1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Tracker for converting machine value locations and variable values into
152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
153 /// specifying block live-in locations and transfers within blocks.
154 ///
155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
156 /// and must be initialized with the set of variable values that are live-in to
157 /// the block. The caller then repeatedly calls process(). TransferTracker picks
158 /// out variable locations for the live-in variable values (if there _is_ a
159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
160 /// stepped through, transfers of values between machine locations are
161 /// identified and if profitable, a DBG_VALUE created.
162 ///
163 /// This is where debug use-before-defs would be resolved: a variable with an
164 /// unavailable value could materialize in the middle of a block, when the
165 /// value becomes available. Or, we could detect clobbers and re-specify the
166 /// variable in a backup location. (XXX these are unimplemented).
167 class TransferTracker {
168 public:
169   const TargetInstrInfo *TII;
170   const TargetLowering *TLI;
171   /// This machine location tracker is assumed to always contain the up-to-date
172   /// value mapping for all machine locations. TransferTracker only reads
173   /// information from it. (XXX make it const?)
174   MLocTracker *MTracker;
175   MachineFunction &MF;
176   bool ShouldEmitDebugEntryValues;
177 
178   /// Record of all changes in variable locations at a block position. Awkwardly
179   /// we allow inserting either before or after the point: MBB != nullptr
180   /// indicates it's before, otherwise after.
181   struct Transfer {
182     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
183     MachineBasicBlock *MBB; /// non-null if we should insert after.
184     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
185   };
186 
187   struct LocAndProperties {
188     LocIdx Loc;
189     DbgValueProperties Properties;
190   };
191 
192   /// Collection of transfers (DBG_VALUEs) to be inserted.
193   SmallVector<Transfer, 32> Transfers;
194 
195   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
196   /// between TransferTrackers view of variable locations and MLocTrackers. For
197   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
198   /// does not.
199   SmallVector<ValueIDNum, 32> VarLocs;
200 
201   /// Map from LocIdxes to which DebugVariables are based that location.
202   /// Mantained while stepping through the block. Not accurate if
203   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
204   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
205 
206   /// Map from DebugVariable to it's current location and qualifying meta
207   /// information. To be used in conjunction with ActiveMLocs to construct
208   /// enough information for the DBG_VALUEs for a particular LocIdx.
209   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
210 
211   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
212   SmallVector<MachineInstr *, 4> PendingDbgValues;
213 
214   /// Record of a use-before-def: created when a value that's live-in to the
215   /// current block isn't available in any machine location, but it will be
216   /// defined in this block.
217   struct UseBeforeDef {
218     /// Value of this variable, def'd in block.
219     ValueIDNum ID;
220     /// Identity of this variable.
221     DebugVariable Var;
222     /// Additional variable properties.
223     DbgValueProperties Properties;
224   };
225 
226   /// Map from instruction index (within the block) to the set of UseBeforeDefs
227   /// that become defined at that instruction.
228   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
229 
230   /// The set of variables that are in UseBeforeDefs and can become a location
231   /// once the relevant value is defined. An element being erased from this
232   /// collection prevents the use-before-def materializing.
233   DenseSet<DebugVariable> UseBeforeDefVariables;
234 
235   const TargetRegisterInfo &TRI;
236   const BitVector &CalleeSavedRegs;
237 
238   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
239                   MachineFunction &MF, const TargetRegisterInfo &TRI,
240                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
241       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
242         CalleeSavedRegs(CalleeSavedRegs) {
243     TLI = MF.getSubtarget().getTargetLowering();
244     auto &TM = TPC.getTM<TargetMachine>();
245     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
246   }
247 
248   /// Load object with live-in variable values. \p mlocs contains the live-in
249   /// values in each machine location, while \p vlocs the live-in variable
250   /// values. This method picks variable locations for the live-in variables,
251   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
252   /// object fields to track variable locations as we step through the block.
253   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
254   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
255                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
256                   unsigned NumLocs) {
257     ActiveMLocs.clear();
258     ActiveVLocs.clear();
259     VarLocs.clear();
260     VarLocs.reserve(NumLocs);
261     UseBeforeDefs.clear();
262     UseBeforeDefVariables.clear();
263 
264     auto isCalleeSaved = [&](LocIdx L) {
265       unsigned Reg = MTracker->LocIdxToLocID[L];
266       if (Reg >= MTracker->NumRegs)
267         return false;
268       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
269         if (CalleeSavedRegs.test(*RAI))
270           return true;
271       return false;
272     };
273 
274     // Map of the preferred location for each value.
275     std::map<ValueIDNum, LocIdx> ValueToLoc;
276     ActiveMLocs.reserve(VLocs.size());
277     ActiveVLocs.reserve(VLocs.size());
278 
279     // Produce a map of value numbers to the current machine locs they live
280     // in. When emulating VarLocBasedImpl, there should only be one
281     // location; when not, we get to pick.
282     for (auto Location : MTracker->locations()) {
283       LocIdx Idx = Location.Idx;
284       ValueIDNum &VNum = MLocs[Idx.asU64()];
285       VarLocs.push_back(VNum);
286 
287       // Short-circuit unnecessary preferred location update.
288       if (VLocs.empty())
289         continue;
290 
291       auto it = ValueToLoc.find(VNum);
292       // In order of preference, pick:
293       //  * Callee saved registers,
294       //  * Other registers,
295       //  * Spill slots.
296       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
297           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
298         // Insert, or overwrite if insertion failed.
299         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
300         if (!PrefLocRes.second)
301           PrefLocRes.first->second = Idx;
302       }
303     }
304 
305     // Now map variables to their picked LocIdxes.
306     for (auto Var : VLocs) {
307       if (Var.second.Kind == DbgValue::Const) {
308         PendingDbgValues.push_back(
309             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
310         continue;
311       }
312 
313       // If the value has no location, we can't make a variable location.
314       const ValueIDNum &Num = Var.second.ID;
315       auto ValuesPreferredLoc = ValueToLoc.find(Num);
316       if (ValuesPreferredLoc == ValueToLoc.end()) {
317         // If it's a def that occurs in this block, register it as a
318         // use-before-def to be resolved as we step through the block.
319         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
320           addUseBeforeDef(Var.first, Var.second.Properties, Num);
321         else
322           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
323         continue;
324       }
325 
326       LocIdx M = ValuesPreferredLoc->second;
327       auto NewValue = LocAndProperties{M, Var.second.Properties};
328       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
329       if (!Result.second)
330         Result.first->second = NewValue;
331       ActiveMLocs[M].insert(Var.first);
332       PendingDbgValues.push_back(
333           MTracker->emitLoc(M, Var.first, Var.second.Properties));
334     }
335     flushDbgValues(MBB.begin(), &MBB);
336   }
337 
338   /// Record that \p Var has value \p ID, a value that becomes available
339   /// later in the function.
340   void addUseBeforeDef(const DebugVariable &Var,
341                        const DbgValueProperties &Properties, ValueIDNum ID) {
342     UseBeforeDef UBD = {ID, Var, Properties};
343     UseBeforeDefs[ID.getInst()].push_back(UBD);
344     UseBeforeDefVariables.insert(Var);
345   }
346 
347   /// After the instruction at index \p Inst and position \p pos has been
348   /// processed, check whether it defines a variable value in a use-before-def.
349   /// If so, and the variable value hasn't changed since the start of the
350   /// block, create a DBG_VALUE.
351   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
352     auto MIt = UseBeforeDefs.find(Inst);
353     if (MIt == UseBeforeDefs.end())
354       return;
355 
356     for (auto &Use : MIt->second) {
357       LocIdx L = Use.ID.getLoc();
358 
359       // If something goes very wrong, we might end up labelling a COPY
360       // instruction or similar with an instruction number, where it doesn't
361       // actually define a new value, instead it moves a value. In case this
362       // happens, discard.
363       if (MTracker->readMLoc(L) != Use.ID)
364         continue;
365 
366       // If a different debug instruction defined the variable value / location
367       // since the start of the block, don't materialize this use-before-def.
368       if (!UseBeforeDefVariables.count(Use.Var))
369         continue;
370 
371       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
372     }
373     flushDbgValues(pos, nullptr);
374   }
375 
376   /// Helper to move created DBG_VALUEs into Transfers collection.
377   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
378     if (PendingDbgValues.size() == 0)
379       return;
380 
381     // Pick out the instruction start position.
382     MachineBasicBlock::instr_iterator BundleStart;
383     if (MBB && Pos == MBB->begin())
384       BundleStart = MBB->instr_begin();
385     else
386       BundleStart = getBundleStart(Pos->getIterator());
387 
388     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
389     PendingDbgValues.clear();
390   }
391 
392   bool isEntryValueVariable(const DebugVariable &Var,
393                             const DIExpression *Expr) const {
394     if (!Var.getVariable()->isParameter())
395       return false;
396 
397     if (Var.getInlinedAt())
398       return false;
399 
400     if (Expr->getNumElements() > 0)
401       return false;
402 
403     return true;
404   }
405 
406   bool isEntryValueValue(const ValueIDNum &Val) const {
407     // Must be in entry block (block number zero), and be a PHI / live-in value.
408     if (Val.getBlock() || !Val.isPHI())
409       return false;
410 
411     // Entry values must enter in a register.
412     if (MTracker->isSpill(Val.getLoc()))
413       return false;
414 
415     Register SP = TLI->getStackPointerRegisterToSaveRestore();
416     Register FP = TRI.getFrameRegister(MF);
417     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
418     return Reg != SP && Reg != FP;
419   }
420 
421   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
422                            const ValueIDNum &Num) {
423     // Is this variable location a candidate to be an entry value. First,
424     // should we be trying this at all?
425     if (!ShouldEmitDebugEntryValues)
426       return false;
427 
428     // Is the variable appropriate for entry values (i.e., is a parameter).
429     if (!isEntryValueVariable(Var, Prop.DIExpr))
430       return false;
431 
432     // Is the value assigned to this variable still the entry value?
433     if (!isEntryValueValue(Num))
434       return false;
435 
436     // Emit a variable location using an entry value expression.
437     DIExpression *NewExpr =
438         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
439     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
440     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
441 
442     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
443     return true;
444   }
445 
446   /// Change a variable value after encountering a DBG_VALUE inside a block.
447   void redefVar(const MachineInstr &MI) {
448     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
449                       MI.getDebugLoc()->getInlinedAt());
450     DbgValueProperties Properties(MI);
451 
452     const MachineOperand &MO = MI.getOperand(0);
453 
454     // Ignore non-register locations, we don't transfer those.
455     if (!MO.isReg() || MO.getReg() == 0) {
456       auto It = ActiveVLocs.find(Var);
457       if (It != ActiveVLocs.end()) {
458         ActiveMLocs[It->second.Loc].erase(Var);
459         ActiveVLocs.erase(It);
460      }
461       // Any use-before-defs no longer apply.
462       UseBeforeDefVariables.erase(Var);
463       return;
464     }
465 
466     Register Reg = MO.getReg();
467     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
468     redefVar(MI, Properties, NewLoc);
469   }
470 
471   /// Handle a change in variable location within a block. Terminate the
472   /// variables current location, and record the value it now refers to, so
473   /// that we can detect location transfers later on.
474   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
475                 Optional<LocIdx> OptNewLoc) {
476     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
477                       MI.getDebugLoc()->getInlinedAt());
478     // Any use-before-defs no longer apply.
479     UseBeforeDefVariables.erase(Var);
480 
481     // Erase any previous location,
482     auto It = ActiveVLocs.find(Var);
483     if (It != ActiveVLocs.end())
484       ActiveMLocs[It->second.Loc].erase(Var);
485 
486     // If there _is_ no new location, all we had to do was erase.
487     if (!OptNewLoc)
488       return;
489     LocIdx NewLoc = *OptNewLoc;
490 
491     // Check whether our local copy of values-by-location in #VarLocs is out of
492     // date. Wipe old tracking data for the location if it's been clobbered in
493     // the meantime.
494     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
495       for (auto &P : ActiveMLocs[NewLoc]) {
496         ActiveVLocs.erase(P);
497       }
498       ActiveMLocs[NewLoc.asU64()].clear();
499       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
500     }
501 
502     ActiveMLocs[NewLoc].insert(Var);
503     if (It == ActiveVLocs.end()) {
504       ActiveVLocs.insert(
505           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
506     } else {
507       It->second.Loc = NewLoc;
508       It->second.Properties = Properties;
509     }
510   }
511 
512   /// Account for a location \p mloc being clobbered. Examine the variable
513   /// locations that will be terminated: and try to recover them by using
514   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
515   /// explicitly terminate a location if it can't be recovered.
516   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
517                    bool MakeUndef = true) {
518     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
519     if (ActiveMLocIt == ActiveMLocs.end())
520       return;
521 
522     // What was the old variable value?
523     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
524     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
525 
526     // Examine the remaining variable locations: if we can find the same value
527     // again, we can recover the location.
528     Optional<LocIdx> NewLoc = None;
529     for (auto Loc : MTracker->locations())
530       if (Loc.Value == OldValue)
531         NewLoc = Loc.Idx;
532 
533     // If there is no location, and we weren't asked to make the variable
534     // explicitly undef, then stop here.
535     if (!NewLoc && !MakeUndef) {
536       // Try and recover a few more locations with entry values.
537       for (auto &Var : ActiveMLocIt->second) {
538         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
539         recoverAsEntryValue(Var, Prop, OldValue);
540       }
541       flushDbgValues(Pos, nullptr);
542       return;
543     }
544 
545     // Examine all the variables based on this location.
546     DenseSet<DebugVariable> NewMLocs;
547     for (auto &Var : ActiveMLocIt->second) {
548       auto ActiveVLocIt = ActiveVLocs.find(Var);
549       // Re-state the variable location: if there's no replacement then NewLoc
550       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
551       // identifying the alternative location will be emitted.
552       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
553       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
554 
555       // Update machine locations <=> variable locations maps. Defer updating
556       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
557       if (!NewLoc) {
558         ActiveVLocs.erase(ActiveVLocIt);
559       } else {
560         ActiveVLocIt->second.Loc = *NewLoc;
561         NewMLocs.insert(Var);
562       }
563     }
564 
565     // Commit any deferred ActiveMLoc changes.
566     if (!NewMLocs.empty())
567       for (auto &Var : NewMLocs)
568         ActiveMLocs[*NewLoc].insert(Var);
569 
570     // We lazily track what locations have which values; if we've found a new
571     // location for the clobbered value, remember it.
572     if (NewLoc)
573       VarLocs[NewLoc->asU64()] = OldValue;
574 
575     flushDbgValues(Pos, nullptr);
576 
577     // Re-find ActiveMLocIt, iterator could have been invalidated.
578     ActiveMLocIt = ActiveMLocs.find(MLoc);
579     ActiveMLocIt->second.clear();
580   }
581 
582   /// Transfer variables based on \p Src to be based on \p Dst. This handles
583   /// both register copies as well as spills and restores. Creates DBG_VALUEs
584   /// describing the movement.
585   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
586     // Does Src still contain the value num we expect? If not, it's been
587     // clobbered in the meantime, and our variable locations are stale.
588     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
589       return;
590 
591     // assert(ActiveMLocs[Dst].size() == 0);
592     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
593 
594     // Move set of active variables from one location to another.
595     auto MovingVars = ActiveMLocs[Src];
596     ActiveMLocs[Dst] = MovingVars;
597     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
598 
599     // For each variable based on Src; create a location at Dst.
600     for (auto &Var : MovingVars) {
601       auto ActiveVLocIt = ActiveVLocs.find(Var);
602       assert(ActiveVLocIt != ActiveVLocs.end());
603       ActiveVLocIt->second.Loc = Dst;
604 
605       MachineInstr *MI =
606           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
607       PendingDbgValues.push_back(MI);
608     }
609     ActiveMLocs[Src].clear();
610     flushDbgValues(Pos, nullptr);
611 
612     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
613     // about the old location.
614     if (EmulateOldLDV)
615       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
616   }
617 
618   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
619                                 const DebugVariable &Var,
620                                 const DbgValueProperties &Properties) {
621     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
622                                   Var.getVariable()->getScope(),
623                                   const_cast<DILocation *>(Var.getInlinedAt()));
624     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
625     MIB.add(MO);
626     if (Properties.Indirect)
627       MIB.addImm(0);
628     else
629       MIB.addReg(0);
630     MIB.addMetadata(Var.getVariable());
631     MIB.addMetadata(Properties.DIExpr);
632     return MIB;
633   }
634 };
635 
636 //===----------------------------------------------------------------------===//
637 //            Implementation
638 //===----------------------------------------------------------------------===//
639 
640 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
641 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
642 
643 #ifndef NDEBUG
644 void DbgValue::dump(const MLocTracker *MTrack) const {
645   if (Kind == Const) {
646     MO->dump();
647   } else if (Kind == NoVal) {
648     dbgs() << "NoVal(" << BlockNo << ")";
649   } else if (Kind == VPHI) {
650     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
651   } else {
652     assert(Kind == Def);
653     dbgs() << MTrack->IDAsString(ID);
654   }
655   if (Properties.Indirect)
656     dbgs() << " indir";
657   if (Properties.DIExpr)
658     dbgs() << " " << *Properties.DIExpr;
659 }
660 #endif
661 
662 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
663                          const TargetRegisterInfo &TRI,
664                          const TargetLowering &TLI)
665     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
666       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
667   NumRegs = TRI.getNumRegs();
668   reset();
669   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
670   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
671 
672   // Always track SP. This avoids the implicit clobbering caused by regmasks
673   // from affectings its values. (LiveDebugValues disbelieves calls and
674   // regmasks that claim to clobber SP).
675   Register SP = TLI.getStackPointerRegisterToSaveRestore();
676   if (SP) {
677     unsigned ID = getLocID(SP);
678     (void)lookupOrTrackRegister(ID);
679 
680     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
681       SPAliases.insert(*RAI);
682   }
683 
684   // Build some common stack positions -- full registers being spilt to the
685   // stack.
686   StackSlotIdxes.insert({{8, 0}, 0});
687   StackSlotIdxes.insert({{16, 0}, 1});
688   StackSlotIdxes.insert({{32, 0}, 2});
689   StackSlotIdxes.insert({{64, 0}, 3});
690   StackSlotIdxes.insert({{128, 0}, 4});
691   StackSlotIdxes.insert({{256, 0}, 5});
692   StackSlotIdxes.insert({{512, 0}, 6});
693 
694   // Traverse all the subregister idxes, and ensure there's an index for them.
695   // Duplicates are no problem: we're interested in their position in the
696   // stack slot, we don't want to type the slot.
697   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
698     unsigned Size = TRI.getSubRegIdxSize(I);
699     unsigned Offs = TRI.getSubRegIdxOffset(I);
700     unsigned Idx = StackSlotIdxes.size();
701 
702     // Some subregs have -1, -2 and so forth fed into their fields, to mean
703     // special backend things. Ignore those.
704     if (Size > 60000 || Offs > 60000)
705       continue;
706 
707     StackSlotIdxes.insert({{Size, Offs}, Idx});
708   }
709 
710   for (auto &Idx : StackSlotIdxes)
711     StackIdxesToPos[Idx.second] = Idx.first;
712 
713   NumSlotIdxes = StackSlotIdxes.size();
714 }
715 
716 LocIdx MLocTracker::trackRegister(unsigned ID) {
717   assert(ID != 0);
718   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
719   LocIdxToIDNum.grow(NewIdx);
720   LocIdxToLocID.grow(NewIdx);
721 
722   // Default: it's an mphi.
723   ValueIDNum ValNum = {CurBB, 0, NewIdx};
724   // Was this reg ever touched by a regmask?
725   for (const auto &MaskPair : reverse(Masks)) {
726     if (MaskPair.first->clobbersPhysReg(ID)) {
727       // There was an earlier def we skipped.
728       ValNum = {CurBB, MaskPair.second, NewIdx};
729       break;
730     }
731   }
732 
733   LocIdxToIDNum[NewIdx] = ValNum;
734   LocIdxToLocID[NewIdx] = ID;
735   return NewIdx;
736 }
737 
738 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
739                                unsigned InstID) {
740   // Def any register we track have that isn't preserved. The regmask
741   // terminates the liveness of a register, meaning its value can't be
742   // relied upon -- we represent this by giving it a new value.
743   for (auto Location : locations()) {
744     unsigned ID = LocIdxToLocID[Location.Idx];
745     // Don't clobber SP, even if the mask says it's clobbered.
746     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
747       defReg(ID, CurBB, InstID);
748   }
749   Masks.push_back(std::make_pair(MO, InstID));
750 }
751 
752 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
753   SpillLocationNo SpillID(SpillLocs.idFor(L));
754   if (SpillID.id() == 0) {
755     // Spill location is untracked: create record for this one, and all
756     // subregister slots too.
757     SpillID = SpillLocationNo(SpillLocs.insert(L));
758     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
759       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
760       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
761       LocIdxToIDNum.grow(Idx);
762       LocIdxToLocID.grow(Idx);
763       LocIDToLocIdx.push_back(Idx);
764       LocIdxToLocID[Idx] = L;
765       // Initialize to PHI value; corresponds to the location's live-in value
766       // during transfer function construction.
767       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
768     }
769   }
770   return SpillID;
771 }
772 
773 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
774   unsigned ID = LocIdxToLocID[Idx];
775   if (ID >= NumRegs) {
776     StackSlotPos Pos = locIDToSpillIdx(ID);
777     ID -= NumRegs;
778     unsigned Slot = ID / NumSlotIdxes;
779     return Twine("slot ")
780         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
781         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
782         .str();
783   } else {
784     return TRI.getRegAsmName(ID).str();
785   }
786 }
787 
788 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
789   std::string DefName = LocIdxToName(Num.getLoc());
790   return Num.asString(DefName);
791 }
792 
793 #ifndef NDEBUG
794 LLVM_DUMP_METHOD void MLocTracker::dump() {
795   for (auto Location : locations()) {
796     std::string MLocName = LocIdxToName(Location.Value.getLoc());
797     std::string DefName = Location.Value.asString(MLocName);
798     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
799   }
800 }
801 
802 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
803   for (auto Location : locations()) {
804     std::string foo = LocIdxToName(Location.Idx);
805     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
806   }
807 }
808 #endif
809 
810 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
811                                          const DebugVariable &Var,
812                                          const DbgValueProperties &Properties) {
813   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
814                                 Var.getVariable()->getScope(),
815                                 const_cast<DILocation *>(Var.getInlinedAt()));
816   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
817 
818   const DIExpression *Expr = Properties.DIExpr;
819   if (!MLoc) {
820     // No location -> DBG_VALUE $noreg
821     MIB.addReg(0);
822     MIB.addReg(0);
823   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
824     unsigned LocID = LocIdxToLocID[*MLoc];
825     SpillLocationNo SpillID = locIDToSpill(LocID);
826     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
827     unsigned short Offset = StackIdx.second;
828 
829     // TODO: support variables that are located in spill slots, with non-zero
830     // offsets from the start of the spill slot. It would require some more
831     // complex DIExpression calculations. This doesn't seem to be produced by
832     // LLVM right now, so don't try and support it.
833     // Accept no-subregister slots and subregisters where the offset is zero.
834     // The consumer should already have type information to work out how large
835     // the variable is.
836     if (Offset == 0) {
837       const SpillLoc &Spill = SpillLocs[SpillID.id()];
838       Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
839                                          Spill.SpillOffset);
840       unsigned Base = Spill.SpillBase;
841       MIB.addReg(Base);
842       MIB.addImm(0);
843 
844       // Being on the stack makes this location indirect; if it was _already_
845       // indirect though, we need to add extra indirection. See this test for
846       // a scenario where this happens:
847       //     llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
848       if (Properties.Indirect) {
849         std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
850         Expr = DIExpression::append(Expr, Elts);
851       }
852     } else {
853       // This is a stack location with a weird subregister offset: emit an undef
854       // DBG_VALUE instead.
855       MIB.addReg(0);
856       MIB.addReg(0);
857     }
858   } else {
859     // Non-empty, non-stack slot, must be a plain register.
860     unsigned LocID = LocIdxToLocID[*MLoc];
861     MIB.addReg(LocID);
862     if (Properties.Indirect)
863       MIB.addImm(0);
864     else
865       MIB.addReg(0);
866   }
867 
868   MIB.addMetadata(Var.getVariable());
869   MIB.addMetadata(Expr);
870   return MIB;
871 }
872 
873 /// Default construct and initialize the pass.
874 InstrRefBasedLDV::InstrRefBasedLDV() {}
875 
876 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
877   unsigned Reg = MTracker->LocIdxToLocID[L];
878   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
879     if (CalleeSavedRegs.test(*RAI))
880       return true;
881   return false;
882 }
883 
884 //===----------------------------------------------------------------------===//
885 //            Debug Range Extension Implementation
886 //===----------------------------------------------------------------------===//
887 
888 #ifndef NDEBUG
889 // Something to restore in the future.
890 // void InstrRefBasedLDV::printVarLocInMBB(..)
891 #endif
892 
893 SpillLocationNo
894 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
895   assert(MI.hasOneMemOperand() &&
896          "Spill instruction does not have exactly one memory operand?");
897   auto MMOI = MI.memoperands_begin();
898   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
899   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
900          "Inconsistent memory operand in spill instruction");
901   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
902   const MachineBasicBlock *MBB = MI.getParent();
903   Register Reg;
904   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
905   return MTracker->getOrTrackSpillLoc({Reg, Offset});
906 }
907 
908 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
909   SpillLocationNo SpillLoc =  extractSpillBaseRegAndOffset(MI);
910 
911   // Where in the stack slot is this value defined -- i.e., what size of value
912   // is this? An important question, because it could be loaded into a register
913   // from the stack at some point. Happily the memory operand will tell us
914   // the size written to the stack.
915   auto *MemOperand = *MI.memoperands_begin();
916   unsigned SizeInBits = MemOperand->getSizeInBits();
917 
918   // Find that position in the stack indexes we're tracking.
919   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
920   if (IdxIt == MTracker->StackSlotIdxes.end())
921     // That index is not tracked. This is suprising, and unlikely to ever
922     // occur, but the safe action is to indicate the variable is optimised out.
923     return None;
924 
925   unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second);
926   return MTracker->getSpillMLoc(SpillID);
927 }
928 
929 /// End all previous ranges related to @MI and start a new range from @MI
930 /// if it is a DBG_VALUE instr.
931 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
932   if (!MI.isDebugValue())
933     return false;
934 
935   const DILocalVariable *Var = MI.getDebugVariable();
936   const DIExpression *Expr = MI.getDebugExpression();
937   const DILocation *DebugLoc = MI.getDebugLoc();
938   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
939   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
940          "Expected inlined-at fields to agree");
941 
942   DebugVariable V(Var, Expr, InlinedAt);
943   DbgValueProperties Properties(MI);
944 
945   // If there are no instructions in this lexical scope, do no location tracking
946   // at all, this variable shouldn't get a legitimate location range.
947   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
948   if (Scope == nullptr)
949     return true; // handled it; by doing nothing
950 
951   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
952   // contribute to locations in this block, but don't propagate further.
953   // Interpret it like a DBG_VALUE $noreg.
954   if (MI.isDebugValueList()) {
955     if (VTracker)
956       VTracker->defVar(MI, Properties, None);
957     if (TTracker)
958       TTracker->redefVar(MI, Properties, None);
959     return true;
960   }
961 
962   const MachineOperand &MO = MI.getOperand(0);
963 
964   // MLocTracker needs to know that this register is read, even if it's only
965   // read by a debug inst.
966   if (MO.isReg() && MO.getReg() != 0)
967     (void)MTracker->readReg(MO.getReg());
968 
969   // If we're preparing for the second analysis (variables), the machine value
970   // locations are already solved, and we report this DBG_VALUE and the value
971   // it refers to to VLocTracker.
972   if (VTracker) {
973     if (MO.isReg()) {
974       // Feed defVar the new variable location, or if this is a
975       // DBG_VALUE $noreg, feed defVar None.
976       if (MO.getReg())
977         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
978       else
979         VTracker->defVar(MI, Properties, None);
980     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
981                MI.getOperand(0).isCImm()) {
982       VTracker->defVar(MI, MI.getOperand(0));
983     }
984   }
985 
986   // If performing final tracking of transfers, report this variable definition
987   // to the TransferTracker too.
988   if (TTracker)
989     TTracker->redefVar(MI);
990   return true;
991 }
992 
993 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
994                                              ValueIDNum **MLiveOuts,
995                                              ValueIDNum **MLiveIns) {
996   if (!MI.isDebugRef())
997     return false;
998 
999   // Only handle this instruction when we are building the variable value
1000   // transfer function.
1001   if (!VTracker)
1002     return false;
1003 
1004   unsigned InstNo = MI.getOperand(0).getImm();
1005   unsigned OpNo = MI.getOperand(1).getImm();
1006 
1007   const DILocalVariable *Var = MI.getDebugVariable();
1008   const DIExpression *Expr = MI.getDebugExpression();
1009   const DILocation *DebugLoc = MI.getDebugLoc();
1010   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1011   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1012          "Expected inlined-at fields to agree");
1013 
1014   DebugVariable V(Var, Expr, InlinedAt);
1015 
1016   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1017   if (Scope == nullptr)
1018     return true; // Handled by doing nothing. This variable is never in scope.
1019 
1020   const MachineFunction &MF = *MI.getParent()->getParent();
1021 
1022   // Various optimizations may have happened to the value during codegen,
1023   // recorded in the value substitution table. Apply any substitutions to
1024   // the instruction / operand number in this DBG_INSTR_REF, and collect
1025   // any subregister extractions performed during optimization.
1026 
1027   // Create dummy substitution with Src set, for lookup.
1028   auto SoughtSub =
1029       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1030 
1031   SmallVector<unsigned, 4> SeenSubregs;
1032   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1033   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1034          LowerBoundIt->Src == SoughtSub.Src) {
1035     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1036     SoughtSub.Src = LowerBoundIt->Dest;
1037     if (unsigned Subreg = LowerBoundIt->Subreg)
1038       SeenSubregs.push_back(Subreg);
1039     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1040   }
1041 
1042   // Default machine value number is <None> -- if no instruction defines
1043   // the corresponding value, it must have been optimized out.
1044   Optional<ValueIDNum> NewID = None;
1045 
1046   // Try to lookup the instruction number, and find the machine value number
1047   // that it defines. It could be an instruction, or a PHI.
1048   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1049   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1050                                 DebugPHINumToValue.end(), InstNo);
1051   if (InstrIt != DebugInstrNumToInstr.end()) {
1052     const MachineInstr &TargetInstr = *InstrIt->second.first;
1053     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1054 
1055     // Pick out the designated operand. It might be a memory reference, if
1056     // a register def was folded into a stack store.
1057     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1058         TargetInstr.hasOneMemOperand()) {
1059       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1060       if (L)
1061         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1062     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1063       assert(OpNo < TargetInstr.getNumOperands());
1064       const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1065 
1066       // Today, this can only be a register.
1067       assert(MO.isReg() && MO.isDef());
1068 
1069       unsigned LocID = MTracker->getLocID(MO.getReg());
1070       LocIdx L = MTracker->LocIDToLocIdx[LocID];
1071       NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1072     }
1073     // else: NewID is left as None.
1074   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1075     // It's actually a PHI value. Which value it is might not be obvious, use
1076     // the resolver helper to find out.
1077     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1078                            MI, InstNo);
1079   }
1080 
1081   // Apply any subregister extractions, in reverse. We might have seen code
1082   // like this:
1083   //    CALL64 @foo, implicit-def $rax
1084   //    %0:gr64 = COPY $rax
1085   //    %1:gr32 = COPY %0.sub_32bit
1086   //    %2:gr16 = COPY %1.sub_16bit
1087   //    %3:gr8  = COPY %2.sub_8bit
1088   // In which case each copy would have been recorded as a substitution with
1089   // a subregister qualifier. Apply those qualifiers now.
1090   if (NewID && !SeenSubregs.empty()) {
1091     unsigned Offset = 0;
1092     unsigned Size = 0;
1093 
1094     // Look at each subregister that we passed through, and progressively
1095     // narrow in, accumulating any offsets that occur. Substitutions should
1096     // only ever be the same or narrower width than what they read from;
1097     // iterate in reverse order so that we go from wide to small.
1098     for (unsigned Subreg : reverse(SeenSubregs)) {
1099       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1100       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1101       Offset += ThisOffset;
1102       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1103     }
1104 
1105     // If that worked, look for an appropriate subregister with the register
1106     // where the define happens. Don't look at values that were defined during
1107     // a stack write: we can't currently express register locations within
1108     // spills.
1109     LocIdx L = NewID->getLoc();
1110     if (NewID && !MTracker->isSpill(L)) {
1111       // Find the register class for the register where this def happened.
1112       // FIXME: no index for this?
1113       Register Reg = MTracker->LocIdxToLocID[L];
1114       const TargetRegisterClass *TRC = nullptr;
1115       for (auto *TRCI : TRI->regclasses())
1116         if (TRCI->contains(Reg))
1117           TRC = TRCI;
1118       assert(TRC && "Couldn't find target register class?");
1119 
1120       // If the register we have isn't the right size or in the right place,
1121       // Try to find a subregister inside it.
1122       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1123       if (Size != MainRegSize || Offset) {
1124         // Enumerate all subregisters, searching.
1125         Register NewReg = 0;
1126         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1127           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1128           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1129           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1130           if (SubregSize == Size && SubregOffset == Offset) {
1131             NewReg = *SRI;
1132             break;
1133           }
1134         }
1135 
1136         // If we didn't find anything: there's no way to express our value.
1137         if (!NewReg) {
1138           NewID = None;
1139         } else {
1140           // Re-state the value as being defined within the subregister
1141           // that we found.
1142           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1143           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1144         }
1145       }
1146     } else {
1147       // If we can't handle subregisters, unset the new value.
1148       NewID = None;
1149     }
1150   }
1151 
1152   // We, we have a value number or None. Tell the variable value tracker about
1153   // it. The rest of this LiveDebugValues implementation acts exactly the same
1154   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1155   // aren't immediately available).
1156   DbgValueProperties Properties(Expr, false);
1157   VTracker->defVar(MI, Properties, NewID);
1158 
1159   // If we're on the final pass through the function, decompose this INSTR_REF
1160   // into a plain DBG_VALUE.
1161   if (!TTracker)
1162     return true;
1163 
1164   // Pick a location for the machine value number, if such a location exists.
1165   // (This information could be stored in TransferTracker to make it faster).
1166   Optional<LocIdx> FoundLoc = None;
1167   for (auto Location : MTracker->locations()) {
1168     LocIdx CurL = Location.Idx;
1169     ValueIDNum ID = MTracker->readMLoc(CurL);
1170     if (NewID && ID == NewID) {
1171       // If this is the first location with that value, pick it. Otherwise,
1172       // consider whether it's a "longer term" location.
1173       if (!FoundLoc) {
1174         FoundLoc = CurL;
1175         continue;
1176       }
1177 
1178       if (MTracker->isSpill(CurL))
1179         FoundLoc = CurL; // Spills are a longer term location.
1180       else if (!MTracker->isSpill(*FoundLoc) &&
1181                !MTracker->isSpill(CurL) &&
1182                !isCalleeSaved(*FoundLoc) &&
1183                isCalleeSaved(CurL))
1184         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1185     }
1186   }
1187 
1188   // Tell transfer tracker that the variable value has changed.
1189   TTracker->redefVar(MI, Properties, FoundLoc);
1190 
1191   // If there was a value with no location; but the value is defined in a
1192   // later instruction in this block, this is a block-local use-before-def.
1193   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1194       NewID->getInst() > CurInst)
1195     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1196 
1197   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1198   // This DBG_VALUE is potentially a $noreg / undefined location, if
1199   // FoundLoc is None.
1200   // (XXX -- could morph the DBG_INSTR_REF in the future).
1201   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1202   TTracker->PendingDbgValues.push_back(DbgMI);
1203   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1204   return true;
1205 }
1206 
1207 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1208   if (!MI.isDebugPHI())
1209     return false;
1210 
1211   // Analyse these only when solving the machine value location problem.
1212   if (VTracker || TTracker)
1213     return true;
1214 
1215   // First operand is the value location, either a stack slot or register.
1216   // Second is the debug instruction number of the original PHI.
1217   const MachineOperand &MO = MI.getOperand(0);
1218   unsigned InstrNum = MI.getOperand(1).getImm();
1219 
1220   if (MO.isReg()) {
1221     // The value is whatever's currently in the register. Read and record it,
1222     // to be analysed later.
1223     Register Reg = MO.getReg();
1224     ValueIDNum Num = MTracker->readReg(Reg);
1225     auto PHIRec = DebugPHIRecord(
1226         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1227     DebugPHINumToValue.push_back(PHIRec);
1228 
1229     // Ensure this register is tracked.
1230     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1231       MTracker->lookupOrTrackRegister(*RAI);
1232   } else {
1233     // The value is whatever's in this stack slot.
1234     assert(MO.isFI());
1235     unsigned FI = MO.getIndex();
1236 
1237     // If the stack slot is dead, then this was optimized away.
1238     // FIXME: stack slot colouring should account for slots that get merged.
1239     if (MFI->isDeadObjectIndex(FI))
1240       return true;
1241 
1242     // Identify this spill slot, ensure it's tracked.
1243     Register Base;
1244     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1245     SpillLoc SL = {Base, Offs};
1246     SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
1247 
1248     // Problem: what value should we extract from the stack? LLVM does not
1249     // record what size the last store to the slot was, and it would become
1250     // sketchy after stack slot colouring anyway. Take a look at what values
1251     // are stored on the stack, and pick the largest one that wasn't def'd
1252     // by a spill (i.e., the value most likely to have been def'd in a register
1253     // and then spilt.
1254     std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
1255     Optional<ValueIDNum> Result = None;
1256     Optional<LocIdx> SpillLoc = None;
1257     for (unsigned CS : CandidateSizes) {
1258       unsigned SpillID = MTracker->getLocID(SpillNo, {CS, 0});
1259       SpillLoc = MTracker->getSpillMLoc(SpillID);
1260       ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
1261       // If this value was defined in it's own position, then it was probably
1262       // an aliasing index of a small value that was spilt.
1263       if (Val.getLoc() != SpillLoc->asU64()) {
1264         Result = Val;
1265         break;
1266       }
1267     }
1268 
1269     // If we didn't find anything, we're probably looking at a PHI, or a memory
1270     // store folded into an instruction. FIXME: Take a guess that's it's 64
1271     // bits. This isn't ideal, but tracking the size that the spill is
1272     // "supposed" to be is more complex, and benefits a small number of
1273     // locations.
1274     if (!Result) {
1275       unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
1276       SpillLoc = MTracker->getSpillMLoc(SpillID);
1277       Result = MTracker->readMLoc(*SpillLoc);
1278     }
1279 
1280     // Record this DBG_PHI for later analysis.
1281     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
1282     DebugPHINumToValue.push_back(DbgPHI);
1283   }
1284 
1285   return true;
1286 }
1287 
1288 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1289   // Meta Instructions do not affect the debug liveness of any register they
1290   // define.
1291   if (MI.isImplicitDef()) {
1292     // Except when there's an implicit def, and the location it's defining has
1293     // no value number. The whole point of an implicit def is to announce that
1294     // the register is live, without be specific about it's value. So define
1295     // a value if there isn't one already.
1296     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1297     // Has a legitimate value -> ignore the implicit def.
1298     if (Num.getLoc() != 0)
1299       return;
1300     // Otherwise, def it here.
1301   } else if (MI.isMetaInstruction())
1302     return;
1303 
1304   // We always ignore SP defines on call instructions, they don't actually
1305   // change the value of the stack pointer... except for win32's _chkstk. This
1306   // is rare: filter quickly for the common case (no stack adjustments, not a
1307   // call, etc). If it is a call that modifies SP, recognise the SP register
1308   // defs.
1309   bool CallChangesSP = false;
1310   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1311       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1312     CallChangesSP = true;
1313 
1314   // Test whether we should ignore a def of this register due to it being part
1315   // of the stack pointer.
1316   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1317     if (CallChangesSP)
1318       return false;
1319     return MI.isCall() && MTracker->SPAliases.count(R);
1320   };
1321 
1322   // Find the regs killed by MI, and find regmasks of preserved regs.
1323   // Max out the number of statically allocated elements in `DeadRegs`, as this
1324   // prevents fallback to std::set::count() operations.
1325   SmallSet<uint32_t, 32> DeadRegs;
1326   SmallVector<const uint32_t *, 4> RegMasks;
1327   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1328   for (const MachineOperand &MO : MI.operands()) {
1329     // Determine whether the operand is a register def.
1330     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1331         Register::isPhysicalRegister(MO.getReg()) &&
1332         !IgnoreSPAlias(MO.getReg())) {
1333       // Remove ranges of all aliased registers.
1334       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1335         // FIXME: Can we break out of this loop early if no insertion occurs?
1336         DeadRegs.insert(*RAI);
1337     } else if (MO.isRegMask()) {
1338       RegMasks.push_back(MO.getRegMask());
1339       RegMaskPtrs.push_back(&MO);
1340     }
1341   }
1342 
1343   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1344   for (uint32_t DeadReg : DeadRegs)
1345     MTracker->defReg(DeadReg, CurBB, CurInst);
1346 
1347   for (auto *MO : RegMaskPtrs)
1348     MTracker->writeRegMask(MO, CurBB, CurInst);
1349 
1350   // If this instruction writes to a spill slot, def that slot.
1351   if (hasFoldedStackStore(MI)) {
1352     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1353     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1354       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1355       LocIdx L = MTracker->getSpillMLoc(SpillID);
1356       MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1357     }
1358   }
1359 
1360   if (!TTracker)
1361     return;
1362 
1363   // When committing variable values to locations: tell transfer tracker that
1364   // we've clobbered things. It may be able to recover the variable from a
1365   // different location.
1366 
1367   // Inform TTracker about any direct clobbers.
1368   for (uint32_t DeadReg : DeadRegs) {
1369     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1370     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1371   }
1372 
1373   // Look for any clobbers performed by a register mask. Only test locations
1374   // that are actually being tracked.
1375   for (auto L : MTracker->locations()) {
1376     // Stack locations can't be clobbered by regmasks.
1377     if (MTracker->isSpill(L.Idx))
1378       continue;
1379 
1380     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1381     if (IgnoreSPAlias(Reg))
1382       continue;
1383 
1384     for (auto *MO : RegMaskPtrs)
1385       if (MO->clobbersPhysReg(Reg))
1386         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1387   }
1388 
1389   // Tell TTracker about any folded stack store.
1390   if (hasFoldedStackStore(MI)) {
1391     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1392     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1393       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1394       LocIdx L = MTracker->getSpillMLoc(SpillID);
1395       TTracker->clobberMloc(L, MI.getIterator(), true);
1396     }
1397   }
1398 }
1399 
1400 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1401   // In all circumstances, re-def all aliases. It's definitely a new value now.
1402   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1403     MTracker->defReg(*RAI, CurBB, CurInst);
1404 
1405   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1406   MTracker->setReg(DstRegNum, SrcValue);
1407 
1408   // Copy subregisters from one location to another.
1409   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1410     unsigned SrcSubReg = SRI.getSubReg();
1411     unsigned SubRegIdx = SRI.getSubRegIndex();
1412     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1413     if (!DstSubReg)
1414       continue;
1415 
1416     // Do copy. There are two matching subregisters, the source value should
1417     // have been def'd when the super-reg was, the latter might not be tracked
1418     // yet.
1419     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1420     // mphi values if it wasn't tracked.
1421     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1422     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1423     (void)SrcL;
1424     (void)DstL;
1425     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1426 
1427     MTracker->setReg(DstSubReg, CpyValue);
1428   }
1429 }
1430 
1431 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1432                                           MachineFunction *MF) {
1433   // TODO: Handle multiple stores folded into one.
1434   if (!MI.hasOneMemOperand())
1435     return false;
1436 
1437   // Reject any memory operand that's aliased -- we can't guarantee its value.
1438   auto MMOI = MI.memoperands_begin();
1439   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1440   if (PVal->isAliased(MFI))
1441     return false;
1442 
1443   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1444     return false; // This is not a spill instruction, since no valid size was
1445                   // returned from either function.
1446 
1447   return true;
1448 }
1449 
1450 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1451                                        MachineFunction *MF, unsigned &Reg) {
1452   if (!isSpillInstruction(MI, MF))
1453     return false;
1454 
1455   int FI;
1456   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1457   return Reg != 0;
1458 }
1459 
1460 Optional<SpillLocationNo>
1461 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1462                                        MachineFunction *MF, unsigned &Reg) {
1463   if (!MI.hasOneMemOperand())
1464     return None;
1465 
1466   // FIXME: Handle folded restore instructions with more than one memory
1467   // operand.
1468   if (MI.getRestoreSize(TII)) {
1469     Reg = MI.getOperand(0).getReg();
1470     return extractSpillBaseRegAndOffset(MI);
1471   }
1472   return None;
1473 }
1474 
1475 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1476   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1477   // limitations under the new model. Therefore, when comparing them, compare
1478   // versions that don't attempt spills or restores at all.
1479   if (EmulateOldLDV)
1480     return false;
1481 
1482   // Strictly limit ourselves to plain loads and stores, not all instructions
1483   // that can access the stack.
1484   int DummyFI = -1;
1485   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1486       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1487     return false;
1488 
1489   MachineFunction *MF = MI.getMF();
1490   unsigned Reg;
1491 
1492   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1493 
1494   // Strictly limit ourselves to plain loads and stores, not all instructions
1495   // that can access the stack.
1496   int FIDummy;
1497   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1498       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1499     return false;
1500 
1501   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1502   // written to, terminate that variable location. The value in memory
1503   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1504   if (isSpillInstruction(MI, MF)) {
1505     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1506 
1507     // Un-set this location and clobber, so that earlier locations don't
1508     // continue past this store.
1509     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1510       unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
1511       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1512       if (!MLoc)
1513         continue;
1514 
1515       // We need to over-write the stack slot with something (here, a def at
1516       // this instruction) to ensure no values are preserved in this stack slot
1517       // after the spill. It also prevents TTracker from trying to recover the
1518       // location and re-installing it in the same place.
1519       ValueIDNum Def(CurBB, CurInst, *MLoc);
1520       MTracker->setMLoc(*MLoc, Def);
1521       if (TTracker)
1522         TTracker->clobberMloc(*MLoc, MI.getIterator());
1523     }
1524   }
1525 
1526   // Try to recognise spill and restore instructions that may transfer a value.
1527   if (isLocationSpill(MI, MF, Reg)) {
1528     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1529 
1530     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1531       auto ReadValue = MTracker->readReg(SrcReg);
1532       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1533       MTracker->setMLoc(DstLoc, ReadValue);
1534 
1535       if (TTracker) {
1536         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1537         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1538       }
1539     };
1540 
1541     // Then, transfer subreg bits.
1542     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1543       // Ensure this reg is tracked,
1544       (void)MTracker->lookupOrTrackRegister(*SRI);
1545       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1546       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1547       DoTransfer(*SRI, SpillID);
1548     }
1549 
1550     // Directly lookup size of main source reg, and transfer.
1551     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1552     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1553     DoTransfer(Reg, SpillID);
1554   } else {
1555     Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
1556     if (!OptLoc)
1557       return false;
1558     SpillLocationNo Loc = *OptLoc;
1559 
1560     // Assumption: we're reading from the base of the stack slot, not some
1561     // offset into it. It seems very unlikely LLVM would ever generate
1562     // restores where this wasn't true. This then becomes a question of what
1563     // subregisters in the destination register line up with positions in the
1564     // stack slot.
1565 
1566     // Def all registers that alias the destination.
1567     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1568       MTracker->defReg(*RAI, CurBB, CurInst);
1569 
1570     // Now find subregisters within the destination register, and load values
1571     // from stack slot positions.
1572     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1573       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1574       auto ReadValue = MTracker->readMLoc(SrcIdx);
1575       MTracker->setReg(DestReg, ReadValue);
1576 
1577       if (TTracker) {
1578         LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
1579         TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
1580       }
1581     };
1582 
1583     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1584       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1585       unsigned SpillID = MTracker->getLocID(Loc, Subreg);
1586       DoTransfer(*SRI, SpillID);
1587     }
1588 
1589     // Directly look up this registers slot idx by size, and transfer.
1590     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1591     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1592     DoTransfer(Reg, SpillID);
1593   }
1594   return true;
1595 }
1596 
1597 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1598   auto DestSrc = TII->isCopyInstr(MI);
1599   if (!DestSrc)
1600     return false;
1601 
1602   const MachineOperand *DestRegOp = DestSrc->Destination;
1603   const MachineOperand *SrcRegOp = DestSrc->Source;
1604 
1605   auto isCalleeSavedReg = [&](unsigned Reg) {
1606     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1607       if (CalleeSavedRegs.test(*RAI))
1608         return true;
1609     return false;
1610   };
1611 
1612   Register SrcReg = SrcRegOp->getReg();
1613   Register DestReg = DestRegOp->getReg();
1614 
1615   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1616   if (SrcReg == DestReg)
1617     return true;
1618 
1619   // For emulating VarLocBasedImpl:
1620   // We want to recognize instructions where destination register is callee
1621   // saved register. If register that could be clobbered by the call is
1622   // included, there would be a great chance that it is going to be clobbered
1623   // soon. It is more likely that previous register, which is callee saved, is
1624   // going to stay unclobbered longer, even if it is killed.
1625   //
1626   // For InstrRefBasedImpl, we can track multiple locations per value, so
1627   // ignore this condition.
1628   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1629     return false;
1630 
1631   // InstrRefBasedImpl only followed killing copies.
1632   if (EmulateOldLDV && !SrcRegOp->isKill())
1633     return false;
1634 
1635   // Copy MTracker info, including subregs if available.
1636   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1637 
1638   // Only produce a transfer of DBG_VALUE within a block where old LDV
1639   // would have. We might make use of the additional value tracking in some
1640   // other way, later.
1641   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1642     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1643                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1644 
1645   // VarLocBasedImpl would quit tracking the old location after copying.
1646   if (EmulateOldLDV && SrcReg != DestReg)
1647     MTracker->defReg(SrcReg, CurBB, CurInst);
1648 
1649   // Finally, the copy might have clobbered variables based on the destination
1650   // register. Tell TTracker about it, in case a backup location exists.
1651   if (TTracker) {
1652     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1653       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1654       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1655     }
1656   }
1657 
1658   return true;
1659 }
1660 
1661 /// Accumulate a mapping between each DILocalVariable fragment and other
1662 /// fragments of that DILocalVariable which overlap. This reduces work during
1663 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1664 /// known-to-overlap fragments are present".
1665 /// \param MI A previously unprocessed debug instruction to analyze for
1666 ///           fragment usage.
1667 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1668   assert(MI.isDebugValue() || MI.isDebugRef());
1669   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1670                       MI.getDebugLoc()->getInlinedAt());
1671   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1672 
1673   // If this is the first sighting of this variable, then we are guaranteed
1674   // there are currently no overlapping fragments either. Initialize the set
1675   // of seen fragments, record no overlaps for the current one, and return.
1676   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1677   if (SeenIt == SeenFragments.end()) {
1678     SmallSet<FragmentInfo, 4> OneFragment;
1679     OneFragment.insert(ThisFragment);
1680     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1681 
1682     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1683     return;
1684   }
1685 
1686   // If this particular Variable/Fragment pair already exists in the overlap
1687   // map, it has already been accounted for.
1688   auto IsInOLapMap =
1689       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1690   if (!IsInOLapMap.second)
1691     return;
1692 
1693   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1694   auto &AllSeenFragments = SeenIt->second;
1695 
1696   // Otherwise, examine all other seen fragments for this variable, with "this"
1697   // fragment being a previously unseen fragment. Record any pair of
1698   // overlapping fragments.
1699   for (auto &ASeenFragment : AllSeenFragments) {
1700     // Does this previously seen fragment overlap?
1701     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1702       // Yes: Mark the current fragment as being overlapped.
1703       ThisFragmentsOverlaps.push_back(ASeenFragment);
1704       // Mark the previously seen fragment as being overlapped by the current
1705       // one.
1706       auto ASeenFragmentsOverlaps =
1707           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1708       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1709              "Previously seen var fragment has no vector of overlaps");
1710       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1711     }
1712   }
1713 
1714   AllSeenFragments.insert(ThisFragment);
1715 }
1716 
1717 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1718                                ValueIDNum **MLiveIns) {
1719   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1720   // none of these should we interpret it's register defs as new value
1721   // definitions.
1722   if (transferDebugValue(MI))
1723     return;
1724   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1725     return;
1726   if (transferDebugPHI(MI))
1727     return;
1728   if (transferRegisterCopy(MI))
1729     return;
1730   if (transferSpillOrRestoreInst(MI))
1731     return;
1732   transferRegisterDef(MI);
1733 }
1734 
1735 void InstrRefBasedLDV::produceMLocTransferFunction(
1736     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1737     unsigned MaxNumBlocks) {
1738   // Because we try to optimize around register mask operands by ignoring regs
1739   // that aren't currently tracked, we set up something ugly for later: RegMask
1740   // operands that are seen earlier than the first use of a register, still need
1741   // to clobber that register in the transfer function. But this information
1742   // isn't actively recorded. Instead, we track each RegMask used in each block,
1743   // and accumulated the clobbered but untracked registers in each block into
1744   // the following bitvector. Later, if new values are tracked, we can add
1745   // appropriate clobbers.
1746   SmallVector<BitVector, 32> BlockMasks;
1747   BlockMasks.resize(MaxNumBlocks);
1748 
1749   // Reserve one bit per register for the masks described above.
1750   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1751   for (auto &BV : BlockMasks)
1752     BV.resize(TRI->getNumRegs(), true);
1753 
1754   // Step through all instructions and inhale the transfer function.
1755   for (auto &MBB : MF) {
1756     // Object fields that are read by trackers to know where we are in the
1757     // function.
1758     CurBB = MBB.getNumber();
1759     CurInst = 1;
1760 
1761     // Set all machine locations to a PHI value. For transfer function
1762     // production only, this signifies the live-in value to the block.
1763     MTracker->reset();
1764     MTracker->setMPhis(CurBB);
1765 
1766     // Step through each instruction in this block.
1767     for (auto &MI : MBB) {
1768       process(MI);
1769       // Also accumulate fragment map.
1770       if (MI.isDebugValue() || MI.isDebugRef())
1771         accumulateFragmentMap(MI);
1772 
1773       // Create a map from the instruction number (if present) to the
1774       // MachineInstr and its position.
1775       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1776         auto InstrAndPos = std::make_pair(&MI, CurInst);
1777         auto InsertResult =
1778             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1779 
1780         // There should never be duplicate instruction numbers.
1781         assert(InsertResult.second);
1782         (void)InsertResult;
1783       }
1784 
1785       ++CurInst;
1786     }
1787 
1788     // Produce the transfer function, a map of machine location to new value. If
1789     // any machine location has the live-in phi value from the start of the
1790     // block, it's live-through and doesn't need recording in the transfer
1791     // function.
1792     for (auto Location : MTracker->locations()) {
1793       LocIdx Idx = Location.Idx;
1794       ValueIDNum &P = Location.Value;
1795       if (P.isPHI() && P.getLoc() == Idx.asU64())
1796         continue;
1797 
1798       // Insert-or-update.
1799       auto &TransferMap = MLocTransfer[CurBB];
1800       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1801       if (!Result.second)
1802         Result.first->second = P;
1803     }
1804 
1805     // Accumulate any bitmask operands into the clobberred reg mask for this
1806     // block.
1807     for (auto &P : MTracker->Masks) {
1808       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1809     }
1810   }
1811 
1812   // Compute a bitvector of all the registers that are tracked in this block.
1813   BitVector UsedRegs(TRI->getNumRegs());
1814   for (auto Location : MTracker->locations()) {
1815     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1816     // Ignore stack slots, and aliases of the stack pointer.
1817     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1818       continue;
1819     UsedRegs.set(ID);
1820   }
1821 
1822   // Check that any regmask-clobber of a register that gets tracked, is not
1823   // live-through in the transfer function. It needs to be clobbered at the
1824   // very least.
1825   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1826     BitVector &BV = BlockMasks[I];
1827     BV.flip();
1828     BV &= UsedRegs;
1829     // This produces all the bits that we clobber, but also use. Check that
1830     // they're all clobbered or at least set in the designated transfer
1831     // elem.
1832     for (unsigned Bit : BV.set_bits()) {
1833       unsigned ID = MTracker->getLocID(Bit);
1834       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1835       auto &TransferMap = MLocTransfer[I];
1836 
1837       // Install a value representing the fact that this location is effectively
1838       // written to in this block. As there's no reserved value, instead use
1839       // a value number that is never generated. Pick the value number for the
1840       // first instruction in the block, def'ing this location, which we know
1841       // this block never used anyway.
1842       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1843       auto Result =
1844         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1845       if (!Result.second) {
1846         ValueIDNum &ValueID = Result.first->second;
1847         if (ValueID.getBlock() == I && ValueID.isPHI())
1848           // It was left as live-through. Set it to clobbered.
1849           ValueID = NotGeneratedNum;
1850       }
1851     }
1852   }
1853 }
1854 
1855 bool InstrRefBasedLDV::mlocJoin(
1856     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1857     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1858   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1859   bool Changed = false;
1860 
1861   // Handle value-propagation when control flow merges on entry to a block. For
1862   // any location without a PHI already placed, the location has the same value
1863   // as its predecessors. If a PHI is placed, test to see whether it's now a
1864   // redundant PHI that we can eliminate.
1865 
1866   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1867   for (auto Pred : MBB.predecessors())
1868     BlockOrders.push_back(Pred);
1869 
1870   // Visit predecessors in RPOT order.
1871   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1872     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1873   };
1874   llvm::sort(BlockOrders, Cmp);
1875 
1876   // Skip entry block.
1877   if (BlockOrders.size() == 0)
1878     return false;
1879 
1880   // Step through all machine locations, look at each predecessor and test
1881   // whether we can eliminate redundant PHIs.
1882   for (auto Location : MTracker->locations()) {
1883     LocIdx Idx = Location.Idx;
1884 
1885     // Pick out the first predecessors live-out value for this location. It's
1886     // guaranteed to not be a backedge, as we order by RPO.
1887     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1888 
1889     // If we've already eliminated a PHI here, do no further checking, just
1890     // propagate the first live-in value into this block.
1891     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1892       if (InLocs[Idx.asU64()] != FirstVal) {
1893         InLocs[Idx.asU64()] = FirstVal;
1894         Changed |= true;
1895       }
1896       continue;
1897     }
1898 
1899     // We're now examining a PHI to see whether it's un-necessary. Loop around
1900     // the other live-in values and test whether they're all the same.
1901     bool Disagree = false;
1902     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1903       const MachineBasicBlock *PredMBB = BlockOrders[I];
1904       const ValueIDNum &PredLiveOut =
1905           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1906 
1907       // Incoming values agree, continue trying to eliminate this PHI.
1908       if (FirstVal == PredLiveOut)
1909         continue;
1910 
1911       // We can also accept a PHI value that feeds back into itself.
1912       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1913         continue;
1914 
1915       // Live-out of a predecessor disagrees with the first predecessor.
1916       Disagree = true;
1917     }
1918 
1919     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1920     if (!Disagree) {
1921       InLocs[Idx.asU64()] = FirstVal;
1922       Changed |= true;
1923     }
1924   }
1925 
1926   // TODO: Reimplement NumInserted and NumRemoved.
1927   return Changed;
1928 }
1929 
1930 void InstrRefBasedLDV::findStackIndexInterference(
1931     SmallVectorImpl<unsigned> &Slots) {
1932   // We could spend a bit of time finding the exact, minimal, set of stack
1933   // indexes that interfere with each other, much like reg units. Or, we can
1934   // rely on the fact that:
1935   //  * The smallest / lowest index will interfere with everything at zero
1936   //    offset, which will be the largest set of registers,
1937   //  * Most indexes with non-zero offset will end up being interference units
1938   //    anyway.
1939   // So just pick those out and return them.
1940 
1941   // We can rely on a single-byte stack index existing already, because we
1942   // initialize them in MLocTracker.
1943   auto It = MTracker->StackSlotIdxes.find({8, 0});
1944   assert(It != MTracker->StackSlotIdxes.end());
1945   Slots.push_back(It->second);
1946 
1947   // Find anything that has a non-zero offset and add that too.
1948   for (auto &Pair : MTracker->StackSlotIdxes) {
1949     // Is offset zero? If so, ignore.
1950     if (!Pair.first.second)
1951       continue;
1952     Slots.push_back(Pair.second);
1953   }
1954 }
1955 
1956 void InstrRefBasedLDV::placeMLocPHIs(
1957     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1958     ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1959   SmallVector<unsigned, 4> StackUnits;
1960   findStackIndexInterference(StackUnits);
1961 
1962   // To avoid repeatedly running the PHI placement algorithm, leverage the
1963   // fact that a def of register MUST also def its register units. Find the
1964   // units for registers, place PHIs for them, and then replicate them for
1965   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1966   // arguments) don't lead to register units being tracked, just place PHIs for
1967   // those registers directly. Stack slots have their own form of "unit",
1968   // store them to one side.
1969   SmallSet<Register, 32> RegUnitsToPHIUp;
1970   SmallSet<LocIdx, 32> NormalLocsToPHI;
1971   SmallSet<SpillLocationNo, 32> StackSlots;
1972   for (auto Location : MTracker->locations()) {
1973     LocIdx L = Location.Idx;
1974     if (MTracker->isSpill(L)) {
1975       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
1976       continue;
1977     }
1978 
1979     Register R = MTracker->LocIdxToLocID[L];
1980     SmallSet<Register, 8> FoundRegUnits;
1981     bool AnyIllegal = false;
1982     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1983       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1984         if (!MTracker->isRegisterTracked(*URoot)) {
1985           // Not all roots were loaded into the tracking map: this register
1986           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1987           // for this reg, but don't iterate units.
1988           AnyIllegal = true;
1989         } else {
1990           FoundRegUnits.insert(*URoot);
1991         }
1992       }
1993     }
1994 
1995     if (AnyIllegal) {
1996       NormalLocsToPHI.insert(L);
1997       continue;
1998     }
1999 
2000     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2001   }
2002 
2003   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2004   // collection.
2005   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2006   auto CollectPHIsForLoc = [&](LocIdx L) {
2007     // Collect the set of defs.
2008     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2009     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2010       MachineBasicBlock *MBB = OrderToBB[I];
2011       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2012       if (TransferFunc.find(L) != TransferFunc.end())
2013         DefBlocks.insert(MBB);
2014     }
2015 
2016     // The entry block defs the location too: it's the live-in / argument value.
2017     // Only insert if there are other defs though; everything is trivially live
2018     // through otherwise.
2019     if (!DefBlocks.empty())
2020       DefBlocks.insert(&*MF.begin());
2021 
2022     // Ask the SSA construction algorithm where we should put PHIs. Clear
2023     // anything that might have been hanging around from earlier.
2024     PHIBlocks.clear();
2025     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2026   };
2027 
2028   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2029     for (const MachineBasicBlock *MBB : PHIBlocks)
2030       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2031   };
2032 
2033   // For locations with no reg units, just place PHIs.
2034   for (LocIdx L : NormalLocsToPHI) {
2035     CollectPHIsForLoc(L);
2036     // Install those PHI values into the live-in value array.
2037     InstallPHIsAtLoc(L);
2038   }
2039 
2040   // For stack slots, calculate PHIs for the equivalent of the units, then
2041   // install for each index.
2042   for (SpillLocationNo Slot : StackSlots) {
2043     for (unsigned Idx : StackUnits) {
2044       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2045       LocIdx L = MTracker->getSpillMLoc(SpillID);
2046       CollectPHIsForLoc(L);
2047       InstallPHIsAtLoc(L);
2048 
2049       // Find anything that aliases this stack index, install PHIs for it too.
2050       unsigned Size, Offset;
2051       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2052       for (auto &Pair : MTracker->StackSlotIdxes) {
2053         unsigned ThisSize, ThisOffset;
2054         std::tie(ThisSize, ThisOffset) = Pair.first;
2055         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2056           continue;
2057 
2058         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2059         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2060         InstallPHIsAtLoc(ThisL);
2061       }
2062     }
2063   }
2064 
2065   // For reg units, place PHIs, and then place them for any aliasing registers.
2066   for (Register R : RegUnitsToPHIUp) {
2067     LocIdx L = MTracker->lookupOrTrackRegister(R);
2068     CollectPHIsForLoc(L);
2069 
2070     // Install those PHI values into the live-in value array.
2071     InstallPHIsAtLoc(L);
2072 
2073     // Now find aliases and install PHIs for those.
2074     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2075       // Super-registers that are "above" the largest register read/written by
2076       // the function will alias, but will not be tracked.
2077       if (!MTracker->isRegisterTracked(*RAI))
2078         continue;
2079 
2080       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2081       InstallPHIsAtLoc(AliasLoc);
2082     }
2083   }
2084 }
2085 
2086 void InstrRefBasedLDV::buildMLocValueMap(
2087     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2088     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2089   std::priority_queue<unsigned int, std::vector<unsigned int>,
2090                       std::greater<unsigned int>>
2091       Worklist, Pending;
2092 
2093   // We track what is on the current and pending worklist to avoid inserting
2094   // the same thing twice. We could avoid this with a custom priority queue,
2095   // but this is probably not worth it.
2096   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2097 
2098   // Initialize worklist with every block to be visited. Also produce list of
2099   // all blocks.
2100   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2101   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2102     Worklist.push(I);
2103     OnWorklist.insert(OrderToBB[I]);
2104     AllBlocks.insert(OrderToBB[I]);
2105   }
2106 
2107   // Initialize entry block to PHIs. These represent arguments.
2108   for (auto Location : MTracker->locations())
2109     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2110 
2111   MTracker->reset();
2112 
2113   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2114   // any machine-location that isn't live-through a block to be def'd in that
2115   // block.
2116   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2117 
2118   // Propagate values to eliminate redundant PHIs. At the same time, this
2119   // produces the table of Block x Location => Value for the entry to each
2120   // block.
2121   // The kind of PHIs we can eliminate are, for example, where one path in a
2122   // conditional spills and restores a register, and the register still has
2123   // the same value once control flow joins, unbeknowns to the PHI placement
2124   // code. Propagating values allows us to identify such un-necessary PHIs and
2125   // remove them.
2126   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2127   while (!Worklist.empty() || !Pending.empty()) {
2128     // Vector for storing the evaluated block transfer function.
2129     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2130 
2131     while (!Worklist.empty()) {
2132       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2133       CurBB = MBB->getNumber();
2134       Worklist.pop();
2135 
2136       // Join the values in all predecessor blocks.
2137       bool InLocsChanged;
2138       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2139       InLocsChanged |= Visited.insert(MBB).second;
2140 
2141       // Don't examine transfer function if we've visited this loc at least
2142       // once, and inlocs haven't changed.
2143       if (!InLocsChanged)
2144         continue;
2145 
2146       // Load the current set of live-ins into MLocTracker.
2147       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2148 
2149       // Each element of the transfer function can be a new def, or a read of
2150       // a live-in value. Evaluate each element, and store to "ToRemap".
2151       ToRemap.clear();
2152       for (auto &P : MLocTransfer[CurBB]) {
2153         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2154           // This is a movement of whatever was live in. Read it.
2155           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2156           ToRemap.push_back(std::make_pair(P.first, NewID));
2157         } else {
2158           // It's a def. Just set it.
2159           assert(P.second.getBlock() == CurBB);
2160           ToRemap.push_back(std::make_pair(P.first, P.second));
2161         }
2162       }
2163 
2164       // Commit the transfer function changes into mloc tracker, which
2165       // transforms the contents of the MLocTracker into the live-outs.
2166       for (auto &P : ToRemap)
2167         MTracker->setMLoc(P.first, P.second);
2168 
2169       // Now copy out-locs from mloc tracker into out-loc vector, checking
2170       // whether changes have occurred. These changes can have come from both
2171       // the transfer function, and mlocJoin.
2172       bool OLChanged = false;
2173       for (auto Location : MTracker->locations()) {
2174         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2175         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2176       }
2177 
2178       MTracker->reset();
2179 
2180       // No need to examine successors again if out-locs didn't change.
2181       if (!OLChanged)
2182         continue;
2183 
2184       // All successors should be visited: put any back-edges on the pending
2185       // list for the next pass-through, and any other successors to be
2186       // visited this pass, if they're not going to be already.
2187       for (auto s : MBB->successors()) {
2188         // Does branching to this successor represent a back-edge?
2189         if (BBToOrder[s] > BBToOrder[MBB]) {
2190           // No: visit it during this dataflow iteration.
2191           if (OnWorklist.insert(s).second)
2192             Worklist.push(BBToOrder[s]);
2193         } else {
2194           // Yes: visit it on the next iteration.
2195           if (OnPending.insert(s).second)
2196             Pending.push(BBToOrder[s]);
2197         }
2198       }
2199     }
2200 
2201     Worklist.swap(Pending);
2202     std::swap(OnPending, OnWorklist);
2203     OnPending.clear();
2204     // At this point, pending must be empty, since it was just the empty
2205     // worklist
2206     assert(Pending.empty() && "Pending should be empty");
2207   }
2208 
2209   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2210   // redundant PHIs.
2211 }
2212 
2213 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
2214 // template specialisations for graph traits and a successor enumerator.
2215 namespace llvm {
2216 template <> struct GraphTraits<MachineBasicBlock> {
2217   using NodeRef = MachineBasicBlock *;
2218   using ChildIteratorType = MachineBasicBlock::succ_iterator;
2219 
2220   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
2221   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2222   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2223 };
2224 
2225 template <> struct GraphTraits<const MachineBasicBlock> {
2226   using NodeRef = const MachineBasicBlock *;
2227   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
2228 
2229   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
2230   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2231   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2232 };
2233 
2234 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
2235 using MachineDomTreeChildGetter =
2236     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
2237 
2238 namespace IDFCalculatorDetail {
2239 template <>
2240 typename MachineDomTreeChildGetter::ChildrenTy
2241 MachineDomTreeChildGetter::get(const NodeRef &N) {
2242   return {N->succ_begin(), N->succ_end()};
2243 }
2244 } // namespace IDFCalculatorDetail
2245 } // namespace llvm
2246 
2247 void InstrRefBasedLDV::BlockPHIPlacement(
2248     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2249     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2250     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2251   // Apply IDF calculator to the designated set of location defs, storing
2252   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2253   // InstrRefBasedLDV object.
2254   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2255   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2256 
2257   IDF.setLiveInBlocks(AllBlocks);
2258   IDF.setDefiningBlocks(DefBlocks);
2259   IDF.calculate(PHIBlocks);
2260 }
2261 
2262 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2263     const MachineBasicBlock &MBB, const DebugVariable &Var,
2264     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2265     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2266   // Collect a set of locations from predecessor where its live-out value can
2267   // be found.
2268   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2269   SmallVector<const DbgValueProperties *, 4> Properties;
2270   unsigned NumLocs = MTracker->getNumLocs();
2271 
2272   // No predecessors means no PHIs.
2273   if (BlockOrders.empty())
2274     return None;
2275 
2276   for (auto p : BlockOrders) {
2277     unsigned ThisBBNum = p->getNumber();
2278     auto OutValIt = LiveOuts.find(p);
2279     if (OutValIt == LiveOuts.end())
2280       // If we have a predecessor not in scope, we'll never find a PHI position.
2281       return None;
2282     const DbgValue &OutVal = *OutValIt->second;
2283 
2284     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2285       // Consts and no-values cannot have locations we can join on.
2286       return None;
2287 
2288     Properties.push_back(&OutVal.Properties);
2289 
2290     // Create new empty vector of locations.
2291     Locs.resize(Locs.size() + 1);
2292 
2293     // If the live-in value is a def, find the locations where that value is
2294     // present. Do the same for VPHIs where we know the VPHI value.
2295     if (OutVal.Kind == DbgValue::Def ||
2296         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2297          OutVal.ID != ValueIDNum::EmptyValue)) {
2298       ValueIDNum ValToLookFor = OutVal.ID;
2299       // Search the live-outs of the predecessor for the specified value.
2300       for (unsigned int I = 0; I < NumLocs; ++I) {
2301         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2302           Locs.back().push_back(LocIdx(I));
2303       }
2304     } else {
2305       assert(OutVal.Kind == DbgValue::VPHI);
2306       // For VPHIs where we don't know the location, we definitely can't find
2307       // a join loc.
2308       if (OutVal.BlockNo != MBB.getNumber())
2309         return None;
2310 
2311       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2312       // a value that's live-through the whole loop. (It has to be a backedge,
2313       // because a block can't dominate itself). We can accept as a PHI location
2314       // any location where the other predecessors agree, _and_ the machine
2315       // locations feed back into themselves. Therefore, add all self-looping
2316       // machine-value PHI locations.
2317       for (unsigned int I = 0; I < NumLocs; ++I) {
2318         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2319         if (MOutLocs[ThisBBNum][I] == MPHI)
2320           Locs.back().push_back(LocIdx(I));
2321       }
2322     }
2323   }
2324 
2325   // We should have found locations for all predecessors, or returned.
2326   assert(Locs.size() == BlockOrders.size());
2327 
2328   // Check that all properties are the same. We can't pick a location if they're
2329   // not.
2330   const DbgValueProperties *Properties0 = Properties[0];
2331   for (auto *Prop : Properties)
2332     if (*Prop != *Properties0)
2333       return None;
2334 
2335   // Starting with the first set of locations, take the intersection with
2336   // subsequent sets.
2337   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2338   for (unsigned int I = 1; I < Locs.size(); ++I) {
2339     auto &LocVec = Locs[I];
2340     SmallVector<LocIdx, 4> NewCandidates;
2341     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2342                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2343     CandidateLocs = NewCandidates;
2344   }
2345   if (CandidateLocs.empty())
2346     return None;
2347 
2348   // We now have a set of LocIdxes that contain the right output value in
2349   // each of the predecessors. Pick the lowest; if there's a register loc,
2350   // that'll be it.
2351   LocIdx L = *CandidateLocs.begin();
2352 
2353   // Return a PHI-value-number for the found location.
2354   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2355   return PHIVal;
2356 }
2357 
2358 bool InstrRefBasedLDV::vlocJoin(
2359     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2360     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2361     DbgValue &LiveIn) {
2362   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2363   bool Changed = false;
2364 
2365   // Order predecessors by RPOT order, for exploring them in that order.
2366   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2367 
2368   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2369     return BBToOrder[A] < BBToOrder[B];
2370   };
2371 
2372   llvm::sort(BlockOrders, Cmp);
2373 
2374   unsigned CurBlockRPONum = BBToOrder[&MBB];
2375 
2376   // Collect all the incoming DbgValues for this variable, from predecessor
2377   // live-out values.
2378   SmallVector<InValueT, 8> Values;
2379   bool Bail = false;
2380   int BackEdgesStart = 0;
2381   for (auto p : BlockOrders) {
2382     // If the predecessor isn't in scope / to be explored, we'll never be
2383     // able to join any locations.
2384     if (!BlocksToExplore.contains(p)) {
2385       Bail = true;
2386       break;
2387     }
2388 
2389     // All Live-outs will have been initialized.
2390     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2391 
2392     // Keep track of where back-edges begin in the Values vector. Relies on
2393     // BlockOrders being sorted by RPO.
2394     unsigned ThisBBRPONum = BBToOrder[p];
2395     if (ThisBBRPONum < CurBlockRPONum)
2396       ++BackEdgesStart;
2397 
2398     Values.push_back(std::make_pair(p, &OutLoc));
2399   }
2400 
2401   // If there were no values, or one of the predecessors couldn't have a
2402   // value, then give up immediately. It's not safe to produce a live-in
2403   // value. Leave as whatever it was before.
2404   if (Bail || Values.size() == 0)
2405     return false;
2406 
2407   // All (non-entry) blocks have at least one non-backedge predecessor.
2408   // Pick the variable value from the first of these, to compare against
2409   // all others.
2410   const DbgValue &FirstVal = *Values[0].second;
2411 
2412   // If the old live-in value is not a PHI then either a) no PHI is needed
2413   // here, or b) we eliminated the PHI that was here. If so, we can just
2414   // propagate in the first parent's incoming value.
2415   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2416     Changed = LiveIn != FirstVal;
2417     if (Changed)
2418       LiveIn = FirstVal;
2419     return Changed;
2420   }
2421 
2422   // Scan for variable values that can never be resolved: if they have
2423   // different DIExpressions, different indirectness, or are mixed constants /
2424   // non-constants.
2425   for (auto &V : Values) {
2426     if (V.second->Properties != FirstVal.Properties)
2427       return false;
2428     if (V.second->Kind == DbgValue::NoVal)
2429       return false;
2430     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2431       return false;
2432   }
2433 
2434   // Try to eliminate this PHI. Do the incoming values all agree?
2435   bool Disagree = false;
2436   for (auto &V : Values) {
2437     if (*V.second == FirstVal)
2438       continue; // No disagreement.
2439 
2440     // Eliminate if a backedge feeds a VPHI back into itself.
2441     if (V.second->Kind == DbgValue::VPHI &&
2442         V.second->BlockNo == MBB.getNumber() &&
2443         // Is this a backedge?
2444         std::distance(Values.begin(), &V) >= BackEdgesStart)
2445       continue;
2446 
2447     Disagree = true;
2448   }
2449 
2450   // No disagreement -> live-through value.
2451   if (!Disagree) {
2452     Changed = LiveIn != FirstVal;
2453     if (Changed)
2454       LiveIn = FirstVal;
2455     return Changed;
2456   } else {
2457     // Otherwise use a VPHI.
2458     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2459     Changed = LiveIn != VPHI;
2460     if (Changed)
2461       LiveIn = VPHI;
2462     return Changed;
2463   }
2464 }
2465 
2466 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2467     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2468     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2469     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2470     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2471   // This method is much like buildMLocValueMap: but focuses on a single
2472   // LexicalScope at a time. Pick out a set of blocks and variables that are
2473   // to have their value assignments solved, then run our dataflow algorithm
2474   // until a fixedpoint is reached.
2475   std::priority_queue<unsigned int, std::vector<unsigned int>,
2476                       std::greater<unsigned int>>
2477       Worklist, Pending;
2478   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2479 
2480   // The set of blocks we'll be examining.
2481   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2482 
2483   // The order in which to examine them (RPO).
2484   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2485 
2486   // RPO ordering function.
2487   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2488     return BBToOrder[A] < BBToOrder[B];
2489   };
2490 
2491   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2492 
2493   // A separate container to distinguish "blocks we're exploring" versus
2494   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2495   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2496 
2497   // VarLoc LiveDebugValues tracks variable locations that are defined in
2498   // blocks not in scope. This is something we could legitimately ignore, but
2499   // lets allow it for now for the sake of coverage.
2500   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2501 
2502   // We also need to propagate variable values through any artificial blocks
2503   // that immediately follow blocks in scope.
2504   DenseSet<const MachineBasicBlock *> ToAdd;
2505 
2506   // Helper lambda: For a given block in scope, perform a depth first search
2507   // of all the artificial successors, adding them to the ToAdd collection.
2508   auto AccumulateArtificialBlocks =
2509       [this, &ToAdd, &BlocksToExplore,
2510        &InScopeBlocks](const MachineBasicBlock *MBB) {
2511         // Depth-first-search state: each node is a block and which successor
2512         // we're currently exploring.
2513         SmallVector<std::pair<const MachineBasicBlock *,
2514                               MachineBasicBlock::const_succ_iterator>,
2515                     8>
2516             DFS;
2517 
2518         // Find any artificial successors not already tracked.
2519         for (auto *succ : MBB->successors()) {
2520           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2521             continue;
2522           if (!ArtificialBlocks.count(succ))
2523             continue;
2524           ToAdd.insert(succ);
2525           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2526         }
2527 
2528         // Search all those blocks, depth first.
2529         while (!DFS.empty()) {
2530           const MachineBasicBlock *CurBB = DFS.back().first;
2531           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2532           // Walk back if we've explored this blocks successors to the end.
2533           if (CurSucc == CurBB->succ_end()) {
2534             DFS.pop_back();
2535             continue;
2536           }
2537 
2538           // If the current successor is artificial and unexplored, descend into
2539           // it.
2540           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2541             ToAdd.insert(*CurSucc);
2542             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2543             continue;
2544           }
2545 
2546           ++CurSucc;
2547         }
2548       };
2549 
2550   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2551   // for artificial successors.
2552   for (auto *MBB : BlocksToExplore)
2553     AccumulateArtificialBlocks(MBB);
2554   for (auto *MBB : InScopeBlocks)
2555     AccumulateArtificialBlocks(MBB);
2556 
2557   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2558   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2559 
2560   // Single block scope: not interesting! No propagation at all. Note that
2561   // this could probably go above ArtificialBlocks without damage, but
2562   // that then produces output differences from original-live-debug-values,
2563   // which propagates from a single block into many artificial ones.
2564   if (BlocksToExplore.size() == 1)
2565     return;
2566 
2567   // Convert a const set to a non-const set. LexicalScopes
2568   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2569   // (Neither of them mutate anything).
2570   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2571   for (const auto *MBB : BlocksToExplore)
2572     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2573 
2574   // Picks out relevants blocks RPO order and sort them.
2575   for (auto *MBB : BlocksToExplore)
2576     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2577 
2578   llvm::sort(BlockOrders, Cmp);
2579   unsigned NumBlocks = BlockOrders.size();
2580 
2581   // Allocate some vectors for storing the live ins and live outs. Large.
2582   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2583   LiveIns.reserve(NumBlocks);
2584   LiveOuts.reserve(NumBlocks);
2585 
2586   // Initialize all values to start as NoVals. This signifies "it's live
2587   // through, but we don't know what it is".
2588   DbgValueProperties EmptyProperties(EmptyExpr, false);
2589   for (unsigned int I = 0; I < NumBlocks; ++I) {
2590     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2591     LiveIns.push_back(EmptyDbgValue);
2592     LiveOuts.push_back(EmptyDbgValue);
2593   }
2594 
2595   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2596   // vlocJoin.
2597   LiveIdxT LiveOutIdx, LiveInIdx;
2598   LiveOutIdx.reserve(NumBlocks);
2599   LiveInIdx.reserve(NumBlocks);
2600   for (unsigned I = 0; I < NumBlocks; ++I) {
2601     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2602     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2603   }
2604 
2605   // Loop over each variable and place PHIs for it, then propagate values
2606   // between blocks. This keeps the locality of working on one lexical scope at
2607   // at time, but avoids re-processing variable values because some other
2608   // variable has been assigned.
2609   for (auto &Var : VarsWeCareAbout) {
2610     // Re-initialize live-ins and live-outs, to clear the remains of previous
2611     // variables live-ins / live-outs.
2612     for (unsigned int I = 0; I < NumBlocks; ++I) {
2613       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2614       LiveIns[I] = EmptyDbgValue;
2615       LiveOuts[I] = EmptyDbgValue;
2616     }
2617 
2618     // Place PHIs for variable values, using the LLVM IDF calculator.
2619     // Collect the set of blocks where variables are def'd.
2620     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2621     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2622       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2623       if (TransferFunc.find(Var) != TransferFunc.end())
2624         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2625     }
2626 
2627     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2628 
2629     // Request the set of PHIs we should insert for this variable.
2630     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2631 
2632     // Insert PHIs into the per-block live-in tables for this variable.
2633     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2634       unsigned BlockNo = PHIMBB->getNumber();
2635       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2636       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2637     }
2638 
2639     for (auto *MBB : BlockOrders) {
2640       Worklist.push(BBToOrder[MBB]);
2641       OnWorklist.insert(MBB);
2642     }
2643 
2644     // Iterate over all the blocks we selected, propagating the variables value.
2645     // This loop does two things:
2646     //  * Eliminates un-necessary VPHIs in vlocJoin,
2647     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2648     //    stores the result to the blocks live-outs.
2649     // Always evaluate the transfer function on the first iteration, and when
2650     // the live-ins change thereafter.
2651     bool FirstTrip = true;
2652     while (!Worklist.empty() || !Pending.empty()) {
2653       while (!Worklist.empty()) {
2654         auto *MBB = OrderToBB[Worklist.top()];
2655         CurBB = MBB->getNumber();
2656         Worklist.pop();
2657 
2658         auto LiveInsIt = LiveInIdx.find(MBB);
2659         assert(LiveInsIt != LiveInIdx.end());
2660         DbgValue *LiveIn = LiveInsIt->second;
2661 
2662         // Join values from predecessors. Updates LiveInIdx, and writes output
2663         // into JoinedInLocs.
2664         bool InLocsChanged =
2665             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
2666 
2667         SmallVector<const MachineBasicBlock *, 8> Preds;
2668         for (const auto *Pred : MBB->predecessors())
2669           Preds.push_back(Pred);
2670 
2671         // If this block's live-in value is a VPHI, try to pick a machine-value
2672         // for it. This makes the machine-value available and propagated
2673         // through all blocks by the time value propagation finishes. We can't
2674         // do this any earlier as it needs to read the block live-outs.
2675         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2676           // There's a small possibility that on a preceeding path, a VPHI is
2677           // eliminated and transitions from VPHI-with-location to
2678           // live-through-value. As a result, the selected location of any VPHI
2679           // might change, so we need to re-compute it on each iteration.
2680           Optional<ValueIDNum> ValueNum =
2681               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2682 
2683           if (ValueNum) {
2684             InLocsChanged |= LiveIn->ID != *ValueNum;
2685             LiveIn->ID = *ValueNum;
2686           }
2687         }
2688 
2689         if (!InLocsChanged && !FirstTrip)
2690           continue;
2691 
2692         DbgValue *LiveOut = LiveOutIdx[MBB];
2693         bool OLChanged = false;
2694 
2695         // Do transfer function.
2696         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2697         auto TransferIt = VTracker.Vars.find(Var);
2698         if (TransferIt != VTracker.Vars.end()) {
2699           // Erase on empty transfer (DBG_VALUE $noreg).
2700           if (TransferIt->second.Kind == DbgValue::Undef) {
2701             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2702             if (*LiveOut != NewVal) {
2703               *LiveOut = NewVal;
2704               OLChanged = true;
2705             }
2706           } else {
2707             // Insert new variable value; or overwrite.
2708             if (*LiveOut != TransferIt->second) {
2709               *LiveOut = TransferIt->second;
2710               OLChanged = true;
2711             }
2712           }
2713         } else {
2714           // Just copy live-ins to live-outs, for anything not transferred.
2715           if (*LiveOut != *LiveIn) {
2716             *LiveOut = *LiveIn;
2717             OLChanged = true;
2718           }
2719         }
2720 
2721         // If no live-out value changed, there's no need to explore further.
2722         if (!OLChanged)
2723           continue;
2724 
2725         // We should visit all successors. Ensure we'll visit any non-backedge
2726         // successors during this dataflow iteration; book backedge successors
2727         // to be visited next time around.
2728         for (auto s : MBB->successors()) {
2729           // Ignore out of scope / not-to-be-explored successors.
2730           if (LiveInIdx.find(s) == LiveInIdx.end())
2731             continue;
2732 
2733           if (BBToOrder[s] > BBToOrder[MBB]) {
2734             if (OnWorklist.insert(s).second)
2735               Worklist.push(BBToOrder[s]);
2736           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2737             Pending.push(BBToOrder[s]);
2738           }
2739         }
2740       }
2741       Worklist.swap(Pending);
2742       std::swap(OnWorklist, OnPending);
2743       OnPending.clear();
2744       assert(Pending.empty());
2745       FirstTrip = false;
2746     }
2747 
2748     // Save live-ins to output vector. Ignore any that are still marked as being
2749     // VPHIs with no location -- those are variables that we know the value of,
2750     // but are not actually available in the register file.
2751     for (auto *MBB : BlockOrders) {
2752       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2753       if (BlockLiveIn->Kind == DbgValue::NoVal)
2754         continue;
2755       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2756           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2757         continue;
2758       if (BlockLiveIn->Kind == DbgValue::VPHI)
2759         BlockLiveIn->Kind = DbgValue::Def;
2760       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
2761              Var.getFragment() && "Fragment info missing during value prop");
2762       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2763     }
2764   } // Per-variable loop.
2765 
2766   BlockOrders.clear();
2767   BlocksToExplore.clear();
2768 }
2769 
2770 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2771 void InstrRefBasedLDV::dump_mloc_transfer(
2772     const MLocTransferMap &mloc_transfer) const {
2773   for (auto &P : mloc_transfer) {
2774     std::string foo = MTracker->LocIdxToName(P.first);
2775     std::string bar = MTracker->IDAsString(P.second);
2776     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2777   }
2778 }
2779 #endif
2780 
2781 void InstrRefBasedLDV::emitLocations(
2782     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2783     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2784     const TargetPassConfig &TPC) {
2785   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2786   unsigned NumLocs = MTracker->getNumLocs();
2787 
2788   // For each block, load in the machine value locations and variable value
2789   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2790   // to be inserted will be created along the way.
2791   for (MachineBasicBlock &MBB : MF) {
2792     unsigned bbnum = MBB.getNumber();
2793     MTracker->reset();
2794     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2795     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2796                          NumLocs);
2797 
2798     CurBB = bbnum;
2799     CurInst = 1;
2800     for (auto &MI : MBB) {
2801       process(MI, MOutLocs, MInLocs);
2802       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2803       ++CurInst;
2804     }
2805   }
2806 
2807   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2808   // in DWARF in different orders. Use the order that they appear when walking
2809   // through each block / each instruction, stored in AllVarsNumbering.
2810   auto OrderDbgValues = [&](const MachineInstr *A,
2811                             const MachineInstr *B) -> bool {
2812     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2813                        A->getDebugLoc()->getInlinedAt());
2814     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2815                        B->getDebugLoc()->getInlinedAt());
2816     return AllVarsNumbering.find(VarA)->second <
2817            AllVarsNumbering.find(VarB)->second;
2818   };
2819 
2820   // Go through all the transfers recorded in the TransferTracker -- this is
2821   // both the live-ins to a block, and any movements of values that happen
2822   // in the middle.
2823   for (auto &P : TTracker->Transfers) {
2824     // Sort them according to appearance order.
2825     llvm::sort(P.Insts, OrderDbgValues);
2826     // Insert either before or after the designated point...
2827     if (P.MBB) {
2828       MachineBasicBlock &MBB = *P.MBB;
2829       for (auto *MI : P.Insts) {
2830         MBB.insert(P.Pos, MI);
2831       }
2832     } else {
2833       // Terminators, like tail calls, can clobber things. Don't try and place
2834       // transfers after them.
2835       if (P.Pos->isTerminator())
2836         continue;
2837 
2838       MachineBasicBlock &MBB = *P.Pos->getParent();
2839       for (auto *MI : P.Insts) {
2840         MBB.insertAfterBundle(P.Pos, MI);
2841       }
2842     }
2843   }
2844 }
2845 
2846 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2847   // Build some useful data structures.
2848 
2849   LLVMContext &Context = MF.getFunction().getContext();
2850   EmptyExpr = DIExpression::get(Context, {});
2851 
2852   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2853     if (const DebugLoc &DL = MI.getDebugLoc())
2854       return DL.getLine() != 0;
2855     return false;
2856   };
2857   // Collect a set of all the artificial blocks.
2858   for (auto &MBB : MF)
2859     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2860       ArtificialBlocks.insert(&MBB);
2861 
2862   // Compute mappings of block <=> RPO order.
2863   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2864   unsigned int RPONumber = 0;
2865   for (MachineBasicBlock *MBB : RPOT) {
2866     OrderToBB[RPONumber] = MBB;
2867     BBToOrder[MBB] = RPONumber;
2868     BBNumToRPO[MBB->getNumber()] = RPONumber;
2869     ++RPONumber;
2870   }
2871 
2872   // Order value substitutions by their "source" operand pair, for quick lookup.
2873   llvm::sort(MF.DebugValueSubstitutions);
2874 
2875 #ifdef EXPENSIVE_CHECKS
2876   // As an expensive check, test whether there are any duplicate substitution
2877   // sources in the collection.
2878   if (MF.DebugValueSubstitutions.size() > 2) {
2879     for (auto It = MF.DebugValueSubstitutions.begin();
2880          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2881       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2882                                               "substitution seen");
2883     }
2884   }
2885 #endif
2886 }
2887 
2888 /// Calculate the liveness information for the given machine function and
2889 /// extend ranges across basic blocks.
2890 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2891                                     MachineDominatorTree *DomTree,
2892                                     TargetPassConfig *TPC,
2893                                     unsigned InputBBLimit,
2894                                     unsigned InputDbgValLimit) {
2895   // No subprogram means this function contains no debuginfo.
2896   if (!MF.getFunction().getSubprogram())
2897     return false;
2898 
2899   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2900   this->TPC = TPC;
2901 
2902   this->DomTree = DomTree;
2903   TRI = MF.getSubtarget().getRegisterInfo();
2904   MRI = &MF.getRegInfo();
2905   TII = MF.getSubtarget().getInstrInfo();
2906   TFI = MF.getSubtarget().getFrameLowering();
2907   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2908   MFI = &MF.getFrameInfo();
2909   LS.initialize(MF);
2910 
2911   const auto &STI = MF.getSubtarget();
2912   AdjustsStackInCalls = MFI->adjustsStack() &&
2913                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
2914   if (AdjustsStackInCalls)
2915     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
2916 
2917   MTracker =
2918       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2919   VTracker = nullptr;
2920   TTracker = nullptr;
2921 
2922   SmallVector<MLocTransferMap, 32> MLocTransfer;
2923   SmallVector<VLocTracker, 8> vlocs;
2924   LiveInsT SavedLiveIns;
2925 
2926   int MaxNumBlocks = -1;
2927   for (auto &MBB : MF)
2928     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2929   assert(MaxNumBlocks >= 0);
2930   ++MaxNumBlocks;
2931 
2932   MLocTransfer.resize(MaxNumBlocks);
2933   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
2934   SavedLiveIns.resize(MaxNumBlocks);
2935 
2936   initialSetup(MF);
2937 
2938   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2939 
2940   // Allocate and initialize two array-of-arrays for the live-in and live-out
2941   // machine values. The outer dimension is the block number; while the inner
2942   // dimension is a LocIdx from MLocTracker.
2943   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2944   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2945   unsigned NumLocs = MTracker->getNumLocs();
2946   for (int i = 0; i < MaxNumBlocks; ++i) {
2947     // These all auto-initialize to ValueIDNum::EmptyValue
2948     MOutLocs[i] = new ValueIDNum[NumLocs];
2949     MInLocs[i] = new ValueIDNum[NumLocs];
2950   }
2951 
2952   // Solve the machine value dataflow problem using the MLocTransfer function,
2953   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2954   // both live-ins and live-outs for decision making in the variable value
2955   // dataflow problem.
2956   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2957 
2958   // Patch up debug phi numbers, turning unknown block-live-in values into
2959   // either live-through machine values, or PHIs.
2960   for (auto &DBG_PHI : DebugPHINumToValue) {
2961     // Identify unresolved block-live-ins.
2962     ValueIDNum &Num = DBG_PHI.ValueRead;
2963     if (!Num.isPHI())
2964       continue;
2965 
2966     unsigned BlockNo = Num.getBlock();
2967     LocIdx LocNo = Num.getLoc();
2968     Num = MInLocs[BlockNo][LocNo.asU64()];
2969   }
2970   // Later, we'll be looking up ranges of instruction numbers.
2971   llvm::sort(DebugPHINumToValue);
2972 
2973   // Walk back through each block / instruction, collecting DBG_VALUE
2974   // instructions and recording what machine value their operands refer to.
2975   for (auto &OrderPair : OrderToBB) {
2976     MachineBasicBlock &MBB = *OrderPair.second;
2977     CurBB = MBB.getNumber();
2978     VTracker = &vlocs[CurBB];
2979     VTracker->MBB = &MBB;
2980     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2981     CurInst = 1;
2982     for (auto &MI : MBB) {
2983       process(MI, MOutLocs, MInLocs);
2984       ++CurInst;
2985     }
2986     MTracker->reset();
2987   }
2988 
2989   // Number all variables in the order that they appear, to be used as a stable
2990   // insertion order later.
2991   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2992 
2993   // Map from one LexicalScope to all the variables in that scope.
2994   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2995 
2996   // Map from One lexical scope to all blocks in that scope.
2997   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2998       ScopeToBlocks;
2999 
3000   // Store a DILocation that describes a scope.
3001   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3002 
3003   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3004   // the order is unimportant, it just has to be stable.
3005   unsigned VarAssignCount = 0;
3006   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3007     auto *MBB = OrderToBB[I];
3008     auto *VTracker = &vlocs[MBB->getNumber()];
3009     // Collect each variable with a DBG_VALUE in this block.
3010     for (auto &idx : VTracker->Vars) {
3011       const auto &Var = idx.first;
3012       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3013       assert(ScopeLoc != nullptr);
3014       auto *Scope = LS.findLexicalScope(ScopeLoc);
3015 
3016       // No insts in scope -> shouldn't have been recorded.
3017       assert(Scope != nullptr);
3018 
3019       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3020       ScopeToVars[Scope].insert(Var);
3021       ScopeToBlocks[Scope].insert(VTracker->MBB);
3022       ScopeToDILocation[Scope] = ScopeLoc;
3023       ++VarAssignCount;
3024     }
3025   }
3026 
3027   bool Changed = false;
3028 
3029   // If we have an extremely large number of variable assignments and blocks,
3030   // bail out at this point. We've burnt some time doing analysis already,
3031   // however we should cut our losses.
3032   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3033       VarAssignCount > InputDbgValLimit) {
3034     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3035                       << " has " << MaxNumBlocks << " basic blocks and "
3036                       << VarAssignCount
3037                       << " variable assignments, exceeding limits.\n");
3038   } else {
3039     // Compute the extended ranges, iterating over scopes. There might be
3040     // something to be said for ordering them by size/locality, but that's for
3041     // the future. For each scope, solve the variable value problem, producing
3042     // a map of variables to values in SavedLiveIns.
3043     for (auto &P : ScopeToVars) {
3044       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
3045                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3046                    vlocs);
3047     }
3048 
3049     // Using the computed value locations and variable values for each block,
3050     // create the DBG_VALUE instructions representing the extended variable
3051     // locations.
3052     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3053 
3054     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3055     Changed = TTracker->Transfers.size() != 0;
3056   }
3057 
3058   // Common clean-up of memory.
3059   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3060     delete[] MOutLocs[Idx];
3061     delete[] MInLocs[Idx];
3062   }
3063   delete[] MOutLocs;
3064   delete[] MInLocs;
3065 
3066   delete MTracker;
3067   delete TTracker;
3068   MTracker = nullptr;
3069   VTracker = nullptr;
3070   TTracker = nullptr;
3071 
3072   ArtificialBlocks.clear();
3073   OrderToBB.clear();
3074   BBToOrder.clear();
3075   BBNumToRPO.clear();
3076   DebugInstrNumToInstr.clear();
3077   DebugPHINumToValue.clear();
3078   OverlapFragments.clear();
3079   SeenFragments.clear();
3080 
3081   return Changed;
3082 }
3083 
3084 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3085   return new InstrRefBasedLDV();
3086 }
3087 
3088 namespace {
3089 class LDVSSABlock;
3090 class LDVSSAUpdater;
3091 
3092 // Pick a type to identify incoming block values as we construct SSA. We
3093 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3094 // expects to zero-initialize the type.
3095 typedef uint64_t BlockValueNum;
3096 
3097 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3098 /// this PHI is in, the value number it would have, and the expected incoming
3099 /// values from parent blocks.
3100 class LDVSSAPhi {
3101 public:
3102   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3103   LDVSSABlock *ParentBlock;
3104   BlockValueNum PHIValNum;
3105   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3106       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3107 
3108   LDVSSABlock *getParent() { return ParentBlock; }
3109 };
3110 
3111 /// Thin wrapper around a block predecessor iterator. Only difference from a
3112 /// normal block iterator is that it dereferences to an LDVSSABlock.
3113 class LDVSSABlockIterator {
3114 public:
3115   MachineBasicBlock::pred_iterator PredIt;
3116   LDVSSAUpdater &Updater;
3117 
3118   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3119                       LDVSSAUpdater &Updater)
3120       : PredIt(PredIt), Updater(Updater) {}
3121 
3122   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3123     return OtherIt.PredIt != PredIt;
3124   }
3125 
3126   LDVSSABlockIterator &operator++() {
3127     ++PredIt;
3128     return *this;
3129   }
3130 
3131   LDVSSABlock *operator*();
3132 };
3133 
3134 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3135 /// we need to track the PHI value(s) that we may have observed as necessary
3136 /// in this block.
3137 class LDVSSABlock {
3138 public:
3139   MachineBasicBlock &BB;
3140   LDVSSAUpdater &Updater;
3141   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3142   /// List of PHIs in this block. There should only ever be one.
3143   PHIListT PHIList;
3144 
3145   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3146       : BB(BB), Updater(Updater) {}
3147 
3148   LDVSSABlockIterator succ_begin() {
3149     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3150   }
3151 
3152   LDVSSABlockIterator succ_end() {
3153     return LDVSSABlockIterator(BB.succ_end(), Updater);
3154   }
3155 
3156   /// SSAUpdater has requested a PHI: create that within this block record.
3157   LDVSSAPhi *newPHI(BlockValueNum Value) {
3158     PHIList.emplace_back(Value, this);
3159     return &PHIList.back();
3160   }
3161 
3162   /// SSAUpdater wishes to know what PHIs already exist in this block.
3163   PHIListT &phis() { return PHIList; }
3164 };
3165 
3166 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3167 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3168 // SSAUpdaterTraits<LDVSSAUpdater>.
3169 class LDVSSAUpdater {
3170 public:
3171   /// Map of value numbers to PHI records.
3172   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3173   /// Map of which blocks generate Undef values -- blocks that are not
3174   /// dominated by any Def.
3175   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3176   /// Map of machine blocks to our own records of them.
3177   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3178   /// Machine location where any PHI must occur.
3179   LocIdx Loc;
3180   /// Table of live-in machine value numbers for blocks / locations.
3181   ValueIDNum **MLiveIns;
3182 
3183   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3184 
3185   void reset() {
3186     for (auto &Block : BlockMap)
3187       delete Block.second;
3188 
3189     PHIs.clear();
3190     UndefMap.clear();
3191     BlockMap.clear();
3192   }
3193 
3194   ~LDVSSAUpdater() { reset(); }
3195 
3196   /// For a given MBB, create a wrapper block for it. Stores it in the
3197   /// LDVSSAUpdater block map.
3198   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3199     auto it = BlockMap.find(BB);
3200     if (it == BlockMap.end()) {
3201       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3202       it = BlockMap.find(BB);
3203     }
3204     return it->second;
3205   }
3206 
3207   /// Find the live-in value number for the given block. Looks up the value at
3208   /// the PHI location on entry.
3209   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3210     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3211   }
3212 };
3213 
3214 LDVSSABlock *LDVSSABlockIterator::operator*() {
3215   return Updater.getSSALDVBlock(*PredIt);
3216 }
3217 
3218 #ifndef NDEBUG
3219 
3220 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3221   out << "SSALDVPHI " << PHI.PHIValNum;
3222   return out;
3223 }
3224 
3225 #endif
3226 
3227 } // namespace
3228 
3229 namespace llvm {
3230 
3231 /// Template specialization to give SSAUpdater access to CFG and value
3232 /// information. SSAUpdater calls methods in these traits, passing in the
3233 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3234 /// It also provides methods to create PHI nodes and track them.
3235 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3236 public:
3237   using BlkT = LDVSSABlock;
3238   using ValT = BlockValueNum;
3239   using PhiT = LDVSSAPhi;
3240   using BlkSucc_iterator = LDVSSABlockIterator;
3241 
3242   // Methods to access block successors -- dereferencing to our wrapper class.
3243   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3244   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3245 
3246   /// Iterator for PHI operands.
3247   class PHI_iterator {
3248   private:
3249     LDVSSAPhi *PHI;
3250     unsigned Idx;
3251 
3252   public:
3253     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3254         : PHI(P), Idx(0) {}
3255     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3256         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3257 
3258     PHI_iterator &operator++() {
3259       Idx++;
3260       return *this;
3261     }
3262     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3263     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3264 
3265     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3266 
3267     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3268   };
3269 
3270   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3271 
3272   static inline PHI_iterator PHI_end(PhiT *PHI) {
3273     return PHI_iterator(PHI, true);
3274   }
3275 
3276   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3277   /// vector.
3278   static void FindPredecessorBlocks(LDVSSABlock *BB,
3279                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3280     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3281       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3282   }
3283 
3284   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3285   /// register. For LiveDebugValues, represents a block identified as not having
3286   /// any DBG_PHI predecessors.
3287   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3288     // Create a value number for this block -- it needs to be unique and in the
3289     // "undef" collection, so that we know it's not real. Use a number
3290     // representing a PHI into this block.
3291     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3292     Updater->UndefMap[&BB->BB] = Num;
3293     return Num;
3294   }
3295 
3296   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3297   /// SSAUpdater will populate it with information about incoming values. The
3298   /// value number of this PHI is whatever the  machine value number problem
3299   /// solution determined it to be. This includes non-phi values if SSAUpdater
3300   /// tries to create a PHI where the incoming values are identical.
3301   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3302                                    LDVSSAUpdater *Updater) {
3303     BlockValueNum PHIValNum = Updater->getValue(BB);
3304     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3305     Updater->PHIs[PHIValNum] = PHI;
3306     return PHIValNum;
3307   }
3308 
3309   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3310   /// the specified predecessor block.
3311   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3312     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3313   }
3314 
3315   /// ValueIsPHI - Check if the instruction that defines the specified value
3316   /// is a PHI instruction.
3317   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3318     auto PHIIt = Updater->PHIs.find(Val);
3319     if (PHIIt == Updater->PHIs.end())
3320       return nullptr;
3321     return PHIIt->second;
3322   }
3323 
3324   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3325   /// operands, i.e., it was just added.
3326   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3327     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3328     if (PHI && PHI->IncomingValues.size() == 0)
3329       return PHI;
3330     return nullptr;
3331   }
3332 
3333   /// GetPHIValue - For the specified PHI instruction, return the value
3334   /// that it defines.
3335   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3336 };
3337 
3338 } // end namespace llvm
3339 
3340 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3341                                                       ValueIDNum **MLiveOuts,
3342                                                       ValueIDNum **MLiveIns,
3343                                                       MachineInstr &Here,
3344                                                       uint64_t InstrNum) {
3345   // Pick out records of DBG_PHI instructions that have been observed. If there
3346   // are none, then we cannot compute a value number.
3347   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3348                                     DebugPHINumToValue.end(), InstrNum);
3349   auto LowerIt = RangePair.first;
3350   auto UpperIt = RangePair.second;
3351 
3352   // No DBG_PHI means there can be no location.
3353   if (LowerIt == UpperIt)
3354     return None;
3355 
3356   // If there's only one DBG_PHI, then that is our value number.
3357   if (std::distance(LowerIt, UpperIt) == 1)
3358     return LowerIt->ValueRead;
3359 
3360   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3361 
3362   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3363   // technically possible for us to merge values in different registers in each
3364   // block, but highly unlikely that LLVM will generate such code after register
3365   // allocation.
3366   LocIdx Loc = LowerIt->ReadLoc;
3367 
3368   // We have several DBG_PHIs, and a use position (the Here inst). All each
3369   // DBG_PHI does is identify a value at a program position. We can treat each
3370   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3371   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3372   // determine which Def is used at the Use, and any PHIs that happen along
3373   // the way.
3374   // Adapted LLVM SSA Updater:
3375   LDVSSAUpdater Updater(Loc, MLiveIns);
3376   // Map of which Def or PHI is the current value in each block.
3377   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3378   // Set of PHIs that we have created along the way.
3379   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3380 
3381   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3382   // for the SSAUpdater.
3383   for (const auto &DBG_PHI : DBGPHIRange) {
3384     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3385     const ValueIDNum &Num = DBG_PHI.ValueRead;
3386     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3387   }
3388 
3389   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3390   const auto &AvailIt = AvailableValues.find(HereBlock);
3391   if (AvailIt != AvailableValues.end()) {
3392     // Actually, we already know what the value is -- the Use is in the same
3393     // block as the Def.
3394     return ValueIDNum::fromU64(AvailIt->second);
3395   }
3396 
3397   // Otherwise, we must use the SSA Updater. It will identify the value number
3398   // that we are to use, and the PHIs that must happen along the way.
3399   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3400   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3401   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3402 
3403   // We have the number for a PHI, or possibly live-through value, to be used
3404   // at this Use. There are a number of things we have to check about it though:
3405   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3406   //    Use was not completely dominated by DBG_PHIs and we should abort.
3407   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3408   //    we've left SSA form. Validate that the inputs to each PHI are the
3409   //    expected values.
3410   //  * Is a PHI we've created actually a merging of values, or are all the
3411   //    predecessor values the same, leading to a non-PHI machine value number?
3412   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3413   //    the ValidatedValues collection below to sort this out.
3414   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3415 
3416   // Define all the input DBG_PHI values in ValidatedValues.
3417   for (const auto &DBG_PHI : DBGPHIRange) {
3418     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3419     const ValueIDNum &Num = DBG_PHI.ValueRead;
3420     ValidatedValues.insert(std::make_pair(Block, Num));
3421   }
3422 
3423   // Sort PHIs to validate into RPO-order.
3424   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3425   for (auto &PHI : CreatedPHIs)
3426     SortedPHIs.push_back(PHI);
3427 
3428   std::sort(
3429       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3430         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3431       });
3432 
3433   for (auto &PHI : SortedPHIs) {
3434     ValueIDNum ThisBlockValueNum =
3435         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3436 
3437     // Are all these things actually defined?
3438     for (auto &PHIIt : PHI->IncomingValues) {
3439       // Any undef input means DBG_PHIs didn't dominate the use point.
3440       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3441         return None;
3442 
3443       ValueIDNum ValueToCheck;
3444       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3445 
3446       auto VVal = ValidatedValues.find(PHIIt.first);
3447       if (VVal == ValidatedValues.end()) {
3448         // We cross a loop, and this is a backedge. LLVMs tail duplication
3449         // happens so late that DBG_PHI instructions should not be able to
3450         // migrate into loops -- meaning we can only be live-through this
3451         // loop.
3452         ValueToCheck = ThisBlockValueNum;
3453       } else {
3454         // Does the block have as a live-out, in the location we're examining,
3455         // the value that we expect? If not, it's been moved or clobbered.
3456         ValueToCheck = VVal->second;
3457       }
3458 
3459       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3460         return None;
3461     }
3462 
3463     // Record this value as validated.
3464     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3465   }
3466 
3467   // All the PHIs are valid: we can return what the SSAUpdater said our value
3468   // number was.
3469   return Result;
3470 }
3471