1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Tracker for converting machine value locations and variable values into
152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
153 /// specifying block live-in locations and transfers within blocks.
154 ///
155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
156 /// and must be initialized with the set of variable values that are live-in to
157 /// the block. The caller then repeatedly calls process(). TransferTracker picks
158 /// out variable locations for the live-in variable values (if there _is_ a
159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
160 /// stepped through, transfers of values between machine locations are
161 /// identified and if profitable, a DBG_VALUE created.
162 ///
163 /// This is where debug use-before-defs would be resolved: a variable with an
164 /// unavailable value could materialize in the middle of a block, when the
165 /// value becomes available. Or, we could detect clobbers and re-specify the
166 /// variable in a backup location. (XXX these are unimplemented).
167 class TransferTracker {
168 public:
169   const TargetInstrInfo *TII;
170   const TargetLowering *TLI;
171   /// This machine location tracker is assumed to always contain the up-to-date
172   /// value mapping for all machine locations. TransferTracker only reads
173   /// information from it. (XXX make it const?)
174   MLocTracker *MTracker;
175   MachineFunction &MF;
176   bool ShouldEmitDebugEntryValues;
177 
178   /// Record of all changes in variable locations at a block position. Awkwardly
179   /// we allow inserting either before or after the point: MBB != nullptr
180   /// indicates it's before, otherwise after.
181   struct Transfer {
182     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
183     MachineBasicBlock *MBB; /// non-null if we should insert after.
184     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
185   };
186 
187   struct LocAndProperties {
188     LocIdx Loc;
189     DbgValueProperties Properties;
190   };
191 
192   /// Collection of transfers (DBG_VALUEs) to be inserted.
193   SmallVector<Transfer, 32> Transfers;
194 
195   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
196   /// between TransferTrackers view of variable locations and MLocTrackers. For
197   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
198   /// does not.
199   SmallVector<ValueIDNum, 32> VarLocs;
200 
201   /// Map from LocIdxes to which DebugVariables are based that location.
202   /// Mantained while stepping through the block. Not accurate if
203   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
204   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
205 
206   /// Map from DebugVariable to it's current location and qualifying meta
207   /// information. To be used in conjunction with ActiveMLocs to construct
208   /// enough information for the DBG_VALUEs for a particular LocIdx.
209   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
210 
211   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
212   SmallVector<MachineInstr *, 4> PendingDbgValues;
213 
214   /// Record of a use-before-def: created when a value that's live-in to the
215   /// current block isn't available in any machine location, but it will be
216   /// defined in this block.
217   struct UseBeforeDef {
218     /// Value of this variable, def'd in block.
219     ValueIDNum ID;
220     /// Identity of this variable.
221     DebugVariable Var;
222     /// Additional variable properties.
223     DbgValueProperties Properties;
224   };
225 
226   /// Map from instruction index (within the block) to the set of UseBeforeDefs
227   /// that become defined at that instruction.
228   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
229 
230   /// The set of variables that are in UseBeforeDefs and can become a location
231   /// once the relevant value is defined. An element being erased from this
232   /// collection prevents the use-before-def materializing.
233   DenseSet<DebugVariable> UseBeforeDefVariables;
234 
235   const TargetRegisterInfo &TRI;
236   const BitVector &CalleeSavedRegs;
237 
238   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
239                   MachineFunction &MF, const TargetRegisterInfo &TRI,
240                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
241       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
242         CalleeSavedRegs(CalleeSavedRegs) {
243     TLI = MF.getSubtarget().getTargetLowering();
244     auto &TM = TPC.getTM<TargetMachine>();
245     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
246   }
247 
248   /// Load object with live-in variable values. \p mlocs contains the live-in
249   /// values in each machine location, while \p vlocs the live-in variable
250   /// values. This method picks variable locations for the live-in variables,
251   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
252   /// object fields to track variable locations as we step through the block.
253   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
254   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
255                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
256                   unsigned NumLocs) {
257     ActiveMLocs.clear();
258     ActiveVLocs.clear();
259     VarLocs.clear();
260     VarLocs.reserve(NumLocs);
261     UseBeforeDefs.clear();
262     UseBeforeDefVariables.clear();
263 
264     auto isCalleeSaved = [&](LocIdx L) {
265       unsigned Reg = MTracker->LocIdxToLocID[L];
266       if (Reg >= MTracker->NumRegs)
267         return false;
268       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
269         if (CalleeSavedRegs.test(*RAI))
270           return true;
271       return false;
272     };
273 
274     // Map of the preferred location for each value.
275     std::map<ValueIDNum, LocIdx> ValueToLoc;
276     ActiveMLocs.reserve(VLocs.size());
277     ActiveVLocs.reserve(VLocs.size());
278 
279     // Produce a map of value numbers to the current machine locs they live
280     // in. When emulating VarLocBasedImpl, there should only be one
281     // location; when not, we get to pick.
282     for (auto Location : MTracker->locations()) {
283       LocIdx Idx = Location.Idx;
284       ValueIDNum &VNum = MLocs[Idx.asU64()];
285       VarLocs.push_back(VNum);
286       auto it = ValueToLoc.find(VNum);
287       // In order of preference, pick:
288       //  * Callee saved registers,
289       //  * Other registers,
290       //  * Spill slots.
291       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
292           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
293         // Insert, or overwrite if insertion failed.
294         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
295         if (!PrefLocRes.second)
296           PrefLocRes.first->second = Idx;
297       }
298     }
299 
300     // Now map variables to their picked LocIdxes.
301     for (auto Var : VLocs) {
302       if (Var.second.Kind == DbgValue::Const) {
303         PendingDbgValues.push_back(
304             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
305         continue;
306       }
307 
308       // If the value has no location, we can't make a variable location.
309       const ValueIDNum &Num = Var.second.ID;
310       auto ValuesPreferredLoc = ValueToLoc.find(Num);
311       if (ValuesPreferredLoc == ValueToLoc.end()) {
312         // If it's a def that occurs in this block, register it as a
313         // use-before-def to be resolved as we step through the block.
314         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
315           addUseBeforeDef(Var.first, Var.second.Properties, Num);
316         else
317           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
318         continue;
319       }
320 
321       LocIdx M = ValuesPreferredLoc->second;
322       auto NewValue = LocAndProperties{M, Var.second.Properties};
323       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
324       if (!Result.second)
325         Result.first->second = NewValue;
326       ActiveMLocs[M].insert(Var.first);
327       PendingDbgValues.push_back(
328           MTracker->emitLoc(M, Var.first, Var.second.Properties));
329     }
330     flushDbgValues(MBB.begin(), &MBB);
331   }
332 
333   /// Record that \p Var has value \p ID, a value that becomes available
334   /// later in the function.
335   void addUseBeforeDef(const DebugVariable &Var,
336                        const DbgValueProperties &Properties, ValueIDNum ID) {
337     UseBeforeDef UBD = {ID, Var, Properties};
338     UseBeforeDefs[ID.getInst()].push_back(UBD);
339     UseBeforeDefVariables.insert(Var);
340   }
341 
342   /// After the instruction at index \p Inst and position \p pos has been
343   /// processed, check whether it defines a variable value in a use-before-def.
344   /// If so, and the variable value hasn't changed since the start of the
345   /// block, create a DBG_VALUE.
346   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
347     auto MIt = UseBeforeDefs.find(Inst);
348     if (MIt == UseBeforeDefs.end())
349       return;
350 
351     for (auto &Use : MIt->second) {
352       LocIdx L = Use.ID.getLoc();
353 
354       // If something goes very wrong, we might end up labelling a COPY
355       // instruction or similar with an instruction number, where it doesn't
356       // actually define a new value, instead it moves a value. In case this
357       // happens, discard.
358       if (MTracker->readMLoc(L) != Use.ID)
359         continue;
360 
361       // If a different debug instruction defined the variable value / location
362       // since the start of the block, don't materialize this use-before-def.
363       if (!UseBeforeDefVariables.count(Use.Var))
364         continue;
365 
366       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
367     }
368     flushDbgValues(pos, nullptr);
369   }
370 
371   /// Helper to move created DBG_VALUEs into Transfers collection.
372   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
373     if (PendingDbgValues.size() == 0)
374       return;
375 
376     // Pick out the instruction start position.
377     MachineBasicBlock::instr_iterator BundleStart;
378     if (MBB && Pos == MBB->begin())
379       BundleStart = MBB->instr_begin();
380     else
381       BundleStart = getBundleStart(Pos->getIterator());
382 
383     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
384     PendingDbgValues.clear();
385   }
386 
387   bool isEntryValueVariable(const DebugVariable &Var,
388                             const DIExpression *Expr) const {
389     if (!Var.getVariable()->isParameter())
390       return false;
391 
392     if (Var.getInlinedAt())
393       return false;
394 
395     if (Expr->getNumElements() > 0)
396       return false;
397 
398     return true;
399   }
400 
401   bool isEntryValueValue(const ValueIDNum &Val) const {
402     // Must be in entry block (block number zero), and be a PHI / live-in value.
403     if (Val.getBlock() || !Val.isPHI())
404       return false;
405 
406     // Entry values must enter in a register.
407     if (MTracker->isSpill(Val.getLoc()))
408       return false;
409 
410     Register SP = TLI->getStackPointerRegisterToSaveRestore();
411     Register FP = TRI.getFrameRegister(MF);
412     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
413     return Reg != SP && Reg != FP;
414   }
415 
416   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
417                            const ValueIDNum &Num) {
418     // Is this variable location a candidate to be an entry value. First,
419     // should we be trying this at all?
420     if (!ShouldEmitDebugEntryValues)
421       return false;
422 
423     // Is the variable appropriate for entry values (i.e., is a parameter).
424     if (!isEntryValueVariable(Var, Prop.DIExpr))
425       return false;
426 
427     // Is the value assigned to this variable still the entry value?
428     if (!isEntryValueValue(Num))
429       return false;
430 
431     // Emit a variable location using an entry value expression.
432     DIExpression *NewExpr =
433         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
434     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
435     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
436 
437     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
438     return true;
439   }
440 
441   /// Change a variable value after encountering a DBG_VALUE inside a block.
442   void redefVar(const MachineInstr &MI) {
443     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
444                       MI.getDebugLoc()->getInlinedAt());
445     DbgValueProperties Properties(MI);
446 
447     const MachineOperand &MO = MI.getOperand(0);
448 
449     // Ignore non-register locations, we don't transfer those.
450     if (!MO.isReg() || MO.getReg() == 0) {
451       auto It = ActiveVLocs.find(Var);
452       if (It != ActiveVLocs.end()) {
453         ActiveMLocs[It->second.Loc].erase(Var);
454         ActiveVLocs.erase(It);
455      }
456       // Any use-before-defs no longer apply.
457       UseBeforeDefVariables.erase(Var);
458       return;
459     }
460 
461     Register Reg = MO.getReg();
462     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
463     redefVar(MI, Properties, NewLoc);
464   }
465 
466   /// Handle a change in variable location within a block. Terminate the
467   /// variables current location, and record the value it now refers to, so
468   /// that we can detect location transfers later on.
469   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
470                 Optional<LocIdx> OptNewLoc) {
471     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
472                       MI.getDebugLoc()->getInlinedAt());
473     // Any use-before-defs no longer apply.
474     UseBeforeDefVariables.erase(Var);
475 
476     // Erase any previous location,
477     auto It = ActiveVLocs.find(Var);
478     if (It != ActiveVLocs.end())
479       ActiveMLocs[It->second.Loc].erase(Var);
480 
481     // If there _is_ no new location, all we had to do was erase.
482     if (!OptNewLoc)
483       return;
484     LocIdx NewLoc = *OptNewLoc;
485 
486     // Check whether our local copy of values-by-location in #VarLocs is out of
487     // date. Wipe old tracking data for the location if it's been clobbered in
488     // the meantime.
489     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
490       for (auto &P : ActiveMLocs[NewLoc]) {
491         ActiveVLocs.erase(P);
492       }
493       ActiveMLocs[NewLoc.asU64()].clear();
494       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
495     }
496 
497     ActiveMLocs[NewLoc].insert(Var);
498     if (It == ActiveVLocs.end()) {
499       ActiveVLocs.insert(
500           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
501     } else {
502       It->second.Loc = NewLoc;
503       It->second.Properties = Properties;
504     }
505   }
506 
507   /// Account for a location \p mloc being clobbered. Examine the variable
508   /// locations that will be terminated: and try to recover them by using
509   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
510   /// explicitly terminate a location if it can't be recovered.
511   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
512                    bool MakeUndef = true) {
513     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
514     if (ActiveMLocIt == ActiveMLocs.end())
515       return;
516 
517     // What was the old variable value?
518     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
519     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
520 
521     // Examine the remaining variable locations: if we can find the same value
522     // again, we can recover the location.
523     Optional<LocIdx> NewLoc = None;
524     for (auto Loc : MTracker->locations())
525       if (Loc.Value == OldValue)
526         NewLoc = Loc.Idx;
527 
528     // If there is no location, and we weren't asked to make the variable
529     // explicitly undef, then stop here.
530     if (!NewLoc && !MakeUndef) {
531       // Try and recover a few more locations with entry values.
532       for (auto &Var : ActiveMLocIt->second) {
533         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
534         recoverAsEntryValue(Var, Prop, OldValue);
535       }
536       flushDbgValues(Pos, nullptr);
537       return;
538     }
539 
540     // Examine all the variables based on this location.
541     DenseSet<DebugVariable> NewMLocs;
542     for (auto &Var : ActiveMLocIt->second) {
543       auto ActiveVLocIt = ActiveVLocs.find(Var);
544       // Re-state the variable location: if there's no replacement then NewLoc
545       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
546       // identifying the alternative location will be emitted.
547       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
548       DbgValueProperties Properties(Expr, false);
549       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
550 
551       // Update machine locations <=> variable locations maps. Defer updating
552       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
553       if (!NewLoc) {
554         ActiveVLocs.erase(ActiveVLocIt);
555       } else {
556         ActiveVLocIt->second.Loc = *NewLoc;
557         NewMLocs.insert(Var);
558       }
559     }
560 
561     // Commit any deferred ActiveMLoc changes.
562     if (!NewMLocs.empty())
563       for (auto &Var : NewMLocs)
564         ActiveMLocs[*NewLoc].insert(Var);
565 
566     // We lazily track what locations have which values; if we've found a new
567     // location for the clobbered value, remember it.
568     if (NewLoc)
569       VarLocs[NewLoc->asU64()] = OldValue;
570 
571     flushDbgValues(Pos, nullptr);
572 
573     // Re-find ActiveMLocIt, iterator could have been invalidated.
574     ActiveMLocIt = ActiveMLocs.find(MLoc);
575     ActiveMLocIt->second.clear();
576   }
577 
578   /// Transfer variables based on \p Src to be based on \p Dst. This handles
579   /// both register copies as well as spills and restores. Creates DBG_VALUEs
580   /// describing the movement.
581   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
582     // Does Src still contain the value num we expect? If not, it's been
583     // clobbered in the meantime, and our variable locations are stale.
584     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
585       return;
586 
587     // assert(ActiveMLocs[Dst].size() == 0);
588     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
589 
590     // Move set of active variables from one location to another.
591     auto MovingVars = ActiveMLocs[Src];
592     ActiveMLocs[Dst] = MovingVars;
593     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
594 
595     // For each variable based on Src; create a location at Dst.
596     for (auto &Var : MovingVars) {
597       auto ActiveVLocIt = ActiveVLocs.find(Var);
598       assert(ActiveVLocIt != ActiveVLocs.end());
599       ActiveVLocIt->second.Loc = Dst;
600 
601       MachineInstr *MI =
602           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
603       PendingDbgValues.push_back(MI);
604     }
605     ActiveMLocs[Src].clear();
606     flushDbgValues(Pos, nullptr);
607 
608     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
609     // about the old location.
610     if (EmulateOldLDV)
611       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
612   }
613 
614   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
615                                 const DebugVariable &Var,
616                                 const DbgValueProperties &Properties) {
617     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
618                                   Var.getVariable()->getScope(),
619                                   const_cast<DILocation *>(Var.getInlinedAt()));
620     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
621     MIB.add(MO);
622     if (Properties.Indirect)
623       MIB.addImm(0);
624     else
625       MIB.addReg(0);
626     MIB.addMetadata(Var.getVariable());
627     MIB.addMetadata(Properties.DIExpr);
628     return MIB;
629   }
630 };
631 
632 //===----------------------------------------------------------------------===//
633 //            Implementation
634 //===----------------------------------------------------------------------===//
635 
636 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
637 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
638 
639 #ifndef NDEBUG
640 void DbgValue::dump(const MLocTracker *MTrack) const {
641   if (Kind == Const) {
642     MO->dump();
643   } else if (Kind == NoVal) {
644     dbgs() << "NoVal(" << BlockNo << ")";
645   } else if (Kind == VPHI) {
646     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
647   } else {
648     assert(Kind == Def);
649     dbgs() << MTrack->IDAsString(ID);
650   }
651   if (Properties.Indirect)
652     dbgs() << " indir";
653   if (Properties.DIExpr)
654     dbgs() << " " << *Properties.DIExpr;
655 }
656 #endif
657 
658 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
659                          const TargetRegisterInfo &TRI,
660                          const TargetLowering &TLI)
661     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
662       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
663   NumRegs = TRI.getNumRegs();
664   reset();
665   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
666   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
667 
668   // Always track SP. This avoids the implicit clobbering caused by regmasks
669   // from affectings its values. (LiveDebugValues disbelieves calls and
670   // regmasks that claim to clobber SP).
671   Register SP = TLI.getStackPointerRegisterToSaveRestore();
672   if (SP) {
673     unsigned ID = getLocID(SP);
674     (void)lookupOrTrackRegister(ID);
675 
676     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
677       SPAliases.insert(*RAI);
678   }
679 
680   // Build some common stack positions -- full registers being spilt to the
681   // stack.
682   StackSlotIdxes.insert({{8, 0}, 0});
683   StackSlotIdxes.insert({{16, 0}, 1});
684   StackSlotIdxes.insert({{32, 0}, 2});
685   StackSlotIdxes.insert({{64, 0}, 3});
686   StackSlotIdxes.insert({{128, 0}, 4});
687   StackSlotIdxes.insert({{256, 0}, 5});
688   StackSlotIdxes.insert({{512, 0}, 6});
689 
690   // Traverse all the subregister idxes, and ensure there's an index for them.
691   // Duplicates are no problem: we're interested in their position in the
692   // stack slot, we don't want to type the slot.
693   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
694     unsigned Size = TRI.getSubRegIdxSize(I);
695     unsigned Offs = TRI.getSubRegIdxOffset(I);
696     unsigned Idx = StackSlotIdxes.size();
697 
698     // Some subregs have -1, -2 and so forth fed into their fields, to mean
699     // special backend things. Ignore those.
700     if (Size > 60000 || Offs > 60000)
701       continue;
702 
703     StackSlotIdxes.insert({{Size, Offs}, Idx});
704   }
705 
706   for (auto &Idx : StackSlotIdxes)
707     StackIdxesToPos[Idx.second] = Idx.first;
708 
709   NumSlotIdxes = StackSlotIdxes.size();
710 }
711 
712 LocIdx MLocTracker::trackRegister(unsigned ID) {
713   assert(ID != 0);
714   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
715   LocIdxToIDNum.grow(NewIdx);
716   LocIdxToLocID.grow(NewIdx);
717 
718   // Default: it's an mphi.
719   ValueIDNum ValNum = {CurBB, 0, NewIdx};
720   // Was this reg ever touched by a regmask?
721   for (const auto &MaskPair : reverse(Masks)) {
722     if (MaskPair.first->clobbersPhysReg(ID)) {
723       // There was an earlier def we skipped.
724       ValNum = {CurBB, MaskPair.second, NewIdx};
725       break;
726     }
727   }
728 
729   LocIdxToIDNum[NewIdx] = ValNum;
730   LocIdxToLocID[NewIdx] = ID;
731   return NewIdx;
732 }
733 
734 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
735                                unsigned InstID) {
736   // Def any register we track have that isn't preserved. The regmask
737   // terminates the liveness of a register, meaning its value can't be
738   // relied upon -- we represent this by giving it a new value.
739   for (auto Location : locations()) {
740     unsigned ID = LocIdxToLocID[Location.Idx];
741     // Don't clobber SP, even if the mask says it's clobbered.
742     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
743       defReg(ID, CurBB, InstID);
744   }
745   Masks.push_back(std::make_pair(MO, InstID));
746 }
747 
748 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
749   SpillLocationNo SpillID(SpillLocs.idFor(L));
750   if (SpillID.id() == 0) {
751     // Spill location is untracked: create record for this one, and all
752     // subregister slots too.
753     SpillID = SpillLocationNo(SpillLocs.insert(L));
754     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
755       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
756       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
757       LocIdxToIDNum.grow(Idx);
758       LocIdxToLocID.grow(Idx);
759       LocIDToLocIdx.push_back(Idx);
760       LocIdxToLocID[Idx] = L;
761       // Initialize to PHI value; corresponds to the location's live-in value
762       // during transfer function construction.
763       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
764     }
765   }
766   return SpillID;
767 }
768 
769 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
770   unsigned ID = LocIdxToLocID[Idx];
771   if (ID >= NumRegs) {
772     StackSlotPos Pos = locIDToSpillIdx(ID);
773     ID -= NumRegs;
774     unsigned Slot = ID / NumSlotIdxes;
775     return Twine("slot ")
776         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
777         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
778         .str();
779   } else {
780     return TRI.getRegAsmName(ID).str();
781   }
782 }
783 
784 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
785   std::string DefName = LocIdxToName(Num.getLoc());
786   return Num.asString(DefName);
787 }
788 
789 #ifndef NDEBUG
790 LLVM_DUMP_METHOD void MLocTracker::dump() {
791   for (auto Location : locations()) {
792     std::string MLocName = LocIdxToName(Location.Value.getLoc());
793     std::string DefName = Location.Value.asString(MLocName);
794     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
795   }
796 }
797 
798 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
799   for (auto Location : locations()) {
800     std::string foo = LocIdxToName(Location.Idx);
801     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
802   }
803 }
804 #endif
805 
806 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
807                                          const DebugVariable &Var,
808                                          const DbgValueProperties &Properties) {
809   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
810                                 Var.getVariable()->getScope(),
811                                 const_cast<DILocation *>(Var.getInlinedAt()));
812   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
813 
814   const DIExpression *Expr = Properties.DIExpr;
815   if (!MLoc) {
816     // No location -> DBG_VALUE $noreg
817     MIB.addReg(0);
818     MIB.addReg(0);
819   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
820     unsigned LocID = LocIdxToLocID[*MLoc];
821     SpillLocationNo SpillID = locIDToSpill(LocID);
822     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
823     unsigned short Offset = StackIdx.second;
824 
825     // TODO: support variables that are located in spill slots, with non-zero
826     // offsets from the start of the spill slot. It would require some more
827     // complex DIExpression calculations. This doesn't seem to be produced by
828     // LLVM right now, so don't try and support it.
829     // Accept no-subregister slots and subregisters where the offset is zero.
830     // The consumer should already have type information to work out how large
831     // the variable is.
832     if (Offset == 0) {
833       const SpillLoc &Spill = SpillLocs[SpillID.id()];
834       Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
835                                          Spill.SpillOffset);
836       unsigned Base = Spill.SpillBase;
837       MIB.addReg(Base);
838       MIB.addImm(0);
839     } else {
840       // This is a stack location with a weird subregister offset: emit an undef
841       // DBG_VALUE instead.
842       MIB.addReg(0);
843       MIB.addReg(0);
844     }
845   } else {
846     // Non-empty, non-stack slot, must be a plain register.
847     unsigned LocID = LocIdxToLocID[*MLoc];
848     MIB.addReg(LocID);
849     if (Properties.Indirect)
850       MIB.addImm(0);
851     else
852       MIB.addReg(0);
853   }
854 
855   MIB.addMetadata(Var.getVariable());
856   MIB.addMetadata(Expr);
857   return MIB;
858 }
859 
860 /// Default construct and initialize the pass.
861 InstrRefBasedLDV::InstrRefBasedLDV() {}
862 
863 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
864   unsigned Reg = MTracker->LocIdxToLocID[L];
865   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
866     if (CalleeSavedRegs.test(*RAI))
867       return true;
868   return false;
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //            Debug Range Extension Implementation
873 //===----------------------------------------------------------------------===//
874 
875 #ifndef NDEBUG
876 // Something to restore in the future.
877 // void InstrRefBasedLDV::printVarLocInMBB(..)
878 #endif
879 
880 SpillLocationNo
881 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
882   assert(MI.hasOneMemOperand() &&
883          "Spill instruction does not have exactly one memory operand?");
884   auto MMOI = MI.memoperands_begin();
885   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
886   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
887          "Inconsistent memory operand in spill instruction");
888   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
889   const MachineBasicBlock *MBB = MI.getParent();
890   Register Reg;
891   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
892   return MTracker->getOrTrackSpillLoc({Reg, Offset});
893 }
894 
895 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
896   SpillLocationNo SpillLoc =  extractSpillBaseRegAndOffset(MI);
897 
898   // Where in the stack slot is this value defined -- i.e., what size of value
899   // is this? An important question, because it could be loaded into a register
900   // from the stack at some point. Happily the memory operand will tell us
901   // the size written to the stack.
902   auto *MemOperand = *MI.memoperands_begin();
903   unsigned SizeInBits = MemOperand->getSizeInBits();
904 
905   // Find that position in the stack indexes we're tracking.
906   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
907   if (IdxIt == MTracker->StackSlotIdxes.end())
908     // That index is not tracked. This is suprising, and unlikely to ever
909     // occur, but the safe action is to indicate the variable is optimised out.
910     return None;
911 
912   unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second);
913   return MTracker->getSpillMLoc(SpillID);
914 }
915 
916 /// End all previous ranges related to @MI and start a new range from @MI
917 /// if it is a DBG_VALUE instr.
918 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
919   if (!MI.isDebugValue())
920     return false;
921 
922   const DILocalVariable *Var = MI.getDebugVariable();
923   const DIExpression *Expr = MI.getDebugExpression();
924   const DILocation *DebugLoc = MI.getDebugLoc();
925   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
926   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
927          "Expected inlined-at fields to agree");
928 
929   DebugVariable V(Var, Expr, InlinedAt);
930   DbgValueProperties Properties(MI);
931 
932   // If there are no instructions in this lexical scope, do no location tracking
933   // at all, this variable shouldn't get a legitimate location range.
934   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
935   if (Scope == nullptr)
936     return true; // handled it; by doing nothing
937 
938   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
939   // contribute to locations in this block, but don't propagate further.
940   // Interpret it like a DBG_VALUE $noreg.
941   if (MI.isDebugValueList()) {
942     if (VTracker)
943       VTracker->defVar(MI, Properties, None);
944     if (TTracker)
945       TTracker->redefVar(MI, Properties, None);
946     return true;
947   }
948 
949   const MachineOperand &MO = MI.getOperand(0);
950 
951   // MLocTracker needs to know that this register is read, even if it's only
952   // read by a debug inst.
953   if (MO.isReg() && MO.getReg() != 0)
954     (void)MTracker->readReg(MO.getReg());
955 
956   // If we're preparing for the second analysis (variables), the machine value
957   // locations are already solved, and we report this DBG_VALUE and the value
958   // it refers to to VLocTracker.
959   if (VTracker) {
960     if (MO.isReg()) {
961       // Feed defVar the new variable location, or if this is a
962       // DBG_VALUE $noreg, feed defVar None.
963       if (MO.getReg())
964         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
965       else
966         VTracker->defVar(MI, Properties, None);
967     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
968                MI.getOperand(0).isCImm()) {
969       VTracker->defVar(MI, MI.getOperand(0));
970     }
971   }
972 
973   // If performing final tracking of transfers, report this variable definition
974   // to the TransferTracker too.
975   if (TTracker)
976     TTracker->redefVar(MI);
977   return true;
978 }
979 
980 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
981                                              ValueIDNum **MLiveOuts,
982                                              ValueIDNum **MLiveIns) {
983   if (!MI.isDebugRef())
984     return false;
985 
986   // Only handle this instruction when we are building the variable value
987   // transfer function.
988   if (!VTracker)
989     return false;
990 
991   unsigned InstNo = MI.getOperand(0).getImm();
992   unsigned OpNo = MI.getOperand(1).getImm();
993 
994   const DILocalVariable *Var = MI.getDebugVariable();
995   const DIExpression *Expr = MI.getDebugExpression();
996   const DILocation *DebugLoc = MI.getDebugLoc();
997   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
998   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
999          "Expected inlined-at fields to agree");
1000 
1001   DebugVariable V(Var, Expr, InlinedAt);
1002 
1003   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1004   if (Scope == nullptr)
1005     return true; // Handled by doing nothing. This variable is never in scope.
1006 
1007   const MachineFunction &MF = *MI.getParent()->getParent();
1008 
1009   // Various optimizations may have happened to the value during codegen,
1010   // recorded in the value substitution table. Apply any substitutions to
1011   // the instruction / operand number in this DBG_INSTR_REF, and collect
1012   // any subregister extractions performed during optimization.
1013 
1014   // Create dummy substitution with Src set, for lookup.
1015   auto SoughtSub =
1016       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1017 
1018   SmallVector<unsigned, 4> SeenSubregs;
1019   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1020   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1021          LowerBoundIt->Src == SoughtSub.Src) {
1022     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1023     SoughtSub.Src = LowerBoundIt->Dest;
1024     if (unsigned Subreg = LowerBoundIt->Subreg)
1025       SeenSubregs.push_back(Subreg);
1026     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1027   }
1028 
1029   // Default machine value number is <None> -- if no instruction defines
1030   // the corresponding value, it must have been optimized out.
1031   Optional<ValueIDNum> NewID = None;
1032 
1033   // Try to lookup the instruction number, and find the machine value number
1034   // that it defines. It could be an instruction, or a PHI.
1035   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1036   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1037                                 DebugPHINumToValue.end(), InstNo);
1038   if (InstrIt != DebugInstrNumToInstr.end()) {
1039     const MachineInstr &TargetInstr = *InstrIt->second.first;
1040     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1041 
1042     // Pick out the designated operand. It might be a memory reference, if
1043     // a register def was folded into a stack store.
1044     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1045         TargetInstr.hasOneMemOperand()) {
1046       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1047       if (L)
1048         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1049     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1050       assert(OpNo < TargetInstr.getNumOperands());
1051       const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1052 
1053       // Today, this can only be a register.
1054       assert(MO.isReg() && MO.isDef());
1055 
1056       unsigned LocID = MTracker->getLocID(MO.getReg());
1057       LocIdx L = MTracker->LocIDToLocIdx[LocID];
1058       NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1059     }
1060     // else: NewID is left as None.
1061   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1062     // It's actually a PHI value. Which value it is might not be obvious, use
1063     // the resolver helper to find out.
1064     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1065                            MI, InstNo);
1066   }
1067 
1068   // Apply any subregister extractions, in reverse. We might have seen code
1069   // like this:
1070   //    CALL64 @foo, implicit-def $rax
1071   //    %0:gr64 = COPY $rax
1072   //    %1:gr32 = COPY %0.sub_32bit
1073   //    %2:gr16 = COPY %1.sub_16bit
1074   //    %3:gr8  = COPY %2.sub_8bit
1075   // In which case each copy would have been recorded as a substitution with
1076   // a subregister qualifier. Apply those qualifiers now.
1077   if (NewID && !SeenSubregs.empty()) {
1078     unsigned Offset = 0;
1079     unsigned Size = 0;
1080 
1081     // Look at each subregister that we passed through, and progressively
1082     // narrow in, accumulating any offsets that occur. Substitutions should
1083     // only ever be the same or narrower width than what they read from;
1084     // iterate in reverse order so that we go from wide to small.
1085     for (unsigned Subreg : reverse(SeenSubregs)) {
1086       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1087       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1088       Offset += ThisOffset;
1089       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1090     }
1091 
1092     // If that worked, look for an appropriate subregister with the register
1093     // where the define happens. Don't look at values that were defined during
1094     // a stack write: we can't currently express register locations within
1095     // spills.
1096     LocIdx L = NewID->getLoc();
1097     if (NewID && !MTracker->isSpill(L)) {
1098       // Find the register class for the register where this def happened.
1099       // FIXME: no index for this?
1100       Register Reg = MTracker->LocIdxToLocID[L];
1101       const TargetRegisterClass *TRC = nullptr;
1102       for (auto *TRCI : TRI->regclasses())
1103         if (TRCI->contains(Reg))
1104           TRC = TRCI;
1105       assert(TRC && "Couldn't find target register class?");
1106 
1107       // If the register we have isn't the right size or in the right place,
1108       // Try to find a subregister inside it.
1109       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1110       if (Size != MainRegSize || Offset) {
1111         // Enumerate all subregisters, searching.
1112         Register NewReg = 0;
1113         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1114           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1115           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1116           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1117           if (SubregSize == Size && SubregOffset == Offset) {
1118             NewReg = *SRI;
1119             break;
1120           }
1121         }
1122 
1123         // If we didn't find anything: there's no way to express our value.
1124         if (!NewReg) {
1125           NewID = None;
1126         } else {
1127           // Re-state the value as being defined within the subregister
1128           // that we found.
1129           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1130           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1131         }
1132       }
1133     } else {
1134       // If we can't handle subregisters, unset the new value.
1135       NewID = None;
1136     }
1137   }
1138 
1139   // We, we have a value number or None. Tell the variable value tracker about
1140   // it. The rest of this LiveDebugValues implementation acts exactly the same
1141   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1142   // aren't immediately available).
1143   DbgValueProperties Properties(Expr, false);
1144   VTracker->defVar(MI, Properties, NewID);
1145 
1146   // If we're on the final pass through the function, decompose this INSTR_REF
1147   // into a plain DBG_VALUE.
1148   if (!TTracker)
1149     return true;
1150 
1151   // Pick a location for the machine value number, if such a location exists.
1152   // (This information could be stored in TransferTracker to make it faster).
1153   Optional<LocIdx> FoundLoc = None;
1154   for (auto Location : MTracker->locations()) {
1155     LocIdx CurL = Location.Idx;
1156     ValueIDNum ID = MTracker->readMLoc(CurL);
1157     if (NewID && ID == NewID) {
1158       // If this is the first location with that value, pick it. Otherwise,
1159       // consider whether it's a "longer term" location.
1160       if (!FoundLoc) {
1161         FoundLoc = CurL;
1162         continue;
1163       }
1164 
1165       if (MTracker->isSpill(CurL))
1166         FoundLoc = CurL; // Spills are a longer term location.
1167       else if (!MTracker->isSpill(*FoundLoc) &&
1168                !MTracker->isSpill(CurL) &&
1169                !isCalleeSaved(*FoundLoc) &&
1170                isCalleeSaved(CurL))
1171         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1172     }
1173   }
1174 
1175   // Tell transfer tracker that the variable value has changed.
1176   TTracker->redefVar(MI, Properties, FoundLoc);
1177 
1178   // If there was a value with no location; but the value is defined in a
1179   // later instruction in this block, this is a block-local use-before-def.
1180   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1181       NewID->getInst() > CurInst)
1182     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1183 
1184   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1185   // This DBG_VALUE is potentially a $noreg / undefined location, if
1186   // FoundLoc is None.
1187   // (XXX -- could morph the DBG_INSTR_REF in the future).
1188   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1189   TTracker->PendingDbgValues.push_back(DbgMI);
1190   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1191   return true;
1192 }
1193 
1194 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1195   if (!MI.isDebugPHI())
1196     return false;
1197 
1198   // Analyse these only when solving the machine value location problem.
1199   if (VTracker || TTracker)
1200     return true;
1201 
1202   // First operand is the value location, either a stack slot or register.
1203   // Second is the debug instruction number of the original PHI.
1204   const MachineOperand &MO = MI.getOperand(0);
1205   unsigned InstrNum = MI.getOperand(1).getImm();
1206 
1207   if (MO.isReg()) {
1208     // The value is whatever's currently in the register. Read and record it,
1209     // to be analysed later.
1210     Register Reg = MO.getReg();
1211     ValueIDNum Num = MTracker->readReg(Reg);
1212     auto PHIRec = DebugPHIRecord(
1213         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1214     DebugPHINumToValue.push_back(PHIRec);
1215 
1216     // Ensure this register is tracked.
1217     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1218       MTracker->lookupOrTrackRegister(*RAI);
1219   } else {
1220     // The value is whatever's in this stack slot.
1221     assert(MO.isFI());
1222     unsigned FI = MO.getIndex();
1223 
1224     // If the stack slot is dead, then this was optimized away.
1225     // FIXME: stack slot colouring should account for slots that get merged.
1226     if (MFI->isDeadObjectIndex(FI))
1227       return true;
1228 
1229     // Identify this spill slot, ensure it's tracked.
1230     Register Base;
1231     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1232     SpillLoc SL = {Base, Offs};
1233     SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
1234 
1235     // Problem: what value should we extract from the stack? LLVM does not
1236     // record what size the last store to the slot was, and it would become
1237     // sketchy after stack slot colouring anyway. Take a look at what values
1238     // are stored on the stack, and pick the largest one that wasn't def'd
1239     // by a spill (i.e., the value most likely to have been def'd in a register
1240     // and then spilt.
1241     std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
1242     Optional<ValueIDNum> Result = None;
1243     Optional<LocIdx> SpillLoc = None;
1244     for (unsigned int I = 0; I < CandidateSizes.size(); ++I) {
1245       unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0});
1246       SpillLoc = MTracker->getSpillMLoc(SpillID);
1247       ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
1248       // If this value was defined in it's own position, then it was probably
1249       // an aliasing index of a small value that was spilt.
1250       if (Val.getLoc() != SpillLoc->asU64()) {
1251         Result = Val;
1252         break;
1253       }
1254     }
1255 
1256     // If we didn't find anything, we're probably looking at a PHI, or a memory
1257     // store folded into an instruction. FIXME: Take a guess that's it's 64
1258     // bits. This isn't ideal, but tracking the size that the spill is
1259     // "supposed" to be is more complex, and benefits a small number of
1260     // locations.
1261     if (!Result) {
1262       unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
1263       SpillLoc = MTracker->getSpillMLoc(SpillID);
1264       Result = MTracker->readMLoc(*SpillLoc);
1265     }
1266 
1267     // Record this DBG_PHI for later analysis.
1268     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
1269     DebugPHINumToValue.push_back(DbgPHI);
1270   }
1271 
1272   return true;
1273 }
1274 
1275 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1276   // Meta Instructions do not affect the debug liveness of any register they
1277   // define.
1278   if (MI.isImplicitDef()) {
1279     // Except when there's an implicit def, and the location it's defining has
1280     // no value number. The whole point of an implicit def is to announce that
1281     // the register is live, without be specific about it's value. So define
1282     // a value if there isn't one already.
1283     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1284     // Has a legitimate value -> ignore the implicit def.
1285     if (Num.getLoc() != 0)
1286       return;
1287     // Otherwise, def it here.
1288   } else if (MI.isMetaInstruction())
1289     return;
1290 
1291   // We always ignore SP defines on call instructions, they don't actually
1292   // change the value of the stack pointer... except for win32's _chkstk. This
1293   // is rare: filter quickly for the common case (no stack adjustments, not a
1294   // call, etc). If it is a call that modifies SP, recognise the SP register
1295   // defs.
1296   bool CallChangesSP = false;
1297   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1298       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1299     CallChangesSP = true;
1300 
1301   // Test whether we should ignore a def of this register due to it being part
1302   // of the stack pointer.
1303   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1304     if (CallChangesSP)
1305       return false;
1306     return MI.isCall() && MTracker->SPAliases.count(R);
1307   };
1308 
1309   // Find the regs killed by MI, and find regmasks of preserved regs.
1310   // Max out the number of statically allocated elements in `DeadRegs`, as this
1311   // prevents fallback to std::set::count() operations.
1312   SmallSet<uint32_t, 32> DeadRegs;
1313   SmallVector<const uint32_t *, 4> RegMasks;
1314   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1315   for (const MachineOperand &MO : MI.operands()) {
1316     // Determine whether the operand is a register def.
1317     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1318         Register::isPhysicalRegister(MO.getReg()) &&
1319         !IgnoreSPAlias(MO.getReg())) {
1320       // Remove ranges of all aliased registers.
1321       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1322         // FIXME: Can we break out of this loop early if no insertion occurs?
1323         DeadRegs.insert(*RAI);
1324     } else if (MO.isRegMask()) {
1325       RegMasks.push_back(MO.getRegMask());
1326       RegMaskPtrs.push_back(&MO);
1327     }
1328   }
1329 
1330   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1331   for (uint32_t DeadReg : DeadRegs)
1332     MTracker->defReg(DeadReg, CurBB, CurInst);
1333 
1334   for (auto *MO : RegMaskPtrs)
1335     MTracker->writeRegMask(MO, CurBB, CurInst);
1336 
1337   // If this instruction writes to a spill slot, def that slot.
1338   if (hasFoldedStackStore(MI)) {
1339     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1340     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1341       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1342       LocIdx L = MTracker->getSpillMLoc(SpillID);
1343       MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1344     }
1345   }
1346 
1347   if (!TTracker)
1348     return;
1349 
1350   // When committing variable values to locations: tell transfer tracker that
1351   // we've clobbered things. It may be able to recover the variable from a
1352   // different location.
1353 
1354   // Inform TTracker about any direct clobbers.
1355   for (uint32_t DeadReg : DeadRegs) {
1356     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1357     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1358   }
1359 
1360   // Look for any clobbers performed by a register mask. Only test locations
1361   // that are actually being tracked.
1362   for (auto L : MTracker->locations()) {
1363     // Stack locations can't be clobbered by regmasks.
1364     if (MTracker->isSpill(L.Idx))
1365       continue;
1366 
1367     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1368     if (IgnoreSPAlias(Reg))
1369       continue;
1370 
1371     for (auto *MO : RegMaskPtrs)
1372       if (MO->clobbersPhysReg(Reg))
1373         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1374   }
1375 
1376   // Tell TTracker about any folded stack store.
1377   if (hasFoldedStackStore(MI)) {
1378     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1379     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1380       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1381       LocIdx L = MTracker->getSpillMLoc(SpillID);
1382       TTracker->clobberMloc(L, MI.getIterator(), true);
1383     }
1384   }
1385 }
1386 
1387 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1388   // In all circumstances, re-def all aliases. It's definitely a new value now.
1389   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1390     MTracker->defReg(*RAI, CurBB, CurInst);
1391 
1392   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1393   MTracker->setReg(DstRegNum, SrcValue);
1394 
1395   // Copy subregisters from one location to another.
1396   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1397     unsigned SrcSubReg = SRI.getSubReg();
1398     unsigned SubRegIdx = SRI.getSubRegIndex();
1399     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1400     if (!DstSubReg)
1401       continue;
1402 
1403     // Do copy. There are two matching subregisters, the source value should
1404     // have been def'd when the super-reg was, the latter might not be tracked
1405     // yet.
1406     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1407     // mphi values if it wasn't tracked.
1408     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1409     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1410     (void)SrcL;
1411     (void)DstL;
1412     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1413 
1414     MTracker->setReg(DstSubReg, CpyValue);
1415   }
1416 }
1417 
1418 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1419                                           MachineFunction *MF) {
1420   // TODO: Handle multiple stores folded into one.
1421   if (!MI.hasOneMemOperand())
1422     return false;
1423 
1424   // Reject any memory operand that's aliased -- we can't guarantee its value.
1425   auto MMOI = MI.memoperands_begin();
1426   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1427   if (PVal->isAliased(MFI))
1428     return false;
1429 
1430   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1431     return false; // This is not a spill instruction, since no valid size was
1432                   // returned from either function.
1433 
1434   return true;
1435 }
1436 
1437 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1438                                        MachineFunction *MF, unsigned &Reg) {
1439   if (!isSpillInstruction(MI, MF))
1440     return false;
1441 
1442   int FI;
1443   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1444   return Reg != 0;
1445 }
1446 
1447 Optional<SpillLocationNo>
1448 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1449                                        MachineFunction *MF, unsigned &Reg) {
1450   if (!MI.hasOneMemOperand())
1451     return None;
1452 
1453   // FIXME: Handle folded restore instructions with more than one memory
1454   // operand.
1455   if (MI.getRestoreSize(TII)) {
1456     Reg = MI.getOperand(0).getReg();
1457     return extractSpillBaseRegAndOffset(MI);
1458   }
1459   return None;
1460 }
1461 
1462 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1463   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1464   // limitations under the new model. Therefore, when comparing them, compare
1465   // versions that don't attempt spills or restores at all.
1466   if (EmulateOldLDV)
1467     return false;
1468 
1469   // Strictly limit ourselves to plain loads and stores, not all instructions
1470   // that can access the stack.
1471   int DummyFI = -1;
1472   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1473       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1474     return false;
1475 
1476   MachineFunction *MF = MI.getMF();
1477   unsigned Reg;
1478 
1479   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1480 
1481   // Strictly limit ourselves to plain loads and stores, not all instructions
1482   // that can access the stack.
1483   int FIDummy;
1484   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1485       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1486     return false;
1487 
1488   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1489   // written to, terminate that variable location. The value in memory
1490   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1491   if (isSpillInstruction(MI, MF)) {
1492     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1493 
1494     // Un-set this location and clobber, so that earlier locations don't
1495     // continue past this store.
1496     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1497       unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
1498       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1499       if (!MLoc)
1500         continue;
1501 
1502       // We need to over-write the stack slot with something (here, a def at
1503       // this instruction) to ensure no values are preserved in this stack slot
1504       // after the spill. It also prevents TTracker from trying to recover the
1505       // location and re-installing it in the same place.
1506       ValueIDNum Def(CurBB, CurInst, *MLoc);
1507       MTracker->setMLoc(*MLoc, Def);
1508       if (TTracker)
1509         TTracker->clobberMloc(*MLoc, MI.getIterator());
1510     }
1511   }
1512 
1513   // Try to recognise spill and restore instructions that may transfer a value.
1514   if (isLocationSpill(MI, MF, Reg)) {
1515     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1516 
1517     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1518       auto ReadValue = MTracker->readReg(SrcReg);
1519       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1520       MTracker->setMLoc(DstLoc, ReadValue);
1521 
1522       if (TTracker) {
1523         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1524         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1525       }
1526     };
1527 
1528     // Then, transfer subreg bits.
1529     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1530       // Ensure this reg is tracked,
1531       (void)MTracker->lookupOrTrackRegister(*SRI);
1532       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1533       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1534       DoTransfer(*SRI, SpillID);
1535     }
1536 
1537     // Directly lookup size of main source reg, and transfer.
1538     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1539     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1540     DoTransfer(Reg, SpillID);
1541   } else {
1542     Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
1543     if (!OptLoc)
1544       return false;
1545     SpillLocationNo Loc = *OptLoc;
1546 
1547     // Assumption: we're reading from the base of the stack slot, not some
1548     // offset into it. It seems very unlikely LLVM would ever generate
1549     // restores where this wasn't true. This then becomes a question of what
1550     // subregisters in the destination register line up with positions in the
1551     // stack slot.
1552 
1553     // Def all registers that alias the destination.
1554     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1555       MTracker->defReg(*RAI, CurBB, CurInst);
1556 
1557     // Now find subregisters within the destination register, and load values
1558     // from stack slot positions.
1559     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1560       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1561       auto ReadValue = MTracker->readMLoc(SrcIdx);
1562       MTracker->setReg(DestReg, ReadValue);
1563 
1564       if (TTracker) {
1565         LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
1566         TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
1567       }
1568     };
1569 
1570     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1571       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1572       unsigned SpillID = MTracker->getLocID(Loc, Subreg);
1573       DoTransfer(*SRI, SpillID);
1574     }
1575 
1576     // Directly look up this registers slot idx by size, and transfer.
1577     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1578     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1579     DoTransfer(Reg, SpillID);
1580   }
1581   return true;
1582 }
1583 
1584 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1585   auto DestSrc = TII->isCopyInstr(MI);
1586   if (!DestSrc)
1587     return false;
1588 
1589   const MachineOperand *DestRegOp = DestSrc->Destination;
1590   const MachineOperand *SrcRegOp = DestSrc->Source;
1591 
1592   auto isCalleeSavedReg = [&](unsigned Reg) {
1593     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1594       if (CalleeSavedRegs.test(*RAI))
1595         return true;
1596     return false;
1597   };
1598 
1599   Register SrcReg = SrcRegOp->getReg();
1600   Register DestReg = DestRegOp->getReg();
1601 
1602   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1603   if (SrcReg == DestReg)
1604     return true;
1605 
1606   // For emulating VarLocBasedImpl:
1607   // We want to recognize instructions where destination register is callee
1608   // saved register. If register that could be clobbered by the call is
1609   // included, there would be a great chance that it is going to be clobbered
1610   // soon. It is more likely that previous register, which is callee saved, is
1611   // going to stay unclobbered longer, even if it is killed.
1612   //
1613   // For InstrRefBasedImpl, we can track multiple locations per value, so
1614   // ignore this condition.
1615   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1616     return false;
1617 
1618   // InstrRefBasedImpl only followed killing copies.
1619   if (EmulateOldLDV && !SrcRegOp->isKill())
1620     return false;
1621 
1622   // Copy MTracker info, including subregs if available.
1623   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1624 
1625   // Only produce a transfer of DBG_VALUE within a block where old LDV
1626   // would have. We might make use of the additional value tracking in some
1627   // other way, later.
1628   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1629     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1630                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1631 
1632   // VarLocBasedImpl would quit tracking the old location after copying.
1633   if (EmulateOldLDV && SrcReg != DestReg)
1634     MTracker->defReg(SrcReg, CurBB, CurInst);
1635 
1636   // Finally, the copy might have clobbered variables based on the destination
1637   // register. Tell TTracker about it, in case a backup location exists.
1638   if (TTracker) {
1639     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1640       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1641       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1642     }
1643   }
1644 
1645   return true;
1646 }
1647 
1648 /// Accumulate a mapping between each DILocalVariable fragment and other
1649 /// fragments of that DILocalVariable which overlap. This reduces work during
1650 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1651 /// known-to-overlap fragments are present".
1652 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1653 ///           fragment usage.
1654 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1655   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1656                       MI.getDebugLoc()->getInlinedAt());
1657   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1658 
1659   // If this is the first sighting of this variable, then we are guaranteed
1660   // there are currently no overlapping fragments either. Initialize the set
1661   // of seen fragments, record no overlaps for the current one, and return.
1662   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1663   if (SeenIt == SeenFragments.end()) {
1664     SmallSet<FragmentInfo, 4> OneFragment;
1665     OneFragment.insert(ThisFragment);
1666     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1667 
1668     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1669     return;
1670   }
1671 
1672   // If this particular Variable/Fragment pair already exists in the overlap
1673   // map, it has already been accounted for.
1674   auto IsInOLapMap =
1675       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1676   if (!IsInOLapMap.second)
1677     return;
1678 
1679   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1680   auto &AllSeenFragments = SeenIt->second;
1681 
1682   // Otherwise, examine all other seen fragments for this variable, with "this"
1683   // fragment being a previously unseen fragment. Record any pair of
1684   // overlapping fragments.
1685   for (auto &ASeenFragment : AllSeenFragments) {
1686     // Does this previously seen fragment overlap?
1687     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1688       // Yes: Mark the current fragment as being overlapped.
1689       ThisFragmentsOverlaps.push_back(ASeenFragment);
1690       // Mark the previously seen fragment as being overlapped by the current
1691       // one.
1692       auto ASeenFragmentsOverlaps =
1693           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1694       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1695              "Previously seen var fragment has no vector of overlaps");
1696       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1697     }
1698   }
1699 
1700   AllSeenFragments.insert(ThisFragment);
1701 }
1702 
1703 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1704                                ValueIDNum **MLiveIns) {
1705   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1706   // none of these should we interpret it's register defs as new value
1707   // definitions.
1708   if (transferDebugValue(MI))
1709     return;
1710   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1711     return;
1712   if (transferDebugPHI(MI))
1713     return;
1714   if (transferRegisterCopy(MI))
1715     return;
1716   if (transferSpillOrRestoreInst(MI))
1717     return;
1718   transferRegisterDef(MI);
1719 }
1720 
1721 void InstrRefBasedLDV::produceMLocTransferFunction(
1722     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1723     unsigned MaxNumBlocks) {
1724   // Because we try to optimize around register mask operands by ignoring regs
1725   // that aren't currently tracked, we set up something ugly for later: RegMask
1726   // operands that are seen earlier than the first use of a register, still need
1727   // to clobber that register in the transfer function. But this information
1728   // isn't actively recorded. Instead, we track each RegMask used in each block,
1729   // and accumulated the clobbered but untracked registers in each block into
1730   // the following bitvector. Later, if new values are tracked, we can add
1731   // appropriate clobbers.
1732   SmallVector<BitVector, 32> BlockMasks;
1733   BlockMasks.resize(MaxNumBlocks);
1734 
1735   // Reserve one bit per register for the masks described above.
1736   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1737   for (auto &BV : BlockMasks)
1738     BV.resize(TRI->getNumRegs(), true);
1739 
1740   // Step through all instructions and inhale the transfer function.
1741   for (auto &MBB : MF) {
1742     // Object fields that are read by trackers to know where we are in the
1743     // function.
1744     CurBB = MBB.getNumber();
1745     CurInst = 1;
1746 
1747     // Set all machine locations to a PHI value. For transfer function
1748     // production only, this signifies the live-in value to the block.
1749     MTracker->reset();
1750     MTracker->setMPhis(CurBB);
1751 
1752     // Step through each instruction in this block.
1753     for (auto &MI : MBB) {
1754       process(MI);
1755       // Also accumulate fragment map.
1756       if (MI.isDebugValue())
1757         accumulateFragmentMap(MI);
1758 
1759       // Create a map from the instruction number (if present) to the
1760       // MachineInstr and its position.
1761       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1762         auto InstrAndPos = std::make_pair(&MI, CurInst);
1763         auto InsertResult =
1764             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1765 
1766         // There should never be duplicate instruction numbers.
1767         assert(InsertResult.second);
1768         (void)InsertResult;
1769       }
1770 
1771       ++CurInst;
1772     }
1773 
1774     // Produce the transfer function, a map of machine location to new value. If
1775     // any machine location has the live-in phi value from the start of the
1776     // block, it's live-through and doesn't need recording in the transfer
1777     // function.
1778     for (auto Location : MTracker->locations()) {
1779       LocIdx Idx = Location.Idx;
1780       ValueIDNum &P = Location.Value;
1781       if (P.isPHI() && P.getLoc() == Idx.asU64())
1782         continue;
1783 
1784       // Insert-or-update.
1785       auto &TransferMap = MLocTransfer[CurBB];
1786       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1787       if (!Result.second)
1788         Result.first->second = P;
1789     }
1790 
1791     // Accumulate any bitmask operands into the clobberred reg mask for this
1792     // block.
1793     for (auto &P : MTracker->Masks) {
1794       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1795     }
1796   }
1797 
1798   // Compute a bitvector of all the registers that are tracked in this block.
1799   BitVector UsedRegs(TRI->getNumRegs());
1800   for (auto Location : MTracker->locations()) {
1801     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1802     // Ignore stack slots, and aliases of the stack pointer.
1803     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1804       continue;
1805     UsedRegs.set(ID);
1806   }
1807 
1808   // Check that any regmask-clobber of a register that gets tracked, is not
1809   // live-through in the transfer function. It needs to be clobbered at the
1810   // very least.
1811   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1812     BitVector &BV = BlockMasks[I];
1813     BV.flip();
1814     BV &= UsedRegs;
1815     // This produces all the bits that we clobber, but also use. Check that
1816     // they're all clobbered or at least set in the designated transfer
1817     // elem.
1818     for (unsigned Bit : BV.set_bits()) {
1819       unsigned ID = MTracker->getLocID(Bit);
1820       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1821       auto &TransferMap = MLocTransfer[I];
1822 
1823       // Install a value representing the fact that this location is effectively
1824       // written to in this block. As there's no reserved value, instead use
1825       // a value number that is never generated. Pick the value number for the
1826       // first instruction in the block, def'ing this location, which we know
1827       // this block never used anyway.
1828       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1829       auto Result =
1830         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1831       if (!Result.second) {
1832         ValueIDNum &ValueID = Result.first->second;
1833         if (ValueID.getBlock() == I && ValueID.isPHI())
1834           // It was left as live-through. Set it to clobbered.
1835           ValueID = NotGeneratedNum;
1836       }
1837     }
1838   }
1839 }
1840 
1841 bool InstrRefBasedLDV::mlocJoin(
1842     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1843     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1844   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1845   bool Changed = false;
1846 
1847   // Handle value-propagation when control flow merges on entry to a block. For
1848   // any location without a PHI already placed, the location has the same value
1849   // as its predecessors. If a PHI is placed, test to see whether it's now a
1850   // redundant PHI that we can eliminate.
1851 
1852   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1853   for (auto Pred : MBB.predecessors())
1854     BlockOrders.push_back(Pred);
1855 
1856   // Visit predecessors in RPOT order.
1857   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1858     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1859   };
1860   llvm::sort(BlockOrders, Cmp);
1861 
1862   // Skip entry block.
1863   if (BlockOrders.size() == 0)
1864     return false;
1865 
1866   // Step through all machine locations, look at each predecessor and test
1867   // whether we can eliminate redundant PHIs.
1868   for (auto Location : MTracker->locations()) {
1869     LocIdx Idx = Location.Idx;
1870 
1871     // Pick out the first predecessors live-out value for this location. It's
1872     // guaranteed to not be a backedge, as we order by RPO.
1873     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1874 
1875     // If we've already eliminated a PHI here, do no further checking, just
1876     // propagate the first live-in value into this block.
1877     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1878       if (InLocs[Idx.asU64()] != FirstVal) {
1879         InLocs[Idx.asU64()] = FirstVal;
1880         Changed |= true;
1881       }
1882       continue;
1883     }
1884 
1885     // We're now examining a PHI to see whether it's un-necessary. Loop around
1886     // the other live-in values and test whether they're all the same.
1887     bool Disagree = false;
1888     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1889       const MachineBasicBlock *PredMBB = BlockOrders[I];
1890       const ValueIDNum &PredLiveOut =
1891           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1892 
1893       // Incoming values agree, continue trying to eliminate this PHI.
1894       if (FirstVal == PredLiveOut)
1895         continue;
1896 
1897       // We can also accept a PHI value that feeds back into itself.
1898       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1899         continue;
1900 
1901       // Live-out of a predecessor disagrees with the first predecessor.
1902       Disagree = true;
1903     }
1904 
1905     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1906     if (!Disagree) {
1907       InLocs[Idx.asU64()] = FirstVal;
1908       Changed |= true;
1909     }
1910   }
1911 
1912   // TODO: Reimplement NumInserted and NumRemoved.
1913   return Changed;
1914 }
1915 
1916 void InstrRefBasedLDV::findStackIndexInterference(
1917     SmallVectorImpl<unsigned> &Slots) {
1918   // We could spend a bit of time finding the exact, minimal, set of stack
1919   // indexes that interfere with each other, much like reg units. Or, we can
1920   // rely on the fact that:
1921   //  * The smallest / lowest index will interfere with everything at zero
1922   //    offset, which will be the largest set of registers,
1923   //  * Most indexes with non-zero offset will end up being interference units
1924   //    anyway.
1925   // So just pick those out and return them.
1926 
1927   // We can rely on a single-byte stack index existing already, because we
1928   // initialize them in MLocTracker.
1929   auto It = MTracker->StackSlotIdxes.find({8, 0});
1930   assert(It != MTracker->StackSlotIdxes.end());
1931   Slots.push_back(It->second);
1932 
1933   // Find anything that has a non-zero offset and add that too.
1934   for (auto &Pair : MTracker->StackSlotIdxes) {
1935     // Is offset zero? If so, ignore.
1936     if (!Pair.first.second)
1937       continue;
1938     Slots.push_back(Pair.second);
1939   }
1940 }
1941 
1942 void InstrRefBasedLDV::placeMLocPHIs(
1943     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1944     ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1945   SmallVector<unsigned, 4> StackUnits;
1946   findStackIndexInterference(StackUnits);
1947 
1948   // To avoid repeatedly running the PHI placement algorithm, leverage the
1949   // fact that a def of register MUST also def its register units. Find the
1950   // units for registers, place PHIs for them, and then replicate them for
1951   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1952   // arguments) don't lead to register units being tracked, just place PHIs for
1953   // those registers directly. Stack slots have their own form of "unit",
1954   // store them to one side.
1955   SmallSet<Register, 32> RegUnitsToPHIUp;
1956   SmallSet<LocIdx, 32> NormalLocsToPHI;
1957   SmallSet<SpillLocationNo, 32> StackSlots;
1958   for (auto Location : MTracker->locations()) {
1959     LocIdx L = Location.Idx;
1960     if (MTracker->isSpill(L)) {
1961       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
1962       continue;
1963     }
1964 
1965     Register R = MTracker->LocIdxToLocID[L];
1966     SmallSet<Register, 8> FoundRegUnits;
1967     bool AnyIllegal = false;
1968     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1969       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1970         if (!MTracker->isRegisterTracked(*URoot)) {
1971           // Not all roots were loaded into the tracking map: this register
1972           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1973           // for this reg, but don't iterate units.
1974           AnyIllegal = true;
1975         } else {
1976           FoundRegUnits.insert(*URoot);
1977         }
1978       }
1979     }
1980 
1981     if (AnyIllegal) {
1982       NormalLocsToPHI.insert(L);
1983       continue;
1984     }
1985 
1986     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
1987   }
1988 
1989   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
1990   // collection.
1991   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
1992   auto CollectPHIsForLoc = [&](LocIdx L) {
1993     // Collect the set of defs.
1994     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
1995     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
1996       MachineBasicBlock *MBB = OrderToBB[I];
1997       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
1998       if (TransferFunc.find(L) != TransferFunc.end())
1999         DefBlocks.insert(MBB);
2000     }
2001 
2002     // The entry block defs the location too: it's the live-in / argument value.
2003     // Only insert if there are other defs though; everything is trivially live
2004     // through otherwise.
2005     if (!DefBlocks.empty())
2006       DefBlocks.insert(&*MF.begin());
2007 
2008     // Ask the SSA construction algorithm where we should put PHIs. Clear
2009     // anything that might have been hanging around from earlier.
2010     PHIBlocks.clear();
2011     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2012   };
2013 
2014   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2015     for (const MachineBasicBlock *MBB : PHIBlocks)
2016       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2017   };
2018 
2019   // For locations with no reg units, just place PHIs.
2020   for (LocIdx L : NormalLocsToPHI) {
2021     CollectPHIsForLoc(L);
2022     // Install those PHI values into the live-in value array.
2023     InstallPHIsAtLoc(L);
2024   }
2025 
2026   // For stack slots, calculate PHIs for the equivalent of the units, then
2027   // install for each index.
2028   for (SpillLocationNo Slot : StackSlots) {
2029     for (unsigned Idx : StackUnits) {
2030       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2031       LocIdx L = MTracker->getSpillMLoc(SpillID);
2032       CollectPHIsForLoc(L);
2033       InstallPHIsAtLoc(L);
2034 
2035       // Find anything that aliases this stack index, install PHIs for it too.
2036       unsigned Size, Offset;
2037       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2038       for (auto &Pair : MTracker->StackSlotIdxes) {
2039         unsigned ThisSize, ThisOffset;
2040         std::tie(ThisSize, ThisOffset) = Pair.first;
2041         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2042           continue;
2043 
2044         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2045         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2046         InstallPHIsAtLoc(ThisL);
2047       }
2048     }
2049   }
2050 
2051   // For reg units, place PHIs, and then place them for any aliasing registers.
2052   for (Register R : RegUnitsToPHIUp) {
2053     LocIdx L = MTracker->lookupOrTrackRegister(R);
2054     CollectPHIsForLoc(L);
2055 
2056     // Install those PHI values into the live-in value array.
2057     InstallPHIsAtLoc(L);
2058 
2059     // Now find aliases and install PHIs for those.
2060     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2061       // Super-registers that are "above" the largest register read/written by
2062       // the function will alias, but will not be tracked.
2063       if (!MTracker->isRegisterTracked(*RAI))
2064         continue;
2065 
2066       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2067       InstallPHIsAtLoc(AliasLoc);
2068     }
2069   }
2070 }
2071 
2072 void InstrRefBasedLDV::buildMLocValueMap(
2073     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2074     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2075   std::priority_queue<unsigned int, std::vector<unsigned int>,
2076                       std::greater<unsigned int>>
2077       Worklist, Pending;
2078 
2079   // We track what is on the current and pending worklist to avoid inserting
2080   // the same thing twice. We could avoid this with a custom priority queue,
2081   // but this is probably not worth it.
2082   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2083 
2084   // Initialize worklist with every block to be visited. Also produce list of
2085   // all blocks.
2086   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2087   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2088     Worklist.push(I);
2089     OnWorklist.insert(OrderToBB[I]);
2090     AllBlocks.insert(OrderToBB[I]);
2091   }
2092 
2093   // Initialize entry block to PHIs. These represent arguments.
2094   for (auto Location : MTracker->locations())
2095     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2096 
2097   MTracker->reset();
2098 
2099   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2100   // any machine-location that isn't live-through a block to be def'd in that
2101   // block.
2102   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2103 
2104   // Propagate values to eliminate redundant PHIs. At the same time, this
2105   // produces the table of Block x Location => Value for the entry to each
2106   // block.
2107   // The kind of PHIs we can eliminate are, for example, where one path in a
2108   // conditional spills and restores a register, and the register still has
2109   // the same value once control flow joins, unbeknowns to the PHI placement
2110   // code. Propagating values allows us to identify such un-necessary PHIs and
2111   // remove them.
2112   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2113   while (!Worklist.empty() || !Pending.empty()) {
2114     // Vector for storing the evaluated block transfer function.
2115     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2116 
2117     while (!Worklist.empty()) {
2118       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2119       CurBB = MBB->getNumber();
2120       Worklist.pop();
2121 
2122       // Join the values in all predecessor blocks.
2123       bool InLocsChanged;
2124       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2125       InLocsChanged |= Visited.insert(MBB).second;
2126 
2127       // Don't examine transfer function if we've visited this loc at least
2128       // once, and inlocs haven't changed.
2129       if (!InLocsChanged)
2130         continue;
2131 
2132       // Load the current set of live-ins into MLocTracker.
2133       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2134 
2135       // Each element of the transfer function can be a new def, or a read of
2136       // a live-in value. Evaluate each element, and store to "ToRemap".
2137       ToRemap.clear();
2138       for (auto &P : MLocTransfer[CurBB]) {
2139         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2140           // This is a movement of whatever was live in. Read it.
2141           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2142           ToRemap.push_back(std::make_pair(P.first, NewID));
2143         } else {
2144           // It's a def. Just set it.
2145           assert(P.second.getBlock() == CurBB);
2146           ToRemap.push_back(std::make_pair(P.first, P.second));
2147         }
2148       }
2149 
2150       // Commit the transfer function changes into mloc tracker, which
2151       // transforms the contents of the MLocTracker into the live-outs.
2152       for (auto &P : ToRemap)
2153         MTracker->setMLoc(P.first, P.second);
2154 
2155       // Now copy out-locs from mloc tracker into out-loc vector, checking
2156       // whether changes have occurred. These changes can have come from both
2157       // the transfer function, and mlocJoin.
2158       bool OLChanged = false;
2159       for (auto Location : MTracker->locations()) {
2160         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2161         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2162       }
2163 
2164       MTracker->reset();
2165 
2166       // No need to examine successors again if out-locs didn't change.
2167       if (!OLChanged)
2168         continue;
2169 
2170       // All successors should be visited: put any back-edges on the pending
2171       // list for the next pass-through, and any other successors to be
2172       // visited this pass, if they're not going to be already.
2173       for (auto s : MBB->successors()) {
2174         // Does branching to this successor represent a back-edge?
2175         if (BBToOrder[s] > BBToOrder[MBB]) {
2176           // No: visit it during this dataflow iteration.
2177           if (OnWorklist.insert(s).second)
2178             Worklist.push(BBToOrder[s]);
2179         } else {
2180           // Yes: visit it on the next iteration.
2181           if (OnPending.insert(s).second)
2182             Pending.push(BBToOrder[s]);
2183         }
2184       }
2185     }
2186 
2187     Worklist.swap(Pending);
2188     std::swap(OnPending, OnWorklist);
2189     OnPending.clear();
2190     // At this point, pending must be empty, since it was just the empty
2191     // worklist
2192     assert(Pending.empty() && "Pending should be empty");
2193   }
2194 
2195   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2196   // redundant PHIs.
2197 }
2198 
2199 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
2200 // template specialisations for graph traits and a successor enumerator.
2201 namespace llvm {
2202 template <> struct GraphTraits<MachineBasicBlock> {
2203   using NodeRef = MachineBasicBlock *;
2204   using ChildIteratorType = MachineBasicBlock::succ_iterator;
2205 
2206   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
2207   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2208   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2209 };
2210 
2211 template <> struct GraphTraits<const MachineBasicBlock> {
2212   using NodeRef = const MachineBasicBlock *;
2213   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
2214 
2215   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
2216   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2217   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2218 };
2219 
2220 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
2221 using MachineDomTreeChildGetter =
2222     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
2223 
2224 namespace IDFCalculatorDetail {
2225 template <>
2226 typename MachineDomTreeChildGetter::ChildrenTy
2227 MachineDomTreeChildGetter::get(const NodeRef &N) {
2228   return {N->succ_begin(), N->succ_end()};
2229 }
2230 } // namespace IDFCalculatorDetail
2231 } // namespace llvm
2232 
2233 void InstrRefBasedLDV::BlockPHIPlacement(
2234     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2235     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2236     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2237   // Apply IDF calculator to the designated set of location defs, storing
2238   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2239   // InstrRefBasedLDV object.
2240   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2241   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2242 
2243   IDF.setLiveInBlocks(AllBlocks);
2244   IDF.setDefiningBlocks(DefBlocks);
2245   IDF.calculate(PHIBlocks);
2246 }
2247 
2248 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2249     const MachineBasicBlock &MBB, const DebugVariable &Var,
2250     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2251     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2252   // Collect a set of locations from predecessor where its live-out value can
2253   // be found.
2254   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2255   SmallVector<const DbgValueProperties *, 4> Properties;
2256   unsigned NumLocs = MTracker->getNumLocs();
2257 
2258   // No predecessors means no PHIs.
2259   if (BlockOrders.empty())
2260     return None;
2261 
2262   for (auto p : BlockOrders) {
2263     unsigned ThisBBNum = p->getNumber();
2264     auto OutValIt = LiveOuts.find(p);
2265     if (OutValIt == LiveOuts.end())
2266       // If we have a predecessor not in scope, we'll never find a PHI position.
2267       return None;
2268     const DbgValue &OutVal = *OutValIt->second;
2269 
2270     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2271       // Consts and no-values cannot have locations we can join on.
2272       return None;
2273 
2274     Properties.push_back(&OutVal.Properties);
2275 
2276     // Create new empty vector of locations.
2277     Locs.resize(Locs.size() + 1);
2278 
2279     // If the live-in value is a def, find the locations where that value is
2280     // present. Do the same for VPHIs where we know the VPHI value.
2281     if (OutVal.Kind == DbgValue::Def ||
2282         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2283          OutVal.ID != ValueIDNum::EmptyValue)) {
2284       ValueIDNum ValToLookFor = OutVal.ID;
2285       // Search the live-outs of the predecessor for the specified value.
2286       for (unsigned int I = 0; I < NumLocs; ++I) {
2287         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2288           Locs.back().push_back(LocIdx(I));
2289       }
2290     } else {
2291       assert(OutVal.Kind == DbgValue::VPHI);
2292       // For VPHIs where we don't know the location, we definitely can't find
2293       // a join loc.
2294       if (OutVal.BlockNo != MBB.getNumber())
2295         return None;
2296 
2297       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2298       // a value that's live-through the whole loop. (It has to be a backedge,
2299       // because a block can't dominate itself). We can accept as a PHI location
2300       // any location where the other predecessors agree, _and_ the machine
2301       // locations feed back into themselves. Therefore, add all self-looping
2302       // machine-value PHI locations.
2303       for (unsigned int I = 0; I < NumLocs; ++I) {
2304         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2305         if (MOutLocs[ThisBBNum][I] == MPHI)
2306           Locs.back().push_back(LocIdx(I));
2307       }
2308     }
2309   }
2310 
2311   // We should have found locations for all predecessors, or returned.
2312   assert(Locs.size() == BlockOrders.size());
2313 
2314   // Check that all properties are the same. We can't pick a location if they're
2315   // not.
2316   const DbgValueProperties *Properties0 = Properties[0];
2317   for (auto *Prop : Properties)
2318     if (*Prop != *Properties0)
2319       return None;
2320 
2321   // Starting with the first set of locations, take the intersection with
2322   // subsequent sets.
2323   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2324   for (unsigned int I = 1; I < Locs.size(); ++I) {
2325     auto &LocVec = Locs[I];
2326     SmallVector<LocIdx, 4> NewCandidates;
2327     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2328                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2329     CandidateLocs = NewCandidates;
2330   }
2331   if (CandidateLocs.empty())
2332     return None;
2333 
2334   // We now have a set of LocIdxes that contain the right output value in
2335   // each of the predecessors. Pick the lowest; if there's a register loc,
2336   // that'll be it.
2337   LocIdx L = *CandidateLocs.begin();
2338 
2339   // Return a PHI-value-number for the found location.
2340   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2341   return PHIVal;
2342 }
2343 
2344 bool InstrRefBasedLDV::vlocJoin(
2345     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2346     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2347     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2348     DbgValue &LiveIn) {
2349   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2350   // _does_ assign a variable value. No live-ins for this scope are transferred
2351   // in though, so we can return immediately.
2352   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB))
2353     return false;
2354 
2355   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2356   bool Changed = false;
2357 
2358   // Order predecessors by RPOT order, for exploring them in that order.
2359   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2360 
2361   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2362     return BBToOrder[A] < BBToOrder[B];
2363   };
2364 
2365   llvm::sort(BlockOrders, Cmp);
2366 
2367   unsigned CurBlockRPONum = BBToOrder[&MBB];
2368 
2369   // Collect all the incoming DbgValues for this variable, from predecessor
2370   // live-out values.
2371   SmallVector<InValueT, 8> Values;
2372   bool Bail = false;
2373   int BackEdgesStart = 0;
2374   for (auto p : BlockOrders) {
2375     // If the predecessor isn't in scope / to be explored, we'll never be
2376     // able to join any locations.
2377     if (!BlocksToExplore.contains(p)) {
2378       Bail = true;
2379       break;
2380     }
2381 
2382     // All Live-outs will have been initialized.
2383     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2384 
2385     // Keep track of where back-edges begin in the Values vector. Relies on
2386     // BlockOrders being sorted by RPO.
2387     unsigned ThisBBRPONum = BBToOrder[p];
2388     if (ThisBBRPONum < CurBlockRPONum)
2389       ++BackEdgesStart;
2390 
2391     Values.push_back(std::make_pair(p, &OutLoc));
2392   }
2393 
2394   // If there were no values, or one of the predecessors couldn't have a
2395   // value, then give up immediately. It's not safe to produce a live-in
2396   // value. Leave as whatever it was before.
2397   if (Bail || Values.size() == 0)
2398     return false;
2399 
2400   // All (non-entry) blocks have at least one non-backedge predecessor.
2401   // Pick the variable value from the first of these, to compare against
2402   // all others.
2403   const DbgValue &FirstVal = *Values[0].second;
2404 
2405   // If the old live-in value is not a PHI then either a) no PHI is needed
2406   // here, or b) we eliminated the PHI that was here. If so, we can just
2407   // propagate in the first parent's incoming value.
2408   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2409     Changed = LiveIn != FirstVal;
2410     if (Changed)
2411       LiveIn = FirstVal;
2412     return Changed;
2413   }
2414 
2415   // Scan for variable values that can never be resolved: if they have
2416   // different DIExpressions, different indirectness, or are mixed constants /
2417   // non-constants.
2418   for (auto &V : Values) {
2419     if (V.second->Properties != FirstVal.Properties)
2420       return false;
2421     if (V.second->Kind == DbgValue::NoVal)
2422       return false;
2423     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2424       return false;
2425   }
2426 
2427   // Try to eliminate this PHI. Do the incoming values all agree?
2428   bool Disagree = false;
2429   for (auto &V : Values) {
2430     if (*V.second == FirstVal)
2431       continue; // No disagreement.
2432 
2433     // Eliminate if a backedge feeds a VPHI back into itself.
2434     if (V.second->Kind == DbgValue::VPHI &&
2435         V.second->BlockNo == MBB.getNumber() &&
2436         // Is this a backedge?
2437         std::distance(Values.begin(), &V) >= BackEdgesStart)
2438       continue;
2439 
2440     Disagree = true;
2441   }
2442 
2443   // No disagreement -> live-through value.
2444   if (!Disagree) {
2445     Changed = LiveIn != FirstVal;
2446     if (Changed)
2447       LiveIn = FirstVal;
2448     return Changed;
2449   } else {
2450     // Otherwise use a VPHI.
2451     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2452     Changed = LiveIn != VPHI;
2453     if (Changed)
2454       LiveIn = VPHI;
2455     return Changed;
2456   }
2457 }
2458 
2459 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2460     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2461     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2462     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2463     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2464   // This method is much like buildMLocValueMap: but focuses on a single
2465   // LexicalScope at a time. Pick out a set of blocks and variables that are
2466   // to have their value assignments solved, then run our dataflow algorithm
2467   // until a fixedpoint is reached.
2468   std::priority_queue<unsigned int, std::vector<unsigned int>,
2469                       std::greater<unsigned int>>
2470       Worklist, Pending;
2471   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2472 
2473   // The set of blocks we'll be examining.
2474   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2475 
2476   // The order in which to examine them (RPO).
2477   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2478 
2479   // RPO ordering function.
2480   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2481     return BBToOrder[A] < BBToOrder[B];
2482   };
2483 
2484   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2485 
2486   // A separate container to distinguish "blocks we're exploring" versus
2487   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2488   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2489 
2490   // VarLoc LiveDebugValues tracks variable locations that are defined in
2491   // blocks not in scope. This is something we could legitimately ignore, but
2492   // lets allow it for now for the sake of coverage.
2493   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2494 
2495   // We also need to propagate variable values through any artificial blocks
2496   // that immediately follow blocks in scope.
2497   DenseSet<const MachineBasicBlock *> ToAdd;
2498 
2499   // Helper lambda: For a given block in scope, perform a depth first search
2500   // of all the artificial successors, adding them to the ToAdd collection.
2501   auto AccumulateArtificialBlocks =
2502       [this, &ToAdd, &BlocksToExplore,
2503        &InScopeBlocks](const MachineBasicBlock *MBB) {
2504         // Depth-first-search state: each node is a block and which successor
2505         // we're currently exploring.
2506         SmallVector<std::pair<const MachineBasicBlock *,
2507                               MachineBasicBlock::const_succ_iterator>,
2508                     8>
2509             DFS;
2510 
2511         // Find any artificial successors not already tracked.
2512         for (auto *succ : MBB->successors()) {
2513           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2514             continue;
2515           if (!ArtificialBlocks.count(succ))
2516             continue;
2517           ToAdd.insert(succ);
2518           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2519         }
2520 
2521         // Search all those blocks, depth first.
2522         while (!DFS.empty()) {
2523           const MachineBasicBlock *CurBB = DFS.back().first;
2524           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2525           // Walk back if we've explored this blocks successors to the end.
2526           if (CurSucc == CurBB->succ_end()) {
2527             DFS.pop_back();
2528             continue;
2529           }
2530 
2531           // If the current successor is artificial and unexplored, descend into
2532           // it.
2533           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2534             ToAdd.insert(*CurSucc);
2535             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2536             continue;
2537           }
2538 
2539           ++CurSucc;
2540         }
2541       };
2542 
2543   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2544   // for artificial successors.
2545   for (auto *MBB : BlocksToExplore)
2546     AccumulateArtificialBlocks(MBB);
2547   for (auto *MBB : InScopeBlocks)
2548     AccumulateArtificialBlocks(MBB);
2549 
2550   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2551   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2552 
2553   // Single block scope: not interesting! No propagation at all. Note that
2554   // this could probably go above ArtificialBlocks without damage, but
2555   // that then produces output differences from original-live-debug-values,
2556   // which propagates from a single block into many artificial ones.
2557   if (BlocksToExplore.size() == 1)
2558     return;
2559 
2560   // Convert a const set to a non-const set. LexicalScopes
2561   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2562   // (Neither of them mutate anything).
2563   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2564   for (const auto *MBB : BlocksToExplore)
2565     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2566 
2567   // Picks out relevants blocks RPO order and sort them.
2568   for (auto *MBB : BlocksToExplore)
2569     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2570 
2571   llvm::sort(BlockOrders, Cmp);
2572   unsigned NumBlocks = BlockOrders.size();
2573 
2574   // Allocate some vectors for storing the live ins and live outs. Large.
2575   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2576   LiveIns.reserve(NumBlocks);
2577   LiveOuts.reserve(NumBlocks);
2578 
2579   // Initialize all values to start as NoVals. This signifies "it's live
2580   // through, but we don't know what it is".
2581   DbgValueProperties EmptyProperties(EmptyExpr, false);
2582   for (unsigned int I = 0; I < NumBlocks; ++I) {
2583     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2584     LiveIns.push_back(EmptyDbgValue);
2585     LiveOuts.push_back(EmptyDbgValue);
2586   }
2587 
2588   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2589   // vlocJoin.
2590   LiveIdxT LiveOutIdx, LiveInIdx;
2591   LiveOutIdx.reserve(NumBlocks);
2592   LiveInIdx.reserve(NumBlocks);
2593   for (unsigned I = 0; I < NumBlocks; ++I) {
2594     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2595     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2596   }
2597 
2598   // Loop over each variable and place PHIs for it, then propagate values
2599   // between blocks. This keeps the locality of working on one lexical scope at
2600   // at time, but avoids re-processing variable values because some other
2601   // variable has been assigned.
2602   for (auto &Var : VarsWeCareAbout) {
2603     // Re-initialize live-ins and live-outs, to clear the remains of previous
2604     // variables live-ins / live-outs.
2605     for (unsigned int I = 0; I < NumBlocks; ++I) {
2606       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2607       LiveIns[I] = EmptyDbgValue;
2608       LiveOuts[I] = EmptyDbgValue;
2609     }
2610 
2611     // Place PHIs for variable values, using the LLVM IDF calculator.
2612     // Collect the set of blocks where variables are def'd.
2613     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2614     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2615       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2616       if (TransferFunc.find(Var) != TransferFunc.end())
2617         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2618     }
2619 
2620     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2621 
2622     // Request the set of PHIs we should insert for this variable.
2623     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2624 
2625     // Insert PHIs into the per-block live-in tables for this variable.
2626     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2627       unsigned BlockNo = PHIMBB->getNumber();
2628       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2629       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2630     }
2631 
2632     for (auto *MBB : BlockOrders) {
2633       Worklist.push(BBToOrder[MBB]);
2634       OnWorklist.insert(MBB);
2635     }
2636 
2637     // Iterate over all the blocks we selected, propagating the variables value.
2638     // This loop does two things:
2639     //  * Eliminates un-necessary VPHIs in vlocJoin,
2640     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2641     //    stores the result to the blocks live-outs.
2642     // Always evaluate the transfer function on the first iteration, and when
2643     // the live-ins change thereafter.
2644     bool FirstTrip = true;
2645     while (!Worklist.empty() || !Pending.empty()) {
2646       while (!Worklist.empty()) {
2647         auto *MBB = OrderToBB[Worklist.top()];
2648         CurBB = MBB->getNumber();
2649         Worklist.pop();
2650 
2651         auto LiveInsIt = LiveInIdx.find(MBB);
2652         assert(LiveInsIt != LiveInIdx.end());
2653         DbgValue *LiveIn = LiveInsIt->second;
2654 
2655         // Join values from predecessors. Updates LiveInIdx, and writes output
2656         // into JoinedInLocs.
2657         bool InLocsChanged =
2658             vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn);
2659 
2660         SmallVector<const MachineBasicBlock *, 8> Preds;
2661         for (const auto *Pred : MBB->predecessors())
2662           Preds.push_back(Pred);
2663 
2664         // If this block's live-in value is a VPHI, try to pick a machine-value
2665         // for it. This makes the machine-value available and propagated
2666         // through all blocks by the time value propagation finishes. We can't
2667         // do this any earlier as it needs to read the block live-outs.
2668         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2669           // There's a small possibility that on a preceeding path, a VPHI is
2670           // eliminated and transitions from VPHI-with-location to
2671           // live-through-value. As a result, the selected location of any VPHI
2672           // might change, so we need to re-compute it on each iteration.
2673           Optional<ValueIDNum> ValueNum =
2674               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2675 
2676           if (ValueNum) {
2677             InLocsChanged |= LiveIn->ID != *ValueNum;
2678             LiveIn->ID = *ValueNum;
2679           }
2680         }
2681 
2682         if (!InLocsChanged && !FirstTrip)
2683           continue;
2684 
2685         DbgValue *LiveOut = LiveOutIdx[MBB];
2686         bool OLChanged = false;
2687 
2688         // Do transfer function.
2689         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2690         auto TransferIt = VTracker.Vars.find(Var);
2691         if (TransferIt != VTracker.Vars.end()) {
2692           // Erase on empty transfer (DBG_VALUE $noreg).
2693           if (TransferIt->second.Kind == DbgValue::Undef) {
2694             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2695             if (*LiveOut != NewVal) {
2696               *LiveOut = NewVal;
2697               OLChanged = true;
2698             }
2699           } else {
2700             // Insert new variable value; or overwrite.
2701             if (*LiveOut != TransferIt->second) {
2702               *LiveOut = TransferIt->second;
2703               OLChanged = true;
2704             }
2705           }
2706         } else {
2707           // Just copy live-ins to live-outs, for anything not transferred.
2708           if (*LiveOut != *LiveIn) {
2709             *LiveOut = *LiveIn;
2710             OLChanged = true;
2711           }
2712         }
2713 
2714         // If no live-out value changed, there's no need to explore further.
2715         if (!OLChanged)
2716           continue;
2717 
2718         // We should visit all successors. Ensure we'll visit any non-backedge
2719         // successors during this dataflow iteration; book backedge successors
2720         // to be visited next time around.
2721         for (auto s : MBB->successors()) {
2722           // Ignore out of scope / not-to-be-explored successors.
2723           if (LiveInIdx.find(s) == LiveInIdx.end())
2724             continue;
2725 
2726           if (BBToOrder[s] > BBToOrder[MBB]) {
2727             if (OnWorklist.insert(s).second)
2728               Worklist.push(BBToOrder[s]);
2729           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2730             Pending.push(BBToOrder[s]);
2731           }
2732         }
2733       }
2734       Worklist.swap(Pending);
2735       std::swap(OnWorklist, OnPending);
2736       OnPending.clear();
2737       assert(Pending.empty());
2738       FirstTrip = false;
2739     }
2740 
2741     // Save live-ins to output vector. Ignore any that are still marked as being
2742     // VPHIs with no location -- those are variables that we know the value of,
2743     // but are not actually available in the register file.
2744     for (auto *MBB : BlockOrders) {
2745       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2746       if (BlockLiveIn->Kind == DbgValue::NoVal)
2747         continue;
2748       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2749           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2750         continue;
2751       if (BlockLiveIn->Kind == DbgValue::VPHI)
2752         BlockLiveIn->Kind = DbgValue::Def;
2753       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2754     }
2755   } // Per-variable loop.
2756 
2757   BlockOrders.clear();
2758   BlocksToExplore.clear();
2759 }
2760 
2761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2762 void InstrRefBasedLDV::dump_mloc_transfer(
2763     const MLocTransferMap &mloc_transfer) const {
2764   for (auto &P : mloc_transfer) {
2765     std::string foo = MTracker->LocIdxToName(P.first);
2766     std::string bar = MTracker->IDAsString(P.second);
2767     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2768   }
2769 }
2770 #endif
2771 
2772 void InstrRefBasedLDV::emitLocations(
2773     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2774     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2775     const TargetPassConfig &TPC) {
2776   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2777   unsigned NumLocs = MTracker->getNumLocs();
2778 
2779   // For each block, load in the machine value locations and variable value
2780   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2781   // to be inserted will be created along the way.
2782   for (MachineBasicBlock &MBB : MF) {
2783     unsigned bbnum = MBB.getNumber();
2784     MTracker->reset();
2785     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2786     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2787                          NumLocs);
2788 
2789     CurBB = bbnum;
2790     CurInst = 1;
2791     for (auto &MI : MBB) {
2792       process(MI, MOutLocs, MInLocs);
2793       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2794       ++CurInst;
2795     }
2796   }
2797 
2798   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2799   // in DWARF in different orders. Use the order that they appear when walking
2800   // through each block / each instruction, stored in AllVarsNumbering.
2801   auto OrderDbgValues = [&](const MachineInstr *A,
2802                             const MachineInstr *B) -> bool {
2803     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2804                        A->getDebugLoc()->getInlinedAt());
2805     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2806                        B->getDebugLoc()->getInlinedAt());
2807     return AllVarsNumbering.find(VarA)->second <
2808            AllVarsNumbering.find(VarB)->second;
2809   };
2810 
2811   // Go through all the transfers recorded in the TransferTracker -- this is
2812   // both the live-ins to a block, and any movements of values that happen
2813   // in the middle.
2814   for (auto &P : TTracker->Transfers) {
2815     // Sort them according to appearance order.
2816     llvm::sort(P.Insts, OrderDbgValues);
2817     // Insert either before or after the designated point...
2818     if (P.MBB) {
2819       MachineBasicBlock &MBB = *P.MBB;
2820       for (auto *MI : P.Insts) {
2821         MBB.insert(P.Pos, MI);
2822       }
2823     } else {
2824       // Terminators, like tail calls, can clobber things. Don't try and place
2825       // transfers after them.
2826       if (P.Pos->isTerminator())
2827         continue;
2828 
2829       MachineBasicBlock &MBB = *P.Pos->getParent();
2830       for (auto *MI : P.Insts) {
2831         MBB.insertAfterBundle(P.Pos, MI);
2832       }
2833     }
2834   }
2835 }
2836 
2837 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2838   // Build some useful data structures.
2839 
2840   LLVMContext &Context = MF.getFunction().getContext();
2841   EmptyExpr = DIExpression::get(Context, {});
2842 
2843   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2844     if (const DebugLoc &DL = MI.getDebugLoc())
2845       return DL.getLine() != 0;
2846     return false;
2847   };
2848   // Collect a set of all the artificial blocks.
2849   for (auto &MBB : MF)
2850     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2851       ArtificialBlocks.insert(&MBB);
2852 
2853   // Compute mappings of block <=> RPO order.
2854   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2855   unsigned int RPONumber = 0;
2856   for (MachineBasicBlock *MBB : RPOT) {
2857     OrderToBB[RPONumber] = MBB;
2858     BBToOrder[MBB] = RPONumber;
2859     BBNumToRPO[MBB->getNumber()] = RPONumber;
2860     ++RPONumber;
2861   }
2862 
2863   // Order value substitutions by their "source" operand pair, for quick lookup.
2864   llvm::sort(MF.DebugValueSubstitutions);
2865 
2866 #ifdef EXPENSIVE_CHECKS
2867   // As an expensive check, test whether there are any duplicate substitution
2868   // sources in the collection.
2869   if (MF.DebugValueSubstitutions.size() > 2) {
2870     for (auto It = MF.DebugValueSubstitutions.begin();
2871          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2872       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2873                                               "substitution seen");
2874     }
2875   }
2876 #endif
2877 }
2878 
2879 /// Calculate the liveness information for the given machine function and
2880 /// extend ranges across basic blocks.
2881 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2882                                     MachineDominatorTree *DomTree,
2883                                     TargetPassConfig *TPC,
2884                                     unsigned InputBBLimit,
2885                                     unsigned InputDbgValLimit) {
2886   // No subprogram means this function contains no debuginfo.
2887   if (!MF.getFunction().getSubprogram())
2888     return false;
2889 
2890   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2891   this->TPC = TPC;
2892 
2893   this->DomTree = DomTree;
2894   TRI = MF.getSubtarget().getRegisterInfo();
2895   MRI = &MF.getRegInfo();
2896   TII = MF.getSubtarget().getInstrInfo();
2897   TFI = MF.getSubtarget().getFrameLowering();
2898   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2899   MFI = &MF.getFrameInfo();
2900   LS.initialize(MF);
2901 
2902   const auto &STI = MF.getSubtarget();
2903   AdjustsStackInCalls = MFI->adjustsStack() &&
2904                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
2905   if (AdjustsStackInCalls)
2906     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
2907 
2908   MTracker =
2909       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2910   VTracker = nullptr;
2911   TTracker = nullptr;
2912 
2913   SmallVector<MLocTransferMap, 32> MLocTransfer;
2914   SmallVector<VLocTracker, 8> vlocs;
2915   LiveInsT SavedLiveIns;
2916 
2917   int MaxNumBlocks = -1;
2918   for (auto &MBB : MF)
2919     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2920   assert(MaxNumBlocks >= 0);
2921   ++MaxNumBlocks;
2922 
2923   MLocTransfer.resize(MaxNumBlocks);
2924   vlocs.resize(MaxNumBlocks);
2925   SavedLiveIns.resize(MaxNumBlocks);
2926 
2927   initialSetup(MF);
2928 
2929   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2930 
2931   // Allocate and initialize two array-of-arrays for the live-in and live-out
2932   // machine values. The outer dimension is the block number; while the inner
2933   // dimension is a LocIdx from MLocTracker.
2934   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2935   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2936   unsigned NumLocs = MTracker->getNumLocs();
2937   for (int i = 0; i < MaxNumBlocks; ++i) {
2938     // These all auto-initialize to ValueIDNum::EmptyValue
2939     MOutLocs[i] = new ValueIDNum[NumLocs];
2940     MInLocs[i] = new ValueIDNum[NumLocs];
2941   }
2942 
2943   // Solve the machine value dataflow problem using the MLocTransfer function,
2944   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2945   // both live-ins and live-outs for decision making in the variable value
2946   // dataflow problem.
2947   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2948 
2949   // Patch up debug phi numbers, turning unknown block-live-in values into
2950   // either live-through machine values, or PHIs.
2951   for (auto &DBG_PHI : DebugPHINumToValue) {
2952     // Identify unresolved block-live-ins.
2953     ValueIDNum &Num = DBG_PHI.ValueRead;
2954     if (!Num.isPHI())
2955       continue;
2956 
2957     unsigned BlockNo = Num.getBlock();
2958     LocIdx LocNo = Num.getLoc();
2959     Num = MInLocs[BlockNo][LocNo.asU64()];
2960   }
2961   // Later, we'll be looking up ranges of instruction numbers.
2962   llvm::sort(DebugPHINumToValue);
2963 
2964   // Walk back through each block / instruction, collecting DBG_VALUE
2965   // instructions and recording what machine value their operands refer to.
2966   for (auto &OrderPair : OrderToBB) {
2967     MachineBasicBlock &MBB = *OrderPair.second;
2968     CurBB = MBB.getNumber();
2969     VTracker = &vlocs[CurBB];
2970     VTracker->MBB = &MBB;
2971     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2972     CurInst = 1;
2973     for (auto &MI : MBB) {
2974       process(MI, MOutLocs, MInLocs);
2975       ++CurInst;
2976     }
2977     MTracker->reset();
2978   }
2979 
2980   // Number all variables in the order that they appear, to be used as a stable
2981   // insertion order later.
2982   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2983 
2984   // Map from one LexicalScope to all the variables in that scope.
2985   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2986 
2987   // Map from One lexical scope to all blocks in that scope.
2988   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2989       ScopeToBlocks;
2990 
2991   // Store a DILocation that describes a scope.
2992   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2993 
2994   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2995   // the order is unimportant, it just has to be stable.
2996   unsigned VarAssignCount = 0;
2997   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2998     auto *MBB = OrderToBB[I];
2999     auto *VTracker = &vlocs[MBB->getNumber()];
3000     // Collect each variable with a DBG_VALUE in this block.
3001     for (auto &idx : VTracker->Vars) {
3002       const auto &Var = idx.first;
3003       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3004       assert(ScopeLoc != nullptr);
3005       auto *Scope = LS.findLexicalScope(ScopeLoc);
3006 
3007       // No insts in scope -> shouldn't have been recorded.
3008       assert(Scope != nullptr);
3009 
3010       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3011       ScopeToVars[Scope].insert(Var);
3012       ScopeToBlocks[Scope].insert(VTracker->MBB);
3013       ScopeToDILocation[Scope] = ScopeLoc;
3014       ++VarAssignCount;
3015     }
3016   }
3017 
3018   bool Changed = false;
3019 
3020   // If we have an extremely large number of variable assignments and blocks,
3021   // bail out at this point. We've burnt some time doing analysis already,
3022   // however we should cut our losses.
3023   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3024       VarAssignCount > InputDbgValLimit) {
3025     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3026                       << " has " << MaxNumBlocks << " basic blocks and "
3027                       << VarAssignCount
3028                       << " variable assignments, exceeding limits.\n");
3029   } else {
3030     // Compute the extended ranges, iterating over scopes. There might be
3031     // something to be said for ordering them by size/locality, but that's for
3032     // the future. For each scope, solve the variable value problem, producing
3033     // a map of variables to values in SavedLiveIns.
3034     for (auto &P : ScopeToVars) {
3035       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
3036                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3037                    vlocs);
3038     }
3039 
3040     // Using the computed value locations and variable values for each block,
3041     // create the DBG_VALUE instructions representing the extended variable
3042     // locations.
3043     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3044 
3045     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3046     Changed = TTracker->Transfers.size() != 0;
3047   }
3048 
3049   // Common clean-up of memory.
3050   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3051     delete[] MOutLocs[Idx];
3052     delete[] MInLocs[Idx];
3053   }
3054   delete[] MOutLocs;
3055   delete[] MInLocs;
3056 
3057   delete MTracker;
3058   delete TTracker;
3059   MTracker = nullptr;
3060   VTracker = nullptr;
3061   TTracker = nullptr;
3062 
3063   ArtificialBlocks.clear();
3064   OrderToBB.clear();
3065   BBToOrder.clear();
3066   BBNumToRPO.clear();
3067   DebugInstrNumToInstr.clear();
3068   DebugPHINumToValue.clear();
3069 
3070   return Changed;
3071 }
3072 
3073 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3074   return new InstrRefBasedLDV();
3075 }
3076 
3077 namespace {
3078 class LDVSSABlock;
3079 class LDVSSAUpdater;
3080 
3081 // Pick a type to identify incoming block values as we construct SSA. We
3082 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3083 // expects to zero-initialize the type.
3084 typedef uint64_t BlockValueNum;
3085 
3086 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3087 /// this PHI is in, the value number it would have, and the expected incoming
3088 /// values from parent blocks.
3089 class LDVSSAPhi {
3090 public:
3091   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3092   LDVSSABlock *ParentBlock;
3093   BlockValueNum PHIValNum;
3094   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3095       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3096 
3097   LDVSSABlock *getParent() { return ParentBlock; }
3098 };
3099 
3100 /// Thin wrapper around a block predecessor iterator. Only difference from a
3101 /// normal block iterator is that it dereferences to an LDVSSABlock.
3102 class LDVSSABlockIterator {
3103 public:
3104   MachineBasicBlock::pred_iterator PredIt;
3105   LDVSSAUpdater &Updater;
3106 
3107   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3108                       LDVSSAUpdater &Updater)
3109       : PredIt(PredIt), Updater(Updater) {}
3110 
3111   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3112     return OtherIt.PredIt != PredIt;
3113   }
3114 
3115   LDVSSABlockIterator &operator++() {
3116     ++PredIt;
3117     return *this;
3118   }
3119 
3120   LDVSSABlock *operator*();
3121 };
3122 
3123 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3124 /// we need to track the PHI value(s) that we may have observed as necessary
3125 /// in this block.
3126 class LDVSSABlock {
3127 public:
3128   MachineBasicBlock &BB;
3129   LDVSSAUpdater &Updater;
3130   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3131   /// List of PHIs in this block. There should only ever be one.
3132   PHIListT PHIList;
3133 
3134   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3135       : BB(BB), Updater(Updater) {}
3136 
3137   LDVSSABlockIterator succ_begin() {
3138     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3139   }
3140 
3141   LDVSSABlockIterator succ_end() {
3142     return LDVSSABlockIterator(BB.succ_end(), Updater);
3143   }
3144 
3145   /// SSAUpdater has requested a PHI: create that within this block record.
3146   LDVSSAPhi *newPHI(BlockValueNum Value) {
3147     PHIList.emplace_back(Value, this);
3148     return &PHIList.back();
3149   }
3150 
3151   /// SSAUpdater wishes to know what PHIs already exist in this block.
3152   PHIListT &phis() { return PHIList; }
3153 };
3154 
3155 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3156 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3157 // SSAUpdaterTraits<LDVSSAUpdater>.
3158 class LDVSSAUpdater {
3159 public:
3160   /// Map of value numbers to PHI records.
3161   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3162   /// Map of which blocks generate Undef values -- blocks that are not
3163   /// dominated by any Def.
3164   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3165   /// Map of machine blocks to our own records of them.
3166   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3167   /// Machine location where any PHI must occur.
3168   LocIdx Loc;
3169   /// Table of live-in machine value numbers for blocks / locations.
3170   ValueIDNum **MLiveIns;
3171 
3172   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3173 
3174   void reset() {
3175     for (auto &Block : BlockMap)
3176       delete Block.second;
3177 
3178     PHIs.clear();
3179     UndefMap.clear();
3180     BlockMap.clear();
3181   }
3182 
3183   ~LDVSSAUpdater() { reset(); }
3184 
3185   /// For a given MBB, create a wrapper block for it. Stores it in the
3186   /// LDVSSAUpdater block map.
3187   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3188     auto it = BlockMap.find(BB);
3189     if (it == BlockMap.end()) {
3190       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3191       it = BlockMap.find(BB);
3192     }
3193     return it->second;
3194   }
3195 
3196   /// Find the live-in value number for the given block. Looks up the value at
3197   /// the PHI location on entry.
3198   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3199     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3200   }
3201 };
3202 
3203 LDVSSABlock *LDVSSABlockIterator::operator*() {
3204   return Updater.getSSALDVBlock(*PredIt);
3205 }
3206 
3207 #ifndef NDEBUG
3208 
3209 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3210   out << "SSALDVPHI " << PHI.PHIValNum;
3211   return out;
3212 }
3213 
3214 #endif
3215 
3216 } // namespace
3217 
3218 namespace llvm {
3219 
3220 /// Template specialization to give SSAUpdater access to CFG and value
3221 /// information. SSAUpdater calls methods in these traits, passing in the
3222 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3223 /// It also provides methods to create PHI nodes and track them.
3224 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3225 public:
3226   using BlkT = LDVSSABlock;
3227   using ValT = BlockValueNum;
3228   using PhiT = LDVSSAPhi;
3229   using BlkSucc_iterator = LDVSSABlockIterator;
3230 
3231   // Methods to access block successors -- dereferencing to our wrapper class.
3232   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3233   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3234 
3235   /// Iterator for PHI operands.
3236   class PHI_iterator {
3237   private:
3238     LDVSSAPhi *PHI;
3239     unsigned Idx;
3240 
3241   public:
3242     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3243         : PHI(P), Idx(0) {}
3244     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3245         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3246 
3247     PHI_iterator &operator++() {
3248       Idx++;
3249       return *this;
3250     }
3251     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3252     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3253 
3254     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3255 
3256     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3257   };
3258 
3259   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3260 
3261   static inline PHI_iterator PHI_end(PhiT *PHI) {
3262     return PHI_iterator(PHI, true);
3263   }
3264 
3265   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3266   /// vector.
3267   static void FindPredecessorBlocks(LDVSSABlock *BB,
3268                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3269     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3270       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3271   }
3272 
3273   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3274   /// register. For LiveDebugValues, represents a block identified as not having
3275   /// any DBG_PHI predecessors.
3276   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3277     // Create a value number for this block -- it needs to be unique and in the
3278     // "undef" collection, so that we know it's not real. Use a number
3279     // representing a PHI into this block.
3280     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3281     Updater->UndefMap[&BB->BB] = Num;
3282     return Num;
3283   }
3284 
3285   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3286   /// SSAUpdater will populate it with information about incoming values. The
3287   /// value number of this PHI is whatever the  machine value number problem
3288   /// solution determined it to be. This includes non-phi values if SSAUpdater
3289   /// tries to create a PHI where the incoming values are identical.
3290   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3291                                    LDVSSAUpdater *Updater) {
3292     BlockValueNum PHIValNum = Updater->getValue(BB);
3293     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3294     Updater->PHIs[PHIValNum] = PHI;
3295     return PHIValNum;
3296   }
3297 
3298   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3299   /// the specified predecessor block.
3300   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3301     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3302   }
3303 
3304   /// ValueIsPHI - Check if the instruction that defines the specified value
3305   /// is a PHI instruction.
3306   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3307     auto PHIIt = Updater->PHIs.find(Val);
3308     if (PHIIt == Updater->PHIs.end())
3309       return nullptr;
3310     return PHIIt->second;
3311   }
3312 
3313   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3314   /// operands, i.e., it was just added.
3315   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3316     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3317     if (PHI && PHI->IncomingValues.size() == 0)
3318       return PHI;
3319     return nullptr;
3320   }
3321 
3322   /// GetPHIValue - For the specified PHI instruction, return the value
3323   /// that it defines.
3324   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3325 };
3326 
3327 } // end namespace llvm
3328 
3329 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3330                                                       ValueIDNum **MLiveOuts,
3331                                                       ValueIDNum **MLiveIns,
3332                                                       MachineInstr &Here,
3333                                                       uint64_t InstrNum) {
3334   // Pick out records of DBG_PHI instructions that have been observed. If there
3335   // are none, then we cannot compute a value number.
3336   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3337                                     DebugPHINumToValue.end(), InstrNum);
3338   auto LowerIt = RangePair.first;
3339   auto UpperIt = RangePair.second;
3340 
3341   // No DBG_PHI means there can be no location.
3342   if (LowerIt == UpperIt)
3343     return None;
3344 
3345   // If there's only one DBG_PHI, then that is our value number.
3346   if (std::distance(LowerIt, UpperIt) == 1)
3347     return LowerIt->ValueRead;
3348 
3349   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3350 
3351   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3352   // technically possible for us to merge values in different registers in each
3353   // block, but highly unlikely that LLVM will generate such code after register
3354   // allocation.
3355   LocIdx Loc = LowerIt->ReadLoc;
3356 
3357   // We have several DBG_PHIs, and a use position (the Here inst). All each
3358   // DBG_PHI does is identify a value at a program position. We can treat each
3359   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3360   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3361   // determine which Def is used at the Use, and any PHIs that happen along
3362   // the way.
3363   // Adapted LLVM SSA Updater:
3364   LDVSSAUpdater Updater(Loc, MLiveIns);
3365   // Map of which Def or PHI is the current value in each block.
3366   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3367   // Set of PHIs that we have created along the way.
3368   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3369 
3370   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3371   // for the SSAUpdater.
3372   for (const auto &DBG_PHI : DBGPHIRange) {
3373     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3374     const ValueIDNum &Num = DBG_PHI.ValueRead;
3375     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3376   }
3377 
3378   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3379   const auto &AvailIt = AvailableValues.find(HereBlock);
3380   if (AvailIt != AvailableValues.end()) {
3381     // Actually, we already know what the value is -- the Use is in the same
3382     // block as the Def.
3383     return ValueIDNum::fromU64(AvailIt->second);
3384   }
3385 
3386   // Otherwise, we must use the SSA Updater. It will identify the value number
3387   // that we are to use, and the PHIs that must happen along the way.
3388   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3389   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3390   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3391 
3392   // We have the number for a PHI, or possibly live-through value, to be used
3393   // at this Use. There are a number of things we have to check about it though:
3394   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3395   //    Use was not completely dominated by DBG_PHIs and we should abort.
3396   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3397   //    we've left SSA form. Validate that the inputs to each PHI are the
3398   //    expected values.
3399   //  * Is a PHI we've created actually a merging of values, or are all the
3400   //    predecessor values the same, leading to a non-PHI machine value number?
3401   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3402   //    the ValidatedValues collection below to sort this out.
3403   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3404 
3405   // Define all the input DBG_PHI values in ValidatedValues.
3406   for (const auto &DBG_PHI : DBGPHIRange) {
3407     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3408     const ValueIDNum &Num = DBG_PHI.ValueRead;
3409     ValidatedValues.insert(std::make_pair(Block, Num));
3410   }
3411 
3412   // Sort PHIs to validate into RPO-order.
3413   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3414   for (auto &PHI : CreatedPHIs)
3415     SortedPHIs.push_back(PHI);
3416 
3417   std::sort(
3418       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3419         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3420       });
3421 
3422   for (auto &PHI : SortedPHIs) {
3423     ValueIDNum ThisBlockValueNum =
3424         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3425 
3426     // Are all these things actually defined?
3427     for (auto &PHIIt : PHI->IncomingValues) {
3428       // Any undef input means DBG_PHIs didn't dominate the use point.
3429       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3430         return None;
3431 
3432       ValueIDNum ValueToCheck;
3433       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3434 
3435       auto VVal = ValidatedValues.find(PHIIt.first);
3436       if (VVal == ValidatedValues.end()) {
3437         // We cross a loop, and this is a backedge. LLVMs tail duplication
3438         // happens so late that DBG_PHI instructions should not be able to
3439         // migrate into loops -- meaning we can only be live-through this
3440         // loop.
3441         ValueToCheck = ThisBlockValueNum;
3442       } else {
3443         // Does the block have as a live-out, in the location we're examining,
3444         // the value that we expect? If not, it's been moved or clobbered.
3445         ValueToCheck = VVal->second;
3446       }
3447 
3448       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3449         return None;
3450     }
3451 
3452     // Record this value as validated.
3453     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3454   }
3455 
3456   // All the PHIs are valid: we can return what the SSAUpdater said our value
3457   // number was.
3458   return Result;
3459 }
3460