {
1715 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1716 if (CalleeSavedRegs.test(*RAI))
1717 return true;
1718 return false;
1719 };
1720
1721 Register SrcReg = SrcRegOp->getReg();
1722 Register DestReg = DestRegOp->getReg();
1723
1724 // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1725 if (SrcReg == DestReg)
1726 return true;
1727
1728 // For emulating VarLocBasedImpl:
1729 // We want to recognize instructions where destination register is callee
1730 // saved register. If register that could be clobbered by the call is
1731 // included, there would be a great chance that it is going to be clobbered
1732 // soon. It is more likely that previous register, which is callee saved, is
1733 // going to stay unclobbered longer, even if it is killed.
1734 //
1735 // For InstrRefBasedImpl, we can track multiple locations per value, so
1736 // ignore this condition.
1737 if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1738 return false;
1739
1740 // InstrRefBasedImpl only followed killing copies.
1741 if (EmulateOldLDV && !SrcRegOp->isKill())
1742 return false;
1743
1744 // Before we update MTracker, remember which values were present in each of
1745 // the locations about to be overwritten, so that we can recover any
1746 // potentially clobbered variables.
1747 DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
1748 if (TTracker) {
1749 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1750 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1751 auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
1752 // If ActiveMLocs isn't tracking this location or there are no variables
1753 // using it, don't bother remembering.
1754 if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
1755 continue;
1756 ValueIDNum Value = MTracker->readReg(*RAI);
1757 ClobberedLocs[ClobberedLoc] = Value;
1758 }
1759 }
1760
1761 // Copy MTracker info, including subregs if available.
1762 InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1763
1764 // The copy might have clobbered variables based on the destination register.
1765 // Tell TTracker about it, passing the old ValueIDNum to search for
1766 // alternative locations (or else terminating those variables).
1767 if (TTracker) {
1768 for (auto LocVal : ClobberedLocs) {
1769 TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
1770 }
1771 }
1772
1773 // Only produce a transfer of DBG_VALUE within a block where old LDV
1774 // would have. We might make use of the additional value tracking in some
1775 // other way, later.
1776 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1777 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1778 MTracker->getRegMLoc(DestReg), MI.getIterator());
1779
1780 // VarLocBasedImpl would quit tracking the old location after copying.
1781 if (EmulateOldLDV && SrcReg != DestReg)
1782 MTracker->defReg(SrcReg, CurBB, CurInst);
1783
1784 return true;
1785 }
1786
1787 /// Accumulate a mapping between each DILocalVariable fragment and other
1788 /// fragments of that DILocalVariable which overlap. This reduces work during
1789 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1790 /// known-to-overlap fragments are present".
1791 /// \param MI A previously unprocessed debug instruction to analyze for
1792 /// fragment usage.
accumulateFragmentMap(MachineInstr & MI)1793 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1794 assert(MI.isDebugValue() || MI.isDebugRef());
1795 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1796 MI.getDebugLoc()->getInlinedAt());
1797 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1798
1799 // If this is the first sighting of this variable, then we are guaranteed
1800 // there are currently no overlapping fragments either. Initialize the set
1801 // of seen fragments, record no overlaps for the current one, and return.
1802 auto SeenIt = SeenFragments.find(MIVar.getVariable());
1803 if (SeenIt == SeenFragments.end()) {
1804 SmallSet<FragmentInfo, 4> OneFragment;
1805 OneFragment.insert(ThisFragment);
1806 SeenFragments.insert({MIVar.getVariable(), OneFragment});
1807
1808 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1809 return;
1810 }
1811
1812 // If this particular Variable/Fragment pair already exists in the overlap
1813 // map, it has already been accounted for.
1814 auto IsInOLapMap =
1815 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1816 if (!IsInOLapMap.second)
1817 return;
1818
1819 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1820 auto &AllSeenFragments = SeenIt->second;
1821
1822 // Otherwise, examine all other seen fragments for this variable, with "this"
1823 // fragment being a previously unseen fragment. Record any pair of
1824 // overlapping fragments.
1825 for (const auto &ASeenFragment : AllSeenFragments) {
1826 // Does this previously seen fragment overlap?
1827 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1828 // Yes: Mark the current fragment as being overlapped.
1829 ThisFragmentsOverlaps.push_back(ASeenFragment);
1830 // Mark the previously seen fragment as being overlapped by the current
1831 // one.
1832 auto ASeenFragmentsOverlaps =
1833 OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1834 assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1835 "Previously seen var fragment has no vector of overlaps");
1836 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1837 }
1838 }
1839
1840 AllSeenFragments.insert(ThisFragment);
1841 }
1842
process(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1843 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
1844 const ValueTable *MLiveIns) {
1845 // Try to interpret an MI as a debug or transfer instruction. Only if it's
1846 // none of these should we interpret it's register defs as new value
1847 // definitions.
1848 if (transferDebugValue(MI))
1849 return;
1850 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1851 return;
1852 if (transferDebugPHI(MI))
1853 return;
1854 if (transferRegisterCopy(MI))
1855 return;
1856 if (transferSpillOrRestoreInst(MI))
1857 return;
1858 transferRegisterDef(MI);
1859 }
1860
produceMLocTransferFunction(MachineFunction & MF,SmallVectorImpl<MLocTransferMap> & MLocTransfer,unsigned MaxNumBlocks)1861 void InstrRefBasedLDV::produceMLocTransferFunction(
1862 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1863 unsigned MaxNumBlocks) {
1864 // Because we try to optimize around register mask operands by ignoring regs
1865 // that aren't currently tracked, we set up something ugly for later: RegMask
1866 // operands that are seen earlier than the first use of a register, still need
1867 // to clobber that register in the transfer function. But this information
1868 // isn't actively recorded. Instead, we track each RegMask used in each block,
1869 // and accumulated the clobbered but untracked registers in each block into
1870 // the following bitvector. Later, if new values are tracked, we can add
1871 // appropriate clobbers.
1872 SmallVector<BitVector, 32> BlockMasks;
1873 BlockMasks.resize(MaxNumBlocks);
1874
1875 // Reserve one bit per register for the masks described above.
1876 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1877 for (auto &BV : BlockMasks)
1878 BV.resize(TRI->getNumRegs(), true);
1879
1880 // Step through all instructions and inhale the transfer function.
1881 for (auto &MBB : MF) {
1882 // Object fields that are read by trackers to know where we are in the
1883 // function.
1884 CurBB = MBB.getNumber();
1885 CurInst = 1;
1886
1887 // Set all machine locations to a PHI value. For transfer function
1888 // production only, this signifies the live-in value to the block.
1889 MTracker->reset();
1890 MTracker->setMPhis(CurBB);
1891
1892 // Step through each instruction in this block.
1893 for (auto &MI : MBB) {
1894 // Pass in an empty unique_ptr for the value tables when accumulating the
1895 // machine transfer function.
1896 process(MI, nullptr, nullptr);
1897
1898 // Also accumulate fragment map.
1899 if (MI.isDebugValue() || MI.isDebugRef())
1900 accumulateFragmentMap(MI);
1901
1902 // Create a map from the instruction number (if present) to the
1903 // MachineInstr and its position.
1904 if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1905 auto InstrAndPos = std::make_pair(&MI, CurInst);
1906 auto InsertResult =
1907 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1908
1909 // There should never be duplicate instruction numbers.
1910 assert(InsertResult.second);
1911 (void)InsertResult;
1912 }
1913
1914 ++CurInst;
1915 }
1916
1917 // Produce the transfer function, a map of machine location to new value. If
1918 // any machine location has the live-in phi value from the start of the
1919 // block, it's live-through and doesn't need recording in the transfer
1920 // function.
1921 for (auto Location : MTracker->locations()) {
1922 LocIdx Idx = Location.Idx;
1923 ValueIDNum &P = Location.Value;
1924 if (P.isPHI() && P.getLoc() == Idx.asU64())
1925 continue;
1926
1927 // Insert-or-update.
1928 auto &TransferMap = MLocTransfer[CurBB];
1929 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1930 if (!Result.second)
1931 Result.first->second = P;
1932 }
1933
1934 // Accumulate any bitmask operands into the clobberred reg mask for this
1935 // block.
1936 for (auto &P : MTracker->Masks) {
1937 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1938 }
1939 }
1940
1941 // Compute a bitvector of all the registers that are tracked in this block.
1942 BitVector UsedRegs(TRI->getNumRegs());
1943 for (auto Location : MTracker->locations()) {
1944 unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1945 // Ignore stack slots, and aliases of the stack pointer.
1946 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1947 continue;
1948 UsedRegs.set(ID);
1949 }
1950
1951 // Check that any regmask-clobber of a register that gets tracked, is not
1952 // live-through in the transfer function. It needs to be clobbered at the
1953 // very least.
1954 for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1955 BitVector &BV = BlockMasks[I];
1956 BV.flip();
1957 BV &= UsedRegs;
1958 // This produces all the bits that we clobber, but also use. Check that
1959 // they're all clobbered or at least set in the designated transfer
1960 // elem.
1961 for (unsigned Bit : BV.set_bits()) {
1962 unsigned ID = MTracker->getLocID(Bit);
1963 LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1964 auto &TransferMap = MLocTransfer[I];
1965
1966 // Install a value representing the fact that this location is effectively
1967 // written to in this block. As there's no reserved value, instead use
1968 // a value number that is never generated. Pick the value number for the
1969 // first instruction in the block, def'ing this location, which we know
1970 // this block never used anyway.
1971 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1972 auto Result =
1973 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1974 if (!Result.second) {
1975 ValueIDNum &ValueID = Result.first->second;
1976 if (ValueID.getBlock() == I && ValueID.isPHI())
1977 // It was left as live-through. Set it to clobbered.
1978 ValueID = NotGeneratedNum;
1979 }
1980 }
1981 }
1982 }
1983
mlocJoin(MachineBasicBlock & MBB,SmallPtrSet<const MachineBasicBlock *,16> & Visited,FuncValueTable & OutLocs,ValueTable & InLocs)1984 bool InstrRefBasedLDV::mlocJoin(
1985 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1986 FuncValueTable &OutLocs, ValueTable &InLocs) {
1987 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1988 bool Changed = false;
1989
1990 // Handle value-propagation when control flow merges on entry to a block. For
1991 // any location without a PHI already placed, the location has the same value
1992 // as its predecessors. If a PHI is placed, test to see whether it's now a
1993 // redundant PHI that we can eliminate.
1994
1995 SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1996 for (auto *Pred : MBB.predecessors())
1997 BlockOrders.push_back(Pred);
1998
1999 // Visit predecessors in RPOT order.
2000 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2001 return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2002 };
2003 llvm::sort(BlockOrders, Cmp);
2004
2005 // Skip entry block.
2006 if (BlockOrders.size() == 0)
2007 return false;
2008
2009 // Step through all machine locations, look at each predecessor and test
2010 // whether we can eliminate redundant PHIs.
2011 for (auto Location : MTracker->locations()) {
2012 LocIdx Idx = Location.Idx;
2013
2014 // Pick out the first predecessors live-out value for this location. It's
2015 // guaranteed to not be a backedge, as we order by RPO.
2016 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2017
2018 // If we've already eliminated a PHI here, do no further checking, just
2019 // propagate the first live-in value into this block.
2020 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2021 if (InLocs[Idx.asU64()] != FirstVal) {
2022 InLocs[Idx.asU64()] = FirstVal;
2023 Changed |= true;
2024 }
2025 continue;
2026 }
2027
2028 // We're now examining a PHI to see whether it's un-necessary. Loop around
2029 // the other live-in values and test whether they're all the same.
2030 bool Disagree = false;
2031 for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2032 const MachineBasicBlock *PredMBB = BlockOrders[I];
2033 const ValueIDNum &PredLiveOut =
2034 OutLocs[PredMBB->getNumber()][Idx.asU64()];
2035
2036 // Incoming values agree, continue trying to eliminate this PHI.
2037 if (FirstVal == PredLiveOut)
2038 continue;
2039
2040 // We can also accept a PHI value that feeds back into itself.
2041 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2042 continue;
2043
2044 // Live-out of a predecessor disagrees with the first predecessor.
2045 Disagree = true;
2046 }
2047
2048 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2049 if (!Disagree) {
2050 InLocs[Idx.asU64()] = FirstVal;
2051 Changed |= true;
2052 }
2053 }
2054
2055 // TODO: Reimplement NumInserted and NumRemoved.
2056 return Changed;
2057 }
2058
findStackIndexInterference(SmallVectorImpl<unsigned> & Slots)2059 void InstrRefBasedLDV::findStackIndexInterference(
2060 SmallVectorImpl<unsigned> &Slots) {
2061 // We could spend a bit of time finding the exact, minimal, set of stack
2062 // indexes that interfere with each other, much like reg units. Or, we can
2063 // rely on the fact that:
2064 // * The smallest / lowest index will interfere with everything at zero
2065 // offset, which will be the largest set of registers,
2066 // * Most indexes with non-zero offset will end up being interference units
2067 // anyway.
2068 // So just pick those out and return them.
2069
2070 // We can rely on a single-byte stack index existing already, because we
2071 // initialize them in MLocTracker.
2072 auto It = MTracker->StackSlotIdxes.find({8, 0});
2073 assert(It != MTracker->StackSlotIdxes.end());
2074 Slots.push_back(It->second);
2075
2076 // Find anything that has a non-zero offset and add that too.
2077 for (auto &Pair : MTracker->StackSlotIdxes) {
2078 // Is offset zero? If so, ignore.
2079 if (!Pair.first.second)
2080 continue;
2081 Slots.push_back(Pair.second);
2082 }
2083 }
2084
placeMLocPHIs(MachineFunction & MF,SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,FuncValueTable & MInLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2085 void InstrRefBasedLDV::placeMLocPHIs(
2086 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2087 FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2088 SmallVector<unsigned, 4> StackUnits;
2089 findStackIndexInterference(StackUnits);
2090
2091 // To avoid repeatedly running the PHI placement algorithm, leverage the
2092 // fact that a def of register MUST also def its register units. Find the
2093 // units for registers, place PHIs for them, and then replicate them for
2094 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2095 // arguments) don't lead to register units being tracked, just place PHIs for
2096 // those registers directly. Stack slots have their own form of "unit",
2097 // store them to one side.
2098 SmallSet<Register, 32> RegUnitsToPHIUp;
2099 SmallSet<LocIdx, 32> NormalLocsToPHI;
2100 SmallSet<SpillLocationNo, 32> StackSlots;
2101 for (auto Location : MTracker->locations()) {
2102 LocIdx L = Location.Idx;
2103 if (MTracker->isSpill(L)) {
2104 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2105 continue;
2106 }
2107
2108 Register R = MTracker->LocIdxToLocID[L];
2109 SmallSet<Register, 8> FoundRegUnits;
2110 bool AnyIllegal = false;
2111 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2112 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2113 if (!MTracker->isRegisterTracked(*URoot)) {
2114 // Not all roots were loaded into the tracking map: this register
2115 // isn't actually def'd anywhere, we only read from it. Generate PHIs
2116 // for this reg, but don't iterate units.
2117 AnyIllegal = true;
2118 } else {
2119 FoundRegUnits.insert(*URoot);
2120 }
2121 }
2122 }
2123
2124 if (AnyIllegal) {
2125 NormalLocsToPHI.insert(L);
2126 continue;
2127 }
2128
2129 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2130 }
2131
2132 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2133 // collection.
2134 SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2135 auto CollectPHIsForLoc = [&](LocIdx L) {
2136 // Collect the set of defs.
2137 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2138 for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2139 MachineBasicBlock *MBB = OrderToBB[I];
2140 const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2141 if (TransferFunc.find(L) != TransferFunc.end())
2142 DefBlocks.insert(MBB);
2143 }
2144
2145 // The entry block defs the location too: it's the live-in / argument value.
2146 // Only insert if there are other defs though; everything is trivially live
2147 // through otherwise.
2148 if (!DefBlocks.empty())
2149 DefBlocks.insert(&*MF.begin());
2150
2151 // Ask the SSA construction algorithm where we should put PHIs. Clear
2152 // anything that might have been hanging around from earlier.
2153 PHIBlocks.clear();
2154 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2155 };
2156
2157 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2158 for (const MachineBasicBlock *MBB : PHIBlocks)
2159 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2160 };
2161
2162 // For locations with no reg units, just place PHIs.
2163 for (LocIdx L : NormalLocsToPHI) {
2164 CollectPHIsForLoc(L);
2165 // Install those PHI values into the live-in value array.
2166 InstallPHIsAtLoc(L);
2167 }
2168
2169 // For stack slots, calculate PHIs for the equivalent of the units, then
2170 // install for each index.
2171 for (SpillLocationNo Slot : StackSlots) {
2172 for (unsigned Idx : StackUnits) {
2173 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2174 LocIdx L = MTracker->getSpillMLoc(SpillID);
2175 CollectPHIsForLoc(L);
2176 InstallPHIsAtLoc(L);
2177
2178 // Find anything that aliases this stack index, install PHIs for it too.
2179 unsigned Size, Offset;
2180 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2181 for (auto &Pair : MTracker->StackSlotIdxes) {
2182 unsigned ThisSize, ThisOffset;
2183 std::tie(ThisSize, ThisOffset) = Pair.first;
2184 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2185 continue;
2186
2187 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2188 LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2189 InstallPHIsAtLoc(ThisL);
2190 }
2191 }
2192 }
2193
2194 // For reg units, place PHIs, and then place them for any aliasing registers.
2195 for (Register R : RegUnitsToPHIUp) {
2196 LocIdx L = MTracker->lookupOrTrackRegister(R);
2197 CollectPHIsForLoc(L);
2198
2199 // Install those PHI values into the live-in value array.
2200 InstallPHIsAtLoc(L);
2201
2202 // Now find aliases and install PHIs for those.
2203 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2204 // Super-registers that are "above" the largest register read/written by
2205 // the function will alias, but will not be tracked.
2206 if (!MTracker->isRegisterTracked(*RAI))
2207 continue;
2208
2209 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2210 InstallPHIsAtLoc(AliasLoc);
2211 }
2212 }
2213 }
2214
buildMLocValueMap(MachineFunction & MF,FuncValueTable & MInLocs,FuncValueTable & MOutLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2215 void InstrRefBasedLDV::buildMLocValueMap(
2216 MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2217 SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2218 std::priority_queue<unsigned int, std::vector<unsigned int>,
2219 std::greater<unsigned int>>
2220 Worklist, Pending;
2221
2222 // We track what is on the current and pending worklist to avoid inserting
2223 // the same thing twice. We could avoid this with a custom priority queue,
2224 // but this is probably not worth it.
2225 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2226
2227 // Initialize worklist with every block to be visited. Also produce list of
2228 // all blocks.
2229 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2230 for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2231 Worklist.push(I);
2232 OnWorklist.insert(OrderToBB[I]);
2233 AllBlocks.insert(OrderToBB[I]);
2234 }
2235
2236 // Initialize entry block to PHIs. These represent arguments.
2237 for (auto Location : MTracker->locations())
2238 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2239
2240 MTracker->reset();
2241
2242 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2243 // any machine-location that isn't live-through a block to be def'd in that
2244 // block.
2245 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2246
2247 // Propagate values to eliminate redundant PHIs. At the same time, this
2248 // produces the table of Block x Location => Value for the entry to each
2249 // block.
2250 // The kind of PHIs we can eliminate are, for example, where one path in a
2251 // conditional spills and restores a register, and the register still has
2252 // the same value once control flow joins, unbeknowns to the PHI placement
2253 // code. Propagating values allows us to identify such un-necessary PHIs and
2254 // remove them.
2255 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2256 while (!Worklist.empty() || !Pending.empty()) {
2257 // Vector for storing the evaluated block transfer function.
2258 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2259
2260 while (!Worklist.empty()) {
2261 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2262 CurBB = MBB->getNumber();
2263 Worklist.pop();
2264
2265 // Join the values in all predecessor blocks.
2266 bool InLocsChanged;
2267 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2268 InLocsChanged |= Visited.insert(MBB).second;
2269
2270 // Don't examine transfer function if we've visited this loc at least
2271 // once, and inlocs haven't changed.
2272 if (!InLocsChanged)
2273 continue;
2274
2275 // Load the current set of live-ins into MLocTracker.
2276 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2277
2278 // Each element of the transfer function can be a new def, or a read of
2279 // a live-in value. Evaluate each element, and store to "ToRemap".
2280 ToRemap.clear();
2281 for (auto &P : MLocTransfer[CurBB]) {
2282 if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2283 // This is a movement of whatever was live in. Read it.
2284 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2285 ToRemap.push_back(std::make_pair(P.first, NewID));
2286 } else {
2287 // It's a def. Just set it.
2288 assert(P.second.getBlock() == CurBB);
2289 ToRemap.push_back(std::make_pair(P.first, P.second));
2290 }
2291 }
2292
2293 // Commit the transfer function changes into mloc tracker, which
2294 // transforms the contents of the MLocTracker into the live-outs.
2295 for (auto &P : ToRemap)
2296 MTracker->setMLoc(P.first, P.second);
2297
2298 // Now copy out-locs from mloc tracker into out-loc vector, checking
2299 // whether changes have occurred. These changes can have come from both
2300 // the transfer function, and mlocJoin.
2301 bool OLChanged = false;
2302 for (auto Location : MTracker->locations()) {
2303 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2304 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2305 }
2306
2307 MTracker->reset();
2308
2309 // No need to examine successors again if out-locs didn't change.
2310 if (!OLChanged)
2311 continue;
2312
2313 // All successors should be visited: put any back-edges on the pending
2314 // list for the next pass-through, and any other successors to be
2315 // visited this pass, if they're not going to be already.
2316 for (auto *s : MBB->successors()) {
2317 // Does branching to this successor represent a back-edge?
2318 if (BBToOrder[s] > BBToOrder[MBB]) {
2319 // No: visit it during this dataflow iteration.
2320 if (OnWorklist.insert(s).second)
2321 Worklist.push(BBToOrder[s]);
2322 } else {
2323 // Yes: visit it on the next iteration.
2324 if (OnPending.insert(s).second)
2325 Pending.push(BBToOrder[s]);
2326 }
2327 }
2328 }
2329
2330 Worklist.swap(Pending);
2331 std::swap(OnPending, OnWorklist);
2332 OnPending.clear();
2333 // At this point, pending must be empty, since it was just the empty
2334 // worklist
2335 assert(Pending.empty() && "Pending should be empty");
2336 }
2337
2338 // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2339 // redundant PHIs.
2340 }
2341
BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,const SmallPtrSetImpl<MachineBasicBlock * > & DefBlocks,SmallVectorImpl<MachineBasicBlock * > & PHIBlocks)2342 void InstrRefBasedLDV::BlockPHIPlacement(
2343 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2344 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2345 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2346 // Apply IDF calculator to the designated set of location defs, storing
2347 // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2348 // InstrRefBasedLDV object.
2349 IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2350
2351 IDF.setLiveInBlocks(AllBlocks);
2352 IDF.setDefiningBlocks(DefBlocks);
2353 IDF.calculate(PHIBlocks);
2354 }
2355
pickVPHILoc(const MachineBasicBlock & MBB,const DebugVariable & Var,const LiveIdxT & LiveOuts,FuncValueTable & MOutLocs,const SmallVectorImpl<const MachineBasicBlock * > & BlockOrders)2356 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2357 const MachineBasicBlock &MBB, const DebugVariable &Var,
2358 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2359 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2360 // Collect a set of locations from predecessor where its live-out value can
2361 // be found.
2362 SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2363 SmallVector<const DbgValueProperties *, 4> Properties;
2364 unsigned NumLocs = MTracker->getNumLocs();
2365
2366 // No predecessors means no PHIs.
2367 if (BlockOrders.empty())
2368 return None;
2369
2370 for (const auto *p : BlockOrders) {
2371 unsigned ThisBBNum = p->getNumber();
2372 auto OutValIt = LiveOuts.find(p);
2373 if (OutValIt == LiveOuts.end())
2374 // If we have a predecessor not in scope, we'll never find a PHI position.
2375 return None;
2376 const DbgValue &OutVal = *OutValIt->second;
2377
2378 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2379 // Consts and no-values cannot have locations we can join on.
2380 return None;
2381
2382 Properties.push_back(&OutVal.Properties);
2383
2384 // Create new empty vector of locations.
2385 Locs.resize(Locs.size() + 1);
2386
2387 // If the live-in value is a def, find the locations where that value is
2388 // present. Do the same for VPHIs where we know the VPHI value.
2389 if (OutVal.Kind == DbgValue::Def ||
2390 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2391 OutVal.ID != ValueIDNum::EmptyValue)) {
2392 ValueIDNum ValToLookFor = OutVal.ID;
2393 // Search the live-outs of the predecessor for the specified value.
2394 for (unsigned int I = 0; I < NumLocs; ++I) {
2395 if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2396 Locs.back().push_back(LocIdx(I));
2397 }
2398 } else {
2399 assert(OutVal.Kind == DbgValue::VPHI);
2400 // For VPHIs where we don't know the location, we definitely can't find
2401 // a join loc.
2402 if (OutVal.BlockNo != MBB.getNumber())
2403 return None;
2404
2405 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2406 // a value that's live-through the whole loop. (It has to be a backedge,
2407 // because a block can't dominate itself). We can accept as a PHI location
2408 // any location where the other predecessors agree, _and_ the machine
2409 // locations feed back into themselves. Therefore, add all self-looping
2410 // machine-value PHI locations.
2411 for (unsigned int I = 0; I < NumLocs; ++I) {
2412 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2413 if (MOutLocs[ThisBBNum][I] == MPHI)
2414 Locs.back().push_back(LocIdx(I));
2415 }
2416 }
2417 }
2418
2419 // We should have found locations for all predecessors, or returned.
2420 assert(Locs.size() == BlockOrders.size());
2421
2422 // Check that all properties are the same. We can't pick a location if they're
2423 // not.
2424 const DbgValueProperties *Properties0 = Properties[0];
2425 for (const auto *Prop : Properties)
2426 if (*Prop != *Properties0)
2427 return None;
2428
2429 // Starting with the first set of locations, take the intersection with
2430 // subsequent sets.
2431 SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2432 for (unsigned int I = 1; I < Locs.size(); ++I) {
2433 auto &LocVec = Locs[I];
2434 SmallVector<LocIdx, 4> NewCandidates;
2435 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2436 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2437 CandidateLocs = NewCandidates;
2438 }
2439 if (CandidateLocs.empty())
2440 return None;
2441
2442 // We now have a set of LocIdxes that contain the right output value in
2443 // each of the predecessors. Pick the lowest; if there's a register loc,
2444 // that'll be it.
2445 LocIdx L = *CandidateLocs.begin();
2446
2447 // Return a PHI-value-number for the found location.
2448 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2449 return PHIVal;
2450 }
2451
vlocJoin(MachineBasicBlock & MBB,LiveIdxT & VLOCOutLocs,SmallPtrSet<const MachineBasicBlock *,8> & BlocksToExplore,DbgValue & LiveIn)2452 bool InstrRefBasedLDV::vlocJoin(
2453 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2454 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2455 DbgValue &LiveIn) {
2456 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2457 bool Changed = false;
2458
2459 // Order predecessors by RPOT order, for exploring them in that order.
2460 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2461
2462 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2463 return BBToOrder[A] < BBToOrder[B];
2464 };
2465
2466 llvm::sort(BlockOrders, Cmp);
2467
2468 unsigned CurBlockRPONum = BBToOrder[&MBB];
2469
2470 // Collect all the incoming DbgValues for this variable, from predecessor
2471 // live-out values.
2472 SmallVector<InValueT, 8> Values;
2473 bool Bail = false;
2474 int BackEdgesStart = 0;
2475 for (auto *p : BlockOrders) {
2476 // If the predecessor isn't in scope / to be explored, we'll never be
2477 // able to join any locations.
2478 if (!BlocksToExplore.contains(p)) {
2479 Bail = true;
2480 break;
2481 }
2482
2483 // All Live-outs will have been initialized.
2484 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2485
2486 // Keep track of where back-edges begin in the Values vector. Relies on
2487 // BlockOrders being sorted by RPO.
2488 unsigned ThisBBRPONum = BBToOrder[p];
2489 if (ThisBBRPONum < CurBlockRPONum)
2490 ++BackEdgesStart;
2491
2492 Values.push_back(std::make_pair(p, &OutLoc));
2493 }
2494
2495 // If there were no values, or one of the predecessors couldn't have a
2496 // value, then give up immediately. It's not safe to produce a live-in
2497 // value. Leave as whatever it was before.
2498 if (Bail || Values.size() == 0)
2499 return false;
2500
2501 // All (non-entry) blocks have at least one non-backedge predecessor.
2502 // Pick the variable value from the first of these, to compare against
2503 // all others.
2504 const DbgValue &FirstVal = *Values[0].second;
2505
2506 // If the old live-in value is not a PHI then either a) no PHI is needed
2507 // here, or b) we eliminated the PHI that was here. If so, we can just
2508 // propagate in the first parent's incoming value.
2509 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2510 Changed = LiveIn != FirstVal;
2511 if (Changed)
2512 LiveIn = FirstVal;
2513 return Changed;
2514 }
2515
2516 // Scan for variable values that can never be resolved: if they have
2517 // different DIExpressions, different indirectness, or are mixed constants /
2518 // non-constants.
2519 for (auto &V : Values) {
2520 if (V.second->Properties != FirstVal.Properties)
2521 return false;
2522 if (V.second->Kind == DbgValue::NoVal)
2523 return false;
2524 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2525 return false;
2526 }
2527
2528 // Try to eliminate this PHI. Do the incoming values all agree?
2529 bool Disagree = false;
2530 for (auto &V : Values) {
2531 if (*V.second == FirstVal)
2532 continue; // No disagreement.
2533
2534 // Eliminate if a backedge feeds a VPHI back into itself.
2535 if (V.second->Kind == DbgValue::VPHI &&
2536 V.second->BlockNo == MBB.getNumber() &&
2537 // Is this a backedge?
2538 std::distance(Values.begin(), &V) >= BackEdgesStart)
2539 continue;
2540
2541 Disagree = true;
2542 }
2543
2544 // No disagreement -> live-through value.
2545 if (!Disagree) {
2546 Changed = LiveIn != FirstVal;
2547 if (Changed)
2548 LiveIn = FirstVal;
2549 return Changed;
2550 } else {
2551 // Otherwise use a VPHI.
2552 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2553 Changed = LiveIn != VPHI;
2554 if (Changed)
2555 LiveIn = VPHI;
2556 return Changed;
2557 }
2558 }
2559
getBlocksForScope(const DILocation * DILoc,SmallPtrSetImpl<const MachineBasicBlock * > & BlocksToExplore,const SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks)2560 void InstrRefBasedLDV::getBlocksForScope(
2561 const DILocation *DILoc,
2562 SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
2563 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
2564 // Get the set of "normal" in-lexical-scope blocks.
2565 LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2566
2567 // VarLoc LiveDebugValues tracks variable locations that are defined in
2568 // blocks not in scope. This is something we could legitimately ignore, but
2569 // lets allow it for now for the sake of coverage.
2570 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2571
2572 // Storage for artificial blocks we intend to add to BlocksToExplore.
2573 DenseSet<const MachineBasicBlock *> ToAdd;
2574
2575 // To avoid needlessly dropping large volumes of variable locations, propagate
2576 // variables through aritifical blocks, i.e. those that don't have any
2577 // instructions in scope at all. To accurately replicate VarLoc
2578 // LiveDebugValues, this means exploring all artificial successors too.
2579 // Perform a depth-first-search to enumerate those blocks.
2580 for (const auto *MBB : BlocksToExplore) {
2581 // Depth-first-search state: each node is a block and which successor
2582 // we're currently exploring.
2583 SmallVector<std::pair<const MachineBasicBlock *,
2584 MachineBasicBlock::const_succ_iterator>,
2585 8>
2586 DFS;
2587
2588 // Find any artificial successors not already tracked.
2589 for (auto *succ : MBB->successors()) {
2590 if (BlocksToExplore.count(succ))
2591 continue;
2592 if (!ArtificialBlocks.count(succ))
2593 continue;
2594 ToAdd.insert(succ);
2595 DFS.push_back({succ, succ->succ_begin()});
2596 }
2597
2598 // Search all those blocks, depth first.
2599 while (!DFS.empty()) {
2600 const MachineBasicBlock *CurBB = DFS.back().first;
2601 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2602 // Walk back if we've explored this blocks successors to the end.
2603 if (CurSucc == CurBB->succ_end()) {
2604 DFS.pop_back();
2605 continue;
2606 }
2607
2608 // If the current successor is artificial and unexplored, descend into
2609 // it.
2610 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2611 ToAdd.insert(*CurSucc);
2612 DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
2613 continue;
2614 }
2615
2616 ++CurSucc;
2617 }
2618 };
2619
2620 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2621 }
2622
buildVLocValueMap(const DILocation * DILoc,const SmallSet<DebugVariable,4> & VarsWeCareAbout,SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs)2623 void InstrRefBasedLDV::buildVLocValueMap(
2624 const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2625 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2626 FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2627 SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2628 // This method is much like buildMLocValueMap: but focuses on a single
2629 // LexicalScope at a time. Pick out a set of blocks and variables that are
2630 // to have their value assignments solved, then run our dataflow algorithm
2631 // until a fixedpoint is reached.
2632 std::priority_queue<unsigned int, std::vector<unsigned int>,
2633 std::greater<unsigned int>>
2634 Worklist, Pending;
2635 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2636
2637 // The set of blocks we'll be examining.
2638 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2639
2640 // The order in which to examine them (RPO).
2641 SmallVector<MachineBasicBlock *, 8> BlockOrders;
2642
2643 // RPO ordering function.
2644 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2645 return BBToOrder[A] < BBToOrder[B];
2646 };
2647
2648 getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
2649
2650 // Single block scope: not interesting! No propagation at all. Note that
2651 // this could probably go above ArtificialBlocks without damage, but
2652 // that then produces output differences from original-live-debug-values,
2653 // which propagates from a single block into many artificial ones.
2654 if (BlocksToExplore.size() == 1)
2655 return;
2656
2657 // Convert a const set to a non-const set. LexicalScopes
2658 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2659 // (Neither of them mutate anything).
2660 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2661 for (const auto *MBB : BlocksToExplore)
2662 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2663
2664 // Picks out relevants blocks RPO order and sort them.
2665 for (const auto *MBB : BlocksToExplore)
2666 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2667
2668 llvm::sort(BlockOrders, Cmp);
2669 unsigned NumBlocks = BlockOrders.size();
2670
2671 // Allocate some vectors for storing the live ins and live outs. Large.
2672 SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2673 LiveIns.reserve(NumBlocks);
2674 LiveOuts.reserve(NumBlocks);
2675
2676 // Initialize all values to start as NoVals. This signifies "it's live
2677 // through, but we don't know what it is".
2678 DbgValueProperties EmptyProperties(EmptyExpr, false);
2679 for (unsigned int I = 0; I < NumBlocks; ++I) {
2680 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2681 LiveIns.push_back(EmptyDbgValue);
2682 LiveOuts.push_back(EmptyDbgValue);
2683 }
2684
2685 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2686 // vlocJoin.
2687 LiveIdxT LiveOutIdx, LiveInIdx;
2688 LiveOutIdx.reserve(NumBlocks);
2689 LiveInIdx.reserve(NumBlocks);
2690 for (unsigned I = 0; I < NumBlocks; ++I) {
2691 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2692 LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2693 }
2694
2695 // Loop over each variable and place PHIs for it, then propagate values
2696 // between blocks. This keeps the locality of working on one lexical scope at
2697 // at time, but avoids re-processing variable values because some other
2698 // variable has been assigned.
2699 for (const auto &Var : VarsWeCareAbout) {
2700 // Re-initialize live-ins and live-outs, to clear the remains of previous
2701 // variables live-ins / live-outs.
2702 for (unsigned int I = 0; I < NumBlocks; ++I) {
2703 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2704 LiveIns[I] = EmptyDbgValue;
2705 LiveOuts[I] = EmptyDbgValue;
2706 }
2707
2708 // Place PHIs for variable values, using the LLVM IDF calculator.
2709 // Collect the set of blocks where variables are def'd.
2710 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2711 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2712 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2713 if (TransferFunc.find(Var) != TransferFunc.end())
2714 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2715 }
2716
2717 SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2718
2719 // Request the set of PHIs we should insert for this variable. If there's
2720 // only one value definition, things are very simple.
2721 if (DefBlocks.size() == 1) {
2722 placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
2723 AllTheVLocs, Var, Output);
2724 continue;
2725 }
2726
2727 // Otherwise: we need to place PHIs through SSA and propagate values.
2728 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2729
2730 // Insert PHIs into the per-block live-in tables for this variable.
2731 for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2732 unsigned BlockNo = PHIMBB->getNumber();
2733 DbgValue *LiveIn = LiveInIdx[PHIMBB];
2734 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2735 }
2736
2737 for (auto *MBB : BlockOrders) {
2738 Worklist.push(BBToOrder[MBB]);
2739 OnWorklist.insert(MBB);
2740 }
2741
2742 // Iterate over all the blocks we selected, propagating the variables value.
2743 // This loop does two things:
2744 // * Eliminates un-necessary VPHIs in vlocJoin,
2745 // * Evaluates the blocks transfer function (i.e. variable assignments) and
2746 // stores the result to the blocks live-outs.
2747 // Always evaluate the transfer function on the first iteration, and when
2748 // the live-ins change thereafter.
2749 bool FirstTrip = true;
2750 while (!Worklist.empty() || !Pending.empty()) {
2751 while (!Worklist.empty()) {
2752 auto *MBB = OrderToBB[Worklist.top()];
2753 CurBB = MBB->getNumber();
2754 Worklist.pop();
2755
2756 auto LiveInsIt = LiveInIdx.find(MBB);
2757 assert(LiveInsIt != LiveInIdx.end());
2758 DbgValue *LiveIn = LiveInsIt->second;
2759
2760 // Join values from predecessors. Updates LiveInIdx, and writes output
2761 // into JoinedInLocs.
2762 bool InLocsChanged =
2763 vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
2764
2765 SmallVector<const MachineBasicBlock *, 8> Preds;
2766 for (const auto *Pred : MBB->predecessors())
2767 Preds.push_back(Pred);
2768
2769 // If this block's live-in value is a VPHI, try to pick a machine-value
2770 // for it. This makes the machine-value available and propagated
2771 // through all blocks by the time value propagation finishes. We can't
2772 // do this any earlier as it needs to read the block live-outs.
2773 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2774 // There's a small possibility that on a preceeding path, a VPHI is
2775 // eliminated and transitions from VPHI-with-location to
2776 // live-through-value. As a result, the selected location of any VPHI
2777 // might change, so we need to re-compute it on each iteration.
2778 Optional<ValueIDNum> ValueNum =
2779 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2780
2781 if (ValueNum) {
2782 InLocsChanged |= LiveIn->ID != *ValueNum;
2783 LiveIn->ID = *ValueNum;
2784 }
2785 }
2786
2787 if (!InLocsChanged && !FirstTrip)
2788 continue;
2789
2790 DbgValue *LiveOut = LiveOutIdx[MBB];
2791 bool OLChanged = false;
2792
2793 // Do transfer function.
2794 auto &VTracker = AllTheVLocs[MBB->getNumber()];
2795 auto TransferIt = VTracker.Vars.find(Var);
2796 if (TransferIt != VTracker.Vars.end()) {
2797 // Erase on empty transfer (DBG_VALUE $noreg).
2798 if (TransferIt->second.Kind == DbgValue::Undef) {
2799 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2800 if (*LiveOut != NewVal) {
2801 *LiveOut = NewVal;
2802 OLChanged = true;
2803 }
2804 } else {
2805 // Insert new variable value; or overwrite.
2806 if (*LiveOut != TransferIt->second) {
2807 *LiveOut = TransferIt->second;
2808 OLChanged = true;
2809 }
2810 }
2811 } else {
2812 // Just copy live-ins to live-outs, for anything not transferred.
2813 if (*LiveOut != *LiveIn) {
2814 *LiveOut = *LiveIn;
2815 OLChanged = true;
2816 }
2817 }
2818
2819 // If no live-out value changed, there's no need to explore further.
2820 if (!OLChanged)
2821 continue;
2822
2823 // We should visit all successors. Ensure we'll visit any non-backedge
2824 // successors during this dataflow iteration; book backedge successors
2825 // to be visited next time around.
2826 for (auto *s : MBB->successors()) {
2827 // Ignore out of scope / not-to-be-explored successors.
2828 if (LiveInIdx.find(s) == LiveInIdx.end())
2829 continue;
2830
2831 if (BBToOrder[s] > BBToOrder[MBB]) {
2832 if (OnWorklist.insert(s).second)
2833 Worklist.push(BBToOrder[s]);
2834 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2835 Pending.push(BBToOrder[s]);
2836 }
2837 }
2838 }
2839 Worklist.swap(Pending);
2840 std::swap(OnWorklist, OnPending);
2841 OnPending.clear();
2842 assert(Pending.empty());
2843 FirstTrip = false;
2844 }
2845
2846 // Save live-ins to output vector. Ignore any that are still marked as being
2847 // VPHIs with no location -- those are variables that we know the value of,
2848 // but are not actually available in the register file.
2849 for (auto *MBB : BlockOrders) {
2850 DbgValue *BlockLiveIn = LiveInIdx[MBB];
2851 if (BlockLiveIn->Kind == DbgValue::NoVal)
2852 continue;
2853 if (BlockLiveIn->Kind == DbgValue::VPHI &&
2854 BlockLiveIn->ID == ValueIDNum::EmptyValue)
2855 continue;
2856 if (BlockLiveIn->Kind == DbgValue::VPHI)
2857 BlockLiveIn->Kind = DbgValue::Def;
2858 assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
2859 Var.getFragment() && "Fragment info missing during value prop");
2860 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2861 }
2862 } // Per-variable loop.
2863
2864 BlockOrders.clear();
2865 BlocksToExplore.clear();
2866 }
2867
placePHIsForSingleVarDefinition(const SmallPtrSetImpl<MachineBasicBlock * > & InScopeBlocks,MachineBasicBlock * AssignMBB,SmallVectorImpl<VLocTracker> & AllTheVLocs,const DebugVariable & Var,LiveInsT & Output)2868 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
2869 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
2870 MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
2871 const DebugVariable &Var, LiveInsT &Output) {
2872 // If there is a single definition of the variable, then working out it's
2873 // value everywhere is very simple: it's every block dominated by the
2874 // definition. At the dominance frontier, the usual algorithm would:
2875 // * Place PHIs,
2876 // * Propagate values into them,
2877 // * Find there's no incoming variable value from the other incoming branches
2878 // of the dominance frontier,
2879 // * Specify there's no variable value in blocks past the frontier.
2880 // This is a common case, hence it's worth special-casing it.
2881
2882 // Pick out the variables value from the block transfer function.
2883 VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
2884 auto ValueIt = VLocs.Vars.find(Var);
2885 const DbgValue &Value = ValueIt->second;
2886
2887 // If it's an explicit assignment of "undef", that means there is no location
2888 // anyway, anywhere.
2889 if (Value.Kind == DbgValue::Undef)
2890 return;
2891
2892 // Assign the variable value to entry to each dominated block that's in scope.
2893 // Skip the definition block -- it's assigned the variable value in the middle
2894 // of the block somewhere.
2895 for (auto *ScopeBlock : InScopeBlocks) {
2896 if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
2897 continue;
2898
2899 Output[ScopeBlock->getNumber()].push_back({Var, Value});
2900 }
2901
2902 // All blocks that aren't dominated have no live-in value, thus no variable
2903 // value will be given to them.
2904 }
2905
2906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_mloc_transfer(const MLocTransferMap & mloc_transfer) const2907 void InstrRefBasedLDV::dump_mloc_transfer(
2908 const MLocTransferMap &mloc_transfer) const {
2909 for (const auto &P : mloc_transfer) {
2910 std::string foo = MTracker->LocIdxToName(P.first);
2911 std::string bar = MTracker->IDAsString(P.second);
2912 dbgs() << "Loc " << foo << " --> " << bar << "\n";
2913 }
2914 }
2915 #endif
2916
initialSetup(MachineFunction & MF)2917 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2918 // Build some useful data structures.
2919
2920 LLVMContext &Context = MF.getFunction().getContext();
2921 EmptyExpr = DIExpression::get(Context, {});
2922
2923 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2924 if (const DebugLoc &DL = MI.getDebugLoc())
2925 return DL.getLine() != 0;
2926 return false;
2927 };
2928 // Collect a set of all the artificial blocks.
2929 for (auto &MBB : MF)
2930 if (none_of(MBB.instrs(), hasNonArtificialLocation))
2931 ArtificialBlocks.insert(&MBB);
2932
2933 // Compute mappings of block <=> RPO order.
2934 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2935 unsigned int RPONumber = 0;
2936 for (MachineBasicBlock *MBB : RPOT) {
2937 OrderToBB[RPONumber] = MBB;
2938 BBToOrder[MBB] = RPONumber;
2939 BBNumToRPO[MBB->getNumber()] = RPONumber;
2940 ++RPONumber;
2941 }
2942
2943 // Order value substitutions by their "source" operand pair, for quick lookup.
2944 llvm::sort(MF.DebugValueSubstitutions);
2945
2946 #ifdef EXPENSIVE_CHECKS
2947 // As an expensive check, test whether there are any duplicate substitution
2948 // sources in the collection.
2949 if (MF.DebugValueSubstitutions.size() > 2) {
2950 for (auto It = MF.DebugValueSubstitutions.begin();
2951 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2952 assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2953 "substitution seen");
2954 }
2955 }
2956 #endif
2957 }
2958
2959 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
2960 // lexical scope it's used in. When exploring in DFS order and we pass that
2961 // scope, the block can be processed and any tracking information freed.
makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> & EjectionMap,const ScopeToDILocT & ScopeToDILocation,ScopeToAssignBlocksT & ScopeToAssignBlocks)2962 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
2963 SmallVectorImpl<unsigned> &EjectionMap,
2964 const ScopeToDILocT &ScopeToDILocation,
2965 ScopeToAssignBlocksT &ScopeToAssignBlocks) {
2966 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2967 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
2968 auto *TopScope = LS.getCurrentFunctionScope();
2969
2970 // Unlike lexical scope explorers, we explore in reverse order, to find the
2971 // "last" lexical scope used for each block early.
2972 WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
2973
2974 while (!WorkStack.empty()) {
2975 auto &ScopePosition = WorkStack.back();
2976 LexicalScope *WS = ScopePosition.first;
2977 ssize_t ChildNum = ScopePosition.second--;
2978
2979 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
2980 if (ChildNum >= 0) {
2981 // If ChildNum is positive, there are remaining children to explore.
2982 // Push the child and its children-count onto the stack.
2983 auto &ChildScope = Children[ChildNum];
2984 WorkStack.push_back(
2985 std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
2986 } else {
2987 WorkStack.pop_back();
2988
2989 // We've explored all children and any later blocks: examine all blocks
2990 // in our scope. If they haven't yet had an ejection number set, then
2991 // this scope will be the last to use that block.
2992 auto DILocationIt = ScopeToDILocation.find(WS);
2993 if (DILocationIt != ScopeToDILocation.end()) {
2994 getBlocksForScope(DILocationIt->second, BlocksToExplore,
2995 ScopeToAssignBlocks.find(WS)->second);
2996 for (const auto *MBB : BlocksToExplore) {
2997 unsigned BBNum = MBB->getNumber();
2998 if (EjectionMap[BBNum] == 0)
2999 EjectionMap[BBNum] = WS->getDFSOut();
3000 }
3001
3002 BlocksToExplore.clear();
3003 }
3004 }
3005 }
3006 }
3007
depthFirstVLocAndEmit(unsigned MaxNumBlocks,const ScopeToDILocT & ScopeToDILocation,const ScopeToVarsT & ScopeToVars,ScopeToAssignBlocksT & ScopeToAssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs,MachineFunction & MF,DenseMap<DebugVariable,unsigned> & AllVarsNumbering,const TargetPassConfig & TPC)3008 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3009 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3010 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3011 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3012 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3013 DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3014 const TargetPassConfig &TPC) {
3015 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3016 unsigned NumLocs = MTracker->getNumLocs();
3017 VTracker = nullptr;
3018
3019 // No scopes? No variable locations.
3020 if (!LS.getCurrentFunctionScope())
3021 return false;
3022
3023 // Build map from block number to the last scope that uses the block.
3024 SmallVector<unsigned, 16> EjectionMap;
3025 EjectionMap.resize(MaxNumBlocks, 0);
3026 makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3027 ScopeToAssignBlocks);
3028
3029 // Helper lambda for ejecting a block -- if nothing is going to use the block,
3030 // we can translate the variable location information into DBG_VALUEs and then
3031 // free all of InstrRefBasedLDV's data structures.
3032 auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3033 unsigned BBNum = MBB.getNumber();
3034 AllTheVLocs[BBNum].clear();
3035
3036 // Prime the transfer-tracker, and then step through all the block
3037 // instructions, installing transfers.
3038 MTracker->reset();
3039 MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3040 TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
3041
3042 CurBB = BBNum;
3043 CurInst = 1;
3044 for (auto &MI : MBB) {
3045 process(MI, MOutLocs.get(), MInLocs.get());
3046 TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3047 ++CurInst;
3048 }
3049
3050 // Free machine-location tables for this block.
3051 MInLocs[BBNum].reset();
3052 MOutLocs[BBNum].reset();
3053 // We don't need live-in variable values for this block either.
3054 Output[BBNum].clear();
3055 AllTheVLocs[BBNum].clear();
3056 };
3057
3058 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3059 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3060 WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3061 unsigned HighestDFSIn = 0;
3062
3063 // Proceed to explore in depth first order.
3064 while (!WorkStack.empty()) {
3065 auto &ScopePosition = WorkStack.back();
3066 LexicalScope *WS = ScopePosition.first;
3067 ssize_t ChildNum = ScopePosition.second++;
3068
3069 // We obesrve scopes with children twice here, once descending in, once
3070 // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3071 // we don't process a scope twice. Additionally, ignore scopes that don't
3072 // have a DILocation -- by proxy, this means we never tracked any variable
3073 // assignments in that scope.
3074 auto DILocIt = ScopeToDILocation.find(WS);
3075 if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3076 const DILocation *DILoc = DILocIt->second;
3077 auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3078 auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3079
3080 buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3081 MInLocs, AllTheVLocs);
3082 }
3083
3084 HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3085
3086 // Descend into any scope nests.
3087 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3088 if (ChildNum < (ssize_t)Children.size()) {
3089 // There are children to explore -- push onto stack and continue.
3090 auto &ChildScope = Children[ChildNum];
3091 WorkStack.push_back(std::make_pair(ChildScope, 0));
3092 } else {
3093 WorkStack.pop_back();
3094
3095 // We've explored a leaf, or have explored all the children of a scope.
3096 // Try to eject any blocks where this is the last scope it's relevant to.
3097 auto DILocationIt = ScopeToDILocation.find(WS);
3098 if (DILocationIt == ScopeToDILocation.end())
3099 continue;
3100
3101 getBlocksForScope(DILocationIt->second, BlocksToExplore,
3102 ScopeToAssignBlocks.find(WS)->second);
3103 for (const auto *MBB : BlocksToExplore)
3104 if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3105 EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3106
3107 BlocksToExplore.clear();
3108 }
3109 }
3110
3111 // Some artificial blocks may not have been ejected, meaning they're not
3112 // connected to an actual legitimate scope. This can technically happen
3113 // with things like the entry block. In theory, we shouldn't need to do
3114 // anything for such out-of-scope blocks, but for the sake of being similar
3115 // to VarLocBasedLDV, eject these too.
3116 for (auto *MBB : ArtificialBlocks)
3117 if (MOutLocs[MBB->getNumber()])
3118 EjectBlock(*MBB);
3119
3120 return emitTransfers(AllVarsNumbering);
3121 }
3122
emitTransfers(DenseMap<DebugVariable,unsigned> & AllVarsNumbering)3123 bool InstrRefBasedLDV::emitTransfers(
3124 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3125 // Go through all the transfers recorded in the TransferTracker -- this is
3126 // both the live-ins to a block, and any movements of values that happen
3127 // in the middle.
3128 for (const auto &P : TTracker->Transfers) {
3129 // We have to insert DBG_VALUEs in a consistent order, otherwise they
3130 // appear in DWARF in different orders. Use the order that they appear
3131 // when walking through each block / each instruction, stored in
3132 // AllVarsNumbering.
3133 SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3134 for (MachineInstr *MI : P.Insts) {
3135 DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3136 MI->getDebugLoc()->getInlinedAt());
3137 Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3138 }
3139 llvm::sort(Insts, llvm::less_first());
3140
3141 // Insert either before or after the designated point...
3142 if (P.MBB) {
3143 MachineBasicBlock &MBB = *P.MBB;
3144 for (const auto &Pair : Insts)
3145 MBB.insert(P.Pos, Pair.second);
3146 } else {
3147 // Terminators, like tail calls, can clobber things. Don't try and place
3148 // transfers after them.
3149 if (P.Pos->isTerminator())
3150 continue;
3151
3152 MachineBasicBlock &MBB = *P.Pos->getParent();
3153 for (const auto &Pair : Insts)
3154 MBB.insertAfterBundle(P.Pos, Pair.second);
3155 }
3156 }
3157
3158 return TTracker->Transfers.size() != 0;
3159 }
3160
3161 /// Calculate the liveness information for the given machine function and
3162 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,MachineDominatorTree * DomTree,TargetPassConfig * TPC,unsigned InputBBLimit,unsigned InputDbgValLimit)3163 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3164 MachineDominatorTree *DomTree,
3165 TargetPassConfig *TPC,
3166 unsigned InputBBLimit,
3167 unsigned InputDbgValLimit) {
3168 // No subprogram means this function contains no debuginfo.
3169 if (!MF.getFunction().getSubprogram())
3170 return false;
3171
3172 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3173 this->TPC = TPC;
3174
3175 this->DomTree = DomTree;
3176 TRI = MF.getSubtarget().getRegisterInfo();
3177 MRI = &MF.getRegInfo();
3178 TII = MF.getSubtarget().getInstrInfo();
3179 TFI = MF.getSubtarget().getFrameLowering();
3180 TFI->getCalleeSaves(MF, CalleeSavedRegs);
3181 MFI = &MF.getFrameInfo();
3182 LS.initialize(MF);
3183
3184 const auto &STI = MF.getSubtarget();
3185 AdjustsStackInCalls = MFI->adjustsStack() &&
3186 STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3187 if (AdjustsStackInCalls)
3188 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3189
3190 MTracker =
3191 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3192 VTracker = nullptr;
3193 TTracker = nullptr;
3194
3195 SmallVector<MLocTransferMap, 32> MLocTransfer;
3196 SmallVector<VLocTracker, 8> vlocs;
3197 LiveInsT SavedLiveIns;
3198
3199 int MaxNumBlocks = -1;
3200 for (auto &MBB : MF)
3201 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3202 assert(MaxNumBlocks >= 0);
3203 ++MaxNumBlocks;
3204
3205 initialSetup(MF);
3206
3207 MLocTransfer.resize(MaxNumBlocks);
3208 vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3209 SavedLiveIns.resize(MaxNumBlocks);
3210
3211 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3212
3213 // Allocate and initialize two array-of-arrays for the live-in and live-out
3214 // machine values. The outer dimension is the block number; while the inner
3215 // dimension is a LocIdx from MLocTracker.
3216 FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3217 FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3218 unsigned NumLocs = MTracker->getNumLocs();
3219 for (int i = 0; i < MaxNumBlocks; ++i) {
3220 // These all auto-initialize to ValueIDNum::EmptyValue
3221 MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3222 MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3223 }
3224
3225 // Solve the machine value dataflow problem using the MLocTransfer function,
3226 // storing the computed live-ins / live-outs into the array-of-arrays. We use
3227 // both live-ins and live-outs for decision making in the variable value
3228 // dataflow problem.
3229 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3230
3231 // Patch up debug phi numbers, turning unknown block-live-in values into
3232 // either live-through machine values, or PHIs.
3233 for (auto &DBG_PHI : DebugPHINumToValue) {
3234 // Identify unresolved block-live-ins.
3235 if (!DBG_PHI.ValueRead)
3236 continue;
3237
3238 ValueIDNum &Num = *DBG_PHI.ValueRead;
3239 if (!Num.isPHI())
3240 continue;
3241
3242 unsigned BlockNo = Num.getBlock();
3243 LocIdx LocNo = Num.getLoc();
3244 Num = MInLocs[BlockNo][LocNo.asU64()];
3245 }
3246 // Later, we'll be looking up ranges of instruction numbers.
3247 llvm::sort(DebugPHINumToValue);
3248
3249 // Walk back through each block / instruction, collecting DBG_VALUE
3250 // instructions and recording what machine value their operands refer to.
3251 for (auto &OrderPair : OrderToBB) {
3252 MachineBasicBlock &MBB = *OrderPair.second;
3253 CurBB = MBB.getNumber();
3254 VTracker = &vlocs[CurBB];
3255 VTracker->MBB = &MBB;
3256 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3257 CurInst = 1;
3258 for (auto &MI : MBB) {
3259 process(MI, MOutLocs.get(), MInLocs.get());
3260 ++CurInst;
3261 }
3262 MTracker->reset();
3263 }
3264
3265 // Number all variables in the order that they appear, to be used as a stable
3266 // insertion order later.
3267 DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3268
3269 // Map from one LexicalScope to all the variables in that scope.
3270 ScopeToVarsT ScopeToVars;
3271
3272 // Map from One lexical scope to all blocks where assignments happen for
3273 // that scope.
3274 ScopeToAssignBlocksT ScopeToAssignBlocks;
3275
3276 // Store map of DILocations that describes scopes.
3277 ScopeToDILocT ScopeToDILocation;
3278
3279 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3280 // the order is unimportant, it just has to be stable.
3281 unsigned VarAssignCount = 0;
3282 for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3283 auto *MBB = OrderToBB[I];
3284 auto *VTracker = &vlocs[MBB->getNumber()];
3285 // Collect each variable with a DBG_VALUE in this block.
3286 for (auto &idx : VTracker->Vars) {
3287 const auto &Var = idx.first;
3288 const DILocation *ScopeLoc = VTracker->Scopes[Var];
3289 assert(ScopeLoc != nullptr);
3290 auto *Scope = LS.findLexicalScope(ScopeLoc);
3291
3292 // No insts in scope -> shouldn't have been recorded.
3293 assert(Scope != nullptr);
3294
3295 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3296 ScopeToVars[Scope].insert(Var);
3297 ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3298 ScopeToDILocation[Scope] = ScopeLoc;
3299 ++VarAssignCount;
3300 }
3301 }
3302
3303 bool Changed = false;
3304
3305 // If we have an extremely large number of variable assignments and blocks,
3306 // bail out at this point. We've burnt some time doing analysis already,
3307 // however we should cut our losses.
3308 if ((unsigned)MaxNumBlocks > InputBBLimit &&
3309 VarAssignCount > InputDbgValLimit) {
3310 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3311 << " has " << MaxNumBlocks << " basic blocks and "
3312 << VarAssignCount
3313 << " variable assignments, exceeding limits.\n");
3314 } else {
3315 // Optionally, solve the variable value problem and emit to blocks by using
3316 // a lexical-scope-depth search. It should be functionally identical to
3317 // the "else" block of this condition.
3318 Changed = depthFirstVLocAndEmit(
3319 MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3320 SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3321 }
3322
3323 delete MTracker;
3324 delete TTracker;
3325 MTracker = nullptr;
3326 VTracker = nullptr;
3327 TTracker = nullptr;
3328
3329 ArtificialBlocks.clear();
3330 OrderToBB.clear();
3331 BBToOrder.clear();
3332 BBNumToRPO.clear();
3333 DebugInstrNumToInstr.clear();
3334 DebugPHINumToValue.clear();
3335 OverlapFragments.clear();
3336 SeenFragments.clear();
3337 SeenDbgPHIs.clear();
3338
3339 return Changed;
3340 }
3341
makeInstrRefBasedLiveDebugValues()3342 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3343 return new InstrRefBasedLDV();
3344 }
3345
3346 namespace {
3347 class LDVSSABlock;
3348 class LDVSSAUpdater;
3349
3350 // Pick a type to identify incoming block values as we construct SSA. We
3351 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3352 // expects to zero-initialize the type.
3353 typedef uint64_t BlockValueNum;
3354
3355 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3356 /// this PHI is in, the value number it would have, and the expected incoming
3357 /// values from parent blocks.
3358 class LDVSSAPhi {
3359 public:
3360 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3361 LDVSSABlock *ParentBlock;
3362 BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum,LDVSSABlock * ParentBlock)3363 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3364 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3365
getParent()3366 LDVSSABlock *getParent() { return ParentBlock; }
3367 };
3368
3369 /// Thin wrapper around a block predecessor iterator. Only difference from a
3370 /// normal block iterator is that it dereferences to an LDVSSABlock.
3371 class LDVSSABlockIterator {
3372 public:
3373 MachineBasicBlock::pred_iterator PredIt;
3374 LDVSSAUpdater &Updater;
3375
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,LDVSSAUpdater & Updater)3376 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3377 LDVSSAUpdater &Updater)
3378 : PredIt(PredIt), Updater(Updater) {}
3379
operator !=(const LDVSSABlockIterator & OtherIt) const3380 bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3381 return OtherIt.PredIt != PredIt;
3382 }
3383
operator ++()3384 LDVSSABlockIterator &operator++() {
3385 ++PredIt;
3386 return *this;
3387 }
3388
3389 LDVSSABlock *operator*();
3390 };
3391
3392 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3393 /// we need to track the PHI value(s) that we may have observed as necessary
3394 /// in this block.
3395 class LDVSSABlock {
3396 public:
3397 MachineBasicBlock &BB;
3398 LDVSSAUpdater &Updater;
3399 using PHIListT = SmallVector<LDVSSAPhi, 1>;
3400 /// List of PHIs in this block. There should only ever be one.
3401 PHIListT PHIList;
3402
LDVSSABlock(MachineBasicBlock & BB,LDVSSAUpdater & Updater)3403 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3404 : BB(BB), Updater(Updater) {}
3405
succ_begin()3406 LDVSSABlockIterator succ_begin() {
3407 return LDVSSABlockIterator(BB.succ_begin(), Updater);
3408 }
3409
succ_end()3410 LDVSSABlockIterator succ_end() {
3411 return LDVSSABlockIterator(BB.succ_end(), Updater);
3412 }
3413
3414 /// SSAUpdater has requested a PHI: create that within this block record.
newPHI(BlockValueNum Value)3415 LDVSSAPhi *newPHI(BlockValueNum Value) {
3416 PHIList.emplace_back(Value, this);
3417 return &PHIList.back();
3418 }
3419
3420 /// SSAUpdater wishes to know what PHIs already exist in this block.
phis()3421 PHIListT &phis() { return PHIList; }
3422 };
3423
3424 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3425 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3426 // SSAUpdaterTraits<LDVSSAUpdater>.
3427 class LDVSSAUpdater {
3428 public:
3429 /// Map of value numbers to PHI records.
3430 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3431 /// Map of which blocks generate Undef values -- blocks that are not
3432 /// dominated by any Def.
3433 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3434 /// Map of machine blocks to our own records of them.
3435 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3436 /// Machine location where any PHI must occur.
3437 LocIdx Loc;
3438 /// Table of live-in machine value numbers for blocks / locations.
3439 const ValueTable *MLiveIns;
3440
LDVSSAUpdater(LocIdx L,const ValueTable * MLiveIns)3441 LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3442 : Loc(L), MLiveIns(MLiveIns) {}
3443
reset()3444 void reset() {
3445 for (auto &Block : BlockMap)
3446 delete Block.second;
3447
3448 PHIs.clear();
3449 UndefMap.clear();
3450 BlockMap.clear();
3451 }
3452
~LDVSSAUpdater()3453 ~LDVSSAUpdater() { reset(); }
3454
3455 /// For a given MBB, create a wrapper block for it. Stores it in the
3456 /// LDVSSAUpdater block map.
getSSALDVBlock(MachineBasicBlock * BB)3457 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3458 auto it = BlockMap.find(BB);
3459 if (it == BlockMap.end()) {
3460 BlockMap[BB] = new LDVSSABlock(*BB, *this);
3461 it = BlockMap.find(BB);
3462 }
3463 return it->second;
3464 }
3465
3466 /// Find the live-in value number for the given block. Looks up the value at
3467 /// the PHI location on entry.
getValue(LDVSSABlock * LDVBB)3468 BlockValueNum getValue(LDVSSABlock *LDVBB) {
3469 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3470 }
3471 };
3472
operator *()3473 LDVSSABlock *LDVSSABlockIterator::operator*() {
3474 return Updater.getSSALDVBlock(*PredIt);
3475 }
3476
3477 #ifndef NDEBUG
3478
operator <<(raw_ostream & out,const LDVSSAPhi & PHI)3479 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3480 out << "SSALDVPHI " << PHI.PHIValNum;
3481 return out;
3482 }
3483
3484 #endif
3485
3486 } // namespace
3487
3488 namespace llvm {
3489
3490 /// Template specialization to give SSAUpdater access to CFG and value
3491 /// information. SSAUpdater calls methods in these traits, passing in the
3492 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3493 /// It also provides methods to create PHI nodes and track them.
3494 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3495 public:
3496 using BlkT = LDVSSABlock;
3497 using ValT = BlockValueNum;
3498 using PhiT = LDVSSAPhi;
3499 using BlkSucc_iterator = LDVSSABlockIterator;
3500
3501 // Methods to access block successors -- dereferencing to our wrapper class.
BlkSucc_begin(BlkT * BB)3502 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)3503 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3504
3505 /// Iterator for PHI operands.
3506 class PHI_iterator {
3507 private:
3508 LDVSSAPhi *PHI;
3509 unsigned Idx;
3510
3511 public:
PHI_iterator(LDVSSAPhi * P)3512 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3513 : PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi * P,bool)3514 PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3515 : PHI(P), Idx(PHI->IncomingValues.size()) {}
3516
operator ++()3517 PHI_iterator &operator++() {
3518 Idx++;
3519 return *this;
3520 }
operator ==(const PHI_iterator & X) const3521 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
operator !=(const PHI_iterator & X) const3522 bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3523
getIncomingValue()3524 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3525
getIncomingBlock()3526 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3527 };
3528
PHI_begin(PhiT * PHI)3529 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3530
PHI_end(PhiT * PHI)3531 static inline PHI_iterator PHI_end(PhiT *PHI) {
3532 return PHI_iterator(PHI, true);
3533 }
3534
3535 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3536 /// vector.
FindPredecessorBlocks(LDVSSABlock * BB,SmallVectorImpl<LDVSSABlock * > * Preds)3537 static void FindPredecessorBlocks(LDVSSABlock *BB,
3538 SmallVectorImpl<LDVSSABlock *> *Preds) {
3539 for (MachineBasicBlock *Pred : BB->BB.predecessors())
3540 Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3541 }
3542
3543 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3544 /// register. For LiveDebugValues, represents a block identified as not having
3545 /// any DBG_PHI predecessors.
GetUndefVal(LDVSSABlock * BB,LDVSSAUpdater * Updater)3546 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3547 // Create a value number for this block -- it needs to be unique and in the
3548 // "undef" collection, so that we know it's not real. Use a number
3549 // representing a PHI into this block.
3550 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3551 Updater->UndefMap[&BB->BB] = Num;
3552 return Num;
3553 }
3554
3555 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3556 /// SSAUpdater will populate it with information about incoming values. The
3557 /// value number of this PHI is whatever the machine value number problem
3558 /// solution determined it to be. This includes non-phi values if SSAUpdater
3559 /// tries to create a PHI where the incoming values are identical.
CreateEmptyPHI(LDVSSABlock * BB,unsigned NumPreds,LDVSSAUpdater * Updater)3560 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3561 LDVSSAUpdater *Updater) {
3562 BlockValueNum PHIValNum = Updater->getValue(BB);
3563 LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3564 Updater->PHIs[PHIValNum] = PHI;
3565 return PHIValNum;
3566 }
3567
3568 /// AddPHIOperand - Add the specified value as an operand of the PHI for
3569 /// the specified predecessor block.
AddPHIOperand(LDVSSAPhi * PHI,BlockValueNum Val,LDVSSABlock * Pred)3570 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3571 PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3572 }
3573
3574 /// ValueIsPHI - Check if the instruction that defines the specified value
3575 /// is a PHI instruction.
ValueIsPHI(BlockValueNum Val,LDVSSAUpdater * Updater)3576 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3577 auto PHIIt = Updater->PHIs.find(Val);
3578 if (PHIIt == Updater->PHIs.end())
3579 return nullptr;
3580 return PHIIt->second;
3581 }
3582
3583 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3584 /// operands, i.e., it was just added.
ValueIsNewPHI(BlockValueNum Val,LDVSSAUpdater * Updater)3585 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3586 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3587 if (PHI && PHI->IncomingValues.size() == 0)
3588 return PHI;
3589 return nullptr;
3590 }
3591
3592 /// GetPHIValue - For the specified PHI instruction, return the value
3593 /// that it defines.
GetPHIValue(LDVSSAPhi * PHI)3594 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3595 };
3596
3597 } // end namespace llvm
3598
resolveDbgPHIs(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)3599 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
3600 MachineFunction &MF, const ValueTable *MLiveOuts,
3601 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3602 assert(MLiveOuts && MLiveIns &&
3603 "Tried to resolve DBG_PHI before location "
3604 "tables allocated?");
3605
3606 // This function will be called twice per DBG_INSTR_REF, and might end up
3607 // computing lots of SSA information: memoize it.
3608 auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
3609 if (SeenDbgPHIIt != SeenDbgPHIs.end())
3610 return SeenDbgPHIIt->second;
3611
3612 Optional<ValueIDNum> Result =
3613 resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
3614 SeenDbgPHIs.insert({&Here, Result});
3615 return Result;
3616 }
3617
resolveDbgPHIsImpl(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)3618 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
3619 MachineFunction &MF, const ValueTable *MLiveOuts,
3620 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3621 // Pick out records of DBG_PHI instructions that have been observed. If there
3622 // are none, then we cannot compute a value number.
3623 auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3624 DebugPHINumToValue.end(), InstrNum);
3625 auto LowerIt = RangePair.first;
3626 auto UpperIt = RangePair.second;
3627
3628 // No DBG_PHI means there can be no location.
3629 if (LowerIt == UpperIt)
3630 return None;
3631
3632 // If any DBG_PHIs referred to a location we didn't understand, don't try to
3633 // compute a value. There might be scenarios where we could recover a value
3634 // for some range of DBG_INSTR_REFs, but at this point we can have high
3635 // confidence that we've seen a bug.
3636 auto DBGPHIRange = make_range(LowerIt, UpperIt);
3637 for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
3638 if (!DBG_PHI.ValueRead)
3639 return None;
3640
3641 // If there's only one DBG_PHI, then that is our value number.
3642 if (std::distance(LowerIt, UpperIt) == 1)
3643 return *LowerIt->ValueRead;
3644
3645 // Pick out the location (physreg, slot) where any PHIs must occur. It's
3646 // technically possible for us to merge values in different registers in each
3647 // block, but highly unlikely that LLVM will generate such code after register
3648 // allocation.
3649 LocIdx Loc = *LowerIt->ReadLoc;
3650
3651 // We have several DBG_PHIs, and a use position (the Here inst). All each
3652 // DBG_PHI does is identify a value at a program position. We can treat each
3653 // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3654 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3655 // determine which Def is used at the Use, and any PHIs that happen along
3656 // the way.
3657 // Adapted LLVM SSA Updater:
3658 LDVSSAUpdater Updater(Loc, MLiveIns);
3659 // Map of which Def or PHI is the current value in each block.
3660 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3661 // Set of PHIs that we have created along the way.
3662 SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3663
3664 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3665 // for the SSAUpdater.
3666 for (const auto &DBG_PHI : DBGPHIRange) {
3667 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3668 const ValueIDNum &Num = *DBG_PHI.ValueRead;
3669 AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3670 }
3671
3672 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3673 const auto &AvailIt = AvailableValues.find(HereBlock);
3674 if (AvailIt != AvailableValues.end()) {
3675 // Actually, we already know what the value is -- the Use is in the same
3676 // block as the Def.
3677 return ValueIDNum::fromU64(AvailIt->second);
3678 }
3679
3680 // Otherwise, we must use the SSA Updater. It will identify the value number
3681 // that we are to use, and the PHIs that must happen along the way.
3682 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3683 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3684 ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3685
3686 // We have the number for a PHI, or possibly live-through value, to be used
3687 // at this Use. There are a number of things we have to check about it though:
3688 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3689 // Use was not completely dominated by DBG_PHIs and we should abort.
3690 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3691 // we've left SSA form. Validate that the inputs to each PHI are the
3692 // expected values.
3693 // * Is a PHI we've created actually a merging of values, or are all the
3694 // predecessor values the same, leading to a non-PHI machine value number?
3695 // (SSAUpdater doesn't know that either). Remap validated PHIs into the
3696 // the ValidatedValues collection below to sort this out.
3697 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3698
3699 // Define all the input DBG_PHI values in ValidatedValues.
3700 for (const auto &DBG_PHI : DBGPHIRange) {
3701 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3702 const ValueIDNum &Num = *DBG_PHI.ValueRead;
3703 ValidatedValues.insert(std::make_pair(Block, Num));
3704 }
3705
3706 // Sort PHIs to validate into RPO-order.
3707 SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3708 for (auto &PHI : CreatedPHIs)
3709 SortedPHIs.push_back(PHI);
3710
3711 llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3712 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3713 });
3714
3715 for (auto &PHI : SortedPHIs) {
3716 ValueIDNum ThisBlockValueNum =
3717 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3718
3719 // Are all these things actually defined?
3720 for (auto &PHIIt : PHI->IncomingValues) {
3721 // Any undef input means DBG_PHIs didn't dominate the use point.
3722 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3723 return None;
3724
3725 ValueIDNum ValueToCheck;
3726 const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3727
3728 auto VVal = ValidatedValues.find(PHIIt.first);
3729 if (VVal == ValidatedValues.end()) {
3730 // We cross a loop, and this is a backedge. LLVMs tail duplication
3731 // happens so late that DBG_PHI instructions should not be able to
3732 // migrate into loops -- meaning we can only be live-through this
3733 // loop.
3734 ValueToCheck = ThisBlockValueNum;
3735 } else {
3736 // Does the block have as a live-out, in the location we're examining,
3737 // the value that we expect? If not, it's been moved or clobbered.
3738 ValueToCheck = VVal->second;
3739 }
3740
3741 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3742 return None;
3743 }
3744
3745 // Record this value as validated.
3746 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3747 }
3748
3749 // All the PHIs are valid: we can return what the SSAUpdater said our value
3750 // number was.
3751 return Result;
3752 }
3753