1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Tracker for converting machine value locations and variable values into 152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 153 /// specifying block live-in locations and transfers within blocks. 154 /// 155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 156 /// and must be initialized with the set of variable values that are live-in to 157 /// the block. The caller then repeatedly calls process(). TransferTracker picks 158 /// out variable locations for the live-in variable values (if there _is_ a 159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 160 /// stepped through, transfers of values between machine locations are 161 /// identified and if profitable, a DBG_VALUE created. 162 /// 163 /// This is where debug use-before-defs would be resolved: a variable with an 164 /// unavailable value could materialize in the middle of a block, when the 165 /// value becomes available. Or, we could detect clobbers and re-specify the 166 /// variable in a backup location. (XXX these are unimplemented). 167 class TransferTracker { 168 public: 169 const TargetInstrInfo *TII; 170 const TargetLowering *TLI; 171 /// This machine location tracker is assumed to always contain the up-to-date 172 /// value mapping for all machine locations. TransferTracker only reads 173 /// information from it. (XXX make it const?) 174 MLocTracker *MTracker; 175 MachineFunction &MF; 176 bool ShouldEmitDebugEntryValues; 177 178 /// Record of all changes in variable locations at a block position. Awkwardly 179 /// we allow inserting either before or after the point: MBB != nullptr 180 /// indicates it's before, otherwise after. 181 struct Transfer { 182 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 183 MachineBasicBlock *MBB; /// non-null if we should insert after. 184 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 185 }; 186 187 struct LocAndProperties { 188 LocIdx Loc; 189 DbgValueProperties Properties; 190 }; 191 192 /// Collection of transfers (DBG_VALUEs) to be inserted. 193 SmallVector<Transfer, 32> Transfers; 194 195 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 196 /// between TransferTrackers view of variable locations and MLocTrackers. For 197 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 198 /// does not. 199 SmallVector<ValueIDNum, 32> VarLocs; 200 201 /// Map from LocIdxes to which DebugVariables are based that location. 202 /// Mantained while stepping through the block. Not accurate if 203 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 204 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 205 206 /// Map from DebugVariable to it's current location and qualifying meta 207 /// information. To be used in conjunction with ActiveMLocs to construct 208 /// enough information for the DBG_VALUEs for a particular LocIdx. 209 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 210 211 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 212 SmallVector<MachineInstr *, 4> PendingDbgValues; 213 214 /// Record of a use-before-def: created when a value that's live-in to the 215 /// current block isn't available in any machine location, but it will be 216 /// defined in this block. 217 struct UseBeforeDef { 218 /// Value of this variable, def'd in block. 219 ValueIDNum ID; 220 /// Identity of this variable. 221 DebugVariable Var; 222 /// Additional variable properties. 223 DbgValueProperties Properties; 224 }; 225 226 /// Map from instruction index (within the block) to the set of UseBeforeDefs 227 /// that become defined at that instruction. 228 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 229 230 /// The set of variables that are in UseBeforeDefs and can become a location 231 /// once the relevant value is defined. An element being erased from this 232 /// collection prevents the use-before-def materializing. 233 DenseSet<DebugVariable> UseBeforeDefVariables; 234 235 const TargetRegisterInfo &TRI; 236 const BitVector &CalleeSavedRegs; 237 238 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 239 MachineFunction &MF, const TargetRegisterInfo &TRI, 240 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 241 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 242 CalleeSavedRegs(CalleeSavedRegs) { 243 TLI = MF.getSubtarget().getTargetLowering(); 244 auto &TM = TPC.getTM<TargetMachine>(); 245 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 246 } 247 248 /// Load object with live-in variable values. \p mlocs contains the live-in 249 /// values in each machine location, while \p vlocs the live-in variable 250 /// values. This method picks variable locations for the live-in variables, 251 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 252 /// object fields to track variable locations as we step through the block. 253 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 254 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 255 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 256 unsigned NumLocs) { 257 ActiveMLocs.clear(); 258 ActiveVLocs.clear(); 259 VarLocs.clear(); 260 VarLocs.reserve(NumLocs); 261 UseBeforeDefs.clear(); 262 UseBeforeDefVariables.clear(); 263 264 auto isCalleeSaved = [&](LocIdx L) { 265 unsigned Reg = MTracker->LocIdxToLocID[L]; 266 if (Reg >= MTracker->NumRegs) 267 return false; 268 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 269 if (CalleeSavedRegs.test(*RAI)) 270 return true; 271 return false; 272 }; 273 274 // Map of the preferred location for each value. 275 std::map<ValueIDNum, LocIdx> ValueToLoc; 276 ActiveMLocs.reserve(VLocs.size()); 277 ActiveVLocs.reserve(VLocs.size()); 278 279 // Produce a map of value numbers to the current machine locs they live 280 // in. When emulating VarLocBasedImpl, there should only be one 281 // location; when not, we get to pick. 282 for (auto Location : MTracker->locations()) { 283 LocIdx Idx = Location.Idx; 284 ValueIDNum &VNum = MLocs[Idx.asU64()]; 285 VarLocs.push_back(VNum); 286 auto it = ValueToLoc.find(VNum); 287 // In order of preference, pick: 288 // * Callee saved registers, 289 // * Other registers, 290 // * Spill slots. 291 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 292 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 293 // Insert, or overwrite if insertion failed. 294 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 295 if (!PrefLocRes.second) 296 PrefLocRes.first->second = Idx; 297 } 298 } 299 300 // Now map variables to their picked LocIdxes. 301 for (auto Var : VLocs) { 302 if (Var.second.Kind == DbgValue::Const) { 303 PendingDbgValues.push_back( 304 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 305 continue; 306 } 307 308 // If the value has no location, we can't make a variable location. 309 const ValueIDNum &Num = Var.second.ID; 310 auto ValuesPreferredLoc = ValueToLoc.find(Num); 311 if (ValuesPreferredLoc == ValueToLoc.end()) { 312 // If it's a def that occurs in this block, register it as a 313 // use-before-def to be resolved as we step through the block. 314 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 315 addUseBeforeDef(Var.first, Var.second.Properties, Num); 316 else 317 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 318 continue; 319 } 320 321 LocIdx M = ValuesPreferredLoc->second; 322 auto NewValue = LocAndProperties{M, Var.second.Properties}; 323 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 324 if (!Result.second) 325 Result.first->second = NewValue; 326 ActiveMLocs[M].insert(Var.first); 327 PendingDbgValues.push_back( 328 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 329 } 330 flushDbgValues(MBB.begin(), &MBB); 331 } 332 333 /// Record that \p Var has value \p ID, a value that becomes available 334 /// later in the function. 335 void addUseBeforeDef(const DebugVariable &Var, 336 const DbgValueProperties &Properties, ValueIDNum ID) { 337 UseBeforeDef UBD = {ID, Var, Properties}; 338 UseBeforeDefs[ID.getInst()].push_back(UBD); 339 UseBeforeDefVariables.insert(Var); 340 } 341 342 /// After the instruction at index \p Inst and position \p pos has been 343 /// processed, check whether it defines a variable value in a use-before-def. 344 /// If so, and the variable value hasn't changed since the start of the 345 /// block, create a DBG_VALUE. 346 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 347 auto MIt = UseBeforeDefs.find(Inst); 348 if (MIt == UseBeforeDefs.end()) 349 return; 350 351 for (auto &Use : MIt->second) { 352 LocIdx L = Use.ID.getLoc(); 353 354 // If something goes very wrong, we might end up labelling a COPY 355 // instruction or similar with an instruction number, where it doesn't 356 // actually define a new value, instead it moves a value. In case this 357 // happens, discard. 358 if (MTracker->readMLoc(L) != Use.ID) 359 continue; 360 361 // If a different debug instruction defined the variable value / location 362 // since the start of the block, don't materialize this use-before-def. 363 if (!UseBeforeDefVariables.count(Use.Var)) 364 continue; 365 366 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 367 } 368 flushDbgValues(pos, nullptr); 369 } 370 371 /// Helper to move created DBG_VALUEs into Transfers collection. 372 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 373 if (PendingDbgValues.size() == 0) 374 return; 375 376 // Pick out the instruction start position. 377 MachineBasicBlock::instr_iterator BundleStart; 378 if (MBB && Pos == MBB->begin()) 379 BundleStart = MBB->instr_begin(); 380 else 381 BundleStart = getBundleStart(Pos->getIterator()); 382 383 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 384 PendingDbgValues.clear(); 385 } 386 387 bool isEntryValueVariable(const DebugVariable &Var, 388 const DIExpression *Expr) const { 389 if (!Var.getVariable()->isParameter()) 390 return false; 391 392 if (Var.getInlinedAt()) 393 return false; 394 395 if (Expr->getNumElements() > 0) 396 return false; 397 398 return true; 399 } 400 401 bool isEntryValueValue(const ValueIDNum &Val) const { 402 // Must be in entry block (block number zero), and be a PHI / live-in value. 403 if (Val.getBlock() || !Val.isPHI()) 404 return false; 405 406 // Entry values must enter in a register. 407 if (MTracker->isSpill(Val.getLoc())) 408 return false; 409 410 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 411 Register FP = TRI.getFrameRegister(MF); 412 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 413 return Reg != SP && Reg != FP; 414 } 415 416 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 417 const ValueIDNum &Num) { 418 // Is this variable location a candidate to be an entry value. First, 419 // should we be trying this at all? 420 if (!ShouldEmitDebugEntryValues) 421 return false; 422 423 // Is the variable appropriate for entry values (i.e., is a parameter). 424 if (!isEntryValueVariable(Var, Prop.DIExpr)) 425 return false; 426 427 // Is the value assigned to this variable still the entry value? 428 if (!isEntryValueValue(Num)) 429 return false; 430 431 // Emit a variable location using an entry value expression. 432 DIExpression *NewExpr = 433 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 434 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 435 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 436 437 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 438 return true; 439 } 440 441 /// Change a variable value after encountering a DBG_VALUE inside a block. 442 void redefVar(const MachineInstr &MI) { 443 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 444 MI.getDebugLoc()->getInlinedAt()); 445 DbgValueProperties Properties(MI); 446 447 const MachineOperand &MO = MI.getOperand(0); 448 449 // Ignore non-register locations, we don't transfer those. 450 if (!MO.isReg() || MO.getReg() == 0) { 451 auto It = ActiveVLocs.find(Var); 452 if (It != ActiveVLocs.end()) { 453 ActiveMLocs[It->second.Loc].erase(Var); 454 ActiveVLocs.erase(It); 455 } 456 // Any use-before-defs no longer apply. 457 UseBeforeDefVariables.erase(Var); 458 return; 459 } 460 461 Register Reg = MO.getReg(); 462 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 463 redefVar(MI, Properties, NewLoc); 464 } 465 466 /// Handle a change in variable location within a block. Terminate the 467 /// variables current location, and record the value it now refers to, so 468 /// that we can detect location transfers later on. 469 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 470 Optional<LocIdx> OptNewLoc) { 471 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 472 MI.getDebugLoc()->getInlinedAt()); 473 // Any use-before-defs no longer apply. 474 UseBeforeDefVariables.erase(Var); 475 476 // Erase any previous location, 477 auto It = ActiveVLocs.find(Var); 478 if (It != ActiveVLocs.end()) 479 ActiveMLocs[It->second.Loc].erase(Var); 480 481 // If there _is_ no new location, all we had to do was erase. 482 if (!OptNewLoc) 483 return; 484 LocIdx NewLoc = *OptNewLoc; 485 486 // Check whether our local copy of values-by-location in #VarLocs is out of 487 // date. Wipe old tracking data for the location if it's been clobbered in 488 // the meantime. 489 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 490 for (auto &P : ActiveMLocs[NewLoc]) { 491 ActiveVLocs.erase(P); 492 } 493 ActiveMLocs[NewLoc.asU64()].clear(); 494 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 495 } 496 497 ActiveMLocs[NewLoc].insert(Var); 498 if (It == ActiveVLocs.end()) { 499 ActiveVLocs.insert( 500 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 501 } else { 502 It->second.Loc = NewLoc; 503 It->second.Properties = Properties; 504 } 505 } 506 507 /// Account for a location \p mloc being clobbered. Examine the variable 508 /// locations that will be terminated: and try to recover them by using 509 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 510 /// explicitly terminate a location if it can't be recovered. 511 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 512 bool MakeUndef = true) { 513 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 514 if (ActiveMLocIt == ActiveMLocs.end()) 515 return; 516 517 // What was the old variable value? 518 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 519 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 520 521 // Examine the remaining variable locations: if we can find the same value 522 // again, we can recover the location. 523 Optional<LocIdx> NewLoc = None; 524 for (auto Loc : MTracker->locations()) 525 if (Loc.Value == OldValue) 526 NewLoc = Loc.Idx; 527 528 // If there is no location, and we weren't asked to make the variable 529 // explicitly undef, then stop here. 530 if (!NewLoc && !MakeUndef) { 531 // Try and recover a few more locations with entry values. 532 for (auto &Var : ActiveMLocIt->second) { 533 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 534 recoverAsEntryValue(Var, Prop, OldValue); 535 } 536 flushDbgValues(Pos, nullptr); 537 return; 538 } 539 540 // Examine all the variables based on this location. 541 DenseSet<DebugVariable> NewMLocs; 542 for (auto &Var : ActiveMLocIt->second) { 543 auto ActiveVLocIt = ActiveVLocs.find(Var); 544 // Re-state the variable location: if there's no replacement then NewLoc 545 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 546 // identifying the alternative location will be emitted. 547 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 548 DbgValueProperties Properties(Expr, false); 549 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 550 551 // Update machine locations <=> variable locations maps. Defer updating 552 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 553 if (!NewLoc) { 554 ActiveVLocs.erase(ActiveVLocIt); 555 } else { 556 ActiveVLocIt->second.Loc = *NewLoc; 557 NewMLocs.insert(Var); 558 } 559 } 560 561 // Commit any deferred ActiveMLoc changes. 562 if (!NewMLocs.empty()) 563 for (auto &Var : NewMLocs) 564 ActiveMLocs[*NewLoc].insert(Var); 565 566 // We lazily track what locations have which values; if we've found a new 567 // location for the clobbered value, remember it. 568 if (NewLoc) 569 VarLocs[NewLoc->asU64()] = OldValue; 570 571 flushDbgValues(Pos, nullptr); 572 573 // Re-find ActiveMLocIt, iterator could have been invalidated. 574 ActiveMLocIt = ActiveMLocs.find(MLoc); 575 ActiveMLocIt->second.clear(); 576 } 577 578 /// Transfer variables based on \p Src to be based on \p Dst. This handles 579 /// both register copies as well as spills and restores. Creates DBG_VALUEs 580 /// describing the movement. 581 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 582 // Does Src still contain the value num we expect? If not, it's been 583 // clobbered in the meantime, and our variable locations are stale. 584 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 585 return; 586 587 // assert(ActiveMLocs[Dst].size() == 0); 588 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 589 590 // Move set of active variables from one location to another. 591 auto MovingVars = ActiveMLocs[Src]; 592 ActiveMLocs[Dst] = MovingVars; 593 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 594 595 // For each variable based on Src; create a location at Dst. 596 for (auto &Var : MovingVars) { 597 auto ActiveVLocIt = ActiveVLocs.find(Var); 598 assert(ActiveVLocIt != ActiveVLocs.end()); 599 ActiveVLocIt->second.Loc = Dst; 600 601 MachineInstr *MI = 602 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 603 PendingDbgValues.push_back(MI); 604 } 605 ActiveMLocs[Src].clear(); 606 flushDbgValues(Pos, nullptr); 607 608 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 609 // about the old location. 610 if (EmulateOldLDV) 611 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 612 } 613 614 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 615 const DebugVariable &Var, 616 const DbgValueProperties &Properties) { 617 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 618 Var.getVariable()->getScope(), 619 const_cast<DILocation *>(Var.getInlinedAt())); 620 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 621 MIB.add(MO); 622 if (Properties.Indirect) 623 MIB.addImm(0); 624 else 625 MIB.addReg(0); 626 MIB.addMetadata(Var.getVariable()); 627 MIB.addMetadata(Properties.DIExpr); 628 return MIB; 629 } 630 }; 631 632 //===----------------------------------------------------------------------===// 633 // Implementation 634 //===----------------------------------------------------------------------===// 635 636 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 637 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; 638 639 #ifndef NDEBUG 640 void DbgValue::dump(const MLocTracker *MTrack) const { 641 if (Kind == Const) { 642 MO->dump(); 643 } else if (Kind == NoVal) { 644 dbgs() << "NoVal(" << BlockNo << ")"; 645 } else if (Kind == VPHI) { 646 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 647 } else { 648 assert(Kind == Def); 649 dbgs() << MTrack->IDAsString(ID); 650 } 651 if (Properties.Indirect) 652 dbgs() << " indir"; 653 if (Properties.DIExpr) 654 dbgs() << " " << *Properties.DIExpr; 655 } 656 #endif 657 658 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 659 const TargetRegisterInfo &TRI, 660 const TargetLowering &TLI) 661 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 662 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 663 NumRegs = TRI.getNumRegs(); 664 reset(); 665 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 666 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 667 668 // Always track SP. This avoids the implicit clobbering caused by regmasks 669 // from affectings its values. (LiveDebugValues disbelieves calls and 670 // regmasks that claim to clobber SP). 671 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 672 if (SP) { 673 unsigned ID = getLocID(SP); 674 (void)lookupOrTrackRegister(ID); 675 676 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 677 SPAliases.insert(*RAI); 678 } 679 680 // Build some common stack positions -- full registers being spilt to the 681 // stack. 682 StackSlotIdxes.insert({{8, 0}, 0}); 683 StackSlotIdxes.insert({{16, 0}, 1}); 684 StackSlotIdxes.insert({{32, 0}, 2}); 685 StackSlotIdxes.insert({{64, 0}, 3}); 686 StackSlotIdxes.insert({{128, 0}, 4}); 687 StackSlotIdxes.insert({{256, 0}, 5}); 688 StackSlotIdxes.insert({{512, 0}, 6}); 689 690 // Traverse all the subregister idxes, and ensure there's an index for them. 691 // Duplicates are no problem: we're interested in their position in the 692 // stack slot, we don't want to type the slot. 693 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 694 unsigned Size = TRI.getSubRegIdxSize(I); 695 unsigned Offs = TRI.getSubRegIdxOffset(I); 696 unsigned Idx = StackSlotIdxes.size(); 697 698 // Some subregs have -1, -2 and so forth fed into their fields, to mean 699 // special backend things. Ignore those. 700 if (Size > 60000 || Offs > 60000) 701 continue; 702 703 StackSlotIdxes.insert({{Size, Offs}, Idx}); 704 } 705 706 for (auto &Idx : StackSlotIdxes) 707 StackIdxesToPos[Idx.second] = Idx.first; 708 709 NumSlotIdxes = StackSlotIdxes.size(); 710 } 711 712 LocIdx MLocTracker::trackRegister(unsigned ID) { 713 assert(ID != 0); 714 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 715 LocIdxToIDNum.grow(NewIdx); 716 LocIdxToLocID.grow(NewIdx); 717 718 // Default: it's an mphi. 719 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 720 // Was this reg ever touched by a regmask? 721 for (const auto &MaskPair : reverse(Masks)) { 722 if (MaskPair.first->clobbersPhysReg(ID)) { 723 // There was an earlier def we skipped. 724 ValNum = {CurBB, MaskPair.second, NewIdx}; 725 break; 726 } 727 } 728 729 LocIdxToIDNum[NewIdx] = ValNum; 730 LocIdxToLocID[NewIdx] = ID; 731 return NewIdx; 732 } 733 734 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 735 unsigned InstID) { 736 // Def any register we track have that isn't preserved. The regmask 737 // terminates the liveness of a register, meaning its value can't be 738 // relied upon -- we represent this by giving it a new value. 739 for (auto Location : locations()) { 740 unsigned ID = LocIdxToLocID[Location.Idx]; 741 // Don't clobber SP, even if the mask says it's clobbered. 742 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 743 defReg(ID, CurBB, InstID); 744 } 745 Masks.push_back(std::make_pair(MO, InstID)); 746 } 747 748 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 749 SpillLocationNo SpillID(SpillLocs.idFor(L)); 750 if (SpillID.id() == 0) { 751 // Spill location is untracked: create record for this one, and all 752 // subregister slots too. 753 SpillID = SpillLocationNo(SpillLocs.insert(L)); 754 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 755 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 756 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 757 LocIdxToIDNum.grow(Idx); 758 LocIdxToLocID.grow(Idx); 759 LocIDToLocIdx.push_back(Idx); 760 LocIdxToLocID[Idx] = L; 761 // Initialize to PHI value; corresponds to the location's live-in value 762 // during transfer function construction. 763 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 764 } 765 } 766 return SpillID; 767 } 768 769 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 770 unsigned ID = LocIdxToLocID[Idx]; 771 if (ID >= NumRegs) { 772 StackSlotPos Pos = locIDToSpillIdx(ID); 773 ID -= NumRegs; 774 unsigned Slot = ID / NumSlotIdxes; 775 return Twine("slot ") 776 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 777 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 778 .str(); 779 } else { 780 return TRI.getRegAsmName(ID).str(); 781 } 782 } 783 784 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 785 std::string DefName = LocIdxToName(Num.getLoc()); 786 return Num.asString(DefName); 787 } 788 789 #ifndef NDEBUG 790 LLVM_DUMP_METHOD void MLocTracker::dump() { 791 for (auto Location : locations()) { 792 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 793 std::string DefName = Location.Value.asString(MLocName); 794 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 795 } 796 } 797 798 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 799 for (auto Location : locations()) { 800 std::string foo = LocIdxToName(Location.Idx); 801 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 802 } 803 } 804 #endif 805 806 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 807 const DebugVariable &Var, 808 const DbgValueProperties &Properties) { 809 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 810 Var.getVariable()->getScope(), 811 const_cast<DILocation *>(Var.getInlinedAt())); 812 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 813 814 const DIExpression *Expr = Properties.DIExpr; 815 if (!MLoc) { 816 // No location -> DBG_VALUE $noreg 817 MIB.addReg(0); 818 MIB.addReg(0); 819 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 820 unsigned LocID = LocIdxToLocID[*MLoc]; 821 SpillLocationNo SpillID = locIDToSpill(LocID); 822 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 823 unsigned short Offset = StackIdx.second; 824 825 // TODO: support variables that are located in spill slots, with non-zero 826 // offsets from the start of the spill slot. It would require some more 827 // complex DIExpression calculations. This doesn't seem to be produced by 828 // LLVM right now, so don't try and support it. 829 // Accept no-subregister slots and subregisters where the offset is zero. 830 // The consumer should already have type information to work out how large 831 // the variable is. 832 if (Offset == 0) { 833 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 834 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 835 Spill.SpillOffset); 836 unsigned Base = Spill.SpillBase; 837 MIB.addReg(Base); 838 MIB.addImm(0); 839 } else { 840 // This is a stack location with a weird subregister offset: emit an undef 841 // DBG_VALUE instead. 842 MIB.addReg(0); 843 MIB.addReg(0); 844 } 845 } else { 846 // Non-empty, non-stack slot, must be a plain register. 847 unsigned LocID = LocIdxToLocID[*MLoc]; 848 MIB.addReg(LocID); 849 if (Properties.Indirect) 850 MIB.addImm(0); 851 else 852 MIB.addReg(0); 853 } 854 855 MIB.addMetadata(Var.getVariable()); 856 MIB.addMetadata(Expr); 857 return MIB; 858 } 859 860 /// Default construct and initialize the pass. 861 InstrRefBasedLDV::InstrRefBasedLDV() {} 862 863 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 864 unsigned Reg = MTracker->LocIdxToLocID[L]; 865 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 866 if (CalleeSavedRegs.test(*RAI)) 867 return true; 868 return false; 869 } 870 871 //===----------------------------------------------------------------------===// 872 // Debug Range Extension Implementation 873 //===----------------------------------------------------------------------===// 874 875 #ifndef NDEBUG 876 // Something to restore in the future. 877 // void InstrRefBasedLDV::printVarLocInMBB(..) 878 #endif 879 880 SpillLocationNo 881 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 882 assert(MI.hasOneMemOperand() && 883 "Spill instruction does not have exactly one memory operand?"); 884 auto MMOI = MI.memoperands_begin(); 885 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 886 assert(PVal->kind() == PseudoSourceValue::FixedStack && 887 "Inconsistent memory operand in spill instruction"); 888 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 889 const MachineBasicBlock *MBB = MI.getParent(); 890 Register Reg; 891 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 892 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 893 } 894 895 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 896 SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI); 897 898 // Where in the stack slot is this value defined -- i.e., what size of value 899 // is this? An important question, because it could be loaded into a register 900 // from the stack at some point. Happily the memory operand will tell us 901 // the size written to the stack. 902 auto *MemOperand = *MI.memoperands_begin(); 903 unsigned SizeInBits = MemOperand->getSizeInBits(); 904 905 // Find that position in the stack indexes we're tracking. 906 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 907 if (IdxIt == MTracker->StackSlotIdxes.end()) 908 // That index is not tracked. This is suprising, and unlikely to ever 909 // occur, but the safe action is to indicate the variable is optimised out. 910 return None; 911 912 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second); 913 return MTracker->getSpillMLoc(SpillID); 914 } 915 916 /// End all previous ranges related to @MI and start a new range from @MI 917 /// if it is a DBG_VALUE instr. 918 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 919 if (!MI.isDebugValue()) 920 return false; 921 922 const DILocalVariable *Var = MI.getDebugVariable(); 923 const DIExpression *Expr = MI.getDebugExpression(); 924 const DILocation *DebugLoc = MI.getDebugLoc(); 925 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 926 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 927 "Expected inlined-at fields to agree"); 928 929 DebugVariable V(Var, Expr, InlinedAt); 930 DbgValueProperties Properties(MI); 931 932 // If there are no instructions in this lexical scope, do no location tracking 933 // at all, this variable shouldn't get a legitimate location range. 934 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 935 if (Scope == nullptr) 936 return true; // handled it; by doing nothing 937 938 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 939 // contribute to locations in this block, but don't propagate further. 940 // Interpret it like a DBG_VALUE $noreg. 941 if (MI.isDebugValueList()) { 942 if (VTracker) 943 VTracker->defVar(MI, Properties, None); 944 if (TTracker) 945 TTracker->redefVar(MI, Properties, None); 946 return true; 947 } 948 949 const MachineOperand &MO = MI.getOperand(0); 950 951 // MLocTracker needs to know that this register is read, even if it's only 952 // read by a debug inst. 953 if (MO.isReg() && MO.getReg() != 0) 954 (void)MTracker->readReg(MO.getReg()); 955 956 // If we're preparing for the second analysis (variables), the machine value 957 // locations are already solved, and we report this DBG_VALUE and the value 958 // it refers to to VLocTracker. 959 if (VTracker) { 960 if (MO.isReg()) { 961 // Feed defVar the new variable location, or if this is a 962 // DBG_VALUE $noreg, feed defVar None. 963 if (MO.getReg()) 964 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 965 else 966 VTracker->defVar(MI, Properties, None); 967 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 968 MI.getOperand(0).isCImm()) { 969 VTracker->defVar(MI, MI.getOperand(0)); 970 } 971 } 972 973 // If performing final tracking of transfers, report this variable definition 974 // to the TransferTracker too. 975 if (TTracker) 976 TTracker->redefVar(MI); 977 return true; 978 } 979 980 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 981 ValueIDNum **MLiveOuts, 982 ValueIDNum **MLiveIns) { 983 if (!MI.isDebugRef()) 984 return false; 985 986 // Only handle this instruction when we are building the variable value 987 // transfer function. 988 if (!VTracker) 989 return false; 990 991 unsigned InstNo = MI.getOperand(0).getImm(); 992 unsigned OpNo = MI.getOperand(1).getImm(); 993 994 const DILocalVariable *Var = MI.getDebugVariable(); 995 const DIExpression *Expr = MI.getDebugExpression(); 996 const DILocation *DebugLoc = MI.getDebugLoc(); 997 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 998 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 999 "Expected inlined-at fields to agree"); 1000 1001 DebugVariable V(Var, Expr, InlinedAt); 1002 1003 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1004 if (Scope == nullptr) 1005 return true; // Handled by doing nothing. This variable is never in scope. 1006 1007 const MachineFunction &MF = *MI.getParent()->getParent(); 1008 1009 // Various optimizations may have happened to the value during codegen, 1010 // recorded in the value substitution table. Apply any substitutions to 1011 // the instruction / operand number in this DBG_INSTR_REF, and collect 1012 // any subregister extractions performed during optimization. 1013 1014 // Create dummy substitution with Src set, for lookup. 1015 auto SoughtSub = 1016 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1017 1018 SmallVector<unsigned, 4> SeenSubregs; 1019 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1020 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1021 LowerBoundIt->Src == SoughtSub.Src) { 1022 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1023 SoughtSub.Src = LowerBoundIt->Dest; 1024 if (unsigned Subreg = LowerBoundIt->Subreg) 1025 SeenSubregs.push_back(Subreg); 1026 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1027 } 1028 1029 // Default machine value number is <None> -- if no instruction defines 1030 // the corresponding value, it must have been optimized out. 1031 Optional<ValueIDNum> NewID = None; 1032 1033 // Try to lookup the instruction number, and find the machine value number 1034 // that it defines. It could be an instruction, or a PHI. 1035 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1036 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1037 DebugPHINumToValue.end(), InstNo); 1038 if (InstrIt != DebugInstrNumToInstr.end()) { 1039 const MachineInstr &TargetInstr = *InstrIt->second.first; 1040 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1041 1042 // Pick out the designated operand. It might be a memory reference, if 1043 // a register def was folded into a stack store. 1044 if (OpNo == MachineFunction::DebugOperandMemNumber && 1045 TargetInstr.hasOneMemOperand()) { 1046 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1047 if (L) 1048 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1049 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1050 assert(OpNo < TargetInstr.getNumOperands()); 1051 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1052 1053 // Today, this can only be a register. 1054 assert(MO.isReg() && MO.isDef()); 1055 1056 unsigned LocID = MTracker->getLocID(MO.getReg()); 1057 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1058 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1059 } 1060 // else: NewID is left as None. 1061 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1062 // It's actually a PHI value. Which value it is might not be obvious, use 1063 // the resolver helper to find out. 1064 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1065 MI, InstNo); 1066 } 1067 1068 // Apply any subregister extractions, in reverse. We might have seen code 1069 // like this: 1070 // CALL64 @foo, implicit-def $rax 1071 // %0:gr64 = COPY $rax 1072 // %1:gr32 = COPY %0.sub_32bit 1073 // %2:gr16 = COPY %1.sub_16bit 1074 // %3:gr8 = COPY %2.sub_8bit 1075 // In which case each copy would have been recorded as a substitution with 1076 // a subregister qualifier. Apply those qualifiers now. 1077 if (NewID && !SeenSubregs.empty()) { 1078 unsigned Offset = 0; 1079 unsigned Size = 0; 1080 1081 // Look at each subregister that we passed through, and progressively 1082 // narrow in, accumulating any offsets that occur. Substitutions should 1083 // only ever be the same or narrower width than what they read from; 1084 // iterate in reverse order so that we go from wide to small. 1085 for (unsigned Subreg : reverse(SeenSubregs)) { 1086 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1087 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1088 Offset += ThisOffset; 1089 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1090 } 1091 1092 // If that worked, look for an appropriate subregister with the register 1093 // where the define happens. Don't look at values that were defined during 1094 // a stack write: we can't currently express register locations within 1095 // spills. 1096 LocIdx L = NewID->getLoc(); 1097 if (NewID && !MTracker->isSpill(L)) { 1098 // Find the register class for the register where this def happened. 1099 // FIXME: no index for this? 1100 Register Reg = MTracker->LocIdxToLocID[L]; 1101 const TargetRegisterClass *TRC = nullptr; 1102 for (auto *TRCI : TRI->regclasses()) 1103 if (TRCI->contains(Reg)) 1104 TRC = TRCI; 1105 assert(TRC && "Couldn't find target register class?"); 1106 1107 // If the register we have isn't the right size or in the right place, 1108 // Try to find a subregister inside it. 1109 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1110 if (Size != MainRegSize || Offset) { 1111 // Enumerate all subregisters, searching. 1112 Register NewReg = 0; 1113 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1114 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1115 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1116 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1117 if (SubregSize == Size && SubregOffset == Offset) { 1118 NewReg = *SRI; 1119 break; 1120 } 1121 } 1122 1123 // If we didn't find anything: there's no way to express our value. 1124 if (!NewReg) { 1125 NewID = None; 1126 } else { 1127 // Re-state the value as being defined within the subregister 1128 // that we found. 1129 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1130 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1131 } 1132 } 1133 } else { 1134 // If we can't handle subregisters, unset the new value. 1135 NewID = None; 1136 } 1137 } 1138 1139 // We, we have a value number or None. Tell the variable value tracker about 1140 // it. The rest of this LiveDebugValues implementation acts exactly the same 1141 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1142 // aren't immediately available). 1143 DbgValueProperties Properties(Expr, false); 1144 VTracker->defVar(MI, Properties, NewID); 1145 1146 // If we're on the final pass through the function, decompose this INSTR_REF 1147 // into a plain DBG_VALUE. 1148 if (!TTracker) 1149 return true; 1150 1151 // Pick a location for the machine value number, if such a location exists. 1152 // (This information could be stored in TransferTracker to make it faster). 1153 Optional<LocIdx> FoundLoc = None; 1154 for (auto Location : MTracker->locations()) { 1155 LocIdx CurL = Location.Idx; 1156 ValueIDNum ID = MTracker->readMLoc(CurL); 1157 if (NewID && ID == NewID) { 1158 // If this is the first location with that value, pick it. Otherwise, 1159 // consider whether it's a "longer term" location. 1160 if (!FoundLoc) { 1161 FoundLoc = CurL; 1162 continue; 1163 } 1164 1165 if (MTracker->isSpill(CurL)) 1166 FoundLoc = CurL; // Spills are a longer term location. 1167 else if (!MTracker->isSpill(*FoundLoc) && 1168 !MTracker->isSpill(CurL) && 1169 !isCalleeSaved(*FoundLoc) && 1170 isCalleeSaved(CurL)) 1171 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1172 } 1173 } 1174 1175 // Tell transfer tracker that the variable value has changed. 1176 TTracker->redefVar(MI, Properties, FoundLoc); 1177 1178 // If there was a value with no location; but the value is defined in a 1179 // later instruction in this block, this is a block-local use-before-def. 1180 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1181 NewID->getInst() > CurInst) 1182 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1183 1184 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1185 // This DBG_VALUE is potentially a $noreg / undefined location, if 1186 // FoundLoc is None. 1187 // (XXX -- could morph the DBG_INSTR_REF in the future). 1188 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1189 TTracker->PendingDbgValues.push_back(DbgMI); 1190 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1191 return true; 1192 } 1193 1194 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1195 if (!MI.isDebugPHI()) 1196 return false; 1197 1198 // Analyse these only when solving the machine value location problem. 1199 if (VTracker || TTracker) 1200 return true; 1201 1202 // First operand is the value location, either a stack slot or register. 1203 // Second is the debug instruction number of the original PHI. 1204 const MachineOperand &MO = MI.getOperand(0); 1205 unsigned InstrNum = MI.getOperand(1).getImm(); 1206 1207 if (MO.isReg()) { 1208 // The value is whatever's currently in the register. Read and record it, 1209 // to be analysed later. 1210 Register Reg = MO.getReg(); 1211 ValueIDNum Num = MTracker->readReg(Reg); 1212 auto PHIRec = DebugPHIRecord( 1213 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1214 DebugPHINumToValue.push_back(PHIRec); 1215 1216 // Ensure this register is tracked. 1217 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1218 MTracker->lookupOrTrackRegister(*RAI); 1219 } else { 1220 // The value is whatever's in this stack slot. 1221 assert(MO.isFI()); 1222 unsigned FI = MO.getIndex(); 1223 1224 // If the stack slot is dead, then this was optimized away. 1225 // FIXME: stack slot colouring should account for slots that get merged. 1226 if (MFI->isDeadObjectIndex(FI)) 1227 return true; 1228 1229 // Identify this spill slot, ensure it's tracked. 1230 Register Base; 1231 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1232 SpillLoc SL = {Base, Offs}; 1233 SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL); 1234 1235 // Problem: what value should we extract from the stack? LLVM does not 1236 // record what size the last store to the slot was, and it would become 1237 // sketchy after stack slot colouring anyway. Take a look at what values 1238 // are stored on the stack, and pick the largest one that wasn't def'd 1239 // by a spill (i.e., the value most likely to have been def'd in a register 1240 // and then spilt. 1241 std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8}; 1242 Optional<ValueIDNum> Result = None; 1243 Optional<LocIdx> SpillLoc = None; 1244 for (unsigned int I = 0; I < CandidateSizes.size(); ++I) { 1245 unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0}); 1246 SpillLoc = MTracker->getSpillMLoc(SpillID); 1247 ValueIDNum Val = MTracker->readMLoc(*SpillLoc); 1248 // If this value was defined in it's own position, then it was probably 1249 // an aliasing index of a small value that was spilt. 1250 if (Val.getLoc() != SpillLoc->asU64()) { 1251 Result = Val; 1252 break; 1253 } 1254 } 1255 1256 // If we didn't find anything, we're probably looking at a PHI, or a memory 1257 // store folded into an instruction. FIXME: Take a guess that's it's 64 1258 // bits. This isn't ideal, but tracking the size that the spill is 1259 // "supposed" to be is more complex, and benefits a small number of 1260 // locations. 1261 if (!Result) { 1262 unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); 1263 SpillLoc = MTracker->getSpillMLoc(SpillID); 1264 Result = MTracker->readMLoc(*SpillLoc); 1265 } 1266 1267 // Record this DBG_PHI for later analysis. 1268 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc}); 1269 DebugPHINumToValue.push_back(DbgPHI); 1270 } 1271 1272 return true; 1273 } 1274 1275 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1276 // Meta Instructions do not affect the debug liveness of any register they 1277 // define. 1278 if (MI.isImplicitDef()) { 1279 // Except when there's an implicit def, and the location it's defining has 1280 // no value number. The whole point of an implicit def is to announce that 1281 // the register is live, without be specific about it's value. So define 1282 // a value if there isn't one already. 1283 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1284 // Has a legitimate value -> ignore the implicit def. 1285 if (Num.getLoc() != 0) 1286 return; 1287 // Otherwise, def it here. 1288 } else if (MI.isMetaInstruction()) 1289 return; 1290 1291 // We always ignore SP defines on call instructions, they don't actually 1292 // change the value of the stack pointer... except for win32's _chkstk. This 1293 // is rare: filter quickly for the common case (no stack adjustments, not a 1294 // call, etc). If it is a call that modifies SP, recognise the SP register 1295 // defs. 1296 bool CallChangesSP = false; 1297 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() && 1298 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data())) 1299 CallChangesSP = true; 1300 1301 // Test whether we should ignore a def of this register due to it being part 1302 // of the stack pointer. 1303 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { 1304 if (CallChangesSP) 1305 return false; 1306 return MI.isCall() && MTracker->SPAliases.count(R); 1307 }; 1308 1309 // Find the regs killed by MI, and find regmasks of preserved regs. 1310 // Max out the number of statically allocated elements in `DeadRegs`, as this 1311 // prevents fallback to std::set::count() operations. 1312 SmallSet<uint32_t, 32> DeadRegs; 1313 SmallVector<const uint32_t *, 4> RegMasks; 1314 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1315 for (const MachineOperand &MO : MI.operands()) { 1316 // Determine whether the operand is a register def. 1317 if (MO.isReg() && MO.isDef() && MO.getReg() && 1318 Register::isPhysicalRegister(MO.getReg()) && 1319 !IgnoreSPAlias(MO.getReg())) { 1320 // Remove ranges of all aliased registers. 1321 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1322 // FIXME: Can we break out of this loop early if no insertion occurs? 1323 DeadRegs.insert(*RAI); 1324 } else if (MO.isRegMask()) { 1325 RegMasks.push_back(MO.getRegMask()); 1326 RegMaskPtrs.push_back(&MO); 1327 } 1328 } 1329 1330 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1331 for (uint32_t DeadReg : DeadRegs) 1332 MTracker->defReg(DeadReg, CurBB, CurInst); 1333 1334 for (auto *MO : RegMaskPtrs) 1335 MTracker->writeRegMask(MO, CurBB, CurInst); 1336 1337 // If this instruction writes to a spill slot, def that slot. 1338 if (hasFoldedStackStore(MI)) { 1339 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1340 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1341 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1342 LocIdx L = MTracker->getSpillMLoc(SpillID); 1343 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1344 } 1345 } 1346 1347 if (!TTracker) 1348 return; 1349 1350 // When committing variable values to locations: tell transfer tracker that 1351 // we've clobbered things. It may be able to recover the variable from a 1352 // different location. 1353 1354 // Inform TTracker about any direct clobbers. 1355 for (uint32_t DeadReg : DeadRegs) { 1356 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1357 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1358 } 1359 1360 // Look for any clobbers performed by a register mask. Only test locations 1361 // that are actually being tracked. 1362 for (auto L : MTracker->locations()) { 1363 // Stack locations can't be clobbered by regmasks. 1364 if (MTracker->isSpill(L.Idx)) 1365 continue; 1366 1367 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1368 if (IgnoreSPAlias(Reg)) 1369 continue; 1370 1371 for (auto *MO : RegMaskPtrs) 1372 if (MO->clobbersPhysReg(Reg)) 1373 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1374 } 1375 1376 // Tell TTracker about any folded stack store. 1377 if (hasFoldedStackStore(MI)) { 1378 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1379 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1380 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1381 LocIdx L = MTracker->getSpillMLoc(SpillID); 1382 TTracker->clobberMloc(L, MI.getIterator(), true); 1383 } 1384 } 1385 } 1386 1387 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1388 // In all circumstances, re-def all aliases. It's definitely a new value now. 1389 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1390 MTracker->defReg(*RAI, CurBB, CurInst); 1391 1392 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1393 MTracker->setReg(DstRegNum, SrcValue); 1394 1395 // Copy subregisters from one location to another. 1396 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1397 unsigned SrcSubReg = SRI.getSubReg(); 1398 unsigned SubRegIdx = SRI.getSubRegIndex(); 1399 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1400 if (!DstSubReg) 1401 continue; 1402 1403 // Do copy. There are two matching subregisters, the source value should 1404 // have been def'd when the super-reg was, the latter might not be tracked 1405 // yet. 1406 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1407 // mphi values if it wasn't tracked. 1408 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1409 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1410 (void)SrcL; 1411 (void)DstL; 1412 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1413 1414 MTracker->setReg(DstSubReg, CpyValue); 1415 } 1416 } 1417 1418 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1419 MachineFunction *MF) { 1420 // TODO: Handle multiple stores folded into one. 1421 if (!MI.hasOneMemOperand()) 1422 return false; 1423 1424 // Reject any memory operand that's aliased -- we can't guarantee its value. 1425 auto MMOI = MI.memoperands_begin(); 1426 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1427 if (PVal->isAliased(MFI)) 1428 return false; 1429 1430 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1431 return false; // This is not a spill instruction, since no valid size was 1432 // returned from either function. 1433 1434 return true; 1435 } 1436 1437 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1438 MachineFunction *MF, unsigned &Reg) { 1439 if (!isSpillInstruction(MI, MF)) 1440 return false; 1441 1442 int FI; 1443 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1444 return Reg != 0; 1445 } 1446 1447 Optional<SpillLocationNo> 1448 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1449 MachineFunction *MF, unsigned &Reg) { 1450 if (!MI.hasOneMemOperand()) 1451 return None; 1452 1453 // FIXME: Handle folded restore instructions with more than one memory 1454 // operand. 1455 if (MI.getRestoreSize(TII)) { 1456 Reg = MI.getOperand(0).getReg(); 1457 return extractSpillBaseRegAndOffset(MI); 1458 } 1459 return None; 1460 } 1461 1462 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1463 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1464 // limitations under the new model. Therefore, when comparing them, compare 1465 // versions that don't attempt spills or restores at all. 1466 if (EmulateOldLDV) 1467 return false; 1468 1469 // Strictly limit ourselves to plain loads and stores, not all instructions 1470 // that can access the stack. 1471 int DummyFI = -1; 1472 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1473 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1474 return false; 1475 1476 MachineFunction *MF = MI.getMF(); 1477 unsigned Reg; 1478 1479 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1480 1481 // Strictly limit ourselves to plain loads and stores, not all instructions 1482 // that can access the stack. 1483 int FIDummy; 1484 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1485 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1486 return false; 1487 1488 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1489 // written to, terminate that variable location. The value in memory 1490 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1491 if (isSpillInstruction(MI, MF)) { 1492 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1493 1494 // Un-set this location and clobber, so that earlier locations don't 1495 // continue past this store. 1496 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1497 unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx); 1498 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1499 if (!MLoc) 1500 continue; 1501 1502 // We need to over-write the stack slot with something (here, a def at 1503 // this instruction) to ensure no values are preserved in this stack slot 1504 // after the spill. It also prevents TTracker from trying to recover the 1505 // location and re-installing it in the same place. 1506 ValueIDNum Def(CurBB, CurInst, *MLoc); 1507 MTracker->setMLoc(*MLoc, Def); 1508 if (TTracker) 1509 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1510 } 1511 } 1512 1513 // Try to recognise spill and restore instructions that may transfer a value. 1514 if (isLocationSpill(MI, MF, Reg)) { 1515 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1516 1517 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1518 auto ReadValue = MTracker->readReg(SrcReg); 1519 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1520 MTracker->setMLoc(DstLoc, ReadValue); 1521 1522 if (TTracker) { 1523 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1524 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1525 } 1526 }; 1527 1528 // Then, transfer subreg bits. 1529 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1530 // Ensure this reg is tracked, 1531 (void)MTracker->lookupOrTrackRegister(*SRI); 1532 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1533 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1534 DoTransfer(*SRI, SpillID); 1535 } 1536 1537 // Directly lookup size of main source reg, and transfer. 1538 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1539 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1540 DoTransfer(Reg, SpillID); 1541 } else { 1542 Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg); 1543 if (!OptLoc) 1544 return false; 1545 SpillLocationNo Loc = *OptLoc; 1546 1547 // Assumption: we're reading from the base of the stack slot, not some 1548 // offset into it. It seems very unlikely LLVM would ever generate 1549 // restores where this wasn't true. This then becomes a question of what 1550 // subregisters in the destination register line up with positions in the 1551 // stack slot. 1552 1553 // Def all registers that alias the destination. 1554 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1555 MTracker->defReg(*RAI, CurBB, CurInst); 1556 1557 // Now find subregisters within the destination register, and load values 1558 // from stack slot positions. 1559 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1560 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1561 auto ReadValue = MTracker->readMLoc(SrcIdx); 1562 MTracker->setReg(DestReg, ReadValue); 1563 1564 if (TTracker) { 1565 LocIdx DstLoc = MTracker->getRegMLoc(DestReg); 1566 TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator()); 1567 } 1568 }; 1569 1570 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1571 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1572 unsigned SpillID = MTracker->getLocID(Loc, Subreg); 1573 DoTransfer(*SRI, SpillID); 1574 } 1575 1576 // Directly look up this registers slot idx by size, and transfer. 1577 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1578 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1579 DoTransfer(Reg, SpillID); 1580 } 1581 return true; 1582 } 1583 1584 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1585 auto DestSrc = TII->isCopyInstr(MI); 1586 if (!DestSrc) 1587 return false; 1588 1589 const MachineOperand *DestRegOp = DestSrc->Destination; 1590 const MachineOperand *SrcRegOp = DestSrc->Source; 1591 1592 auto isCalleeSavedReg = [&](unsigned Reg) { 1593 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1594 if (CalleeSavedRegs.test(*RAI)) 1595 return true; 1596 return false; 1597 }; 1598 1599 Register SrcReg = SrcRegOp->getReg(); 1600 Register DestReg = DestRegOp->getReg(); 1601 1602 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1603 if (SrcReg == DestReg) 1604 return true; 1605 1606 // For emulating VarLocBasedImpl: 1607 // We want to recognize instructions where destination register is callee 1608 // saved register. If register that could be clobbered by the call is 1609 // included, there would be a great chance that it is going to be clobbered 1610 // soon. It is more likely that previous register, which is callee saved, is 1611 // going to stay unclobbered longer, even if it is killed. 1612 // 1613 // For InstrRefBasedImpl, we can track multiple locations per value, so 1614 // ignore this condition. 1615 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1616 return false; 1617 1618 // InstrRefBasedImpl only followed killing copies. 1619 if (EmulateOldLDV && !SrcRegOp->isKill()) 1620 return false; 1621 1622 // Copy MTracker info, including subregs if available. 1623 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1624 1625 // Only produce a transfer of DBG_VALUE within a block where old LDV 1626 // would have. We might make use of the additional value tracking in some 1627 // other way, later. 1628 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1629 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1630 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1631 1632 // VarLocBasedImpl would quit tracking the old location after copying. 1633 if (EmulateOldLDV && SrcReg != DestReg) 1634 MTracker->defReg(SrcReg, CurBB, CurInst); 1635 1636 // Finally, the copy might have clobbered variables based on the destination 1637 // register. Tell TTracker about it, in case a backup location exists. 1638 if (TTracker) { 1639 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1640 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1641 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1642 } 1643 } 1644 1645 return true; 1646 } 1647 1648 /// Accumulate a mapping between each DILocalVariable fragment and other 1649 /// fragments of that DILocalVariable which overlap. This reduces work during 1650 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1651 /// known-to-overlap fragments are present". 1652 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1653 /// fragment usage. 1654 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1655 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1656 MI.getDebugLoc()->getInlinedAt()); 1657 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1658 1659 // If this is the first sighting of this variable, then we are guaranteed 1660 // there are currently no overlapping fragments either. Initialize the set 1661 // of seen fragments, record no overlaps for the current one, and return. 1662 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1663 if (SeenIt == SeenFragments.end()) { 1664 SmallSet<FragmentInfo, 4> OneFragment; 1665 OneFragment.insert(ThisFragment); 1666 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1667 1668 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1669 return; 1670 } 1671 1672 // If this particular Variable/Fragment pair already exists in the overlap 1673 // map, it has already been accounted for. 1674 auto IsInOLapMap = 1675 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1676 if (!IsInOLapMap.second) 1677 return; 1678 1679 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1680 auto &AllSeenFragments = SeenIt->second; 1681 1682 // Otherwise, examine all other seen fragments for this variable, with "this" 1683 // fragment being a previously unseen fragment. Record any pair of 1684 // overlapping fragments. 1685 for (auto &ASeenFragment : AllSeenFragments) { 1686 // Does this previously seen fragment overlap? 1687 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1688 // Yes: Mark the current fragment as being overlapped. 1689 ThisFragmentsOverlaps.push_back(ASeenFragment); 1690 // Mark the previously seen fragment as being overlapped by the current 1691 // one. 1692 auto ASeenFragmentsOverlaps = 1693 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1694 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1695 "Previously seen var fragment has no vector of overlaps"); 1696 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1697 } 1698 } 1699 1700 AllSeenFragments.insert(ThisFragment); 1701 } 1702 1703 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1704 ValueIDNum **MLiveIns) { 1705 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1706 // none of these should we interpret it's register defs as new value 1707 // definitions. 1708 if (transferDebugValue(MI)) 1709 return; 1710 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1711 return; 1712 if (transferDebugPHI(MI)) 1713 return; 1714 if (transferRegisterCopy(MI)) 1715 return; 1716 if (transferSpillOrRestoreInst(MI)) 1717 return; 1718 transferRegisterDef(MI); 1719 } 1720 1721 void InstrRefBasedLDV::produceMLocTransferFunction( 1722 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1723 unsigned MaxNumBlocks) { 1724 // Because we try to optimize around register mask operands by ignoring regs 1725 // that aren't currently tracked, we set up something ugly for later: RegMask 1726 // operands that are seen earlier than the first use of a register, still need 1727 // to clobber that register in the transfer function. But this information 1728 // isn't actively recorded. Instead, we track each RegMask used in each block, 1729 // and accumulated the clobbered but untracked registers in each block into 1730 // the following bitvector. Later, if new values are tracked, we can add 1731 // appropriate clobbers. 1732 SmallVector<BitVector, 32> BlockMasks; 1733 BlockMasks.resize(MaxNumBlocks); 1734 1735 // Reserve one bit per register for the masks described above. 1736 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1737 for (auto &BV : BlockMasks) 1738 BV.resize(TRI->getNumRegs(), true); 1739 1740 // Step through all instructions and inhale the transfer function. 1741 for (auto &MBB : MF) { 1742 // Object fields that are read by trackers to know where we are in the 1743 // function. 1744 CurBB = MBB.getNumber(); 1745 CurInst = 1; 1746 1747 // Set all machine locations to a PHI value. For transfer function 1748 // production only, this signifies the live-in value to the block. 1749 MTracker->reset(); 1750 MTracker->setMPhis(CurBB); 1751 1752 // Step through each instruction in this block. 1753 for (auto &MI : MBB) { 1754 process(MI); 1755 // Also accumulate fragment map. 1756 if (MI.isDebugValue()) 1757 accumulateFragmentMap(MI); 1758 1759 // Create a map from the instruction number (if present) to the 1760 // MachineInstr and its position. 1761 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1762 auto InstrAndPos = std::make_pair(&MI, CurInst); 1763 auto InsertResult = 1764 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1765 1766 // There should never be duplicate instruction numbers. 1767 assert(InsertResult.second); 1768 (void)InsertResult; 1769 } 1770 1771 ++CurInst; 1772 } 1773 1774 // Produce the transfer function, a map of machine location to new value. If 1775 // any machine location has the live-in phi value from the start of the 1776 // block, it's live-through and doesn't need recording in the transfer 1777 // function. 1778 for (auto Location : MTracker->locations()) { 1779 LocIdx Idx = Location.Idx; 1780 ValueIDNum &P = Location.Value; 1781 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1782 continue; 1783 1784 // Insert-or-update. 1785 auto &TransferMap = MLocTransfer[CurBB]; 1786 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1787 if (!Result.second) 1788 Result.first->second = P; 1789 } 1790 1791 // Accumulate any bitmask operands into the clobberred reg mask for this 1792 // block. 1793 for (auto &P : MTracker->Masks) { 1794 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1795 } 1796 } 1797 1798 // Compute a bitvector of all the registers that are tracked in this block. 1799 BitVector UsedRegs(TRI->getNumRegs()); 1800 for (auto Location : MTracker->locations()) { 1801 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1802 // Ignore stack slots, and aliases of the stack pointer. 1803 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1804 continue; 1805 UsedRegs.set(ID); 1806 } 1807 1808 // Check that any regmask-clobber of a register that gets tracked, is not 1809 // live-through in the transfer function. It needs to be clobbered at the 1810 // very least. 1811 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1812 BitVector &BV = BlockMasks[I]; 1813 BV.flip(); 1814 BV &= UsedRegs; 1815 // This produces all the bits that we clobber, but also use. Check that 1816 // they're all clobbered or at least set in the designated transfer 1817 // elem. 1818 for (unsigned Bit : BV.set_bits()) { 1819 unsigned ID = MTracker->getLocID(Bit); 1820 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1821 auto &TransferMap = MLocTransfer[I]; 1822 1823 // Install a value representing the fact that this location is effectively 1824 // written to in this block. As there's no reserved value, instead use 1825 // a value number that is never generated. Pick the value number for the 1826 // first instruction in the block, def'ing this location, which we know 1827 // this block never used anyway. 1828 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1829 auto Result = 1830 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1831 if (!Result.second) { 1832 ValueIDNum &ValueID = Result.first->second; 1833 if (ValueID.getBlock() == I && ValueID.isPHI()) 1834 // It was left as live-through. Set it to clobbered. 1835 ValueID = NotGeneratedNum; 1836 } 1837 } 1838 } 1839 } 1840 1841 bool InstrRefBasedLDV::mlocJoin( 1842 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1843 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1844 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1845 bool Changed = false; 1846 1847 // Handle value-propagation when control flow merges on entry to a block. For 1848 // any location without a PHI already placed, the location has the same value 1849 // as its predecessors. If a PHI is placed, test to see whether it's now a 1850 // redundant PHI that we can eliminate. 1851 1852 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1853 for (auto Pred : MBB.predecessors()) 1854 BlockOrders.push_back(Pred); 1855 1856 // Visit predecessors in RPOT order. 1857 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1858 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1859 }; 1860 llvm::sort(BlockOrders, Cmp); 1861 1862 // Skip entry block. 1863 if (BlockOrders.size() == 0) 1864 return false; 1865 1866 // Step through all machine locations, look at each predecessor and test 1867 // whether we can eliminate redundant PHIs. 1868 for (auto Location : MTracker->locations()) { 1869 LocIdx Idx = Location.Idx; 1870 1871 // Pick out the first predecessors live-out value for this location. It's 1872 // guaranteed to not be a backedge, as we order by RPO. 1873 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1874 1875 // If we've already eliminated a PHI here, do no further checking, just 1876 // propagate the first live-in value into this block. 1877 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1878 if (InLocs[Idx.asU64()] != FirstVal) { 1879 InLocs[Idx.asU64()] = FirstVal; 1880 Changed |= true; 1881 } 1882 continue; 1883 } 1884 1885 // We're now examining a PHI to see whether it's un-necessary. Loop around 1886 // the other live-in values and test whether they're all the same. 1887 bool Disagree = false; 1888 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1889 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1890 const ValueIDNum &PredLiveOut = 1891 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1892 1893 // Incoming values agree, continue trying to eliminate this PHI. 1894 if (FirstVal == PredLiveOut) 1895 continue; 1896 1897 // We can also accept a PHI value that feeds back into itself. 1898 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1899 continue; 1900 1901 // Live-out of a predecessor disagrees with the first predecessor. 1902 Disagree = true; 1903 } 1904 1905 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1906 if (!Disagree) { 1907 InLocs[Idx.asU64()] = FirstVal; 1908 Changed |= true; 1909 } 1910 } 1911 1912 // TODO: Reimplement NumInserted and NumRemoved. 1913 return Changed; 1914 } 1915 1916 void InstrRefBasedLDV::findStackIndexInterference( 1917 SmallVectorImpl<unsigned> &Slots) { 1918 // We could spend a bit of time finding the exact, minimal, set of stack 1919 // indexes that interfere with each other, much like reg units. Or, we can 1920 // rely on the fact that: 1921 // * The smallest / lowest index will interfere with everything at zero 1922 // offset, which will be the largest set of registers, 1923 // * Most indexes with non-zero offset will end up being interference units 1924 // anyway. 1925 // So just pick those out and return them. 1926 1927 // We can rely on a single-byte stack index existing already, because we 1928 // initialize them in MLocTracker. 1929 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1930 assert(It != MTracker->StackSlotIdxes.end()); 1931 Slots.push_back(It->second); 1932 1933 // Find anything that has a non-zero offset and add that too. 1934 for (auto &Pair : MTracker->StackSlotIdxes) { 1935 // Is offset zero? If so, ignore. 1936 if (!Pair.first.second) 1937 continue; 1938 Slots.push_back(Pair.second); 1939 } 1940 } 1941 1942 void InstrRefBasedLDV::placeMLocPHIs( 1943 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1944 ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1945 SmallVector<unsigned, 4> StackUnits; 1946 findStackIndexInterference(StackUnits); 1947 1948 // To avoid repeatedly running the PHI placement algorithm, leverage the 1949 // fact that a def of register MUST also def its register units. Find the 1950 // units for registers, place PHIs for them, and then replicate them for 1951 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1952 // arguments) don't lead to register units being tracked, just place PHIs for 1953 // those registers directly. Stack slots have their own form of "unit", 1954 // store them to one side. 1955 SmallSet<Register, 32> RegUnitsToPHIUp; 1956 SmallSet<LocIdx, 32> NormalLocsToPHI; 1957 SmallSet<SpillLocationNo, 32> StackSlots; 1958 for (auto Location : MTracker->locations()) { 1959 LocIdx L = Location.Idx; 1960 if (MTracker->isSpill(L)) { 1961 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 1962 continue; 1963 } 1964 1965 Register R = MTracker->LocIdxToLocID[L]; 1966 SmallSet<Register, 8> FoundRegUnits; 1967 bool AnyIllegal = false; 1968 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1969 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1970 if (!MTracker->isRegisterTracked(*URoot)) { 1971 // Not all roots were loaded into the tracking map: this register 1972 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1973 // for this reg, but don't iterate units. 1974 AnyIllegal = true; 1975 } else { 1976 FoundRegUnits.insert(*URoot); 1977 } 1978 } 1979 } 1980 1981 if (AnyIllegal) { 1982 NormalLocsToPHI.insert(L); 1983 continue; 1984 } 1985 1986 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 1987 } 1988 1989 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 1990 // collection. 1991 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 1992 auto CollectPHIsForLoc = [&](LocIdx L) { 1993 // Collect the set of defs. 1994 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 1995 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 1996 MachineBasicBlock *MBB = OrderToBB[I]; 1997 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 1998 if (TransferFunc.find(L) != TransferFunc.end()) 1999 DefBlocks.insert(MBB); 2000 } 2001 2002 // The entry block defs the location too: it's the live-in / argument value. 2003 // Only insert if there are other defs though; everything is trivially live 2004 // through otherwise. 2005 if (!DefBlocks.empty()) 2006 DefBlocks.insert(&*MF.begin()); 2007 2008 // Ask the SSA construction algorithm where we should put PHIs. Clear 2009 // anything that might have been hanging around from earlier. 2010 PHIBlocks.clear(); 2011 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 2012 }; 2013 2014 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 2015 for (const MachineBasicBlock *MBB : PHIBlocks) 2016 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 2017 }; 2018 2019 // For locations with no reg units, just place PHIs. 2020 for (LocIdx L : NormalLocsToPHI) { 2021 CollectPHIsForLoc(L); 2022 // Install those PHI values into the live-in value array. 2023 InstallPHIsAtLoc(L); 2024 } 2025 2026 // For stack slots, calculate PHIs for the equivalent of the units, then 2027 // install for each index. 2028 for (SpillLocationNo Slot : StackSlots) { 2029 for (unsigned Idx : StackUnits) { 2030 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2031 LocIdx L = MTracker->getSpillMLoc(SpillID); 2032 CollectPHIsForLoc(L); 2033 InstallPHIsAtLoc(L); 2034 2035 // Find anything that aliases this stack index, install PHIs for it too. 2036 unsigned Size, Offset; 2037 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2038 for (auto &Pair : MTracker->StackSlotIdxes) { 2039 unsigned ThisSize, ThisOffset; 2040 std::tie(ThisSize, ThisOffset) = Pair.first; 2041 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2042 continue; 2043 2044 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2045 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2046 InstallPHIsAtLoc(ThisL); 2047 } 2048 } 2049 } 2050 2051 // For reg units, place PHIs, and then place them for any aliasing registers. 2052 for (Register R : RegUnitsToPHIUp) { 2053 LocIdx L = MTracker->lookupOrTrackRegister(R); 2054 CollectPHIsForLoc(L); 2055 2056 // Install those PHI values into the live-in value array. 2057 InstallPHIsAtLoc(L); 2058 2059 // Now find aliases and install PHIs for those. 2060 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2061 // Super-registers that are "above" the largest register read/written by 2062 // the function will alias, but will not be tracked. 2063 if (!MTracker->isRegisterTracked(*RAI)) 2064 continue; 2065 2066 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2067 InstallPHIsAtLoc(AliasLoc); 2068 } 2069 } 2070 } 2071 2072 void InstrRefBasedLDV::buildMLocValueMap( 2073 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2074 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2075 std::priority_queue<unsigned int, std::vector<unsigned int>, 2076 std::greater<unsigned int>> 2077 Worklist, Pending; 2078 2079 // We track what is on the current and pending worklist to avoid inserting 2080 // the same thing twice. We could avoid this with a custom priority queue, 2081 // but this is probably not worth it. 2082 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2083 2084 // Initialize worklist with every block to be visited. Also produce list of 2085 // all blocks. 2086 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2087 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2088 Worklist.push(I); 2089 OnWorklist.insert(OrderToBB[I]); 2090 AllBlocks.insert(OrderToBB[I]); 2091 } 2092 2093 // Initialize entry block to PHIs. These represent arguments. 2094 for (auto Location : MTracker->locations()) 2095 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2096 2097 MTracker->reset(); 2098 2099 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2100 // any machine-location that isn't live-through a block to be def'd in that 2101 // block. 2102 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2103 2104 // Propagate values to eliminate redundant PHIs. At the same time, this 2105 // produces the table of Block x Location => Value for the entry to each 2106 // block. 2107 // The kind of PHIs we can eliminate are, for example, where one path in a 2108 // conditional spills and restores a register, and the register still has 2109 // the same value once control flow joins, unbeknowns to the PHI placement 2110 // code. Propagating values allows us to identify such un-necessary PHIs and 2111 // remove them. 2112 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2113 while (!Worklist.empty() || !Pending.empty()) { 2114 // Vector for storing the evaluated block transfer function. 2115 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2116 2117 while (!Worklist.empty()) { 2118 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2119 CurBB = MBB->getNumber(); 2120 Worklist.pop(); 2121 2122 // Join the values in all predecessor blocks. 2123 bool InLocsChanged; 2124 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2125 InLocsChanged |= Visited.insert(MBB).second; 2126 2127 // Don't examine transfer function if we've visited this loc at least 2128 // once, and inlocs haven't changed. 2129 if (!InLocsChanged) 2130 continue; 2131 2132 // Load the current set of live-ins into MLocTracker. 2133 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2134 2135 // Each element of the transfer function can be a new def, or a read of 2136 // a live-in value. Evaluate each element, and store to "ToRemap". 2137 ToRemap.clear(); 2138 for (auto &P : MLocTransfer[CurBB]) { 2139 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2140 // This is a movement of whatever was live in. Read it. 2141 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2142 ToRemap.push_back(std::make_pair(P.first, NewID)); 2143 } else { 2144 // It's a def. Just set it. 2145 assert(P.second.getBlock() == CurBB); 2146 ToRemap.push_back(std::make_pair(P.first, P.second)); 2147 } 2148 } 2149 2150 // Commit the transfer function changes into mloc tracker, which 2151 // transforms the contents of the MLocTracker into the live-outs. 2152 for (auto &P : ToRemap) 2153 MTracker->setMLoc(P.first, P.second); 2154 2155 // Now copy out-locs from mloc tracker into out-loc vector, checking 2156 // whether changes have occurred. These changes can have come from both 2157 // the transfer function, and mlocJoin. 2158 bool OLChanged = false; 2159 for (auto Location : MTracker->locations()) { 2160 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2161 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2162 } 2163 2164 MTracker->reset(); 2165 2166 // No need to examine successors again if out-locs didn't change. 2167 if (!OLChanged) 2168 continue; 2169 2170 // All successors should be visited: put any back-edges on the pending 2171 // list for the next pass-through, and any other successors to be 2172 // visited this pass, if they're not going to be already. 2173 for (auto s : MBB->successors()) { 2174 // Does branching to this successor represent a back-edge? 2175 if (BBToOrder[s] > BBToOrder[MBB]) { 2176 // No: visit it during this dataflow iteration. 2177 if (OnWorklist.insert(s).second) 2178 Worklist.push(BBToOrder[s]); 2179 } else { 2180 // Yes: visit it on the next iteration. 2181 if (OnPending.insert(s).second) 2182 Pending.push(BBToOrder[s]); 2183 } 2184 } 2185 } 2186 2187 Worklist.swap(Pending); 2188 std::swap(OnPending, OnWorklist); 2189 OnPending.clear(); 2190 // At this point, pending must be empty, since it was just the empty 2191 // worklist 2192 assert(Pending.empty() && "Pending should be empty"); 2193 } 2194 2195 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2196 // redundant PHIs. 2197 } 2198 2199 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide 2200 // template specialisations for graph traits and a successor enumerator. 2201 namespace llvm { 2202 template <> struct GraphTraits<MachineBasicBlock> { 2203 using NodeRef = MachineBasicBlock *; 2204 using ChildIteratorType = MachineBasicBlock::succ_iterator; 2205 2206 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 2207 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2208 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2209 }; 2210 2211 template <> struct GraphTraits<const MachineBasicBlock> { 2212 using NodeRef = const MachineBasicBlock *; 2213 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 2214 2215 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 2216 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2217 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2218 }; 2219 2220 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType; 2221 using MachineDomTreeChildGetter = 2222 typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>; 2223 2224 namespace IDFCalculatorDetail { 2225 template <> 2226 typename MachineDomTreeChildGetter::ChildrenTy 2227 MachineDomTreeChildGetter::get(const NodeRef &N) { 2228 return {N->succ_begin(), N->succ_end()}; 2229 } 2230 } // namespace IDFCalculatorDetail 2231 } // namespace llvm 2232 2233 void InstrRefBasedLDV::BlockPHIPlacement( 2234 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2235 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2236 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2237 // Apply IDF calculator to the designated set of location defs, storing 2238 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2239 // InstrRefBasedLDV object. 2240 IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo; 2241 IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo); 2242 2243 IDF.setLiveInBlocks(AllBlocks); 2244 IDF.setDefiningBlocks(DefBlocks); 2245 IDF.calculate(PHIBlocks); 2246 } 2247 2248 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2249 const MachineBasicBlock &MBB, const DebugVariable &Var, 2250 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2251 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2252 // Collect a set of locations from predecessor where its live-out value can 2253 // be found. 2254 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2255 SmallVector<const DbgValueProperties *, 4> Properties; 2256 unsigned NumLocs = MTracker->getNumLocs(); 2257 2258 // No predecessors means no PHIs. 2259 if (BlockOrders.empty()) 2260 return None; 2261 2262 for (auto p : BlockOrders) { 2263 unsigned ThisBBNum = p->getNumber(); 2264 auto OutValIt = LiveOuts.find(p); 2265 if (OutValIt == LiveOuts.end()) 2266 // If we have a predecessor not in scope, we'll never find a PHI position. 2267 return None; 2268 const DbgValue &OutVal = *OutValIt->second; 2269 2270 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2271 // Consts and no-values cannot have locations we can join on. 2272 return None; 2273 2274 Properties.push_back(&OutVal.Properties); 2275 2276 // Create new empty vector of locations. 2277 Locs.resize(Locs.size() + 1); 2278 2279 // If the live-in value is a def, find the locations where that value is 2280 // present. Do the same for VPHIs where we know the VPHI value. 2281 if (OutVal.Kind == DbgValue::Def || 2282 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2283 OutVal.ID != ValueIDNum::EmptyValue)) { 2284 ValueIDNum ValToLookFor = OutVal.ID; 2285 // Search the live-outs of the predecessor for the specified value. 2286 for (unsigned int I = 0; I < NumLocs; ++I) { 2287 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2288 Locs.back().push_back(LocIdx(I)); 2289 } 2290 } else { 2291 assert(OutVal.Kind == DbgValue::VPHI); 2292 // For VPHIs where we don't know the location, we definitely can't find 2293 // a join loc. 2294 if (OutVal.BlockNo != MBB.getNumber()) 2295 return None; 2296 2297 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2298 // a value that's live-through the whole loop. (It has to be a backedge, 2299 // because a block can't dominate itself). We can accept as a PHI location 2300 // any location where the other predecessors agree, _and_ the machine 2301 // locations feed back into themselves. Therefore, add all self-looping 2302 // machine-value PHI locations. 2303 for (unsigned int I = 0; I < NumLocs; ++I) { 2304 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2305 if (MOutLocs[ThisBBNum][I] == MPHI) 2306 Locs.back().push_back(LocIdx(I)); 2307 } 2308 } 2309 } 2310 2311 // We should have found locations for all predecessors, or returned. 2312 assert(Locs.size() == BlockOrders.size()); 2313 2314 // Check that all properties are the same. We can't pick a location if they're 2315 // not. 2316 const DbgValueProperties *Properties0 = Properties[0]; 2317 for (auto *Prop : Properties) 2318 if (*Prop != *Properties0) 2319 return None; 2320 2321 // Starting with the first set of locations, take the intersection with 2322 // subsequent sets. 2323 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2324 for (unsigned int I = 1; I < Locs.size(); ++I) { 2325 auto &LocVec = Locs[I]; 2326 SmallVector<LocIdx, 4> NewCandidates; 2327 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2328 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2329 CandidateLocs = NewCandidates; 2330 } 2331 if (CandidateLocs.empty()) 2332 return None; 2333 2334 // We now have a set of LocIdxes that contain the right output value in 2335 // each of the predecessors. Pick the lowest; if there's a register loc, 2336 // that'll be it. 2337 LocIdx L = *CandidateLocs.begin(); 2338 2339 // Return a PHI-value-number for the found location. 2340 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2341 return PHIVal; 2342 } 2343 2344 bool InstrRefBasedLDV::vlocJoin( 2345 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2346 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2347 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2348 DbgValue &LiveIn) { 2349 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2350 // _does_ assign a variable value. No live-ins for this scope are transferred 2351 // in though, so we can return immediately. 2352 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) 2353 return false; 2354 2355 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2356 bool Changed = false; 2357 2358 // Order predecessors by RPOT order, for exploring them in that order. 2359 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2360 2361 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2362 return BBToOrder[A] < BBToOrder[B]; 2363 }; 2364 2365 llvm::sort(BlockOrders, Cmp); 2366 2367 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2368 2369 // Collect all the incoming DbgValues for this variable, from predecessor 2370 // live-out values. 2371 SmallVector<InValueT, 8> Values; 2372 bool Bail = false; 2373 int BackEdgesStart = 0; 2374 for (auto p : BlockOrders) { 2375 // If the predecessor isn't in scope / to be explored, we'll never be 2376 // able to join any locations. 2377 if (!BlocksToExplore.contains(p)) { 2378 Bail = true; 2379 break; 2380 } 2381 2382 // All Live-outs will have been initialized. 2383 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2384 2385 // Keep track of where back-edges begin in the Values vector. Relies on 2386 // BlockOrders being sorted by RPO. 2387 unsigned ThisBBRPONum = BBToOrder[p]; 2388 if (ThisBBRPONum < CurBlockRPONum) 2389 ++BackEdgesStart; 2390 2391 Values.push_back(std::make_pair(p, &OutLoc)); 2392 } 2393 2394 // If there were no values, or one of the predecessors couldn't have a 2395 // value, then give up immediately. It's not safe to produce a live-in 2396 // value. Leave as whatever it was before. 2397 if (Bail || Values.size() == 0) 2398 return false; 2399 2400 // All (non-entry) blocks have at least one non-backedge predecessor. 2401 // Pick the variable value from the first of these, to compare against 2402 // all others. 2403 const DbgValue &FirstVal = *Values[0].second; 2404 2405 // If the old live-in value is not a PHI then either a) no PHI is needed 2406 // here, or b) we eliminated the PHI that was here. If so, we can just 2407 // propagate in the first parent's incoming value. 2408 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2409 Changed = LiveIn != FirstVal; 2410 if (Changed) 2411 LiveIn = FirstVal; 2412 return Changed; 2413 } 2414 2415 // Scan for variable values that can never be resolved: if they have 2416 // different DIExpressions, different indirectness, or are mixed constants / 2417 // non-constants. 2418 for (auto &V : Values) { 2419 if (V.second->Properties != FirstVal.Properties) 2420 return false; 2421 if (V.second->Kind == DbgValue::NoVal) 2422 return false; 2423 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2424 return false; 2425 } 2426 2427 // Try to eliminate this PHI. Do the incoming values all agree? 2428 bool Disagree = false; 2429 for (auto &V : Values) { 2430 if (*V.second == FirstVal) 2431 continue; // No disagreement. 2432 2433 // Eliminate if a backedge feeds a VPHI back into itself. 2434 if (V.second->Kind == DbgValue::VPHI && 2435 V.second->BlockNo == MBB.getNumber() && 2436 // Is this a backedge? 2437 std::distance(Values.begin(), &V) >= BackEdgesStart) 2438 continue; 2439 2440 Disagree = true; 2441 } 2442 2443 // No disagreement -> live-through value. 2444 if (!Disagree) { 2445 Changed = LiveIn != FirstVal; 2446 if (Changed) 2447 LiveIn = FirstVal; 2448 return Changed; 2449 } else { 2450 // Otherwise use a VPHI. 2451 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2452 Changed = LiveIn != VPHI; 2453 if (Changed) 2454 LiveIn = VPHI; 2455 return Changed; 2456 } 2457 } 2458 2459 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc, 2460 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2461 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2462 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2463 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2464 // This method is much like buildMLocValueMap: but focuses on a single 2465 // LexicalScope at a time. Pick out a set of blocks and variables that are 2466 // to have their value assignments solved, then run our dataflow algorithm 2467 // until a fixedpoint is reached. 2468 std::priority_queue<unsigned int, std::vector<unsigned int>, 2469 std::greater<unsigned int>> 2470 Worklist, Pending; 2471 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2472 2473 // The set of blocks we'll be examining. 2474 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2475 2476 // The order in which to examine them (RPO). 2477 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2478 2479 // RPO ordering function. 2480 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2481 return BBToOrder[A] < BBToOrder[B]; 2482 }; 2483 2484 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2485 2486 // A separate container to distinguish "blocks we're exploring" versus 2487 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2488 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2489 2490 // VarLoc LiveDebugValues tracks variable locations that are defined in 2491 // blocks not in scope. This is something we could legitimately ignore, but 2492 // lets allow it for now for the sake of coverage. 2493 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2494 2495 // We also need to propagate variable values through any artificial blocks 2496 // that immediately follow blocks in scope. 2497 DenseSet<const MachineBasicBlock *> ToAdd; 2498 2499 // Helper lambda: For a given block in scope, perform a depth first search 2500 // of all the artificial successors, adding them to the ToAdd collection. 2501 auto AccumulateArtificialBlocks = 2502 [this, &ToAdd, &BlocksToExplore, 2503 &InScopeBlocks](const MachineBasicBlock *MBB) { 2504 // Depth-first-search state: each node is a block and which successor 2505 // we're currently exploring. 2506 SmallVector<std::pair<const MachineBasicBlock *, 2507 MachineBasicBlock::const_succ_iterator>, 2508 8> 2509 DFS; 2510 2511 // Find any artificial successors not already tracked. 2512 for (auto *succ : MBB->successors()) { 2513 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2514 continue; 2515 if (!ArtificialBlocks.count(succ)) 2516 continue; 2517 ToAdd.insert(succ); 2518 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2519 } 2520 2521 // Search all those blocks, depth first. 2522 while (!DFS.empty()) { 2523 const MachineBasicBlock *CurBB = DFS.back().first; 2524 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2525 // Walk back if we've explored this blocks successors to the end. 2526 if (CurSucc == CurBB->succ_end()) { 2527 DFS.pop_back(); 2528 continue; 2529 } 2530 2531 // If the current successor is artificial and unexplored, descend into 2532 // it. 2533 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2534 ToAdd.insert(*CurSucc); 2535 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2536 continue; 2537 } 2538 2539 ++CurSucc; 2540 } 2541 }; 2542 2543 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2544 // for artificial successors. 2545 for (auto *MBB : BlocksToExplore) 2546 AccumulateArtificialBlocks(MBB); 2547 for (auto *MBB : InScopeBlocks) 2548 AccumulateArtificialBlocks(MBB); 2549 2550 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2551 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2552 2553 // Single block scope: not interesting! No propagation at all. Note that 2554 // this could probably go above ArtificialBlocks without damage, but 2555 // that then produces output differences from original-live-debug-values, 2556 // which propagates from a single block into many artificial ones. 2557 if (BlocksToExplore.size() == 1) 2558 return; 2559 2560 // Convert a const set to a non-const set. LexicalScopes 2561 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2562 // (Neither of them mutate anything). 2563 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2564 for (const auto *MBB : BlocksToExplore) 2565 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2566 2567 // Picks out relevants blocks RPO order and sort them. 2568 for (auto *MBB : BlocksToExplore) 2569 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2570 2571 llvm::sort(BlockOrders, Cmp); 2572 unsigned NumBlocks = BlockOrders.size(); 2573 2574 // Allocate some vectors for storing the live ins and live outs. Large. 2575 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2576 LiveIns.reserve(NumBlocks); 2577 LiveOuts.reserve(NumBlocks); 2578 2579 // Initialize all values to start as NoVals. This signifies "it's live 2580 // through, but we don't know what it is". 2581 DbgValueProperties EmptyProperties(EmptyExpr, false); 2582 for (unsigned int I = 0; I < NumBlocks; ++I) { 2583 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2584 LiveIns.push_back(EmptyDbgValue); 2585 LiveOuts.push_back(EmptyDbgValue); 2586 } 2587 2588 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2589 // vlocJoin. 2590 LiveIdxT LiveOutIdx, LiveInIdx; 2591 LiveOutIdx.reserve(NumBlocks); 2592 LiveInIdx.reserve(NumBlocks); 2593 for (unsigned I = 0; I < NumBlocks; ++I) { 2594 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2595 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2596 } 2597 2598 // Loop over each variable and place PHIs for it, then propagate values 2599 // between blocks. This keeps the locality of working on one lexical scope at 2600 // at time, but avoids re-processing variable values because some other 2601 // variable has been assigned. 2602 for (auto &Var : VarsWeCareAbout) { 2603 // Re-initialize live-ins and live-outs, to clear the remains of previous 2604 // variables live-ins / live-outs. 2605 for (unsigned int I = 0; I < NumBlocks; ++I) { 2606 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2607 LiveIns[I] = EmptyDbgValue; 2608 LiveOuts[I] = EmptyDbgValue; 2609 } 2610 2611 // Place PHIs for variable values, using the LLVM IDF calculator. 2612 // Collect the set of blocks where variables are def'd. 2613 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2614 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2615 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2616 if (TransferFunc.find(Var) != TransferFunc.end()) 2617 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2618 } 2619 2620 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2621 2622 // Request the set of PHIs we should insert for this variable. 2623 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2624 2625 // Insert PHIs into the per-block live-in tables for this variable. 2626 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2627 unsigned BlockNo = PHIMBB->getNumber(); 2628 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2629 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2630 } 2631 2632 for (auto *MBB : BlockOrders) { 2633 Worklist.push(BBToOrder[MBB]); 2634 OnWorklist.insert(MBB); 2635 } 2636 2637 // Iterate over all the blocks we selected, propagating the variables value. 2638 // This loop does two things: 2639 // * Eliminates un-necessary VPHIs in vlocJoin, 2640 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2641 // stores the result to the blocks live-outs. 2642 // Always evaluate the transfer function on the first iteration, and when 2643 // the live-ins change thereafter. 2644 bool FirstTrip = true; 2645 while (!Worklist.empty() || !Pending.empty()) { 2646 while (!Worklist.empty()) { 2647 auto *MBB = OrderToBB[Worklist.top()]; 2648 CurBB = MBB->getNumber(); 2649 Worklist.pop(); 2650 2651 auto LiveInsIt = LiveInIdx.find(MBB); 2652 assert(LiveInsIt != LiveInIdx.end()); 2653 DbgValue *LiveIn = LiveInsIt->second; 2654 2655 // Join values from predecessors. Updates LiveInIdx, and writes output 2656 // into JoinedInLocs. 2657 bool InLocsChanged = 2658 vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn); 2659 2660 SmallVector<const MachineBasicBlock *, 8> Preds; 2661 for (const auto *Pred : MBB->predecessors()) 2662 Preds.push_back(Pred); 2663 2664 // If this block's live-in value is a VPHI, try to pick a machine-value 2665 // for it. This makes the machine-value available and propagated 2666 // through all blocks by the time value propagation finishes. We can't 2667 // do this any earlier as it needs to read the block live-outs. 2668 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2669 // There's a small possibility that on a preceeding path, a VPHI is 2670 // eliminated and transitions from VPHI-with-location to 2671 // live-through-value. As a result, the selected location of any VPHI 2672 // might change, so we need to re-compute it on each iteration. 2673 Optional<ValueIDNum> ValueNum = 2674 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2675 2676 if (ValueNum) { 2677 InLocsChanged |= LiveIn->ID != *ValueNum; 2678 LiveIn->ID = *ValueNum; 2679 } 2680 } 2681 2682 if (!InLocsChanged && !FirstTrip) 2683 continue; 2684 2685 DbgValue *LiveOut = LiveOutIdx[MBB]; 2686 bool OLChanged = false; 2687 2688 // Do transfer function. 2689 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2690 auto TransferIt = VTracker.Vars.find(Var); 2691 if (TransferIt != VTracker.Vars.end()) { 2692 // Erase on empty transfer (DBG_VALUE $noreg). 2693 if (TransferIt->second.Kind == DbgValue::Undef) { 2694 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2695 if (*LiveOut != NewVal) { 2696 *LiveOut = NewVal; 2697 OLChanged = true; 2698 } 2699 } else { 2700 // Insert new variable value; or overwrite. 2701 if (*LiveOut != TransferIt->second) { 2702 *LiveOut = TransferIt->second; 2703 OLChanged = true; 2704 } 2705 } 2706 } else { 2707 // Just copy live-ins to live-outs, for anything not transferred. 2708 if (*LiveOut != *LiveIn) { 2709 *LiveOut = *LiveIn; 2710 OLChanged = true; 2711 } 2712 } 2713 2714 // If no live-out value changed, there's no need to explore further. 2715 if (!OLChanged) 2716 continue; 2717 2718 // We should visit all successors. Ensure we'll visit any non-backedge 2719 // successors during this dataflow iteration; book backedge successors 2720 // to be visited next time around. 2721 for (auto s : MBB->successors()) { 2722 // Ignore out of scope / not-to-be-explored successors. 2723 if (LiveInIdx.find(s) == LiveInIdx.end()) 2724 continue; 2725 2726 if (BBToOrder[s] > BBToOrder[MBB]) { 2727 if (OnWorklist.insert(s).second) 2728 Worklist.push(BBToOrder[s]); 2729 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2730 Pending.push(BBToOrder[s]); 2731 } 2732 } 2733 } 2734 Worklist.swap(Pending); 2735 std::swap(OnWorklist, OnPending); 2736 OnPending.clear(); 2737 assert(Pending.empty()); 2738 FirstTrip = false; 2739 } 2740 2741 // Save live-ins to output vector. Ignore any that are still marked as being 2742 // VPHIs with no location -- those are variables that we know the value of, 2743 // but are not actually available in the register file. 2744 for (auto *MBB : BlockOrders) { 2745 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2746 if (BlockLiveIn->Kind == DbgValue::NoVal) 2747 continue; 2748 if (BlockLiveIn->Kind == DbgValue::VPHI && 2749 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2750 continue; 2751 if (BlockLiveIn->Kind == DbgValue::VPHI) 2752 BlockLiveIn->Kind = DbgValue::Def; 2753 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2754 } 2755 } // Per-variable loop. 2756 2757 BlockOrders.clear(); 2758 BlocksToExplore.clear(); 2759 } 2760 2761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2762 void InstrRefBasedLDV::dump_mloc_transfer( 2763 const MLocTransferMap &mloc_transfer) const { 2764 for (auto &P : mloc_transfer) { 2765 std::string foo = MTracker->LocIdxToName(P.first); 2766 std::string bar = MTracker->IDAsString(P.second); 2767 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2768 } 2769 } 2770 #endif 2771 2772 void InstrRefBasedLDV::emitLocations( 2773 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2774 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2775 const TargetPassConfig &TPC) { 2776 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2777 unsigned NumLocs = MTracker->getNumLocs(); 2778 2779 // For each block, load in the machine value locations and variable value 2780 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2781 // to be inserted will be created along the way. 2782 for (MachineBasicBlock &MBB : MF) { 2783 unsigned bbnum = MBB.getNumber(); 2784 MTracker->reset(); 2785 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2786 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2787 NumLocs); 2788 2789 CurBB = bbnum; 2790 CurInst = 1; 2791 for (auto &MI : MBB) { 2792 process(MI, MOutLocs, MInLocs); 2793 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2794 ++CurInst; 2795 } 2796 } 2797 2798 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2799 // in DWARF in different orders. Use the order that they appear when walking 2800 // through each block / each instruction, stored in AllVarsNumbering. 2801 auto OrderDbgValues = [&](const MachineInstr *A, 2802 const MachineInstr *B) -> bool { 2803 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2804 A->getDebugLoc()->getInlinedAt()); 2805 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2806 B->getDebugLoc()->getInlinedAt()); 2807 return AllVarsNumbering.find(VarA)->second < 2808 AllVarsNumbering.find(VarB)->second; 2809 }; 2810 2811 // Go through all the transfers recorded in the TransferTracker -- this is 2812 // both the live-ins to a block, and any movements of values that happen 2813 // in the middle. 2814 for (auto &P : TTracker->Transfers) { 2815 // Sort them according to appearance order. 2816 llvm::sort(P.Insts, OrderDbgValues); 2817 // Insert either before or after the designated point... 2818 if (P.MBB) { 2819 MachineBasicBlock &MBB = *P.MBB; 2820 for (auto *MI : P.Insts) { 2821 MBB.insert(P.Pos, MI); 2822 } 2823 } else { 2824 // Terminators, like tail calls, can clobber things. Don't try and place 2825 // transfers after them. 2826 if (P.Pos->isTerminator()) 2827 continue; 2828 2829 MachineBasicBlock &MBB = *P.Pos->getParent(); 2830 for (auto *MI : P.Insts) { 2831 MBB.insertAfterBundle(P.Pos, MI); 2832 } 2833 } 2834 } 2835 } 2836 2837 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2838 // Build some useful data structures. 2839 2840 LLVMContext &Context = MF.getFunction().getContext(); 2841 EmptyExpr = DIExpression::get(Context, {}); 2842 2843 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2844 if (const DebugLoc &DL = MI.getDebugLoc()) 2845 return DL.getLine() != 0; 2846 return false; 2847 }; 2848 // Collect a set of all the artificial blocks. 2849 for (auto &MBB : MF) 2850 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2851 ArtificialBlocks.insert(&MBB); 2852 2853 // Compute mappings of block <=> RPO order. 2854 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2855 unsigned int RPONumber = 0; 2856 for (MachineBasicBlock *MBB : RPOT) { 2857 OrderToBB[RPONumber] = MBB; 2858 BBToOrder[MBB] = RPONumber; 2859 BBNumToRPO[MBB->getNumber()] = RPONumber; 2860 ++RPONumber; 2861 } 2862 2863 // Order value substitutions by their "source" operand pair, for quick lookup. 2864 llvm::sort(MF.DebugValueSubstitutions); 2865 2866 #ifdef EXPENSIVE_CHECKS 2867 // As an expensive check, test whether there are any duplicate substitution 2868 // sources in the collection. 2869 if (MF.DebugValueSubstitutions.size() > 2) { 2870 for (auto It = MF.DebugValueSubstitutions.begin(); 2871 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2872 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2873 "substitution seen"); 2874 } 2875 } 2876 #endif 2877 } 2878 2879 /// Calculate the liveness information for the given machine function and 2880 /// extend ranges across basic blocks. 2881 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2882 MachineDominatorTree *DomTree, 2883 TargetPassConfig *TPC, 2884 unsigned InputBBLimit, 2885 unsigned InputDbgValLimit) { 2886 // No subprogram means this function contains no debuginfo. 2887 if (!MF.getFunction().getSubprogram()) 2888 return false; 2889 2890 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2891 this->TPC = TPC; 2892 2893 this->DomTree = DomTree; 2894 TRI = MF.getSubtarget().getRegisterInfo(); 2895 MRI = &MF.getRegInfo(); 2896 TII = MF.getSubtarget().getInstrInfo(); 2897 TFI = MF.getSubtarget().getFrameLowering(); 2898 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2899 MFI = &MF.getFrameInfo(); 2900 LS.initialize(MF); 2901 2902 const auto &STI = MF.getSubtarget(); 2903 AdjustsStackInCalls = MFI->adjustsStack() && 2904 STI.getFrameLowering()->stackProbeFunctionModifiesSP(); 2905 if (AdjustsStackInCalls) 2906 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); 2907 2908 MTracker = 2909 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2910 VTracker = nullptr; 2911 TTracker = nullptr; 2912 2913 SmallVector<MLocTransferMap, 32> MLocTransfer; 2914 SmallVector<VLocTracker, 8> vlocs; 2915 LiveInsT SavedLiveIns; 2916 2917 int MaxNumBlocks = -1; 2918 for (auto &MBB : MF) 2919 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2920 assert(MaxNumBlocks >= 0); 2921 ++MaxNumBlocks; 2922 2923 MLocTransfer.resize(MaxNumBlocks); 2924 vlocs.resize(MaxNumBlocks); 2925 SavedLiveIns.resize(MaxNumBlocks); 2926 2927 initialSetup(MF); 2928 2929 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2930 2931 // Allocate and initialize two array-of-arrays for the live-in and live-out 2932 // machine values. The outer dimension is the block number; while the inner 2933 // dimension is a LocIdx from MLocTracker. 2934 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2935 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2936 unsigned NumLocs = MTracker->getNumLocs(); 2937 for (int i = 0; i < MaxNumBlocks; ++i) { 2938 // These all auto-initialize to ValueIDNum::EmptyValue 2939 MOutLocs[i] = new ValueIDNum[NumLocs]; 2940 MInLocs[i] = new ValueIDNum[NumLocs]; 2941 } 2942 2943 // Solve the machine value dataflow problem using the MLocTransfer function, 2944 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2945 // both live-ins and live-outs for decision making in the variable value 2946 // dataflow problem. 2947 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2948 2949 // Patch up debug phi numbers, turning unknown block-live-in values into 2950 // either live-through machine values, or PHIs. 2951 for (auto &DBG_PHI : DebugPHINumToValue) { 2952 // Identify unresolved block-live-ins. 2953 ValueIDNum &Num = DBG_PHI.ValueRead; 2954 if (!Num.isPHI()) 2955 continue; 2956 2957 unsigned BlockNo = Num.getBlock(); 2958 LocIdx LocNo = Num.getLoc(); 2959 Num = MInLocs[BlockNo][LocNo.asU64()]; 2960 } 2961 // Later, we'll be looking up ranges of instruction numbers. 2962 llvm::sort(DebugPHINumToValue); 2963 2964 // Walk back through each block / instruction, collecting DBG_VALUE 2965 // instructions and recording what machine value their operands refer to. 2966 for (auto &OrderPair : OrderToBB) { 2967 MachineBasicBlock &MBB = *OrderPair.second; 2968 CurBB = MBB.getNumber(); 2969 VTracker = &vlocs[CurBB]; 2970 VTracker->MBB = &MBB; 2971 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2972 CurInst = 1; 2973 for (auto &MI : MBB) { 2974 process(MI, MOutLocs, MInLocs); 2975 ++CurInst; 2976 } 2977 MTracker->reset(); 2978 } 2979 2980 // Number all variables in the order that they appear, to be used as a stable 2981 // insertion order later. 2982 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2983 2984 // Map from one LexicalScope to all the variables in that scope. 2985 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2986 2987 // Map from One lexical scope to all blocks in that scope. 2988 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2989 ScopeToBlocks; 2990 2991 // Store a DILocation that describes a scope. 2992 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 2993 2994 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 2995 // the order is unimportant, it just has to be stable. 2996 unsigned VarAssignCount = 0; 2997 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2998 auto *MBB = OrderToBB[I]; 2999 auto *VTracker = &vlocs[MBB->getNumber()]; 3000 // Collect each variable with a DBG_VALUE in this block. 3001 for (auto &idx : VTracker->Vars) { 3002 const auto &Var = idx.first; 3003 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3004 assert(ScopeLoc != nullptr); 3005 auto *Scope = LS.findLexicalScope(ScopeLoc); 3006 3007 // No insts in scope -> shouldn't have been recorded. 3008 assert(Scope != nullptr); 3009 3010 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3011 ScopeToVars[Scope].insert(Var); 3012 ScopeToBlocks[Scope].insert(VTracker->MBB); 3013 ScopeToDILocation[Scope] = ScopeLoc; 3014 ++VarAssignCount; 3015 } 3016 } 3017 3018 bool Changed = false; 3019 3020 // If we have an extremely large number of variable assignments and blocks, 3021 // bail out at this point. We've burnt some time doing analysis already, 3022 // however we should cut our losses. 3023 if ((unsigned)MaxNumBlocks > InputBBLimit && 3024 VarAssignCount > InputDbgValLimit) { 3025 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3026 << " has " << MaxNumBlocks << " basic blocks and " 3027 << VarAssignCount 3028 << " variable assignments, exceeding limits.\n"); 3029 } else { 3030 // Compute the extended ranges, iterating over scopes. There might be 3031 // something to be said for ordering them by size/locality, but that's for 3032 // the future. For each scope, solve the variable value problem, producing 3033 // a map of variables to values in SavedLiveIns. 3034 for (auto &P : ScopeToVars) { 3035 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 3036 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3037 vlocs); 3038 } 3039 3040 // Using the computed value locations and variable values for each block, 3041 // create the DBG_VALUE instructions representing the extended variable 3042 // locations. 3043 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3044 3045 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3046 Changed = TTracker->Transfers.size() != 0; 3047 } 3048 3049 // Common clean-up of memory. 3050 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3051 delete[] MOutLocs[Idx]; 3052 delete[] MInLocs[Idx]; 3053 } 3054 delete[] MOutLocs; 3055 delete[] MInLocs; 3056 3057 delete MTracker; 3058 delete TTracker; 3059 MTracker = nullptr; 3060 VTracker = nullptr; 3061 TTracker = nullptr; 3062 3063 ArtificialBlocks.clear(); 3064 OrderToBB.clear(); 3065 BBToOrder.clear(); 3066 BBNumToRPO.clear(); 3067 DebugInstrNumToInstr.clear(); 3068 DebugPHINumToValue.clear(); 3069 3070 return Changed; 3071 } 3072 3073 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3074 return new InstrRefBasedLDV(); 3075 } 3076 3077 namespace { 3078 class LDVSSABlock; 3079 class LDVSSAUpdater; 3080 3081 // Pick a type to identify incoming block values as we construct SSA. We 3082 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3083 // expects to zero-initialize the type. 3084 typedef uint64_t BlockValueNum; 3085 3086 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3087 /// this PHI is in, the value number it would have, and the expected incoming 3088 /// values from parent blocks. 3089 class LDVSSAPhi { 3090 public: 3091 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3092 LDVSSABlock *ParentBlock; 3093 BlockValueNum PHIValNum; 3094 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3095 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3096 3097 LDVSSABlock *getParent() { return ParentBlock; } 3098 }; 3099 3100 /// Thin wrapper around a block predecessor iterator. Only difference from a 3101 /// normal block iterator is that it dereferences to an LDVSSABlock. 3102 class LDVSSABlockIterator { 3103 public: 3104 MachineBasicBlock::pred_iterator PredIt; 3105 LDVSSAUpdater &Updater; 3106 3107 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3108 LDVSSAUpdater &Updater) 3109 : PredIt(PredIt), Updater(Updater) {} 3110 3111 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3112 return OtherIt.PredIt != PredIt; 3113 } 3114 3115 LDVSSABlockIterator &operator++() { 3116 ++PredIt; 3117 return *this; 3118 } 3119 3120 LDVSSABlock *operator*(); 3121 }; 3122 3123 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3124 /// we need to track the PHI value(s) that we may have observed as necessary 3125 /// in this block. 3126 class LDVSSABlock { 3127 public: 3128 MachineBasicBlock &BB; 3129 LDVSSAUpdater &Updater; 3130 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3131 /// List of PHIs in this block. There should only ever be one. 3132 PHIListT PHIList; 3133 3134 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3135 : BB(BB), Updater(Updater) {} 3136 3137 LDVSSABlockIterator succ_begin() { 3138 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3139 } 3140 3141 LDVSSABlockIterator succ_end() { 3142 return LDVSSABlockIterator(BB.succ_end(), Updater); 3143 } 3144 3145 /// SSAUpdater has requested a PHI: create that within this block record. 3146 LDVSSAPhi *newPHI(BlockValueNum Value) { 3147 PHIList.emplace_back(Value, this); 3148 return &PHIList.back(); 3149 } 3150 3151 /// SSAUpdater wishes to know what PHIs already exist in this block. 3152 PHIListT &phis() { return PHIList; } 3153 }; 3154 3155 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3156 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3157 // SSAUpdaterTraits<LDVSSAUpdater>. 3158 class LDVSSAUpdater { 3159 public: 3160 /// Map of value numbers to PHI records. 3161 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3162 /// Map of which blocks generate Undef values -- blocks that are not 3163 /// dominated by any Def. 3164 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3165 /// Map of machine blocks to our own records of them. 3166 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3167 /// Machine location where any PHI must occur. 3168 LocIdx Loc; 3169 /// Table of live-in machine value numbers for blocks / locations. 3170 ValueIDNum **MLiveIns; 3171 3172 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3173 3174 void reset() { 3175 for (auto &Block : BlockMap) 3176 delete Block.second; 3177 3178 PHIs.clear(); 3179 UndefMap.clear(); 3180 BlockMap.clear(); 3181 } 3182 3183 ~LDVSSAUpdater() { reset(); } 3184 3185 /// For a given MBB, create a wrapper block for it. Stores it in the 3186 /// LDVSSAUpdater block map. 3187 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3188 auto it = BlockMap.find(BB); 3189 if (it == BlockMap.end()) { 3190 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3191 it = BlockMap.find(BB); 3192 } 3193 return it->second; 3194 } 3195 3196 /// Find the live-in value number for the given block. Looks up the value at 3197 /// the PHI location on entry. 3198 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3199 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3200 } 3201 }; 3202 3203 LDVSSABlock *LDVSSABlockIterator::operator*() { 3204 return Updater.getSSALDVBlock(*PredIt); 3205 } 3206 3207 #ifndef NDEBUG 3208 3209 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3210 out << "SSALDVPHI " << PHI.PHIValNum; 3211 return out; 3212 } 3213 3214 #endif 3215 3216 } // namespace 3217 3218 namespace llvm { 3219 3220 /// Template specialization to give SSAUpdater access to CFG and value 3221 /// information. SSAUpdater calls methods in these traits, passing in the 3222 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3223 /// It also provides methods to create PHI nodes and track them. 3224 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3225 public: 3226 using BlkT = LDVSSABlock; 3227 using ValT = BlockValueNum; 3228 using PhiT = LDVSSAPhi; 3229 using BlkSucc_iterator = LDVSSABlockIterator; 3230 3231 // Methods to access block successors -- dereferencing to our wrapper class. 3232 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3233 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3234 3235 /// Iterator for PHI operands. 3236 class PHI_iterator { 3237 private: 3238 LDVSSAPhi *PHI; 3239 unsigned Idx; 3240 3241 public: 3242 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3243 : PHI(P), Idx(0) {} 3244 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3245 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3246 3247 PHI_iterator &operator++() { 3248 Idx++; 3249 return *this; 3250 } 3251 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3252 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3253 3254 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3255 3256 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3257 }; 3258 3259 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3260 3261 static inline PHI_iterator PHI_end(PhiT *PHI) { 3262 return PHI_iterator(PHI, true); 3263 } 3264 3265 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3266 /// vector. 3267 static void FindPredecessorBlocks(LDVSSABlock *BB, 3268 SmallVectorImpl<LDVSSABlock *> *Preds) { 3269 for (MachineBasicBlock *Pred : BB->BB.predecessors()) 3270 Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); 3271 } 3272 3273 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3274 /// register. For LiveDebugValues, represents a block identified as not having 3275 /// any DBG_PHI predecessors. 3276 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3277 // Create a value number for this block -- it needs to be unique and in the 3278 // "undef" collection, so that we know it's not real. Use a number 3279 // representing a PHI into this block. 3280 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3281 Updater->UndefMap[&BB->BB] = Num; 3282 return Num; 3283 } 3284 3285 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3286 /// SSAUpdater will populate it with information about incoming values. The 3287 /// value number of this PHI is whatever the machine value number problem 3288 /// solution determined it to be. This includes non-phi values if SSAUpdater 3289 /// tries to create a PHI where the incoming values are identical. 3290 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3291 LDVSSAUpdater *Updater) { 3292 BlockValueNum PHIValNum = Updater->getValue(BB); 3293 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3294 Updater->PHIs[PHIValNum] = PHI; 3295 return PHIValNum; 3296 } 3297 3298 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3299 /// the specified predecessor block. 3300 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3301 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3302 } 3303 3304 /// ValueIsPHI - Check if the instruction that defines the specified value 3305 /// is a PHI instruction. 3306 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3307 auto PHIIt = Updater->PHIs.find(Val); 3308 if (PHIIt == Updater->PHIs.end()) 3309 return nullptr; 3310 return PHIIt->second; 3311 } 3312 3313 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3314 /// operands, i.e., it was just added. 3315 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3316 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3317 if (PHI && PHI->IncomingValues.size() == 0) 3318 return PHI; 3319 return nullptr; 3320 } 3321 3322 /// GetPHIValue - For the specified PHI instruction, return the value 3323 /// that it defines. 3324 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3325 }; 3326 3327 } // end namespace llvm 3328 3329 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3330 ValueIDNum **MLiveOuts, 3331 ValueIDNum **MLiveIns, 3332 MachineInstr &Here, 3333 uint64_t InstrNum) { 3334 // Pick out records of DBG_PHI instructions that have been observed. If there 3335 // are none, then we cannot compute a value number. 3336 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3337 DebugPHINumToValue.end(), InstrNum); 3338 auto LowerIt = RangePair.first; 3339 auto UpperIt = RangePair.second; 3340 3341 // No DBG_PHI means there can be no location. 3342 if (LowerIt == UpperIt) 3343 return None; 3344 3345 // If there's only one DBG_PHI, then that is our value number. 3346 if (std::distance(LowerIt, UpperIt) == 1) 3347 return LowerIt->ValueRead; 3348 3349 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3350 3351 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3352 // technically possible for us to merge values in different registers in each 3353 // block, but highly unlikely that LLVM will generate such code after register 3354 // allocation. 3355 LocIdx Loc = LowerIt->ReadLoc; 3356 3357 // We have several DBG_PHIs, and a use position (the Here inst). All each 3358 // DBG_PHI does is identify a value at a program position. We can treat each 3359 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3360 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3361 // determine which Def is used at the Use, and any PHIs that happen along 3362 // the way. 3363 // Adapted LLVM SSA Updater: 3364 LDVSSAUpdater Updater(Loc, MLiveIns); 3365 // Map of which Def or PHI is the current value in each block. 3366 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3367 // Set of PHIs that we have created along the way. 3368 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3369 3370 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3371 // for the SSAUpdater. 3372 for (const auto &DBG_PHI : DBGPHIRange) { 3373 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3374 const ValueIDNum &Num = DBG_PHI.ValueRead; 3375 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3376 } 3377 3378 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3379 const auto &AvailIt = AvailableValues.find(HereBlock); 3380 if (AvailIt != AvailableValues.end()) { 3381 // Actually, we already know what the value is -- the Use is in the same 3382 // block as the Def. 3383 return ValueIDNum::fromU64(AvailIt->second); 3384 } 3385 3386 // Otherwise, we must use the SSA Updater. It will identify the value number 3387 // that we are to use, and the PHIs that must happen along the way. 3388 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3389 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3390 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3391 3392 // We have the number for a PHI, or possibly live-through value, to be used 3393 // at this Use. There are a number of things we have to check about it though: 3394 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3395 // Use was not completely dominated by DBG_PHIs and we should abort. 3396 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3397 // we've left SSA form. Validate that the inputs to each PHI are the 3398 // expected values. 3399 // * Is a PHI we've created actually a merging of values, or are all the 3400 // predecessor values the same, leading to a non-PHI machine value number? 3401 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3402 // the ValidatedValues collection below to sort this out. 3403 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3404 3405 // Define all the input DBG_PHI values in ValidatedValues. 3406 for (const auto &DBG_PHI : DBGPHIRange) { 3407 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3408 const ValueIDNum &Num = DBG_PHI.ValueRead; 3409 ValidatedValues.insert(std::make_pair(Block, Num)); 3410 } 3411 3412 // Sort PHIs to validate into RPO-order. 3413 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3414 for (auto &PHI : CreatedPHIs) 3415 SortedPHIs.push_back(PHI); 3416 3417 std::sort( 3418 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3419 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3420 }); 3421 3422 for (auto &PHI : SortedPHIs) { 3423 ValueIDNum ThisBlockValueNum = 3424 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3425 3426 // Are all these things actually defined? 3427 for (auto &PHIIt : PHI->IncomingValues) { 3428 // Any undef input means DBG_PHIs didn't dominate the use point. 3429 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3430 return None; 3431 3432 ValueIDNum ValueToCheck; 3433 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3434 3435 auto VVal = ValidatedValues.find(PHIIt.first); 3436 if (VVal == ValidatedValues.end()) { 3437 // We cross a loop, and this is a backedge. LLVMs tail duplication 3438 // happens so late that DBG_PHI instructions should not be able to 3439 // migrate into loops -- meaning we can only be live-through this 3440 // loop. 3441 ValueToCheck = ThisBlockValueNum; 3442 } else { 3443 // Does the block have as a live-out, in the location we're examining, 3444 // the value that we expect? If not, it's been moved or clobbered. 3445 ValueToCheck = VVal->second; 3446 } 3447 3448 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3449 return None; 3450 } 3451 3452 // Record this value as validated. 3453 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3454 } 3455 3456 // All the PHIs are valid: we can return what the SSAUpdater said our value 3457 // number was. 3458 return Result; 3459 } 3460