1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Thin wrapper around an integer -- designed to give more type safety to 152 /// spill location numbers. 153 class SpillLocationNo { 154 public: 155 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 156 unsigned SpillNo; 157 unsigned id() const { return SpillNo; } 158 }; 159 160 /// Tracker for converting machine value locations and variable values into 161 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 162 /// specifying block live-in locations and transfers within blocks. 163 /// 164 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 165 /// and must be initialized with the set of variable values that are live-in to 166 /// the block. The caller then repeatedly calls process(). TransferTracker picks 167 /// out variable locations for the live-in variable values (if there _is_ a 168 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 169 /// stepped through, transfers of values between machine locations are 170 /// identified and if profitable, a DBG_VALUE created. 171 /// 172 /// This is where debug use-before-defs would be resolved: a variable with an 173 /// unavailable value could materialize in the middle of a block, when the 174 /// value becomes available. Or, we could detect clobbers and re-specify the 175 /// variable in a backup location. (XXX these are unimplemented). 176 class TransferTracker { 177 public: 178 const TargetInstrInfo *TII; 179 const TargetLowering *TLI; 180 /// This machine location tracker is assumed to always contain the up-to-date 181 /// value mapping for all machine locations. TransferTracker only reads 182 /// information from it. (XXX make it const?) 183 MLocTracker *MTracker; 184 MachineFunction &MF; 185 bool ShouldEmitDebugEntryValues; 186 187 /// Record of all changes in variable locations at a block position. Awkwardly 188 /// we allow inserting either before or after the point: MBB != nullptr 189 /// indicates it's before, otherwise after. 190 struct Transfer { 191 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 192 MachineBasicBlock *MBB; /// non-null if we should insert after. 193 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 194 }; 195 196 struct LocAndProperties { 197 LocIdx Loc; 198 DbgValueProperties Properties; 199 }; 200 201 /// Collection of transfers (DBG_VALUEs) to be inserted. 202 SmallVector<Transfer, 32> Transfers; 203 204 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 205 /// between TransferTrackers view of variable locations and MLocTrackers. For 206 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 207 /// does not. 208 std::vector<ValueIDNum> VarLocs; 209 210 /// Map from LocIdxes to which DebugVariables are based that location. 211 /// Mantained while stepping through the block. Not accurate if 212 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 213 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 214 215 /// Map from DebugVariable to it's current location and qualifying meta 216 /// information. To be used in conjunction with ActiveMLocs to construct 217 /// enough information for the DBG_VALUEs for a particular LocIdx. 218 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 219 220 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 221 SmallVector<MachineInstr *, 4> PendingDbgValues; 222 223 /// Record of a use-before-def: created when a value that's live-in to the 224 /// current block isn't available in any machine location, but it will be 225 /// defined in this block. 226 struct UseBeforeDef { 227 /// Value of this variable, def'd in block. 228 ValueIDNum ID; 229 /// Identity of this variable. 230 DebugVariable Var; 231 /// Additional variable properties. 232 DbgValueProperties Properties; 233 }; 234 235 /// Map from instruction index (within the block) to the set of UseBeforeDefs 236 /// that become defined at that instruction. 237 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 238 239 /// The set of variables that are in UseBeforeDefs and can become a location 240 /// once the relevant value is defined. An element being erased from this 241 /// collection prevents the use-before-def materializing. 242 DenseSet<DebugVariable> UseBeforeDefVariables; 243 244 const TargetRegisterInfo &TRI; 245 const BitVector &CalleeSavedRegs; 246 247 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 248 MachineFunction &MF, const TargetRegisterInfo &TRI, 249 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 250 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 251 CalleeSavedRegs(CalleeSavedRegs) { 252 TLI = MF.getSubtarget().getTargetLowering(); 253 auto &TM = TPC.getTM<TargetMachine>(); 254 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 255 } 256 257 /// Load object with live-in variable values. \p mlocs contains the live-in 258 /// values in each machine location, while \p vlocs the live-in variable 259 /// values. This method picks variable locations for the live-in variables, 260 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 261 /// object fields to track variable locations as we step through the block. 262 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 263 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 264 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 265 unsigned NumLocs) { 266 ActiveMLocs.clear(); 267 ActiveVLocs.clear(); 268 VarLocs.clear(); 269 VarLocs.reserve(NumLocs); 270 UseBeforeDefs.clear(); 271 UseBeforeDefVariables.clear(); 272 273 auto isCalleeSaved = [&](LocIdx L) { 274 unsigned Reg = MTracker->LocIdxToLocID[L]; 275 if (Reg >= MTracker->NumRegs) 276 return false; 277 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 278 if (CalleeSavedRegs.test(*RAI)) 279 return true; 280 return false; 281 }; 282 283 // Map of the preferred location for each value. 284 std::map<ValueIDNum, LocIdx> ValueToLoc; 285 286 // Produce a map of value numbers to the current machine locs they live 287 // in. When emulating VarLocBasedImpl, there should only be one 288 // location; when not, we get to pick. 289 for (auto Location : MTracker->locations()) { 290 LocIdx Idx = Location.Idx; 291 ValueIDNum &VNum = MLocs[Idx.asU64()]; 292 VarLocs.push_back(VNum); 293 auto it = ValueToLoc.find(VNum); 294 // In order of preference, pick: 295 // * Callee saved registers, 296 // * Other registers, 297 // * Spill slots. 298 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 299 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 300 // Insert, or overwrite if insertion failed. 301 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 302 if (!PrefLocRes.second) 303 PrefLocRes.first->second = Idx; 304 } 305 } 306 307 // Now map variables to their picked LocIdxes. 308 for (auto Var : VLocs) { 309 if (Var.second.Kind == DbgValue::Const) { 310 PendingDbgValues.push_back( 311 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 312 continue; 313 } 314 315 // If the value has no location, we can't make a variable location. 316 const ValueIDNum &Num = Var.second.ID; 317 auto ValuesPreferredLoc = ValueToLoc.find(Num); 318 if (ValuesPreferredLoc == ValueToLoc.end()) { 319 // If it's a def that occurs in this block, register it as a 320 // use-before-def to be resolved as we step through the block. 321 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 322 addUseBeforeDef(Var.first, Var.second.Properties, Num); 323 else 324 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 325 continue; 326 } 327 328 LocIdx M = ValuesPreferredLoc->second; 329 auto NewValue = LocAndProperties{M, Var.second.Properties}; 330 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 331 if (!Result.second) 332 Result.first->second = NewValue; 333 ActiveMLocs[M].insert(Var.first); 334 PendingDbgValues.push_back( 335 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 336 } 337 flushDbgValues(MBB.begin(), &MBB); 338 } 339 340 /// Record that \p Var has value \p ID, a value that becomes available 341 /// later in the function. 342 void addUseBeforeDef(const DebugVariable &Var, 343 const DbgValueProperties &Properties, ValueIDNum ID) { 344 UseBeforeDef UBD = {ID, Var, Properties}; 345 UseBeforeDefs[ID.getInst()].push_back(UBD); 346 UseBeforeDefVariables.insert(Var); 347 } 348 349 /// After the instruction at index \p Inst and position \p pos has been 350 /// processed, check whether it defines a variable value in a use-before-def. 351 /// If so, and the variable value hasn't changed since the start of the 352 /// block, create a DBG_VALUE. 353 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 354 auto MIt = UseBeforeDefs.find(Inst); 355 if (MIt == UseBeforeDefs.end()) 356 return; 357 358 for (auto &Use : MIt->second) { 359 LocIdx L = Use.ID.getLoc(); 360 361 // If something goes very wrong, we might end up labelling a COPY 362 // instruction or similar with an instruction number, where it doesn't 363 // actually define a new value, instead it moves a value. In case this 364 // happens, discard. 365 if (MTracker->readMLoc(L) != Use.ID) 366 continue; 367 368 // If a different debug instruction defined the variable value / location 369 // since the start of the block, don't materialize this use-before-def. 370 if (!UseBeforeDefVariables.count(Use.Var)) 371 continue; 372 373 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 374 } 375 flushDbgValues(pos, nullptr); 376 } 377 378 /// Helper to move created DBG_VALUEs into Transfers collection. 379 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 380 if (PendingDbgValues.size() == 0) 381 return; 382 383 // Pick out the instruction start position. 384 MachineBasicBlock::instr_iterator BundleStart; 385 if (MBB && Pos == MBB->begin()) 386 BundleStart = MBB->instr_begin(); 387 else 388 BundleStart = getBundleStart(Pos->getIterator()); 389 390 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 391 PendingDbgValues.clear(); 392 } 393 394 bool isEntryValueVariable(const DebugVariable &Var, 395 const DIExpression *Expr) const { 396 if (!Var.getVariable()->isParameter()) 397 return false; 398 399 if (Var.getInlinedAt()) 400 return false; 401 402 if (Expr->getNumElements() > 0) 403 return false; 404 405 return true; 406 } 407 408 bool isEntryValueValue(const ValueIDNum &Val) const { 409 // Must be in entry block (block number zero), and be a PHI / live-in value. 410 if (Val.getBlock() || !Val.isPHI()) 411 return false; 412 413 // Entry values must enter in a register. 414 if (MTracker->isSpill(Val.getLoc())) 415 return false; 416 417 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 418 Register FP = TRI.getFrameRegister(MF); 419 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 420 return Reg != SP && Reg != FP; 421 } 422 423 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 424 const ValueIDNum &Num) { 425 // Is this variable location a candidate to be an entry value. First, 426 // should we be trying this at all? 427 if (!ShouldEmitDebugEntryValues) 428 return false; 429 430 // Is the variable appropriate for entry values (i.e., is a parameter). 431 if (!isEntryValueVariable(Var, Prop.DIExpr)) 432 return false; 433 434 // Is the value assigned to this variable still the entry value? 435 if (!isEntryValueValue(Num)) 436 return false; 437 438 // Emit a variable location using an entry value expression. 439 DIExpression *NewExpr = 440 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 441 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 442 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 443 444 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 445 return true; 446 } 447 448 /// Change a variable value after encountering a DBG_VALUE inside a block. 449 void redefVar(const MachineInstr &MI) { 450 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 451 MI.getDebugLoc()->getInlinedAt()); 452 DbgValueProperties Properties(MI); 453 454 const MachineOperand &MO = MI.getOperand(0); 455 456 // Ignore non-register locations, we don't transfer those. 457 if (!MO.isReg() || MO.getReg() == 0) { 458 auto It = ActiveVLocs.find(Var); 459 if (It != ActiveVLocs.end()) { 460 ActiveMLocs[It->second.Loc].erase(Var); 461 ActiveVLocs.erase(It); 462 } 463 // Any use-before-defs no longer apply. 464 UseBeforeDefVariables.erase(Var); 465 return; 466 } 467 468 Register Reg = MO.getReg(); 469 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 470 redefVar(MI, Properties, NewLoc); 471 } 472 473 /// Handle a change in variable location within a block. Terminate the 474 /// variables current location, and record the value it now refers to, so 475 /// that we can detect location transfers later on. 476 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 477 Optional<LocIdx> OptNewLoc) { 478 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 479 MI.getDebugLoc()->getInlinedAt()); 480 // Any use-before-defs no longer apply. 481 UseBeforeDefVariables.erase(Var); 482 483 // Erase any previous location, 484 auto It = ActiveVLocs.find(Var); 485 if (It != ActiveVLocs.end()) 486 ActiveMLocs[It->second.Loc].erase(Var); 487 488 // If there _is_ no new location, all we had to do was erase. 489 if (!OptNewLoc) 490 return; 491 LocIdx NewLoc = *OptNewLoc; 492 493 // Check whether our local copy of values-by-location in #VarLocs is out of 494 // date. Wipe old tracking data for the location if it's been clobbered in 495 // the meantime. 496 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 497 for (auto &P : ActiveMLocs[NewLoc]) { 498 ActiveVLocs.erase(P); 499 } 500 ActiveMLocs[NewLoc.asU64()].clear(); 501 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 502 } 503 504 ActiveMLocs[NewLoc].insert(Var); 505 if (It == ActiveVLocs.end()) { 506 ActiveVLocs.insert( 507 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 508 } else { 509 It->second.Loc = NewLoc; 510 It->second.Properties = Properties; 511 } 512 } 513 514 /// Account for a location \p mloc being clobbered. Examine the variable 515 /// locations that will be terminated: and try to recover them by using 516 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 517 /// explicitly terminate a location if it can't be recovered. 518 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 519 bool MakeUndef = true) { 520 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 521 if (ActiveMLocIt == ActiveMLocs.end()) 522 return; 523 524 // What was the old variable value? 525 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 526 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 527 528 // Examine the remaining variable locations: if we can find the same value 529 // again, we can recover the location. 530 Optional<LocIdx> NewLoc = None; 531 for (auto Loc : MTracker->locations()) 532 if (Loc.Value == OldValue) 533 NewLoc = Loc.Idx; 534 535 // If there is no location, and we weren't asked to make the variable 536 // explicitly undef, then stop here. 537 if (!NewLoc && !MakeUndef) { 538 // Try and recover a few more locations with entry values. 539 for (auto &Var : ActiveMLocIt->second) { 540 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 541 recoverAsEntryValue(Var, Prop, OldValue); 542 } 543 flushDbgValues(Pos, nullptr); 544 return; 545 } 546 547 // Examine all the variables based on this location. 548 DenseSet<DebugVariable> NewMLocs; 549 for (auto &Var : ActiveMLocIt->second) { 550 auto ActiveVLocIt = ActiveVLocs.find(Var); 551 // Re-state the variable location: if there's no replacement then NewLoc 552 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 553 // identifying the alternative location will be emitted. 554 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 555 DbgValueProperties Properties(Expr, false); 556 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 557 558 // Update machine locations <=> variable locations maps. Defer updating 559 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 560 if (!NewLoc) { 561 ActiveVLocs.erase(ActiveVLocIt); 562 } else { 563 ActiveVLocIt->second.Loc = *NewLoc; 564 NewMLocs.insert(Var); 565 } 566 } 567 568 // Commit any deferred ActiveMLoc changes. 569 if (!NewMLocs.empty()) 570 for (auto &Var : NewMLocs) 571 ActiveMLocs[*NewLoc].insert(Var); 572 573 // We lazily track what locations have which values; if we've found a new 574 // location for the clobbered value, remember it. 575 if (NewLoc) 576 VarLocs[NewLoc->asU64()] = OldValue; 577 578 flushDbgValues(Pos, nullptr); 579 580 ActiveMLocIt->second.clear(); 581 } 582 583 /// Transfer variables based on \p Src to be based on \p Dst. This handles 584 /// both register copies as well as spills and restores. Creates DBG_VALUEs 585 /// describing the movement. 586 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 587 // Does Src still contain the value num we expect? If not, it's been 588 // clobbered in the meantime, and our variable locations are stale. 589 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 590 return; 591 592 // assert(ActiveMLocs[Dst].size() == 0); 593 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 594 ActiveMLocs[Dst] = ActiveMLocs[Src]; 595 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 596 597 // For each variable based on Src; create a location at Dst. 598 for (auto &Var : ActiveMLocs[Src]) { 599 auto ActiveVLocIt = ActiveVLocs.find(Var); 600 assert(ActiveVLocIt != ActiveVLocs.end()); 601 ActiveVLocIt->second.Loc = Dst; 602 603 MachineInstr *MI = 604 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 605 PendingDbgValues.push_back(MI); 606 } 607 ActiveMLocs[Src].clear(); 608 flushDbgValues(Pos, nullptr); 609 610 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 611 // about the old location. 612 if (EmulateOldLDV) 613 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 614 } 615 616 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 617 const DebugVariable &Var, 618 const DbgValueProperties &Properties) { 619 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 620 Var.getVariable()->getScope(), 621 const_cast<DILocation *>(Var.getInlinedAt())); 622 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 623 MIB.add(MO); 624 if (Properties.Indirect) 625 MIB.addImm(0); 626 else 627 MIB.addReg(0); 628 MIB.addMetadata(Var.getVariable()); 629 MIB.addMetadata(Properties.DIExpr); 630 return MIB; 631 } 632 }; 633 634 //===----------------------------------------------------------------------===// 635 // Implementation 636 //===----------------------------------------------------------------------===// 637 638 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 639 640 #ifndef NDEBUG 641 void DbgValue::dump(const MLocTracker *MTrack) const { 642 if (Kind == Const) { 643 MO->dump(); 644 } else if (Kind == NoVal) { 645 dbgs() << "NoVal(" << BlockNo << ")"; 646 } else if (Kind == VPHI) { 647 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 648 } else { 649 assert(Kind == Def); 650 dbgs() << MTrack->IDAsString(ID); 651 } 652 if (Properties.Indirect) 653 dbgs() << " indir"; 654 if (Properties.DIExpr) 655 dbgs() << " " << *Properties.DIExpr; 656 } 657 #endif 658 659 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 660 const TargetRegisterInfo &TRI, 661 const TargetLowering &TLI) 662 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 663 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 664 NumRegs = TRI.getNumRegs(); 665 reset(); 666 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 667 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 668 669 // Always track SP. This avoids the implicit clobbering caused by regmasks 670 // from affectings its values. (LiveDebugValues disbelieves calls and 671 // regmasks that claim to clobber SP). 672 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 673 if (SP) { 674 unsigned ID = getLocID(SP, false); 675 (void)lookupOrTrackRegister(ID); 676 677 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 678 SPAliases.insert(*RAI); 679 } 680 } 681 682 LocIdx MLocTracker::trackRegister(unsigned ID) { 683 assert(ID != 0); 684 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 685 LocIdxToIDNum.grow(NewIdx); 686 LocIdxToLocID.grow(NewIdx); 687 688 // Default: it's an mphi. 689 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 690 // Was this reg ever touched by a regmask? 691 for (const auto &MaskPair : reverse(Masks)) { 692 if (MaskPair.first->clobbersPhysReg(ID)) { 693 // There was an earlier def we skipped. 694 ValNum = {CurBB, MaskPair.second, NewIdx}; 695 break; 696 } 697 } 698 699 LocIdxToIDNum[NewIdx] = ValNum; 700 LocIdxToLocID[NewIdx] = ID; 701 return NewIdx; 702 } 703 704 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 705 unsigned InstID) { 706 // Def any register we track have that isn't preserved. The regmask 707 // terminates the liveness of a register, meaning its value can't be 708 // relied upon -- we represent this by giving it a new value. 709 for (auto Location : locations()) { 710 unsigned ID = LocIdxToLocID[Location.Idx]; 711 // Don't clobber SP, even if the mask says it's clobbered. 712 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 713 defReg(ID, CurBB, InstID); 714 } 715 Masks.push_back(std::make_pair(MO, InstID)); 716 } 717 718 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 719 unsigned SpillID = SpillLocs.idFor(L); 720 if (SpillID == 0) { 721 SpillID = SpillLocs.insert(L); 722 unsigned L = getLocID(SpillID, true); 723 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 724 LocIdxToIDNum.grow(Idx); 725 LocIdxToLocID.grow(Idx); 726 LocIDToLocIdx.push_back(Idx); 727 LocIdxToLocID[Idx] = L; 728 return Idx; 729 } else { 730 unsigned L = getLocID(SpillID, true); 731 LocIdx Idx = LocIDToLocIdx[L]; 732 return Idx; 733 } 734 } 735 736 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 737 unsigned ID = LocIdxToLocID[Idx]; 738 if (ID >= NumRegs) 739 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 740 else 741 return TRI.getRegAsmName(ID).str(); 742 } 743 744 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 745 std::string DefName = LocIdxToName(Num.getLoc()); 746 return Num.asString(DefName); 747 } 748 749 #ifndef NDEBUG 750 LLVM_DUMP_METHOD void MLocTracker::dump() { 751 for (auto Location : locations()) { 752 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 753 std::string DefName = Location.Value.asString(MLocName); 754 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 755 } 756 } 757 758 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 759 for (auto Location : locations()) { 760 std::string foo = LocIdxToName(Location.Idx); 761 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 762 } 763 } 764 #endif 765 766 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 767 const DebugVariable &Var, 768 const DbgValueProperties &Properties) { 769 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 770 Var.getVariable()->getScope(), 771 const_cast<DILocation *>(Var.getInlinedAt())); 772 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 773 774 const DIExpression *Expr = Properties.DIExpr; 775 if (!MLoc) { 776 // No location -> DBG_VALUE $noreg 777 MIB.addReg(0); 778 MIB.addReg(0); 779 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 780 unsigned LocID = LocIdxToLocID[*MLoc]; 781 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 782 783 auto *TRI = MF.getSubtarget().getRegisterInfo(); 784 Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, 785 Spill.SpillOffset); 786 unsigned Base = Spill.SpillBase; 787 MIB.addReg(Base); 788 MIB.addImm(0); 789 } else { 790 unsigned LocID = LocIdxToLocID[*MLoc]; 791 MIB.addReg(LocID); 792 if (Properties.Indirect) 793 MIB.addImm(0); 794 else 795 MIB.addReg(0); 796 } 797 798 MIB.addMetadata(Var.getVariable()); 799 MIB.addMetadata(Expr); 800 return MIB; 801 } 802 803 /// Default construct and initialize the pass. 804 InstrRefBasedLDV::InstrRefBasedLDV() {} 805 806 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 807 unsigned Reg = MTracker->LocIdxToLocID[L]; 808 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 809 if (CalleeSavedRegs.test(*RAI)) 810 return true; 811 return false; 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Debug Range Extension Implementation 816 //===----------------------------------------------------------------------===// 817 818 #ifndef NDEBUG 819 // Something to restore in the future. 820 // void InstrRefBasedLDV::printVarLocInMBB(..) 821 #endif 822 823 SpillLoc 824 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 825 assert(MI.hasOneMemOperand() && 826 "Spill instruction does not have exactly one memory operand?"); 827 auto MMOI = MI.memoperands_begin(); 828 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 829 assert(PVal->kind() == PseudoSourceValue::FixedStack && 830 "Inconsistent memory operand in spill instruction"); 831 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 832 const MachineBasicBlock *MBB = MI.getParent(); 833 Register Reg; 834 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 835 return {Reg, Offset}; 836 } 837 838 /// End all previous ranges related to @MI and start a new range from @MI 839 /// if it is a DBG_VALUE instr. 840 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 841 if (!MI.isDebugValue()) 842 return false; 843 844 const DILocalVariable *Var = MI.getDebugVariable(); 845 const DIExpression *Expr = MI.getDebugExpression(); 846 const DILocation *DebugLoc = MI.getDebugLoc(); 847 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 848 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 849 "Expected inlined-at fields to agree"); 850 851 DebugVariable V(Var, Expr, InlinedAt); 852 DbgValueProperties Properties(MI); 853 854 // If there are no instructions in this lexical scope, do no location tracking 855 // at all, this variable shouldn't get a legitimate location range. 856 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 857 if (Scope == nullptr) 858 return true; // handled it; by doing nothing 859 860 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 861 // contribute to locations in this block, but don't propagate further. 862 // Interpret it like a DBG_VALUE $noreg. 863 if (MI.isDebugValueList()) { 864 if (VTracker) 865 VTracker->defVar(MI, Properties, None); 866 if (TTracker) 867 TTracker->redefVar(MI, Properties, None); 868 return true; 869 } 870 871 const MachineOperand &MO = MI.getOperand(0); 872 873 // MLocTracker needs to know that this register is read, even if it's only 874 // read by a debug inst. 875 if (MO.isReg() && MO.getReg() != 0) 876 (void)MTracker->readReg(MO.getReg()); 877 878 // If we're preparing for the second analysis (variables), the machine value 879 // locations are already solved, and we report this DBG_VALUE and the value 880 // it refers to to VLocTracker. 881 if (VTracker) { 882 if (MO.isReg()) { 883 // Feed defVar the new variable location, or if this is a 884 // DBG_VALUE $noreg, feed defVar None. 885 if (MO.getReg()) 886 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 887 else 888 VTracker->defVar(MI, Properties, None); 889 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 890 MI.getOperand(0).isCImm()) { 891 VTracker->defVar(MI, MI.getOperand(0)); 892 } 893 } 894 895 // If performing final tracking of transfers, report this variable definition 896 // to the TransferTracker too. 897 if (TTracker) 898 TTracker->redefVar(MI); 899 return true; 900 } 901 902 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 903 ValueIDNum **MLiveOuts, 904 ValueIDNum **MLiveIns) { 905 if (!MI.isDebugRef()) 906 return false; 907 908 // Only handle this instruction when we are building the variable value 909 // transfer function. 910 if (!VTracker) 911 return false; 912 913 unsigned InstNo = MI.getOperand(0).getImm(); 914 unsigned OpNo = MI.getOperand(1).getImm(); 915 916 const DILocalVariable *Var = MI.getDebugVariable(); 917 const DIExpression *Expr = MI.getDebugExpression(); 918 const DILocation *DebugLoc = MI.getDebugLoc(); 919 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 920 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 921 "Expected inlined-at fields to agree"); 922 923 DebugVariable V(Var, Expr, InlinedAt); 924 925 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 926 if (Scope == nullptr) 927 return true; // Handled by doing nothing. This variable is never in scope. 928 929 const MachineFunction &MF = *MI.getParent()->getParent(); 930 931 // Various optimizations may have happened to the value during codegen, 932 // recorded in the value substitution table. Apply any substitutions to 933 // the instruction / operand number in this DBG_INSTR_REF, and collect 934 // any subregister extractions performed during optimization. 935 936 // Create dummy substitution with Src set, for lookup. 937 auto SoughtSub = 938 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 939 940 SmallVector<unsigned, 4> SeenSubregs; 941 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 942 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 943 LowerBoundIt->Src == SoughtSub.Src) { 944 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 945 SoughtSub.Src = LowerBoundIt->Dest; 946 if (unsigned Subreg = LowerBoundIt->Subreg) 947 SeenSubregs.push_back(Subreg); 948 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 949 } 950 951 // Default machine value number is <None> -- if no instruction defines 952 // the corresponding value, it must have been optimized out. 953 Optional<ValueIDNum> NewID = None; 954 955 // Try to lookup the instruction number, and find the machine value number 956 // that it defines. It could be an instruction, or a PHI. 957 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 958 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 959 DebugPHINumToValue.end(), InstNo); 960 if (InstrIt != DebugInstrNumToInstr.end()) { 961 const MachineInstr &TargetInstr = *InstrIt->second.first; 962 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 963 964 // Pick out the designated operand. 965 assert(OpNo < TargetInstr.getNumOperands()); 966 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 967 968 // Today, this can only be a register. 969 assert(MO.isReg() && MO.isDef()); 970 971 unsigned LocID = MTracker->getLocID(MO.getReg(), false); 972 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 973 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 974 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 975 // It's actually a PHI value. Which value it is might not be obvious, use 976 // the resolver helper to find out. 977 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 978 MI, InstNo); 979 } 980 981 // Apply any subregister extractions, in reverse. We might have seen code 982 // like this: 983 // CALL64 @foo, implicit-def $rax 984 // %0:gr64 = COPY $rax 985 // %1:gr32 = COPY %0.sub_32bit 986 // %2:gr16 = COPY %1.sub_16bit 987 // %3:gr8 = COPY %2.sub_8bit 988 // In which case each copy would have been recorded as a substitution with 989 // a subregister qualifier. Apply those qualifiers now. 990 if (NewID && !SeenSubregs.empty()) { 991 unsigned Offset = 0; 992 unsigned Size = 0; 993 994 // Look at each subregister that we passed through, and progressively 995 // narrow in, accumulating any offsets that occur. Substitutions should 996 // only ever be the same or narrower width than what they read from; 997 // iterate in reverse order so that we go from wide to small. 998 for (unsigned Subreg : reverse(SeenSubregs)) { 999 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1000 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1001 Offset += ThisOffset; 1002 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1003 } 1004 1005 // If that worked, look for an appropriate subregister with the register 1006 // where the define happens. Don't look at values that were defined during 1007 // a stack write: we can't currently express register locations within 1008 // spills. 1009 LocIdx L = NewID->getLoc(); 1010 if (NewID && !MTracker->isSpill(L)) { 1011 // Find the register class for the register where this def happened. 1012 // FIXME: no index for this? 1013 Register Reg = MTracker->LocIdxToLocID[L]; 1014 const TargetRegisterClass *TRC = nullptr; 1015 for (auto *TRCI : TRI->regclasses()) 1016 if (TRCI->contains(Reg)) 1017 TRC = TRCI; 1018 assert(TRC && "Couldn't find target register class?"); 1019 1020 // If the register we have isn't the right size or in the right place, 1021 // Try to find a subregister inside it. 1022 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1023 if (Size != MainRegSize || Offset) { 1024 // Enumerate all subregisters, searching. 1025 Register NewReg = 0; 1026 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1027 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1028 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1029 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1030 if (SubregSize == Size && SubregOffset == Offset) { 1031 NewReg = *SRI; 1032 break; 1033 } 1034 } 1035 1036 // If we didn't find anything: there's no way to express our value. 1037 if (!NewReg) { 1038 NewID = None; 1039 } else { 1040 // Re-state the value as being defined within the subregister 1041 // that we found. 1042 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1043 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1044 } 1045 } 1046 } else { 1047 // If we can't handle subregisters, unset the new value. 1048 NewID = None; 1049 } 1050 } 1051 1052 // We, we have a value number or None. Tell the variable value tracker about 1053 // it. The rest of this LiveDebugValues implementation acts exactly the same 1054 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1055 // aren't immediately available). 1056 DbgValueProperties Properties(Expr, false); 1057 VTracker->defVar(MI, Properties, NewID); 1058 1059 // If we're on the final pass through the function, decompose this INSTR_REF 1060 // into a plain DBG_VALUE. 1061 if (!TTracker) 1062 return true; 1063 1064 // Pick a location for the machine value number, if such a location exists. 1065 // (This information could be stored in TransferTracker to make it faster). 1066 Optional<LocIdx> FoundLoc = None; 1067 for (auto Location : MTracker->locations()) { 1068 LocIdx CurL = Location.Idx; 1069 ValueIDNum ID = MTracker->readMLoc(CurL); 1070 if (NewID && ID == NewID) { 1071 // If this is the first location with that value, pick it. Otherwise, 1072 // consider whether it's a "longer term" location. 1073 if (!FoundLoc) { 1074 FoundLoc = CurL; 1075 continue; 1076 } 1077 1078 if (MTracker->isSpill(CurL)) 1079 FoundLoc = CurL; // Spills are a longer term location. 1080 else if (!MTracker->isSpill(*FoundLoc) && 1081 !MTracker->isSpill(CurL) && 1082 !isCalleeSaved(*FoundLoc) && 1083 isCalleeSaved(CurL)) 1084 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1085 } 1086 } 1087 1088 // Tell transfer tracker that the variable value has changed. 1089 TTracker->redefVar(MI, Properties, FoundLoc); 1090 1091 // If there was a value with no location; but the value is defined in a 1092 // later instruction in this block, this is a block-local use-before-def. 1093 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1094 NewID->getInst() > CurInst) 1095 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1096 1097 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1098 // This DBG_VALUE is potentially a $noreg / undefined location, if 1099 // FoundLoc is None. 1100 // (XXX -- could morph the DBG_INSTR_REF in the future). 1101 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1102 TTracker->PendingDbgValues.push_back(DbgMI); 1103 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1104 return true; 1105 } 1106 1107 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1108 if (!MI.isDebugPHI()) 1109 return false; 1110 1111 // Analyse these only when solving the machine value location problem. 1112 if (VTracker || TTracker) 1113 return true; 1114 1115 // First operand is the value location, either a stack slot or register. 1116 // Second is the debug instruction number of the original PHI. 1117 const MachineOperand &MO = MI.getOperand(0); 1118 unsigned InstrNum = MI.getOperand(1).getImm(); 1119 1120 if (MO.isReg()) { 1121 // The value is whatever's currently in the register. Read and record it, 1122 // to be analysed later. 1123 Register Reg = MO.getReg(); 1124 ValueIDNum Num = MTracker->readReg(Reg); 1125 auto PHIRec = DebugPHIRecord( 1126 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1127 DebugPHINumToValue.push_back(PHIRec); 1128 1129 // Subsequent register operations, or variable locations, might occur for 1130 // any of the subregisters of this DBG_PHIs operand. Ensure that all 1131 // registers aliasing this register are tracked. 1132 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1133 MTracker->lookupOrTrackRegister(*RAI); 1134 } else { 1135 // The value is whatever's in this stack slot. 1136 assert(MO.isFI()); 1137 unsigned FI = MO.getIndex(); 1138 1139 // If the stack slot is dead, then this was optimized away. 1140 // FIXME: stack slot colouring should account for slots that get merged. 1141 if (MFI->isDeadObjectIndex(FI)) 1142 return true; 1143 1144 // Identify this spill slot. 1145 Register Base; 1146 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1147 SpillLoc SL = {Base, Offs}; 1148 Optional<ValueIDNum> Num = MTracker->readSpill(SL); 1149 1150 if (!Num) 1151 // Nothing ever writes to this slot. Curious, but nothing we can do. 1152 return true; 1153 1154 // Record this DBG_PHI for later analysis. 1155 auto DbgPHI = DebugPHIRecord( 1156 {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)}); 1157 DebugPHINumToValue.push_back(DbgPHI); 1158 } 1159 1160 return true; 1161 } 1162 1163 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1164 // Meta Instructions do not affect the debug liveness of any register they 1165 // define. 1166 if (MI.isImplicitDef()) { 1167 // Except when there's an implicit def, and the location it's defining has 1168 // no value number. The whole point of an implicit def is to announce that 1169 // the register is live, without be specific about it's value. So define 1170 // a value if there isn't one already. 1171 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1172 // Has a legitimate value -> ignore the implicit def. 1173 if (Num.getLoc() != 0) 1174 return; 1175 // Otherwise, def it here. 1176 } else if (MI.isMetaInstruction()) 1177 return; 1178 1179 // Find the regs killed by MI, and find regmasks of preserved regs. 1180 // Max out the number of statically allocated elements in `DeadRegs`, as this 1181 // prevents fallback to std::set::count() operations. 1182 SmallSet<uint32_t, 32> DeadRegs; 1183 SmallVector<const uint32_t *, 4> RegMasks; 1184 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1185 for (const MachineOperand &MO : MI.operands()) { 1186 // Determine whether the operand is a register def. 1187 if (MO.isReg() && MO.isDef() && MO.getReg() && 1188 Register::isPhysicalRegister(MO.getReg()) && 1189 !(MI.isCall() && MTracker->SPAliases.count(MO.getReg()))) { 1190 // Remove ranges of all aliased registers. 1191 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1192 // FIXME: Can we break out of this loop early if no insertion occurs? 1193 DeadRegs.insert(*RAI); 1194 } else if (MO.isRegMask()) { 1195 RegMasks.push_back(MO.getRegMask()); 1196 RegMaskPtrs.push_back(&MO); 1197 } 1198 } 1199 1200 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1201 for (uint32_t DeadReg : DeadRegs) 1202 MTracker->defReg(DeadReg, CurBB, CurInst); 1203 1204 for (auto *MO : RegMaskPtrs) 1205 MTracker->writeRegMask(MO, CurBB, CurInst); 1206 1207 if (!TTracker) 1208 return; 1209 1210 // When committing variable values to locations: tell transfer tracker that 1211 // we've clobbered things. It may be able to recover the variable from a 1212 // different location. 1213 1214 // Inform TTracker about any direct clobbers. 1215 for (uint32_t DeadReg : DeadRegs) { 1216 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1217 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1218 } 1219 1220 // Look for any clobbers performed by a register mask. Only test locations 1221 // that are actually being tracked. 1222 for (auto L : MTracker->locations()) { 1223 // Stack locations can't be clobbered by regmasks. 1224 if (MTracker->isSpill(L.Idx)) 1225 continue; 1226 1227 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1228 for (auto *MO : RegMaskPtrs) 1229 if (MO->clobbersPhysReg(Reg)) 1230 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1231 } 1232 } 1233 1234 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1235 // In all circumstances, re-def all aliases. It's definitely a new value now. 1236 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1237 MTracker->defReg(*RAI, CurBB, CurInst); 1238 1239 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1240 MTracker->setReg(DstRegNum, SrcValue); 1241 1242 // Copy subregisters from one location to another. 1243 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1244 unsigned SrcSubReg = SRI.getSubReg(); 1245 unsigned SubRegIdx = SRI.getSubRegIndex(); 1246 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1247 if (!DstSubReg) 1248 continue; 1249 1250 // Do copy. There are two matching subregisters, the source value should 1251 // have been def'd when the super-reg was, the latter might not be tracked 1252 // yet. 1253 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1254 // mphi values if it wasn't tracked. 1255 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1256 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1257 (void)SrcL; 1258 (void)DstL; 1259 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1260 1261 MTracker->setReg(DstSubReg, CpyValue); 1262 } 1263 } 1264 1265 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1266 MachineFunction *MF) { 1267 // TODO: Handle multiple stores folded into one. 1268 if (!MI.hasOneMemOperand()) 1269 return false; 1270 1271 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1272 return false; // This is not a spill instruction, since no valid size was 1273 // returned from either function. 1274 1275 return true; 1276 } 1277 1278 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1279 MachineFunction *MF, unsigned &Reg) { 1280 if (!isSpillInstruction(MI, MF)) 1281 return false; 1282 1283 int FI; 1284 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1285 return Reg != 0; 1286 } 1287 1288 Optional<SpillLoc> 1289 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1290 MachineFunction *MF, unsigned &Reg) { 1291 if (!MI.hasOneMemOperand()) 1292 return None; 1293 1294 // FIXME: Handle folded restore instructions with more than one memory 1295 // operand. 1296 if (MI.getRestoreSize(TII)) { 1297 Reg = MI.getOperand(0).getReg(); 1298 return extractSpillBaseRegAndOffset(MI); 1299 } 1300 return None; 1301 } 1302 1303 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1304 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1305 // limitations under the new model. Therefore, when comparing them, compare 1306 // versions that don't attempt spills or restores at all. 1307 if (EmulateOldLDV) 1308 return false; 1309 1310 MachineFunction *MF = MI.getMF(); 1311 unsigned Reg; 1312 Optional<SpillLoc> Loc; 1313 1314 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1315 1316 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1317 // written to, terminate that variable location. The value in memory 1318 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1319 if (isSpillInstruction(MI, MF)) { 1320 Loc = extractSpillBaseRegAndOffset(MI); 1321 1322 if (TTracker) { 1323 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1324 if (MLoc) { 1325 // Un-set this location before clobbering, so that we don't salvage 1326 // the variable location back to the same place. 1327 MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue); 1328 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1329 } 1330 } 1331 } 1332 1333 // Try to recognise spill and restore instructions that may transfer a value. 1334 if (isLocationSpill(MI, MF, Reg)) { 1335 Loc = extractSpillBaseRegAndOffset(MI); 1336 auto ValueID = MTracker->readReg(Reg); 1337 1338 // If the location is empty, produce a phi, signify it's the live-in value. 1339 if (ValueID.getLoc() == 0) 1340 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1341 1342 MTracker->setSpill(*Loc, ValueID); 1343 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1344 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1345 LocIdx SpillLocIdx = *OptSpillLocIdx; 1346 1347 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1348 if (TTracker) 1349 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1350 MI.getIterator()); 1351 } else { 1352 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1353 return false; 1354 1355 // Is there a value to be restored? 1356 auto OptValueID = MTracker->readSpill(*Loc); 1357 if (OptValueID) { 1358 ValueIDNum ValueID = *OptValueID; 1359 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1360 // XXX -- can we recover sub-registers of this value? Until we can, first 1361 // overwrite all defs of the register being restored to. 1362 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1363 MTracker->defReg(*RAI, CurBB, CurInst); 1364 1365 // Now override the reg we're restoring to. 1366 MTracker->setReg(Reg, ValueID); 1367 1368 // Report this restore to the transfer tracker too. 1369 if (TTracker) 1370 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1371 MI.getIterator()); 1372 } else { 1373 // There isn't anything in the location; not clear if this is a code path 1374 // that still runs. Def this register anyway just in case. 1375 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1376 MTracker->defReg(*RAI, CurBB, CurInst); 1377 1378 // Force the spill slot to be tracked. 1379 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 1380 1381 // Set the restored value to be a machine phi number, signifying that it's 1382 // whatever the spills live-in value is in this block. Definitely has 1383 // a LocIdx due to the setSpill above. 1384 ValueIDNum ValueID = {CurBB, 0, L}; 1385 MTracker->setReg(Reg, ValueID); 1386 MTracker->setSpill(*Loc, ValueID); 1387 } 1388 } 1389 return true; 1390 } 1391 1392 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1393 auto DestSrc = TII->isCopyInstr(MI); 1394 if (!DestSrc) 1395 return false; 1396 1397 const MachineOperand *DestRegOp = DestSrc->Destination; 1398 const MachineOperand *SrcRegOp = DestSrc->Source; 1399 1400 auto isCalleeSavedReg = [&](unsigned Reg) { 1401 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1402 if (CalleeSavedRegs.test(*RAI)) 1403 return true; 1404 return false; 1405 }; 1406 1407 Register SrcReg = SrcRegOp->getReg(); 1408 Register DestReg = DestRegOp->getReg(); 1409 1410 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1411 if (SrcReg == DestReg) 1412 return true; 1413 1414 // For emulating VarLocBasedImpl: 1415 // We want to recognize instructions where destination register is callee 1416 // saved register. If register that could be clobbered by the call is 1417 // included, there would be a great chance that it is going to be clobbered 1418 // soon. It is more likely that previous register, which is callee saved, is 1419 // going to stay unclobbered longer, even if it is killed. 1420 // 1421 // For InstrRefBasedImpl, we can track multiple locations per value, so 1422 // ignore this condition. 1423 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1424 return false; 1425 1426 // InstrRefBasedImpl only followed killing copies. 1427 if (EmulateOldLDV && !SrcRegOp->isKill()) 1428 return false; 1429 1430 // Copy MTracker info, including subregs if available. 1431 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1432 1433 // Only produce a transfer of DBG_VALUE within a block where old LDV 1434 // would have. We might make use of the additional value tracking in some 1435 // other way, later. 1436 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1437 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1438 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1439 1440 // VarLocBasedImpl would quit tracking the old location after copying. 1441 if (EmulateOldLDV && SrcReg != DestReg) 1442 MTracker->defReg(SrcReg, CurBB, CurInst); 1443 1444 // Finally, the copy might have clobbered variables based on the destination 1445 // register. Tell TTracker about it, in case a backup location exists. 1446 if (TTracker) { 1447 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1448 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1449 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1450 } 1451 } 1452 1453 return true; 1454 } 1455 1456 /// Accumulate a mapping between each DILocalVariable fragment and other 1457 /// fragments of that DILocalVariable which overlap. This reduces work during 1458 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1459 /// known-to-overlap fragments are present". 1460 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1461 /// fragment usage. 1462 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1463 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1464 MI.getDebugLoc()->getInlinedAt()); 1465 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1466 1467 // If this is the first sighting of this variable, then we are guaranteed 1468 // there are currently no overlapping fragments either. Initialize the set 1469 // of seen fragments, record no overlaps for the current one, and return. 1470 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1471 if (SeenIt == SeenFragments.end()) { 1472 SmallSet<FragmentInfo, 4> OneFragment; 1473 OneFragment.insert(ThisFragment); 1474 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1475 1476 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1477 return; 1478 } 1479 1480 // If this particular Variable/Fragment pair already exists in the overlap 1481 // map, it has already been accounted for. 1482 auto IsInOLapMap = 1483 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1484 if (!IsInOLapMap.second) 1485 return; 1486 1487 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1488 auto &AllSeenFragments = SeenIt->second; 1489 1490 // Otherwise, examine all other seen fragments for this variable, with "this" 1491 // fragment being a previously unseen fragment. Record any pair of 1492 // overlapping fragments. 1493 for (auto &ASeenFragment : AllSeenFragments) { 1494 // Does this previously seen fragment overlap? 1495 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1496 // Yes: Mark the current fragment as being overlapped. 1497 ThisFragmentsOverlaps.push_back(ASeenFragment); 1498 // Mark the previously seen fragment as being overlapped by the current 1499 // one. 1500 auto ASeenFragmentsOverlaps = 1501 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1502 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1503 "Previously seen var fragment has no vector of overlaps"); 1504 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1505 } 1506 } 1507 1508 AllSeenFragments.insert(ThisFragment); 1509 } 1510 1511 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1512 ValueIDNum **MLiveIns) { 1513 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1514 // none of these should we interpret it's register defs as new value 1515 // definitions. 1516 if (transferDebugValue(MI)) 1517 return; 1518 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1519 return; 1520 if (transferDebugPHI(MI)) 1521 return; 1522 if (transferRegisterCopy(MI)) 1523 return; 1524 if (transferSpillOrRestoreInst(MI)) 1525 return; 1526 transferRegisterDef(MI); 1527 } 1528 1529 void InstrRefBasedLDV::produceMLocTransferFunction( 1530 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1531 unsigned MaxNumBlocks) { 1532 // Because we try to optimize around register mask operands by ignoring regs 1533 // that aren't currently tracked, we set up something ugly for later: RegMask 1534 // operands that are seen earlier than the first use of a register, still need 1535 // to clobber that register in the transfer function. But this information 1536 // isn't actively recorded. Instead, we track each RegMask used in each block, 1537 // and accumulated the clobbered but untracked registers in each block into 1538 // the following bitvector. Later, if new values are tracked, we can add 1539 // appropriate clobbers. 1540 SmallVector<BitVector, 32> BlockMasks; 1541 BlockMasks.resize(MaxNumBlocks); 1542 1543 // Reserve one bit per register for the masks described above. 1544 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1545 for (auto &BV : BlockMasks) 1546 BV.resize(TRI->getNumRegs(), true); 1547 1548 // Step through all instructions and inhale the transfer function. 1549 for (auto &MBB : MF) { 1550 // Object fields that are read by trackers to know where we are in the 1551 // function. 1552 CurBB = MBB.getNumber(); 1553 CurInst = 1; 1554 1555 // Set all machine locations to a PHI value. For transfer function 1556 // production only, this signifies the live-in value to the block. 1557 MTracker->reset(); 1558 MTracker->setMPhis(CurBB); 1559 1560 // Step through each instruction in this block. 1561 for (auto &MI : MBB) { 1562 process(MI); 1563 // Also accumulate fragment map. 1564 if (MI.isDebugValue()) 1565 accumulateFragmentMap(MI); 1566 1567 // Create a map from the instruction number (if present) to the 1568 // MachineInstr and its position. 1569 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1570 auto InstrAndPos = std::make_pair(&MI, CurInst); 1571 auto InsertResult = 1572 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1573 1574 // There should never be duplicate instruction numbers. 1575 assert(InsertResult.second); 1576 (void)InsertResult; 1577 } 1578 1579 ++CurInst; 1580 } 1581 1582 // Produce the transfer function, a map of machine location to new value. If 1583 // any machine location has the live-in phi value from the start of the 1584 // block, it's live-through and doesn't need recording in the transfer 1585 // function. 1586 for (auto Location : MTracker->locations()) { 1587 LocIdx Idx = Location.Idx; 1588 ValueIDNum &P = Location.Value; 1589 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1590 continue; 1591 1592 // Insert-or-update. 1593 auto &TransferMap = MLocTransfer[CurBB]; 1594 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1595 if (!Result.second) 1596 Result.first->second = P; 1597 } 1598 1599 // Accumulate any bitmask operands into the clobberred reg mask for this 1600 // block. 1601 for (auto &P : MTracker->Masks) { 1602 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1603 } 1604 } 1605 1606 // Compute a bitvector of all the registers that are tracked in this block. 1607 BitVector UsedRegs(TRI->getNumRegs()); 1608 for (auto Location : MTracker->locations()) { 1609 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1610 // Ignore stack slots, and aliases of the stack pointer. 1611 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1612 continue; 1613 UsedRegs.set(ID); 1614 } 1615 1616 // Check that any regmask-clobber of a register that gets tracked, is not 1617 // live-through in the transfer function. It needs to be clobbered at the 1618 // very least. 1619 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1620 BitVector &BV = BlockMasks[I]; 1621 BV.flip(); 1622 BV &= UsedRegs; 1623 // This produces all the bits that we clobber, but also use. Check that 1624 // they're all clobbered or at least set in the designated transfer 1625 // elem. 1626 for (unsigned Bit : BV.set_bits()) { 1627 unsigned ID = MTracker->getLocID(Bit, false); 1628 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1629 auto &TransferMap = MLocTransfer[I]; 1630 1631 // Install a value representing the fact that this location is effectively 1632 // written to in this block. As there's no reserved value, instead use 1633 // a value number that is never generated. Pick the value number for the 1634 // first instruction in the block, def'ing this location, which we know 1635 // this block never used anyway. 1636 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1637 auto Result = 1638 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1639 if (!Result.second) { 1640 ValueIDNum &ValueID = Result.first->second; 1641 if (ValueID.getBlock() == I && ValueID.isPHI()) 1642 // It was left as live-through. Set it to clobbered. 1643 ValueID = NotGeneratedNum; 1644 } 1645 } 1646 } 1647 } 1648 1649 bool InstrRefBasedLDV::mlocJoin( 1650 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1651 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1652 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1653 bool Changed = false; 1654 1655 // Handle value-propagation when control flow merges on entry to a block. For 1656 // any location without a PHI already placed, the location has the same value 1657 // as its predecessors. If a PHI is placed, test to see whether it's now a 1658 // redundant PHI that we can eliminate. 1659 1660 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1661 for (auto Pred : MBB.predecessors()) 1662 BlockOrders.push_back(Pred); 1663 1664 // Visit predecessors in RPOT order. 1665 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1666 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1667 }; 1668 llvm::sort(BlockOrders, Cmp); 1669 1670 // Skip entry block. 1671 if (BlockOrders.size() == 0) 1672 return false; 1673 1674 // Step through all machine locations, look at each predecessor and test 1675 // whether we can eliminate redundant PHIs. 1676 for (auto Location : MTracker->locations()) { 1677 LocIdx Idx = Location.Idx; 1678 1679 // Pick out the first predecessors live-out value for this location. It's 1680 // guaranteed to not be a backedge, as we order by RPO. 1681 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1682 1683 // If we've already eliminated a PHI here, do no further checking, just 1684 // propagate the first live-in value into this block. 1685 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1686 if (InLocs[Idx.asU64()] != FirstVal) { 1687 InLocs[Idx.asU64()] = FirstVal; 1688 Changed |= true; 1689 } 1690 continue; 1691 } 1692 1693 // We're now examining a PHI to see whether it's un-necessary. Loop around 1694 // the other live-in values and test whether they're all the same. 1695 bool Disagree = false; 1696 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1697 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1698 const ValueIDNum &PredLiveOut = 1699 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1700 1701 // Incoming values agree, continue trying to eliminate this PHI. 1702 if (FirstVal == PredLiveOut) 1703 continue; 1704 1705 // We can also accept a PHI value that feeds back into itself. 1706 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1707 continue; 1708 1709 // Live-out of a predecessor disagrees with the first predecessor. 1710 Disagree = true; 1711 } 1712 1713 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1714 if (!Disagree) { 1715 InLocs[Idx.asU64()] = FirstVal; 1716 Changed |= true; 1717 } 1718 } 1719 1720 // TODO: Reimplement NumInserted and NumRemoved. 1721 return Changed; 1722 } 1723 1724 void InstrRefBasedLDV::placeMLocPHIs(MachineFunction &MF, 1725 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1726 ValueIDNum **MInLocs, 1727 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1728 // To avoid repeatedly running the PHI placement algorithm, leverage the 1729 // fact that a def of register MUST also def its register units. Find the 1730 // units for registers, place PHIs for them, and then replicate them for 1731 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1732 // arguments) don't lead to register units being tracked, just place PHIs for 1733 // those registers directly. Do the same for stack slots. 1734 SmallSet<Register, 32> RegUnitsToPHIUp; 1735 SmallSet<LocIdx, 32> LocsToPHI; 1736 for (auto Location : MTracker->locations()) { 1737 LocIdx L = Location.Idx; 1738 if (MTracker->isSpill(L)) { 1739 LocsToPHI.insert(L); 1740 continue; 1741 } 1742 1743 Register R = MTracker->LocIdxToLocID[L]; 1744 SmallSet<Register, 8> FoundRegUnits; 1745 bool AnyIllegal = false; 1746 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1747 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1748 if (!MTracker->isRegisterTracked(*URoot)) { 1749 // Not all roots were loaded into the tracking map: this register 1750 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1751 // for this reg, but don't iterate units. 1752 AnyIllegal = true; 1753 } else { 1754 FoundRegUnits.insert(*URoot); 1755 } 1756 } 1757 } 1758 1759 if (AnyIllegal) { 1760 LocsToPHI.insert(L); 1761 continue; 1762 } 1763 1764 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 1765 } 1766 1767 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 1768 // collection. 1769 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 1770 auto CollectPHIsForLoc = [&](LocIdx L) { 1771 // Collect the set of defs. 1772 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 1773 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 1774 MachineBasicBlock *MBB = OrderToBB[I]; 1775 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 1776 if (TransferFunc.find(L) != TransferFunc.end()) 1777 DefBlocks.insert(MBB); 1778 } 1779 1780 // The entry block defs the location too: it's the live-in / argument value. 1781 // Only insert if there are other defs though; everything is trivially live 1782 // through otherwise. 1783 if (!DefBlocks.empty()) 1784 DefBlocks.insert(&*MF.begin()); 1785 1786 // Ask the SSA construction algorithm where we should put PHIs. Clear 1787 // anything that might have been hanging around from earlier. 1788 PHIBlocks.clear(); 1789 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 1790 }; 1791 1792 // For spill slots, and locations with no reg units, just place PHIs. 1793 for (LocIdx L : LocsToPHI) { 1794 CollectPHIsForLoc(L); 1795 // Install those PHI values into the live-in value array. 1796 for (const MachineBasicBlock *MBB : PHIBlocks) 1797 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 1798 } 1799 1800 // For reg units, place PHIs, and then place them for any aliasing registers. 1801 for (Register R : RegUnitsToPHIUp) { 1802 LocIdx L = MTracker->lookupOrTrackRegister(R); 1803 CollectPHIsForLoc(L); 1804 1805 // Install those PHI values into the live-in value array. 1806 for (const MachineBasicBlock *MBB : PHIBlocks) 1807 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 1808 1809 // Now find aliases and install PHIs for those. 1810 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 1811 // Super-registers that are "above" the largest register read/written by 1812 // the function will alias, but will not be tracked. 1813 if (!MTracker->isRegisterTracked(*RAI)) 1814 continue; 1815 1816 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 1817 for (const MachineBasicBlock *MBB : PHIBlocks) 1818 MInLocs[MBB->getNumber()][AliasLoc.asU64()] = 1819 ValueIDNum(MBB->getNumber(), 0, AliasLoc); 1820 } 1821 } 1822 } 1823 1824 void InstrRefBasedLDV::buildMLocValueMap( 1825 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1826 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1827 std::priority_queue<unsigned int, std::vector<unsigned int>, 1828 std::greater<unsigned int>> 1829 Worklist, Pending; 1830 1831 // We track what is on the current and pending worklist to avoid inserting 1832 // the same thing twice. We could avoid this with a custom priority queue, 1833 // but this is probably not worth it. 1834 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 1835 1836 // Initialize worklist with every block to be visited. Also produce list of 1837 // all blocks. 1838 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 1839 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 1840 Worklist.push(I); 1841 OnWorklist.insert(OrderToBB[I]); 1842 AllBlocks.insert(OrderToBB[I]); 1843 } 1844 1845 // Initialize entry block to PHIs. These represent arguments. 1846 for (auto Location : MTracker->locations()) 1847 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 1848 1849 MTracker->reset(); 1850 1851 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 1852 // any machine-location that isn't live-through a block to be def'd in that 1853 // block. 1854 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 1855 1856 // Propagate values to eliminate redundant PHIs. At the same time, this 1857 // produces the table of Block x Location => Value for the entry to each 1858 // block. 1859 // The kind of PHIs we can eliminate are, for example, where one path in a 1860 // conditional spills and restores a register, and the register still has 1861 // the same value once control flow joins, unbeknowns to the PHI placement 1862 // code. Propagating values allows us to identify such un-necessary PHIs and 1863 // remove them. 1864 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1865 while (!Worklist.empty() || !Pending.empty()) { 1866 // Vector for storing the evaluated block transfer function. 1867 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 1868 1869 while (!Worklist.empty()) { 1870 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1871 CurBB = MBB->getNumber(); 1872 Worklist.pop(); 1873 1874 // Join the values in all predecessor blocks. 1875 bool InLocsChanged; 1876 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 1877 InLocsChanged |= Visited.insert(MBB).second; 1878 1879 // Don't examine transfer function if we've visited this loc at least 1880 // once, and inlocs haven't changed. 1881 if (!InLocsChanged) 1882 continue; 1883 1884 // Load the current set of live-ins into MLocTracker. 1885 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 1886 1887 // Each element of the transfer function can be a new def, or a read of 1888 // a live-in value. Evaluate each element, and store to "ToRemap". 1889 ToRemap.clear(); 1890 for (auto &P : MLocTransfer[CurBB]) { 1891 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 1892 // This is a movement of whatever was live in. Read it. 1893 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 1894 ToRemap.push_back(std::make_pair(P.first, NewID)); 1895 } else { 1896 // It's a def. Just set it. 1897 assert(P.second.getBlock() == CurBB); 1898 ToRemap.push_back(std::make_pair(P.first, P.second)); 1899 } 1900 } 1901 1902 // Commit the transfer function changes into mloc tracker, which 1903 // transforms the contents of the MLocTracker into the live-outs. 1904 for (auto &P : ToRemap) 1905 MTracker->setMLoc(P.first, P.second); 1906 1907 // Now copy out-locs from mloc tracker into out-loc vector, checking 1908 // whether changes have occurred. These changes can have come from both 1909 // the transfer function, and mlocJoin. 1910 bool OLChanged = false; 1911 for (auto Location : MTracker->locations()) { 1912 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 1913 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 1914 } 1915 1916 MTracker->reset(); 1917 1918 // No need to examine successors again if out-locs didn't change. 1919 if (!OLChanged) 1920 continue; 1921 1922 // All successors should be visited: put any back-edges on the pending 1923 // list for the next pass-through, and any other successors to be 1924 // visited this pass, if they're not going to be already. 1925 for (auto s : MBB->successors()) { 1926 // Does branching to this successor represent a back-edge? 1927 if (BBToOrder[s] > BBToOrder[MBB]) { 1928 // No: visit it during this dataflow iteration. 1929 if (OnWorklist.insert(s).second) 1930 Worklist.push(BBToOrder[s]); 1931 } else { 1932 // Yes: visit it on the next iteration. 1933 if (OnPending.insert(s).second) 1934 Pending.push(BBToOrder[s]); 1935 } 1936 } 1937 } 1938 1939 Worklist.swap(Pending); 1940 std::swap(OnPending, OnWorklist); 1941 OnPending.clear(); 1942 // At this point, pending must be empty, since it was just the empty 1943 // worklist 1944 assert(Pending.empty() && "Pending should be empty"); 1945 } 1946 1947 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 1948 // redundant PHIs. 1949 } 1950 1951 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide 1952 // template specialisations for graph traits and a successor enumerator. 1953 namespace llvm { 1954 template <> struct GraphTraits<MachineBasicBlock> { 1955 using NodeRef = MachineBasicBlock *; 1956 using ChildIteratorType = MachineBasicBlock::succ_iterator; 1957 1958 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 1959 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 1960 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 1961 }; 1962 1963 template <> struct GraphTraits<const MachineBasicBlock> { 1964 using NodeRef = const MachineBasicBlock *; 1965 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 1966 1967 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 1968 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 1969 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 1970 }; 1971 1972 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType; 1973 using MachineDomTreeChildGetter = 1974 typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>; 1975 1976 namespace IDFCalculatorDetail { 1977 template <> 1978 typename MachineDomTreeChildGetter::ChildrenTy 1979 MachineDomTreeChildGetter::get(const NodeRef &N) { 1980 return {N->succ_begin(), N->succ_end()}; 1981 } 1982 } // namespace IDFCalculatorDetail 1983 } // namespace llvm 1984 1985 void InstrRefBasedLDV::BlockPHIPlacement( 1986 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1987 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1988 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 1989 // Apply IDF calculator to the designated set of location defs, storing 1990 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 1991 // InstrRefBasedLDV object. 1992 IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo; 1993 IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo); 1994 1995 IDF.setLiveInBlocks(AllBlocks); 1996 IDF.setDefiningBlocks(DefBlocks); 1997 IDF.calculate(PHIBlocks); 1998 } 1999 2000 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2001 const MachineBasicBlock &MBB, const DebugVariable &Var, 2002 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2003 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2004 // Collect a set of locations from predecessor where its live-out value can 2005 // be found. 2006 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2007 SmallVector<const DbgValueProperties *, 4> Properties; 2008 unsigned NumLocs = MTracker->getNumLocs(); 2009 2010 // No predecessors means no PHIs. 2011 if (BlockOrders.empty()) 2012 return None; 2013 2014 for (auto p : BlockOrders) { 2015 unsigned ThisBBNum = p->getNumber(); 2016 auto OutValIt = LiveOuts.find(p); 2017 if (OutValIt == LiveOuts.end()) 2018 // If we have a predecessor not in scope, we'll never find a PHI position. 2019 return None; 2020 const DbgValue &OutVal = *OutValIt->second; 2021 2022 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2023 // Consts and no-values cannot have locations we can join on. 2024 return None; 2025 2026 Properties.push_back(&OutVal.Properties); 2027 2028 // Create new empty vector of locations. 2029 Locs.resize(Locs.size() + 1); 2030 2031 // If the live-in value is a def, find the locations where that value is 2032 // present. Do the same for VPHIs where we know the VPHI value. 2033 if (OutVal.Kind == DbgValue::Def || 2034 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2035 OutVal.ID != ValueIDNum::EmptyValue)) { 2036 ValueIDNum ValToLookFor = OutVal.ID; 2037 // Search the live-outs of the predecessor for the specified value. 2038 for (unsigned int I = 0; I < NumLocs; ++I) { 2039 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2040 Locs.back().push_back(LocIdx(I)); 2041 } 2042 } else { 2043 assert(OutVal.Kind == DbgValue::VPHI); 2044 // For VPHIs where we don't know the location, we definitely can't find 2045 // a join loc. 2046 if (OutVal.BlockNo != MBB.getNumber()) 2047 return None; 2048 2049 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2050 // a value that's live-through the whole loop. (It has to be a backedge, 2051 // because a block can't dominate itself). We can accept as a PHI location 2052 // any location where the other predecessors agree, _and_ the machine 2053 // locations feed back into themselves. Therefore, add all self-looping 2054 // machine-value PHI locations. 2055 for (unsigned int I = 0; I < NumLocs; ++I) { 2056 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2057 if (MOutLocs[ThisBBNum][I] == MPHI) 2058 Locs.back().push_back(LocIdx(I)); 2059 } 2060 } 2061 } 2062 2063 // We should have found locations for all predecessors, or returned. 2064 assert(Locs.size() == BlockOrders.size()); 2065 2066 // Check that all properties are the same. We can't pick a location if they're 2067 // not. 2068 const DbgValueProperties *Properties0 = Properties[0]; 2069 for (auto *Prop : Properties) 2070 if (*Prop != *Properties0) 2071 return None; 2072 2073 // Starting with the first set of locations, take the intersection with 2074 // subsequent sets. 2075 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2076 for (unsigned int I = 1; I < Locs.size(); ++I) { 2077 auto &LocVec = Locs[I]; 2078 SmallVector<LocIdx, 4> NewCandidates; 2079 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2080 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2081 CandidateLocs = NewCandidates; 2082 } 2083 if (CandidateLocs.empty()) 2084 return None; 2085 2086 // We now have a set of LocIdxes that contain the right output value in 2087 // each of the predecessors. Pick the lowest; if there's a register loc, 2088 // that'll be it. 2089 LocIdx L = *CandidateLocs.begin(); 2090 2091 // Return a PHI-value-number for the found location. 2092 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2093 return PHIVal; 2094 } 2095 2096 bool InstrRefBasedLDV::vlocJoin( 2097 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2098 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2099 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2100 DbgValue &LiveIn) { 2101 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2102 // _does_ assign a variable value. No live-ins for this scope are transferred 2103 // in though, so we can return immediately. 2104 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) 2105 return false; 2106 2107 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2108 bool Changed = false; 2109 2110 // Order predecessors by RPOT order, for exploring them in that order. 2111 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2112 2113 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2114 return BBToOrder[A] < BBToOrder[B]; 2115 }; 2116 2117 llvm::sort(BlockOrders, Cmp); 2118 2119 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2120 2121 // Collect all the incoming DbgValues for this variable, from predecessor 2122 // live-out values. 2123 SmallVector<InValueT, 8> Values; 2124 bool Bail = false; 2125 int BackEdgesStart = 0; 2126 for (auto p : BlockOrders) { 2127 // If the predecessor isn't in scope / to be explored, we'll never be 2128 // able to join any locations. 2129 if (!BlocksToExplore.contains(p)) { 2130 Bail = true; 2131 break; 2132 } 2133 2134 // All Live-outs will have been initialized. 2135 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2136 2137 // Keep track of where back-edges begin in the Values vector. Relies on 2138 // BlockOrders being sorted by RPO. 2139 unsigned ThisBBRPONum = BBToOrder[p]; 2140 if (ThisBBRPONum < CurBlockRPONum) 2141 ++BackEdgesStart; 2142 2143 Values.push_back(std::make_pair(p, &OutLoc)); 2144 } 2145 2146 // If there were no values, or one of the predecessors couldn't have a 2147 // value, then give up immediately. It's not safe to produce a live-in 2148 // value. Leave as whatever it was before. 2149 if (Bail || Values.size() == 0) 2150 return false; 2151 2152 // All (non-entry) blocks have at least one non-backedge predecessor. 2153 // Pick the variable value from the first of these, to compare against 2154 // all others. 2155 const DbgValue &FirstVal = *Values[0].second; 2156 2157 // If the old live-in value is not a PHI then either a) no PHI is needed 2158 // here, or b) we eliminated the PHI that was here. If so, we can just 2159 // propagate in the first parent's incoming value. 2160 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2161 Changed = LiveIn != FirstVal; 2162 if (Changed) 2163 LiveIn = FirstVal; 2164 return Changed; 2165 } 2166 2167 // Scan for variable values that can never be resolved: if they have 2168 // different DIExpressions, different indirectness, or are mixed constants / 2169 // non-constants. 2170 for (auto &V : Values) { 2171 if (V.second->Properties != FirstVal.Properties) 2172 return false; 2173 if (V.second->Kind == DbgValue::NoVal) 2174 return false; 2175 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2176 return false; 2177 } 2178 2179 // Try to eliminate this PHI. Do the incoming values all agree? 2180 bool Disagree = false; 2181 for (auto &V : Values) { 2182 if (*V.second == FirstVal) 2183 continue; // No disagreement. 2184 2185 // Eliminate if a backedge feeds a VPHI back into itself. 2186 if (V.second->Kind == DbgValue::VPHI && 2187 V.second->BlockNo == MBB.getNumber() && 2188 // Is this a backedge? 2189 std::distance(Values.begin(), &V) >= BackEdgesStart) 2190 continue; 2191 2192 Disagree = true; 2193 } 2194 2195 // No disagreement -> live-through value. 2196 if (!Disagree) { 2197 Changed = LiveIn != FirstVal; 2198 if (Changed) 2199 LiveIn = FirstVal; 2200 return Changed; 2201 } else { 2202 // Otherwise use a VPHI. 2203 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2204 Changed = LiveIn != VPHI; 2205 if (Changed) 2206 LiveIn = VPHI; 2207 return Changed; 2208 } 2209 } 2210 2211 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc, 2212 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2213 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2214 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2215 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2216 // This method is much like buildMLocValueMap: but focuses on a single 2217 // LexicalScope at a time. Pick out a set of blocks and variables that are 2218 // to have their value assignments solved, then run our dataflow algorithm 2219 // until a fixedpoint is reached. 2220 std::priority_queue<unsigned int, std::vector<unsigned int>, 2221 std::greater<unsigned int>> 2222 Worklist, Pending; 2223 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2224 2225 // The set of blocks we'll be examining. 2226 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2227 2228 // The order in which to examine them (RPO). 2229 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2230 2231 // RPO ordering function. 2232 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2233 return BBToOrder[A] < BBToOrder[B]; 2234 }; 2235 2236 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2237 2238 // A separate container to distinguish "blocks we're exploring" versus 2239 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2240 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2241 2242 // Old LiveDebugValues tracks variable locations that come out of blocks 2243 // not in scope, where DBG_VALUEs occur. This is something we could 2244 // legitimately ignore, but lets allow it for now. 2245 if (EmulateOldLDV) 2246 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2247 2248 // We also need to propagate variable values through any artificial blocks 2249 // that immediately follow blocks in scope. 2250 DenseSet<const MachineBasicBlock *> ToAdd; 2251 2252 // Helper lambda: For a given block in scope, perform a depth first search 2253 // of all the artificial successors, adding them to the ToAdd collection. 2254 auto AccumulateArtificialBlocks = 2255 [this, &ToAdd, &BlocksToExplore, 2256 &InScopeBlocks](const MachineBasicBlock *MBB) { 2257 // Depth-first-search state: each node is a block and which successor 2258 // we're currently exploring. 2259 SmallVector<std::pair<const MachineBasicBlock *, 2260 MachineBasicBlock::const_succ_iterator>, 2261 8> 2262 DFS; 2263 2264 // Find any artificial successors not already tracked. 2265 for (auto *succ : MBB->successors()) { 2266 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2267 continue; 2268 if (!ArtificialBlocks.count(succ)) 2269 continue; 2270 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2271 ToAdd.insert(succ); 2272 } 2273 2274 // Search all those blocks, depth first. 2275 while (!DFS.empty()) { 2276 const MachineBasicBlock *CurBB = DFS.back().first; 2277 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2278 // Walk back if we've explored this blocks successors to the end. 2279 if (CurSucc == CurBB->succ_end()) { 2280 DFS.pop_back(); 2281 continue; 2282 } 2283 2284 // If the current successor is artificial and unexplored, descend into 2285 // it. 2286 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2287 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2288 ToAdd.insert(*CurSucc); 2289 continue; 2290 } 2291 2292 ++CurSucc; 2293 } 2294 }; 2295 2296 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2297 // for artificial successors. 2298 for (auto *MBB : BlocksToExplore) 2299 AccumulateArtificialBlocks(MBB); 2300 for (auto *MBB : InScopeBlocks) 2301 AccumulateArtificialBlocks(MBB); 2302 2303 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2304 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2305 2306 // Single block scope: not interesting! No propagation at all. Note that 2307 // this could probably go above ArtificialBlocks without damage, but 2308 // that then produces output differences from original-live-debug-values, 2309 // which propagates from a single block into many artificial ones. 2310 if (BlocksToExplore.size() == 1) 2311 return; 2312 2313 // Convert a const set to a non-const set. LexicalScopes 2314 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2315 // (Neither of them mutate anything). 2316 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2317 for (const auto *MBB : BlocksToExplore) 2318 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2319 2320 // Picks out relevants blocks RPO order and sort them. 2321 for (auto *MBB : BlocksToExplore) 2322 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2323 2324 llvm::sort(BlockOrders, Cmp); 2325 unsigned NumBlocks = BlockOrders.size(); 2326 2327 // Allocate some vectors for storing the live ins and live outs. Large. 2328 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2329 LiveIns.reserve(NumBlocks); 2330 LiveOuts.reserve(NumBlocks); 2331 2332 // Initialize all values to start as NoVals. This signifies "it's live 2333 // through, but we don't know what it is". 2334 DbgValueProperties EmptyProperties(EmptyExpr, false); 2335 for (unsigned int I = 0; I < NumBlocks; ++I) { 2336 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2337 LiveIns.push_back(EmptyDbgValue); 2338 LiveOuts.push_back(EmptyDbgValue); 2339 } 2340 2341 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2342 // vlocJoin. 2343 LiveIdxT LiveOutIdx, LiveInIdx; 2344 LiveOutIdx.reserve(NumBlocks); 2345 LiveInIdx.reserve(NumBlocks); 2346 for (unsigned I = 0; I < NumBlocks; ++I) { 2347 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2348 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2349 } 2350 2351 // Loop over each variable and place PHIs for it, then propagate values 2352 // between blocks. This keeps the locality of working on one lexical scope at 2353 // at time, but avoids re-processing variable values because some other 2354 // variable has been assigned. 2355 for (auto &Var : VarsWeCareAbout) { 2356 // Re-initialize live-ins and live-outs, to clear the remains of previous 2357 // variables live-ins / live-outs. 2358 for (unsigned int I = 0; I < NumBlocks; ++I) { 2359 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2360 LiveIns[I] = EmptyDbgValue; 2361 LiveOuts[I] = EmptyDbgValue; 2362 } 2363 2364 // Place PHIs for variable values, using the LLVM IDF calculator. 2365 // Collect the set of blocks where variables are def'd. 2366 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2367 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2368 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2369 if (TransferFunc.find(Var) != TransferFunc.end()) 2370 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2371 } 2372 2373 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2374 2375 // Request the set of PHIs we should insert for this variable. 2376 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2377 2378 // Insert PHIs into the per-block live-in tables for this variable. 2379 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2380 unsigned BlockNo = PHIMBB->getNumber(); 2381 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2382 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2383 } 2384 2385 for (auto *MBB : BlockOrders) { 2386 Worklist.push(BBToOrder[MBB]); 2387 OnWorklist.insert(MBB); 2388 } 2389 2390 // Iterate over all the blocks we selected, propagating the variables value. 2391 // This loop does two things: 2392 // * Eliminates un-necessary VPHIs in vlocJoin, 2393 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2394 // stores the result to the blocks live-outs. 2395 // Always evaluate the transfer function on the first iteration, and when 2396 // the live-ins change thereafter. 2397 bool FirstTrip = true; 2398 while (!Worklist.empty() || !Pending.empty()) { 2399 while (!Worklist.empty()) { 2400 auto *MBB = OrderToBB[Worklist.top()]; 2401 CurBB = MBB->getNumber(); 2402 Worklist.pop(); 2403 2404 auto LiveInsIt = LiveInIdx.find(MBB); 2405 assert(LiveInsIt != LiveInIdx.end()); 2406 DbgValue *LiveIn = LiveInsIt->second; 2407 2408 // Join values from predecessors. Updates LiveInIdx, and writes output 2409 // into JoinedInLocs. 2410 bool InLocsChanged = 2411 vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn); 2412 2413 SmallVector<const MachineBasicBlock *, 8> Preds; 2414 for (const auto *Pred : MBB->predecessors()) 2415 Preds.push_back(Pred); 2416 2417 // If this block's live-in value is a VPHI, try to pick a machine-value 2418 // for it. This makes the machine-value available and propagated 2419 // through all blocks by the time value propagation finishes. We can't 2420 // do this any earlier as it needs to read the block live-outs. 2421 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2422 // There's a small possibility that on a preceeding path, a VPHI is 2423 // eliminated and transitions from VPHI-with-location to 2424 // live-through-value. As a result, the selected location of any VPHI 2425 // might change, so we need to re-compute it on each iteration. 2426 Optional<ValueIDNum> ValueNum = 2427 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2428 2429 if (ValueNum) { 2430 InLocsChanged |= LiveIn->ID != *ValueNum; 2431 LiveIn->ID = *ValueNum; 2432 } 2433 } 2434 2435 if (!InLocsChanged && !FirstTrip) 2436 continue; 2437 2438 DbgValue *LiveOut = LiveOutIdx[MBB]; 2439 bool OLChanged = false; 2440 2441 // Do transfer function. 2442 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2443 auto TransferIt = VTracker.Vars.find(Var); 2444 if (TransferIt != VTracker.Vars.end()) { 2445 // Erase on empty transfer (DBG_VALUE $noreg). 2446 if (TransferIt->second.Kind == DbgValue::Undef) { 2447 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2448 if (*LiveOut != NewVal) { 2449 *LiveOut = NewVal; 2450 OLChanged = true; 2451 } 2452 } else { 2453 // Insert new variable value; or overwrite. 2454 if (*LiveOut != TransferIt->second) { 2455 *LiveOut = TransferIt->second; 2456 OLChanged = true; 2457 } 2458 } 2459 } else { 2460 // Just copy live-ins to live-outs, for anything not transferred. 2461 if (*LiveOut != *LiveIn) { 2462 *LiveOut = *LiveIn; 2463 OLChanged = true; 2464 } 2465 } 2466 2467 // If no live-out value changed, there's no need to explore further. 2468 if (!OLChanged) 2469 continue; 2470 2471 // We should visit all successors. Ensure we'll visit any non-backedge 2472 // successors during this dataflow iteration; book backedge successors 2473 // to be visited next time around. 2474 for (auto s : MBB->successors()) { 2475 // Ignore out of scope / not-to-be-explored successors. 2476 if (LiveInIdx.find(s) == LiveInIdx.end()) 2477 continue; 2478 2479 if (BBToOrder[s] > BBToOrder[MBB]) { 2480 if (OnWorklist.insert(s).second) 2481 Worklist.push(BBToOrder[s]); 2482 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2483 Pending.push(BBToOrder[s]); 2484 } 2485 } 2486 } 2487 Worklist.swap(Pending); 2488 std::swap(OnWorklist, OnPending); 2489 OnPending.clear(); 2490 assert(Pending.empty()); 2491 FirstTrip = false; 2492 } 2493 2494 // Save live-ins to output vector. Ignore any that are still marked as being 2495 // VPHIs with no location -- those are variables that we know the value of, 2496 // but are not actually available in the register file. 2497 for (auto *MBB : BlockOrders) { 2498 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2499 if (BlockLiveIn->Kind == DbgValue::NoVal) 2500 continue; 2501 if (BlockLiveIn->Kind == DbgValue::VPHI && 2502 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2503 continue; 2504 if (BlockLiveIn->Kind == DbgValue::VPHI) 2505 BlockLiveIn->Kind = DbgValue::Def; 2506 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2507 } 2508 } // Per-variable loop. 2509 2510 BlockOrders.clear(); 2511 BlocksToExplore.clear(); 2512 } 2513 2514 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2515 void InstrRefBasedLDV::dump_mloc_transfer( 2516 const MLocTransferMap &mloc_transfer) const { 2517 for (auto &P : mloc_transfer) { 2518 std::string foo = MTracker->LocIdxToName(P.first); 2519 std::string bar = MTracker->IDAsString(P.second); 2520 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2521 } 2522 } 2523 #endif 2524 2525 void InstrRefBasedLDV::emitLocations( 2526 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2527 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2528 const TargetPassConfig &TPC) { 2529 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2530 unsigned NumLocs = MTracker->getNumLocs(); 2531 2532 // For each block, load in the machine value locations and variable value 2533 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2534 // to be inserted will be created along the way. 2535 for (MachineBasicBlock &MBB : MF) { 2536 unsigned bbnum = MBB.getNumber(); 2537 MTracker->reset(); 2538 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2539 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2540 NumLocs); 2541 2542 CurBB = bbnum; 2543 CurInst = 1; 2544 for (auto &MI : MBB) { 2545 process(MI, MOutLocs, MInLocs); 2546 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2547 ++CurInst; 2548 } 2549 } 2550 2551 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2552 // in DWARF in different orders. Use the order that they appear when walking 2553 // through each block / each instruction, stored in AllVarsNumbering. 2554 auto OrderDbgValues = [&](const MachineInstr *A, 2555 const MachineInstr *B) -> bool { 2556 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2557 A->getDebugLoc()->getInlinedAt()); 2558 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2559 B->getDebugLoc()->getInlinedAt()); 2560 return AllVarsNumbering.find(VarA)->second < 2561 AllVarsNumbering.find(VarB)->second; 2562 }; 2563 2564 // Go through all the transfers recorded in the TransferTracker -- this is 2565 // both the live-ins to a block, and any movements of values that happen 2566 // in the middle. 2567 for (auto &P : TTracker->Transfers) { 2568 // Sort them according to appearance order. 2569 llvm::sort(P.Insts, OrderDbgValues); 2570 // Insert either before or after the designated point... 2571 if (P.MBB) { 2572 MachineBasicBlock &MBB = *P.MBB; 2573 for (auto *MI : P.Insts) { 2574 MBB.insert(P.Pos, MI); 2575 } 2576 } else { 2577 // Terminators, like tail calls, can clobber things. Don't try and place 2578 // transfers after them. 2579 if (P.Pos->isTerminator()) 2580 continue; 2581 2582 MachineBasicBlock &MBB = *P.Pos->getParent(); 2583 for (auto *MI : P.Insts) { 2584 MBB.insertAfterBundle(P.Pos, MI); 2585 } 2586 } 2587 } 2588 } 2589 2590 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2591 // Build some useful data structures. 2592 2593 LLVMContext &Context = MF.getFunction().getContext(); 2594 EmptyExpr = DIExpression::get(Context, {}); 2595 2596 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2597 if (const DebugLoc &DL = MI.getDebugLoc()) 2598 return DL.getLine() != 0; 2599 return false; 2600 }; 2601 // Collect a set of all the artificial blocks. 2602 for (auto &MBB : MF) 2603 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2604 ArtificialBlocks.insert(&MBB); 2605 2606 // Compute mappings of block <=> RPO order. 2607 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2608 unsigned int RPONumber = 0; 2609 for (MachineBasicBlock *MBB : RPOT) { 2610 OrderToBB[RPONumber] = MBB; 2611 BBToOrder[MBB] = RPONumber; 2612 BBNumToRPO[MBB->getNumber()] = RPONumber; 2613 ++RPONumber; 2614 } 2615 2616 // Order value substitutions by their "source" operand pair, for quick lookup. 2617 llvm::sort(MF.DebugValueSubstitutions); 2618 2619 #ifdef EXPENSIVE_CHECKS 2620 // As an expensive check, test whether there are any duplicate substitution 2621 // sources in the collection. 2622 if (MF.DebugValueSubstitutions.size() > 2) { 2623 for (auto It = MF.DebugValueSubstitutions.begin(); 2624 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2625 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2626 "substitution seen"); 2627 } 2628 } 2629 #endif 2630 } 2631 2632 /// Calculate the liveness information for the given machine function and 2633 /// extend ranges across basic blocks. 2634 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2635 MachineDominatorTree *DomTree, 2636 TargetPassConfig *TPC, 2637 unsigned InputBBLimit, 2638 unsigned InputDbgValLimit) { 2639 // No subprogram means this function contains no debuginfo. 2640 if (!MF.getFunction().getSubprogram()) 2641 return false; 2642 2643 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2644 this->TPC = TPC; 2645 2646 this->DomTree = DomTree; 2647 TRI = MF.getSubtarget().getRegisterInfo(); 2648 TII = MF.getSubtarget().getInstrInfo(); 2649 TFI = MF.getSubtarget().getFrameLowering(); 2650 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2651 MFI = &MF.getFrameInfo(); 2652 LS.initialize(MF); 2653 2654 MTracker = 2655 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2656 VTracker = nullptr; 2657 TTracker = nullptr; 2658 2659 SmallVector<MLocTransferMap, 32> MLocTransfer; 2660 SmallVector<VLocTracker, 8> vlocs; 2661 LiveInsT SavedLiveIns; 2662 2663 int MaxNumBlocks = -1; 2664 for (auto &MBB : MF) 2665 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2666 assert(MaxNumBlocks >= 0); 2667 ++MaxNumBlocks; 2668 2669 MLocTransfer.resize(MaxNumBlocks); 2670 vlocs.resize(MaxNumBlocks); 2671 SavedLiveIns.resize(MaxNumBlocks); 2672 2673 initialSetup(MF); 2674 2675 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2676 2677 // Allocate and initialize two array-of-arrays for the live-in and live-out 2678 // machine values. The outer dimension is the block number; while the inner 2679 // dimension is a LocIdx from MLocTracker. 2680 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2681 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2682 unsigned NumLocs = MTracker->getNumLocs(); 2683 for (int i = 0; i < MaxNumBlocks; ++i) { 2684 // These all auto-initialize to ValueIDNum::EmptyValue 2685 MOutLocs[i] = new ValueIDNum[NumLocs]; 2686 MInLocs[i] = new ValueIDNum[NumLocs]; 2687 } 2688 2689 // Solve the machine value dataflow problem using the MLocTransfer function, 2690 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2691 // both live-ins and live-outs for decision making in the variable value 2692 // dataflow problem. 2693 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2694 2695 // Patch up debug phi numbers, turning unknown block-live-in values into 2696 // either live-through machine values, or PHIs. 2697 for (auto &DBG_PHI : DebugPHINumToValue) { 2698 // Identify unresolved block-live-ins. 2699 ValueIDNum &Num = DBG_PHI.ValueRead; 2700 if (!Num.isPHI()) 2701 continue; 2702 2703 unsigned BlockNo = Num.getBlock(); 2704 LocIdx LocNo = Num.getLoc(); 2705 Num = MInLocs[BlockNo][LocNo.asU64()]; 2706 } 2707 // Later, we'll be looking up ranges of instruction numbers. 2708 llvm::sort(DebugPHINumToValue); 2709 2710 // Walk back through each block / instruction, collecting DBG_VALUE 2711 // instructions and recording what machine value their operands refer to. 2712 for (auto &OrderPair : OrderToBB) { 2713 MachineBasicBlock &MBB = *OrderPair.second; 2714 CurBB = MBB.getNumber(); 2715 VTracker = &vlocs[CurBB]; 2716 VTracker->MBB = &MBB; 2717 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2718 CurInst = 1; 2719 for (auto &MI : MBB) { 2720 process(MI, MOutLocs, MInLocs); 2721 ++CurInst; 2722 } 2723 MTracker->reset(); 2724 } 2725 2726 // Number all variables in the order that they appear, to be used as a stable 2727 // insertion order later. 2728 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2729 2730 // Map from one LexicalScope to all the variables in that scope. 2731 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2732 2733 // Map from One lexical scope to all blocks in that scope. 2734 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2735 ScopeToBlocks; 2736 2737 // Store a DILocation that describes a scope. 2738 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 2739 2740 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 2741 // the order is unimportant, it just has to be stable. 2742 unsigned VarAssignCount = 0; 2743 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2744 auto *MBB = OrderToBB[I]; 2745 auto *VTracker = &vlocs[MBB->getNumber()]; 2746 // Collect each variable with a DBG_VALUE in this block. 2747 for (auto &idx : VTracker->Vars) { 2748 const auto &Var = idx.first; 2749 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 2750 assert(ScopeLoc != nullptr); 2751 auto *Scope = LS.findLexicalScope(ScopeLoc); 2752 2753 // No insts in scope -> shouldn't have been recorded. 2754 assert(Scope != nullptr); 2755 2756 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 2757 ScopeToVars[Scope].insert(Var); 2758 ScopeToBlocks[Scope].insert(VTracker->MBB); 2759 ScopeToDILocation[Scope] = ScopeLoc; 2760 ++VarAssignCount; 2761 } 2762 } 2763 2764 bool Changed = false; 2765 2766 // If we have an extremely large number of variable assignments and blocks, 2767 // bail out at this point. We've burnt some time doing analysis already, 2768 // however we should cut our losses. 2769 if ((unsigned)MaxNumBlocks > InputBBLimit && 2770 VarAssignCount > InputDbgValLimit) { 2771 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 2772 << " has " << MaxNumBlocks << " basic blocks and " 2773 << VarAssignCount 2774 << " variable assignments, exceeding limits.\n"); 2775 } else { 2776 // Compute the extended ranges, iterating over scopes. There might be 2777 // something to be said for ordering them by size/locality, but that's for 2778 // the future. For each scope, solve the variable value problem, producing 2779 // a map of variables to values in SavedLiveIns. 2780 for (auto &P : ScopeToVars) { 2781 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 2782 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 2783 vlocs); 2784 } 2785 2786 // Using the computed value locations and variable values for each block, 2787 // create the DBG_VALUE instructions representing the extended variable 2788 // locations. 2789 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 2790 2791 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 2792 Changed = TTracker->Transfers.size() != 0; 2793 } 2794 2795 // Common clean-up of memory. 2796 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 2797 delete[] MOutLocs[Idx]; 2798 delete[] MInLocs[Idx]; 2799 } 2800 delete[] MOutLocs; 2801 delete[] MInLocs; 2802 2803 delete MTracker; 2804 delete TTracker; 2805 MTracker = nullptr; 2806 VTracker = nullptr; 2807 TTracker = nullptr; 2808 2809 ArtificialBlocks.clear(); 2810 OrderToBB.clear(); 2811 BBToOrder.clear(); 2812 BBNumToRPO.clear(); 2813 DebugInstrNumToInstr.clear(); 2814 DebugPHINumToValue.clear(); 2815 2816 return Changed; 2817 } 2818 2819 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 2820 return new InstrRefBasedLDV(); 2821 } 2822 2823 namespace { 2824 class LDVSSABlock; 2825 class LDVSSAUpdater; 2826 2827 // Pick a type to identify incoming block values as we construct SSA. We 2828 // can't use anything more robust than an integer unfortunately, as SSAUpdater 2829 // expects to zero-initialize the type. 2830 typedef uint64_t BlockValueNum; 2831 2832 /// Represents an SSA PHI node for the SSA updater class. Contains the block 2833 /// this PHI is in, the value number it would have, and the expected incoming 2834 /// values from parent blocks. 2835 class LDVSSAPhi { 2836 public: 2837 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 2838 LDVSSABlock *ParentBlock; 2839 BlockValueNum PHIValNum; 2840 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 2841 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 2842 2843 LDVSSABlock *getParent() { return ParentBlock; } 2844 }; 2845 2846 /// Thin wrapper around a block predecessor iterator. Only difference from a 2847 /// normal block iterator is that it dereferences to an LDVSSABlock. 2848 class LDVSSABlockIterator { 2849 public: 2850 MachineBasicBlock::pred_iterator PredIt; 2851 LDVSSAUpdater &Updater; 2852 2853 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 2854 LDVSSAUpdater &Updater) 2855 : PredIt(PredIt), Updater(Updater) {} 2856 2857 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 2858 return OtherIt.PredIt != PredIt; 2859 } 2860 2861 LDVSSABlockIterator &operator++() { 2862 ++PredIt; 2863 return *this; 2864 } 2865 2866 LDVSSABlock *operator*(); 2867 }; 2868 2869 /// Thin wrapper around a block for SSA Updater interface. Necessary because 2870 /// we need to track the PHI value(s) that we may have observed as necessary 2871 /// in this block. 2872 class LDVSSABlock { 2873 public: 2874 MachineBasicBlock &BB; 2875 LDVSSAUpdater &Updater; 2876 using PHIListT = SmallVector<LDVSSAPhi, 1>; 2877 /// List of PHIs in this block. There should only ever be one. 2878 PHIListT PHIList; 2879 2880 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 2881 : BB(BB), Updater(Updater) {} 2882 2883 LDVSSABlockIterator succ_begin() { 2884 return LDVSSABlockIterator(BB.succ_begin(), Updater); 2885 } 2886 2887 LDVSSABlockIterator succ_end() { 2888 return LDVSSABlockIterator(BB.succ_end(), Updater); 2889 } 2890 2891 /// SSAUpdater has requested a PHI: create that within this block record. 2892 LDVSSAPhi *newPHI(BlockValueNum Value) { 2893 PHIList.emplace_back(Value, this); 2894 return &PHIList.back(); 2895 } 2896 2897 /// SSAUpdater wishes to know what PHIs already exist in this block. 2898 PHIListT &phis() { return PHIList; } 2899 }; 2900 2901 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 2902 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 2903 // SSAUpdaterTraits<LDVSSAUpdater>. 2904 class LDVSSAUpdater { 2905 public: 2906 /// Map of value numbers to PHI records. 2907 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 2908 /// Map of which blocks generate Undef values -- blocks that are not 2909 /// dominated by any Def. 2910 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 2911 /// Map of machine blocks to our own records of them. 2912 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 2913 /// Machine location where any PHI must occur. 2914 LocIdx Loc; 2915 /// Table of live-in machine value numbers for blocks / locations. 2916 ValueIDNum **MLiveIns; 2917 2918 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 2919 2920 void reset() { 2921 for (auto &Block : BlockMap) 2922 delete Block.second; 2923 2924 PHIs.clear(); 2925 UndefMap.clear(); 2926 BlockMap.clear(); 2927 } 2928 2929 ~LDVSSAUpdater() { reset(); } 2930 2931 /// For a given MBB, create a wrapper block for it. Stores it in the 2932 /// LDVSSAUpdater block map. 2933 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 2934 auto it = BlockMap.find(BB); 2935 if (it == BlockMap.end()) { 2936 BlockMap[BB] = new LDVSSABlock(*BB, *this); 2937 it = BlockMap.find(BB); 2938 } 2939 return it->second; 2940 } 2941 2942 /// Find the live-in value number for the given block. Looks up the value at 2943 /// the PHI location on entry. 2944 BlockValueNum getValue(LDVSSABlock *LDVBB) { 2945 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 2946 } 2947 }; 2948 2949 LDVSSABlock *LDVSSABlockIterator::operator*() { 2950 return Updater.getSSALDVBlock(*PredIt); 2951 } 2952 2953 #ifndef NDEBUG 2954 2955 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 2956 out << "SSALDVPHI " << PHI.PHIValNum; 2957 return out; 2958 } 2959 2960 #endif 2961 2962 } // namespace 2963 2964 namespace llvm { 2965 2966 /// Template specialization to give SSAUpdater access to CFG and value 2967 /// information. SSAUpdater calls methods in these traits, passing in the 2968 /// LDVSSAUpdater object, to learn about blocks and the values they define. 2969 /// It also provides methods to create PHI nodes and track them. 2970 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 2971 public: 2972 using BlkT = LDVSSABlock; 2973 using ValT = BlockValueNum; 2974 using PhiT = LDVSSAPhi; 2975 using BlkSucc_iterator = LDVSSABlockIterator; 2976 2977 // Methods to access block successors -- dereferencing to our wrapper class. 2978 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 2979 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 2980 2981 /// Iterator for PHI operands. 2982 class PHI_iterator { 2983 private: 2984 LDVSSAPhi *PHI; 2985 unsigned Idx; 2986 2987 public: 2988 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 2989 : PHI(P), Idx(0) {} 2990 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 2991 : PHI(P), Idx(PHI->IncomingValues.size()) {} 2992 2993 PHI_iterator &operator++() { 2994 Idx++; 2995 return *this; 2996 } 2997 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 2998 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 2999 3000 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3001 3002 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3003 }; 3004 3005 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3006 3007 static inline PHI_iterator PHI_end(PhiT *PHI) { 3008 return PHI_iterator(PHI, true); 3009 } 3010 3011 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3012 /// vector. 3013 static void FindPredecessorBlocks(LDVSSABlock *BB, 3014 SmallVectorImpl<LDVSSABlock *> *Preds) { 3015 for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(), 3016 E = BB->BB.pred_end(); 3017 PI != E; ++PI) 3018 Preds->push_back(BB->Updater.getSSALDVBlock(*PI)); 3019 } 3020 3021 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3022 /// register. For LiveDebugValues, represents a block identified as not having 3023 /// any DBG_PHI predecessors. 3024 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3025 // Create a value number for this block -- it needs to be unique and in the 3026 // "undef" collection, so that we know it's not real. Use a number 3027 // representing a PHI into this block. 3028 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3029 Updater->UndefMap[&BB->BB] = Num; 3030 return Num; 3031 } 3032 3033 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3034 /// SSAUpdater will populate it with information about incoming values. The 3035 /// value number of this PHI is whatever the machine value number problem 3036 /// solution determined it to be. This includes non-phi values if SSAUpdater 3037 /// tries to create a PHI where the incoming values are identical. 3038 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3039 LDVSSAUpdater *Updater) { 3040 BlockValueNum PHIValNum = Updater->getValue(BB); 3041 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3042 Updater->PHIs[PHIValNum] = PHI; 3043 return PHIValNum; 3044 } 3045 3046 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3047 /// the specified predecessor block. 3048 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3049 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3050 } 3051 3052 /// ValueIsPHI - Check if the instruction that defines the specified value 3053 /// is a PHI instruction. 3054 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3055 auto PHIIt = Updater->PHIs.find(Val); 3056 if (PHIIt == Updater->PHIs.end()) 3057 return nullptr; 3058 return PHIIt->second; 3059 } 3060 3061 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3062 /// operands, i.e., it was just added. 3063 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3064 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3065 if (PHI && PHI->IncomingValues.size() == 0) 3066 return PHI; 3067 return nullptr; 3068 } 3069 3070 /// GetPHIValue - For the specified PHI instruction, return the value 3071 /// that it defines. 3072 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3073 }; 3074 3075 } // end namespace llvm 3076 3077 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3078 ValueIDNum **MLiveOuts, 3079 ValueIDNum **MLiveIns, 3080 MachineInstr &Here, 3081 uint64_t InstrNum) { 3082 // Pick out records of DBG_PHI instructions that have been observed. If there 3083 // are none, then we cannot compute a value number. 3084 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3085 DebugPHINumToValue.end(), InstrNum); 3086 auto LowerIt = RangePair.first; 3087 auto UpperIt = RangePair.second; 3088 3089 // No DBG_PHI means there can be no location. 3090 if (LowerIt == UpperIt) 3091 return None; 3092 3093 // If there's only one DBG_PHI, then that is our value number. 3094 if (std::distance(LowerIt, UpperIt) == 1) 3095 return LowerIt->ValueRead; 3096 3097 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3098 3099 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3100 // technically possible for us to merge values in different registers in each 3101 // block, but highly unlikely that LLVM will generate such code after register 3102 // allocation. 3103 LocIdx Loc = LowerIt->ReadLoc; 3104 3105 // We have several DBG_PHIs, and a use position (the Here inst). All each 3106 // DBG_PHI does is identify a value at a program position. We can treat each 3107 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3108 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3109 // determine which Def is used at the Use, and any PHIs that happen along 3110 // the way. 3111 // Adapted LLVM SSA Updater: 3112 LDVSSAUpdater Updater(Loc, MLiveIns); 3113 // Map of which Def or PHI is the current value in each block. 3114 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3115 // Set of PHIs that we have created along the way. 3116 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3117 3118 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3119 // for the SSAUpdater. 3120 for (const auto &DBG_PHI : DBGPHIRange) { 3121 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3122 const ValueIDNum &Num = DBG_PHI.ValueRead; 3123 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3124 } 3125 3126 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3127 const auto &AvailIt = AvailableValues.find(HereBlock); 3128 if (AvailIt != AvailableValues.end()) { 3129 // Actually, we already know what the value is -- the Use is in the same 3130 // block as the Def. 3131 return ValueIDNum::fromU64(AvailIt->second); 3132 } 3133 3134 // Otherwise, we must use the SSA Updater. It will identify the value number 3135 // that we are to use, and the PHIs that must happen along the way. 3136 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3137 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3138 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3139 3140 // We have the number for a PHI, or possibly live-through value, to be used 3141 // at this Use. There are a number of things we have to check about it though: 3142 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3143 // Use was not completely dominated by DBG_PHIs and we should abort. 3144 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3145 // we've left SSA form. Validate that the inputs to each PHI are the 3146 // expected values. 3147 // * Is a PHI we've created actually a merging of values, or are all the 3148 // predecessor values the same, leading to a non-PHI machine value number? 3149 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3150 // the ValidatedValues collection below to sort this out. 3151 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3152 3153 // Define all the input DBG_PHI values in ValidatedValues. 3154 for (const auto &DBG_PHI : DBGPHIRange) { 3155 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3156 const ValueIDNum &Num = DBG_PHI.ValueRead; 3157 ValidatedValues.insert(std::make_pair(Block, Num)); 3158 } 3159 3160 // Sort PHIs to validate into RPO-order. 3161 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3162 for (auto &PHI : CreatedPHIs) 3163 SortedPHIs.push_back(PHI); 3164 3165 std::sort( 3166 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3167 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3168 }); 3169 3170 for (auto &PHI : SortedPHIs) { 3171 ValueIDNum ThisBlockValueNum = 3172 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3173 3174 // Are all these things actually defined? 3175 for (auto &PHIIt : PHI->IncomingValues) { 3176 // Any undef input means DBG_PHIs didn't dominate the use point. 3177 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3178 return None; 3179 3180 ValueIDNum ValueToCheck; 3181 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3182 3183 auto VVal = ValidatedValues.find(PHIIt.first); 3184 if (VVal == ValidatedValues.end()) { 3185 // We cross a loop, and this is a backedge. LLVMs tail duplication 3186 // happens so late that DBG_PHI instructions should not be able to 3187 // migrate into loops -- meaning we can only be live-through this 3188 // loop. 3189 ValueToCheck = ThisBlockValueNum; 3190 } else { 3191 // Does the block have as a live-out, in the location we're examining, 3192 // the value that we expect? If not, it's been moved or clobbered. 3193 ValueToCheck = VVal->second; 3194 } 3195 3196 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3197 return None; 3198 } 3199 3200 // Record this value as validated. 3201 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3202 } 3203 3204 // All the PHIs are valid: we can return what the SSAUpdater said our value 3205 // number was. 3206 return Result; 3207 } 3208