1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Thin wrapper around an integer -- designed to give more type safety to
152 /// spill location numbers.
153 class SpillLocationNo {
154 public:
155   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
156   unsigned SpillNo;
157   unsigned id() const { return SpillNo; }
158 };
159 
160 /// Tracker for converting machine value locations and variable values into
161 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
162 /// specifying block live-in locations and transfers within blocks.
163 ///
164 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
165 /// and must be initialized with the set of variable values that are live-in to
166 /// the block. The caller then repeatedly calls process(). TransferTracker picks
167 /// out variable locations for the live-in variable values (if there _is_ a
168 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
169 /// stepped through, transfers of values between machine locations are
170 /// identified and if profitable, a DBG_VALUE created.
171 ///
172 /// This is where debug use-before-defs would be resolved: a variable with an
173 /// unavailable value could materialize in the middle of a block, when the
174 /// value becomes available. Or, we could detect clobbers and re-specify the
175 /// variable in a backup location. (XXX these are unimplemented).
176 class TransferTracker {
177 public:
178   const TargetInstrInfo *TII;
179   const TargetLowering *TLI;
180   /// This machine location tracker is assumed to always contain the up-to-date
181   /// value mapping for all machine locations. TransferTracker only reads
182   /// information from it. (XXX make it const?)
183   MLocTracker *MTracker;
184   MachineFunction &MF;
185   bool ShouldEmitDebugEntryValues;
186 
187   /// Record of all changes in variable locations at a block position. Awkwardly
188   /// we allow inserting either before or after the point: MBB != nullptr
189   /// indicates it's before, otherwise after.
190   struct Transfer {
191     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
192     MachineBasicBlock *MBB; /// non-null if we should insert after.
193     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
194   };
195 
196   struct LocAndProperties {
197     LocIdx Loc;
198     DbgValueProperties Properties;
199   };
200 
201   /// Collection of transfers (DBG_VALUEs) to be inserted.
202   SmallVector<Transfer, 32> Transfers;
203 
204   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
205   /// between TransferTrackers view of variable locations and MLocTrackers. For
206   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
207   /// does not.
208   std::vector<ValueIDNum> VarLocs;
209 
210   /// Map from LocIdxes to which DebugVariables are based that location.
211   /// Mantained while stepping through the block. Not accurate if
212   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
213   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
214 
215   /// Map from DebugVariable to it's current location and qualifying meta
216   /// information. To be used in conjunction with ActiveMLocs to construct
217   /// enough information for the DBG_VALUEs for a particular LocIdx.
218   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
219 
220   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
221   SmallVector<MachineInstr *, 4> PendingDbgValues;
222 
223   /// Record of a use-before-def: created when a value that's live-in to the
224   /// current block isn't available in any machine location, but it will be
225   /// defined in this block.
226   struct UseBeforeDef {
227     /// Value of this variable, def'd in block.
228     ValueIDNum ID;
229     /// Identity of this variable.
230     DebugVariable Var;
231     /// Additional variable properties.
232     DbgValueProperties Properties;
233   };
234 
235   /// Map from instruction index (within the block) to the set of UseBeforeDefs
236   /// that become defined at that instruction.
237   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
238 
239   /// The set of variables that are in UseBeforeDefs and can become a location
240   /// once the relevant value is defined. An element being erased from this
241   /// collection prevents the use-before-def materializing.
242   DenseSet<DebugVariable> UseBeforeDefVariables;
243 
244   const TargetRegisterInfo &TRI;
245   const BitVector &CalleeSavedRegs;
246 
247   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
248                   MachineFunction &MF, const TargetRegisterInfo &TRI,
249                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
250       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
251         CalleeSavedRegs(CalleeSavedRegs) {
252     TLI = MF.getSubtarget().getTargetLowering();
253     auto &TM = TPC.getTM<TargetMachine>();
254     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
255   }
256 
257   /// Load object with live-in variable values. \p mlocs contains the live-in
258   /// values in each machine location, while \p vlocs the live-in variable
259   /// values. This method picks variable locations for the live-in variables,
260   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
261   /// object fields to track variable locations as we step through the block.
262   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
263   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
264                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
265                   unsigned NumLocs) {
266     ActiveMLocs.clear();
267     ActiveVLocs.clear();
268     VarLocs.clear();
269     VarLocs.reserve(NumLocs);
270     UseBeforeDefs.clear();
271     UseBeforeDefVariables.clear();
272 
273     auto isCalleeSaved = [&](LocIdx L) {
274       unsigned Reg = MTracker->LocIdxToLocID[L];
275       if (Reg >= MTracker->NumRegs)
276         return false;
277       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
278         if (CalleeSavedRegs.test(*RAI))
279           return true;
280       return false;
281     };
282 
283     // Map of the preferred location for each value.
284     std::map<ValueIDNum, LocIdx> ValueToLoc;
285 
286     // Produce a map of value numbers to the current machine locs they live
287     // in. When emulating VarLocBasedImpl, there should only be one
288     // location; when not, we get to pick.
289     for (auto Location : MTracker->locations()) {
290       LocIdx Idx = Location.Idx;
291       ValueIDNum &VNum = MLocs[Idx.asU64()];
292       VarLocs.push_back(VNum);
293       auto it = ValueToLoc.find(VNum);
294       // In order of preference, pick:
295       //  * Callee saved registers,
296       //  * Other registers,
297       //  * Spill slots.
298       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
299           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
300         // Insert, or overwrite if insertion failed.
301         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
302         if (!PrefLocRes.second)
303           PrefLocRes.first->second = Idx;
304       }
305     }
306 
307     // Now map variables to their picked LocIdxes.
308     for (auto Var : VLocs) {
309       if (Var.second.Kind == DbgValue::Const) {
310         PendingDbgValues.push_back(
311             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
312         continue;
313       }
314 
315       // If the value has no location, we can't make a variable location.
316       const ValueIDNum &Num = Var.second.ID;
317       auto ValuesPreferredLoc = ValueToLoc.find(Num);
318       if (ValuesPreferredLoc == ValueToLoc.end()) {
319         // If it's a def that occurs in this block, register it as a
320         // use-before-def to be resolved as we step through the block.
321         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
322           addUseBeforeDef(Var.first, Var.second.Properties, Num);
323         else
324           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
325         continue;
326       }
327 
328       LocIdx M = ValuesPreferredLoc->second;
329       auto NewValue = LocAndProperties{M, Var.second.Properties};
330       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
331       if (!Result.second)
332         Result.first->second = NewValue;
333       ActiveMLocs[M].insert(Var.first);
334       PendingDbgValues.push_back(
335           MTracker->emitLoc(M, Var.first, Var.second.Properties));
336     }
337     flushDbgValues(MBB.begin(), &MBB);
338   }
339 
340   /// Record that \p Var has value \p ID, a value that becomes available
341   /// later in the function.
342   void addUseBeforeDef(const DebugVariable &Var,
343                        const DbgValueProperties &Properties, ValueIDNum ID) {
344     UseBeforeDef UBD = {ID, Var, Properties};
345     UseBeforeDefs[ID.getInst()].push_back(UBD);
346     UseBeforeDefVariables.insert(Var);
347   }
348 
349   /// After the instruction at index \p Inst and position \p pos has been
350   /// processed, check whether it defines a variable value in a use-before-def.
351   /// If so, and the variable value hasn't changed since the start of the
352   /// block, create a DBG_VALUE.
353   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
354     auto MIt = UseBeforeDefs.find(Inst);
355     if (MIt == UseBeforeDefs.end())
356       return;
357 
358     for (auto &Use : MIt->second) {
359       LocIdx L = Use.ID.getLoc();
360 
361       // If something goes very wrong, we might end up labelling a COPY
362       // instruction or similar with an instruction number, where it doesn't
363       // actually define a new value, instead it moves a value. In case this
364       // happens, discard.
365       if (MTracker->LocIdxToIDNum[L] != Use.ID)
366         continue;
367 
368       // If a different debug instruction defined the variable value / location
369       // since the start of the block, don't materialize this use-before-def.
370       if (!UseBeforeDefVariables.count(Use.Var))
371         continue;
372 
373       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
374     }
375     flushDbgValues(pos, nullptr);
376   }
377 
378   /// Helper to move created DBG_VALUEs into Transfers collection.
379   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
380     if (PendingDbgValues.size() == 0)
381       return;
382 
383     // Pick out the instruction start position.
384     MachineBasicBlock::instr_iterator BundleStart;
385     if (MBB && Pos == MBB->begin())
386       BundleStart = MBB->instr_begin();
387     else
388       BundleStart = getBundleStart(Pos->getIterator());
389 
390     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
391     PendingDbgValues.clear();
392   }
393 
394   bool isEntryValueVariable(const DebugVariable &Var,
395                             const DIExpression *Expr) const {
396     if (!Var.getVariable()->isParameter())
397       return false;
398 
399     if (Var.getInlinedAt())
400       return false;
401 
402     if (Expr->getNumElements() > 0)
403       return false;
404 
405     return true;
406   }
407 
408   bool isEntryValueValue(const ValueIDNum &Val) const {
409     // Must be in entry block (block number zero), and be a PHI / live-in value.
410     if (Val.getBlock() || !Val.isPHI())
411       return false;
412 
413     // Entry values must enter in a register.
414     if (MTracker->isSpill(Val.getLoc()))
415       return false;
416 
417     Register SP = TLI->getStackPointerRegisterToSaveRestore();
418     Register FP = TRI.getFrameRegister(MF);
419     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
420     return Reg != SP && Reg != FP;
421   }
422 
423   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
424                            const ValueIDNum &Num) {
425     // Is this variable location a candidate to be an entry value. First,
426     // should we be trying this at all?
427     if (!ShouldEmitDebugEntryValues)
428       return false;
429 
430     // Is the variable appropriate for entry values (i.e., is a parameter).
431     if (!isEntryValueVariable(Var, Prop.DIExpr))
432       return false;
433 
434     // Is the value assigned to this variable still the entry value?
435     if (!isEntryValueValue(Num))
436       return false;
437 
438     // Emit a variable location using an entry value expression.
439     DIExpression *NewExpr =
440         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
441     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
442     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
443 
444     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
445     return true;
446   }
447 
448   /// Change a variable value after encountering a DBG_VALUE inside a block.
449   void redefVar(const MachineInstr &MI) {
450     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
451                       MI.getDebugLoc()->getInlinedAt());
452     DbgValueProperties Properties(MI);
453 
454     const MachineOperand &MO = MI.getOperand(0);
455 
456     // Ignore non-register locations, we don't transfer those.
457     if (!MO.isReg() || MO.getReg() == 0) {
458       auto It = ActiveVLocs.find(Var);
459       if (It != ActiveVLocs.end()) {
460         ActiveMLocs[It->second.Loc].erase(Var);
461         ActiveVLocs.erase(It);
462      }
463       // Any use-before-defs no longer apply.
464       UseBeforeDefVariables.erase(Var);
465       return;
466     }
467 
468     Register Reg = MO.getReg();
469     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
470     redefVar(MI, Properties, NewLoc);
471   }
472 
473   /// Handle a change in variable location within a block. Terminate the
474   /// variables current location, and record the value it now refers to, so
475   /// that we can detect location transfers later on.
476   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
477                 Optional<LocIdx> OptNewLoc) {
478     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
479                       MI.getDebugLoc()->getInlinedAt());
480     // Any use-before-defs no longer apply.
481     UseBeforeDefVariables.erase(Var);
482 
483     // Erase any previous location,
484     auto It = ActiveVLocs.find(Var);
485     if (It != ActiveVLocs.end())
486       ActiveMLocs[It->second.Loc].erase(Var);
487 
488     // If there _is_ no new location, all we had to do was erase.
489     if (!OptNewLoc)
490       return;
491     LocIdx NewLoc = *OptNewLoc;
492 
493     // Check whether our local copy of values-by-location in #VarLocs is out of
494     // date. Wipe old tracking data for the location if it's been clobbered in
495     // the meantime.
496     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
497       for (auto &P : ActiveMLocs[NewLoc]) {
498         ActiveVLocs.erase(P);
499       }
500       ActiveMLocs[NewLoc.asU64()].clear();
501       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
502     }
503 
504     ActiveMLocs[NewLoc].insert(Var);
505     if (It == ActiveVLocs.end()) {
506       ActiveVLocs.insert(
507           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
508     } else {
509       It->second.Loc = NewLoc;
510       It->second.Properties = Properties;
511     }
512   }
513 
514   /// Account for a location \p mloc being clobbered. Examine the variable
515   /// locations that will be terminated: and try to recover them by using
516   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
517   /// explicitly terminate a location if it can't be recovered.
518   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
519                    bool MakeUndef = true) {
520     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
521     if (ActiveMLocIt == ActiveMLocs.end())
522       return;
523 
524     // What was the old variable value?
525     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
526     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
527 
528     // Examine the remaining variable locations: if we can find the same value
529     // again, we can recover the location.
530     Optional<LocIdx> NewLoc = None;
531     for (auto Loc : MTracker->locations())
532       if (Loc.Value == OldValue)
533         NewLoc = Loc.Idx;
534 
535     // If there is no location, and we weren't asked to make the variable
536     // explicitly undef, then stop here.
537     if (!NewLoc && !MakeUndef) {
538       // Try and recover a few more locations with entry values.
539       for (auto &Var : ActiveMLocIt->second) {
540         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
541         recoverAsEntryValue(Var, Prop, OldValue);
542       }
543       flushDbgValues(Pos, nullptr);
544       return;
545     }
546 
547     // Examine all the variables based on this location.
548     DenseSet<DebugVariable> NewMLocs;
549     for (auto &Var : ActiveMLocIt->second) {
550       auto ActiveVLocIt = ActiveVLocs.find(Var);
551       // Re-state the variable location: if there's no replacement then NewLoc
552       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
553       // identifying the alternative location will be emitted.
554       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
555       DbgValueProperties Properties(Expr, false);
556       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
557 
558       // Update machine locations <=> variable locations maps. Defer updating
559       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
560       if (!NewLoc) {
561         ActiveVLocs.erase(ActiveVLocIt);
562       } else {
563         ActiveVLocIt->second.Loc = *NewLoc;
564         NewMLocs.insert(Var);
565       }
566     }
567 
568     // Commit any deferred ActiveMLoc changes.
569     if (!NewMLocs.empty())
570       for (auto &Var : NewMLocs)
571         ActiveMLocs[*NewLoc].insert(Var);
572 
573     // We lazily track what locations have which values; if we've found a new
574     // location for the clobbered value, remember it.
575     if (NewLoc)
576       VarLocs[NewLoc->asU64()] = OldValue;
577 
578     flushDbgValues(Pos, nullptr);
579 
580     ActiveMLocIt->second.clear();
581   }
582 
583   /// Transfer variables based on \p Src to be based on \p Dst. This handles
584   /// both register copies as well as spills and restores. Creates DBG_VALUEs
585   /// describing the movement.
586   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
587     // Does Src still contain the value num we expect? If not, it's been
588     // clobbered in the meantime, and our variable locations are stale.
589     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
590       return;
591 
592     // assert(ActiveMLocs[Dst].size() == 0);
593     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
594     ActiveMLocs[Dst] = ActiveMLocs[Src];
595     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
596 
597     // For each variable based on Src; create a location at Dst.
598     for (auto &Var : ActiveMLocs[Src]) {
599       auto ActiveVLocIt = ActiveVLocs.find(Var);
600       assert(ActiveVLocIt != ActiveVLocs.end());
601       ActiveVLocIt->second.Loc = Dst;
602 
603       MachineInstr *MI =
604           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
605       PendingDbgValues.push_back(MI);
606     }
607     ActiveMLocs[Src].clear();
608     flushDbgValues(Pos, nullptr);
609 
610     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
611     // about the old location.
612     if (EmulateOldLDV)
613       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
614   }
615 
616   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
617                                 const DebugVariable &Var,
618                                 const DbgValueProperties &Properties) {
619     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
620                                   Var.getVariable()->getScope(),
621                                   const_cast<DILocation *>(Var.getInlinedAt()));
622     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
623     MIB.add(MO);
624     if (Properties.Indirect)
625       MIB.addImm(0);
626     else
627       MIB.addReg(0);
628     MIB.addMetadata(Var.getVariable());
629     MIB.addMetadata(Properties.DIExpr);
630     return MIB;
631   }
632 };
633 
634 //===----------------------------------------------------------------------===//
635 //            Implementation
636 //===----------------------------------------------------------------------===//
637 
638 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
639 
640 #ifndef NDEBUG
641 void DbgValue::dump(const MLocTracker *MTrack) const {
642   if (Kind == Const) {
643     MO->dump();
644   } else if (Kind == NoVal) {
645     dbgs() << "NoVal(" << BlockNo << ")";
646   } else if (Kind == VPHI) {
647     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
648   } else {
649     assert(Kind == Def);
650     dbgs() << MTrack->IDAsString(ID);
651   }
652   if (Properties.Indirect)
653     dbgs() << " indir";
654   if (Properties.DIExpr)
655     dbgs() << " " << *Properties.DIExpr;
656 }
657 #endif
658 
659 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
660                          const TargetRegisterInfo &TRI,
661                          const TargetLowering &TLI)
662     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
663       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
664   NumRegs = TRI.getNumRegs();
665   reset();
666   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
667   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
668 
669   // Always track SP. This avoids the implicit clobbering caused by regmasks
670   // from affectings its values. (LiveDebugValues disbelieves calls and
671   // regmasks that claim to clobber SP).
672   Register SP = TLI.getStackPointerRegisterToSaveRestore();
673   if (SP) {
674     unsigned ID = getLocID(SP, false);
675     (void)lookupOrTrackRegister(ID);
676 
677     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
678       SPAliases.insert(*RAI);
679   }
680 }
681 
682 LocIdx MLocTracker::trackRegister(unsigned ID) {
683   assert(ID != 0);
684   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
685   LocIdxToIDNum.grow(NewIdx);
686   LocIdxToLocID.grow(NewIdx);
687 
688   // Default: it's an mphi.
689   ValueIDNum ValNum = {CurBB, 0, NewIdx};
690   // Was this reg ever touched by a regmask?
691   for (const auto &MaskPair : reverse(Masks)) {
692     if (MaskPair.first->clobbersPhysReg(ID)) {
693       // There was an earlier def we skipped.
694       ValNum = {CurBB, MaskPair.second, NewIdx};
695       break;
696     }
697   }
698 
699   LocIdxToIDNum[NewIdx] = ValNum;
700   LocIdxToLocID[NewIdx] = ID;
701   return NewIdx;
702 }
703 
704 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
705                                unsigned InstID) {
706   // Def any register we track have that isn't preserved. The regmask
707   // terminates the liveness of a register, meaning its value can't be
708   // relied upon -- we represent this by giving it a new value.
709   for (auto Location : locations()) {
710     unsigned ID = LocIdxToLocID[Location.Idx];
711     // Don't clobber SP, even if the mask says it's clobbered.
712     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
713       defReg(ID, CurBB, InstID);
714   }
715   Masks.push_back(std::make_pair(MO, InstID));
716 }
717 
718 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
719   unsigned SpillID = SpillLocs.idFor(L);
720   if (SpillID == 0) {
721     SpillID = SpillLocs.insert(L);
722     unsigned L = getLocID(SpillID, true);
723     LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
724     LocIdxToIDNum.grow(Idx);
725     LocIdxToLocID.grow(Idx);
726     LocIDToLocIdx.push_back(Idx);
727     LocIdxToLocID[Idx] = L;
728     return Idx;
729   } else {
730     unsigned L = getLocID(SpillID, true);
731     LocIdx Idx = LocIDToLocIdx[L];
732     return Idx;
733   }
734 }
735 
736 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
737   unsigned ID = LocIdxToLocID[Idx];
738   if (ID >= NumRegs)
739     return Twine("slot ").concat(Twine(ID - NumRegs)).str();
740   else
741     return TRI.getRegAsmName(ID).str();
742 }
743 
744 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
745   std::string DefName = LocIdxToName(Num.getLoc());
746   return Num.asString(DefName);
747 }
748 
749 #ifndef NDEBUG
750 LLVM_DUMP_METHOD void MLocTracker::dump() {
751   for (auto Location : locations()) {
752     std::string MLocName = LocIdxToName(Location.Value.getLoc());
753     std::string DefName = Location.Value.asString(MLocName);
754     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
755   }
756 }
757 
758 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
759   for (auto Location : locations()) {
760     std::string foo = LocIdxToName(Location.Idx);
761     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
762   }
763 }
764 #endif
765 
766 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
767                                          const DebugVariable &Var,
768                                          const DbgValueProperties &Properties) {
769   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
770                                 Var.getVariable()->getScope(),
771                                 const_cast<DILocation *>(Var.getInlinedAt()));
772   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
773 
774   const DIExpression *Expr = Properties.DIExpr;
775   if (!MLoc) {
776     // No location -> DBG_VALUE $noreg
777     MIB.addReg(0);
778     MIB.addReg(0);
779   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
780     unsigned LocID = LocIdxToLocID[*MLoc];
781     const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
782 
783     auto *TRI = MF.getSubtarget().getRegisterInfo();
784     Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
785                                         Spill.SpillOffset);
786     unsigned Base = Spill.SpillBase;
787     MIB.addReg(Base);
788     MIB.addImm(0);
789   } else {
790     unsigned LocID = LocIdxToLocID[*MLoc];
791     MIB.addReg(LocID);
792     if (Properties.Indirect)
793       MIB.addImm(0);
794     else
795       MIB.addReg(0);
796   }
797 
798   MIB.addMetadata(Var.getVariable());
799   MIB.addMetadata(Expr);
800   return MIB;
801 }
802 
803 /// Default construct and initialize the pass.
804 InstrRefBasedLDV::InstrRefBasedLDV() {}
805 
806 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
807   unsigned Reg = MTracker->LocIdxToLocID[L];
808   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
809     if (CalleeSavedRegs.test(*RAI))
810       return true;
811   return false;
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //            Debug Range Extension Implementation
816 //===----------------------------------------------------------------------===//
817 
818 #ifndef NDEBUG
819 // Something to restore in the future.
820 // void InstrRefBasedLDV::printVarLocInMBB(..)
821 #endif
822 
823 SpillLoc
824 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
825   assert(MI.hasOneMemOperand() &&
826          "Spill instruction does not have exactly one memory operand?");
827   auto MMOI = MI.memoperands_begin();
828   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
829   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
830          "Inconsistent memory operand in spill instruction");
831   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
832   const MachineBasicBlock *MBB = MI.getParent();
833   Register Reg;
834   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
835   return {Reg, Offset};
836 }
837 
838 /// End all previous ranges related to @MI and start a new range from @MI
839 /// if it is a DBG_VALUE instr.
840 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
841   if (!MI.isDebugValue())
842     return false;
843 
844   const DILocalVariable *Var = MI.getDebugVariable();
845   const DIExpression *Expr = MI.getDebugExpression();
846   const DILocation *DebugLoc = MI.getDebugLoc();
847   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
848   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
849          "Expected inlined-at fields to agree");
850 
851   DebugVariable V(Var, Expr, InlinedAt);
852   DbgValueProperties Properties(MI);
853 
854   // If there are no instructions in this lexical scope, do no location tracking
855   // at all, this variable shouldn't get a legitimate location range.
856   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
857   if (Scope == nullptr)
858     return true; // handled it; by doing nothing
859 
860   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
861   // contribute to locations in this block, but don't propagate further.
862   // Interpret it like a DBG_VALUE $noreg.
863   if (MI.isDebugValueList()) {
864     if (VTracker)
865       VTracker->defVar(MI, Properties, None);
866     if (TTracker)
867       TTracker->redefVar(MI, Properties, None);
868     return true;
869   }
870 
871   const MachineOperand &MO = MI.getOperand(0);
872 
873   // MLocTracker needs to know that this register is read, even if it's only
874   // read by a debug inst.
875   if (MO.isReg() && MO.getReg() != 0)
876     (void)MTracker->readReg(MO.getReg());
877 
878   // If we're preparing for the second analysis (variables), the machine value
879   // locations are already solved, and we report this DBG_VALUE and the value
880   // it refers to to VLocTracker.
881   if (VTracker) {
882     if (MO.isReg()) {
883       // Feed defVar the new variable location, or if this is a
884       // DBG_VALUE $noreg, feed defVar None.
885       if (MO.getReg())
886         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
887       else
888         VTracker->defVar(MI, Properties, None);
889     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
890                MI.getOperand(0).isCImm()) {
891       VTracker->defVar(MI, MI.getOperand(0));
892     }
893   }
894 
895   // If performing final tracking of transfers, report this variable definition
896   // to the TransferTracker too.
897   if (TTracker)
898     TTracker->redefVar(MI);
899   return true;
900 }
901 
902 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
903                                              ValueIDNum **MLiveOuts,
904                                              ValueIDNum **MLiveIns) {
905   if (!MI.isDebugRef())
906     return false;
907 
908   // Only handle this instruction when we are building the variable value
909   // transfer function.
910   if (!VTracker)
911     return false;
912 
913   unsigned InstNo = MI.getOperand(0).getImm();
914   unsigned OpNo = MI.getOperand(1).getImm();
915 
916   const DILocalVariable *Var = MI.getDebugVariable();
917   const DIExpression *Expr = MI.getDebugExpression();
918   const DILocation *DebugLoc = MI.getDebugLoc();
919   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
920   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
921          "Expected inlined-at fields to agree");
922 
923   DebugVariable V(Var, Expr, InlinedAt);
924 
925   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
926   if (Scope == nullptr)
927     return true; // Handled by doing nothing. This variable is never in scope.
928 
929   const MachineFunction &MF = *MI.getParent()->getParent();
930 
931   // Various optimizations may have happened to the value during codegen,
932   // recorded in the value substitution table. Apply any substitutions to
933   // the instruction / operand number in this DBG_INSTR_REF, and collect
934   // any subregister extractions performed during optimization.
935 
936   // Create dummy substitution with Src set, for lookup.
937   auto SoughtSub =
938       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
939 
940   SmallVector<unsigned, 4> SeenSubregs;
941   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
942   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
943          LowerBoundIt->Src == SoughtSub.Src) {
944     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
945     SoughtSub.Src = LowerBoundIt->Dest;
946     if (unsigned Subreg = LowerBoundIt->Subreg)
947       SeenSubregs.push_back(Subreg);
948     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
949   }
950 
951   // Default machine value number is <None> -- if no instruction defines
952   // the corresponding value, it must have been optimized out.
953   Optional<ValueIDNum> NewID = None;
954 
955   // Try to lookup the instruction number, and find the machine value number
956   // that it defines. It could be an instruction, or a PHI.
957   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
958   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
959                                 DebugPHINumToValue.end(), InstNo);
960   if (InstrIt != DebugInstrNumToInstr.end()) {
961     const MachineInstr &TargetInstr = *InstrIt->second.first;
962     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
963 
964     // Pick out the designated operand.
965     assert(OpNo < TargetInstr.getNumOperands());
966     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
967 
968     // Today, this can only be a register.
969     assert(MO.isReg() && MO.isDef());
970 
971     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
972     LocIdx L = MTracker->LocIDToLocIdx[LocID];
973     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
974   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
975     // It's actually a PHI value. Which value it is might not be obvious, use
976     // the resolver helper to find out.
977     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
978                            MI, InstNo);
979   }
980 
981   // Apply any subregister extractions, in reverse. We might have seen code
982   // like this:
983   //    CALL64 @foo, implicit-def $rax
984   //    %0:gr64 = COPY $rax
985   //    %1:gr32 = COPY %0.sub_32bit
986   //    %2:gr16 = COPY %1.sub_16bit
987   //    %3:gr8  = COPY %2.sub_8bit
988   // In which case each copy would have been recorded as a substitution with
989   // a subregister qualifier. Apply those qualifiers now.
990   if (NewID && !SeenSubregs.empty()) {
991     unsigned Offset = 0;
992     unsigned Size = 0;
993 
994     // Look at each subregister that we passed through, and progressively
995     // narrow in, accumulating any offsets that occur. Substitutions should
996     // only ever be the same or narrower width than what they read from;
997     // iterate in reverse order so that we go from wide to small.
998     for (unsigned Subreg : reverse(SeenSubregs)) {
999       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1000       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1001       Offset += ThisOffset;
1002       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1003     }
1004 
1005     // If that worked, look for an appropriate subregister with the register
1006     // where the define happens. Don't look at values that were defined during
1007     // a stack write: we can't currently express register locations within
1008     // spills.
1009     LocIdx L = NewID->getLoc();
1010     if (NewID && !MTracker->isSpill(L)) {
1011       // Find the register class for the register where this def happened.
1012       // FIXME: no index for this?
1013       Register Reg = MTracker->LocIdxToLocID[L];
1014       const TargetRegisterClass *TRC = nullptr;
1015       for (auto *TRCI : TRI->regclasses())
1016         if (TRCI->contains(Reg))
1017           TRC = TRCI;
1018       assert(TRC && "Couldn't find target register class?");
1019 
1020       // If the register we have isn't the right size or in the right place,
1021       // Try to find a subregister inside it.
1022       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1023       if (Size != MainRegSize || Offset) {
1024         // Enumerate all subregisters, searching.
1025         Register NewReg = 0;
1026         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1027           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1028           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1029           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1030           if (SubregSize == Size && SubregOffset == Offset) {
1031             NewReg = *SRI;
1032             break;
1033           }
1034         }
1035 
1036         // If we didn't find anything: there's no way to express our value.
1037         if (!NewReg) {
1038           NewID = None;
1039         } else {
1040           // Re-state the value as being defined within the subregister
1041           // that we found.
1042           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1043           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1044         }
1045       }
1046     } else {
1047       // If we can't handle subregisters, unset the new value.
1048       NewID = None;
1049     }
1050   }
1051 
1052   // We, we have a value number or None. Tell the variable value tracker about
1053   // it. The rest of this LiveDebugValues implementation acts exactly the same
1054   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1055   // aren't immediately available).
1056   DbgValueProperties Properties(Expr, false);
1057   VTracker->defVar(MI, Properties, NewID);
1058 
1059   // If we're on the final pass through the function, decompose this INSTR_REF
1060   // into a plain DBG_VALUE.
1061   if (!TTracker)
1062     return true;
1063 
1064   // Pick a location for the machine value number, if such a location exists.
1065   // (This information could be stored in TransferTracker to make it faster).
1066   Optional<LocIdx> FoundLoc = None;
1067   for (auto Location : MTracker->locations()) {
1068     LocIdx CurL = Location.Idx;
1069     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1070     if (NewID && ID == NewID) {
1071       // If this is the first location with that value, pick it. Otherwise,
1072       // consider whether it's a "longer term" location.
1073       if (!FoundLoc) {
1074         FoundLoc = CurL;
1075         continue;
1076       }
1077 
1078       if (MTracker->isSpill(CurL))
1079         FoundLoc = CurL; // Spills are a longer term location.
1080       else if (!MTracker->isSpill(*FoundLoc) &&
1081                !MTracker->isSpill(CurL) &&
1082                !isCalleeSaved(*FoundLoc) &&
1083                isCalleeSaved(CurL))
1084         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1085     }
1086   }
1087 
1088   // Tell transfer tracker that the variable value has changed.
1089   TTracker->redefVar(MI, Properties, FoundLoc);
1090 
1091   // If there was a value with no location; but the value is defined in a
1092   // later instruction in this block, this is a block-local use-before-def.
1093   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1094       NewID->getInst() > CurInst)
1095     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1096 
1097   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1098   // This DBG_VALUE is potentially a $noreg / undefined location, if
1099   // FoundLoc is None.
1100   // (XXX -- could morph the DBG_INSTR_REF in the future).
1101   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1102   TTracker->PendingDbgValues.push_back(DbgMI);
1103   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1104   return true;
1105 }
1106 
1107 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1108   if (!MI.isDebugPHI())
1109     return false;
1110 
1111   // Analyse these only when solving the machine value location problem.
1112   if (VTracker || TTracker)
1113     return true;
1114 
1115   // First operand is the value location, either a stack slot or register.
1116   // Second is the debug instruction number of the original PHI.
1117   const MachineOperand &MO = MI.getOperand(0);
1118   unsigned InstrNum = MI.getOperand(1).getImm();
1119 
1120   if (MO.isReg()) {
1121     // The value is whatever's currently in the register. Read and record it,
1122     // to be analysed later.
1123     Register Reg = MO.getReg();
1124     ValueIDNum Num = MTracker->readReg(Reg);
1125     auto PHIRec = DebugPHIRecord(
1126         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1127     DebugPHINumToValue.push_back(PHIRec);
1128 
1129     // Subsequent register operations, or variable locations, might occur for
1130     // any of the subregisters of this DBG_PHIs operand. Ensure that all
1131     // registers aliasing this register are tracked.
1132     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1133       MTracker->lookupOrTrackRegister(*RAI);
1134   } else {
1135     // The value is whatever's in this stack slot.
1136     assert(MO.isFI());
1137     unsigned FI = MO.getIndex();
1138 
1139     // If the stack slot is dead, then this was optimized away.
1140     // FIXME: stack slot colouring should account for slots that get merged.
1141     if (MFI->isDeadObjectIndex(FI))
1142       return true;
1143 
1144     // Identify this spill slot.
1145     Register Base;
1146     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1147     SpillLoc SL = {Base, Offs};
1148     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
1149 
1150     if (!Num)
1151       // Nothing ever writes to this slot. Curious, but nothing we can do.
1152       return true;
1153 
1154     // Record this DBG_PHI for later analysis.
1155     auto DbgPHI = DebugPHIRecord(
1156         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
1157     DebugPHINumToValue.push_back(DbgPHI);
1158   }
1159 
1160   return true;
1161 }
1162 
1163 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1164   // Meta Instructions do not affect the debug liveness of any register they
1165   // define.
1166   if (MI.isImplicitDef()) {
1167     // Except when there's an implicit def, and the location it's defining has
1168     // no value number. The whole point of an implicit def is to announce that
1169     // the register is live, without be specific about it's value. So define
1170     // a value if there isn't one already.
1171     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1172     // Has a legitimate value -> ignore the implicit def.
1173     if (Num.getLoc() != 0)
1174       return;
1175     // Otherwise, def it here.
1176   } else if (MI.isMetaInstruction())
1177     return;
1178 
1179   MachineFunction *MF = MI.getMF();
1180   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1181   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1182 
1183   // Find the regs killed by MI, and find regmasks of preserved regs.
1184   // Max out the number of statically allocated elements in `DeadRegs`, as this
1185   // prevents fallback to std::set::count() operations.
1186   SmallSet<uint32_t, 32> DeadRegs;
1187   SmallVector<const uint32_t *, 4> RegMasks;
1188   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1189   for (const MachineOperand &MO : MI.operands()) {
1190     // Determine whether the operand is a register def.
1191     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1192         Register::isPhysicalRegister(MO.getReg()) &&
1193         !(MI.isCall() && MO.getReg() == SP)) {
1194       // Remove ranges of all aliased registers.
1195       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1196         // FIXME: Can we break out of this loop early if no insertion occurs?
1197         DeadRegs.insert(*RAI);
1198     } else if (MO.isRegMask()) {
1199       RegMasks.push_back(MO.getRegMask());
1200       RegMaskPtrs.push_back(&MO);
1201     }
1202   }
1203 
1204   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1205   for (uint32_t DeadReg : DeadRegs)
1206     MTracker->defReg(DeadReg, CurBB, CurInst);
1207 
1208   for (auto *MO : RegMaskPtrs)
1209     MTracker->writeRegMask(MO, CurBB, CurInst);
1210 
1211   if (!TTracker)
1212     return;
1213 
1214   // When committing variable values to locations: tell transfer tracker that
1215   // we've clobbered things. It may be able to recover the variable from a
1216   // different location.
1217 
1218   // Inform TTracker about any direct clobbers.
1219   for (uint32_t DeadReg : DeadRegs) {
1220     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1221     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1222   }
1223 
1224   // Look for any clobbers performed by a register mask. Only test locations
1225   // that are actually being tracked.
1226   for (auto L : MTracker->locations()) {
1227     // Stack locations can't be clobbered by regmasks.
1228     if (MTracker->isSpill(L.Idx))
1229       continue;
1230 
1231     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1232     for (auto *MO : RegMaskPtrs)
1233       if (MO->clobbersPhysReg(Reg))
1234         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1235   }
1236 }
1237 
1238 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1239   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1240 
1241   MTracker->setReg(DstRegNum, SrcValue);
1242 
1243   // In all circumstances, re-def the super registers. It's definitely a new
1244   // value now. This doesn't uniquely identify the composition of subregs, for
1245   // example, two identical values in subregisters composed in different
1246   // places would not get equal value numbers.
1247   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1248     MTracker->defReg(*SRI, CurBB, CurInst);
1249 
1250   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1251   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1252   // through prior copies.
1253   if (EmulateOldLDV) {
1254     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1255       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1256     return;
1257   }
1258 
1259   // Otherwise, actually copy subregisters from one location to another.
1260   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1261   // the source register should be def'd.
1262   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1263     unsigned SrcSubReg = SRI.getSubReg();
1264     unsigned SubRegIdx = SRI.getSubRegIndex();
1265     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1266     if (!DstSubReg)
1267       continue;
1268 
1269     // Do copy. There are two matching subregisters, the source value should
1270     // have been def'd when the super-reg was, the latter might not be tracked
1271     // yet.
1272     // This will force SrcSubReg to be tracked, if it isn't yet.
1273     (void)MTracker->readReg(SrcSubReg);
1274     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1275     assert(SrcL.asU64());
1276     (void)MTracker->readReg(DstSubReg);
1277     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1278     assert(DstL.asU64());
1279     (void)DstL;
1280     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1281 
1282     MTracker->setReg(DstSubReg, CpyValue);
1283   }
1284 }
1285 
1286 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1287                                           MachineFunction *MF) {
1288   // TODO: Handle multiple stores folded into one.
1289   if (!MI.hasOneMemOperand())
1290     return false;
1291 
1292   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1293     return false; // This is not a spill instruction, since no valid size was
1294                   // returned from either function.
1295 
1296   return true;
1297 }
1298 
1299 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1300                                        MachineFunction *MF, unsigned &Reg) {
1301   if (!isSpillInstruction(MI, MF))
1302     return false;
1303 
1304   int FI;
1305   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1306   return Reg != 0;
1307 }
1308 
1309 Optional<SpillLoc>
1310 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1311                                        MachineFunction *MF, unsigned &Reg) {
1312   if (!MI.hasOneMemOperand())
1313     return None;
1314 
1315   // FIXME: Handle folded restore instructions with more than one memory
1316   // operand.
1317   if (MI.getRestoreSize(TII)) {
1318     Reg = MI.getOperand(0).getReg();
1319     return extractSpillBaseRegAndOffset(MI);
1320   }
1321   return None;
1322 }
1323 
1324 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1325   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1326   // limitations under the new model. Therefore, when comparing them, compare
1327   // versions that don't attempt spills or restores at all.
1328   if (EmulateOldLDV)
1329     return false;
1330 
1331   MachineFunction *MF = MI.getMF();
1332   unsigned Reg;
1333   Optional<SpillLoc> Loc;
1334 
1335   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1336 
1337   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1338   // written to, terminate that variable location. The value in memory
1339   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1340   if (isSpillInstruction(MI, MF)) {
1341     Loc = extractSpillBaseRegAndOffset(MI);
1342 
1343     if (TTracker) {
1344       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1345       if (MLoc) {
1346         // Un-set this location before clobbering, so that we don't salvage
1347         // the variable location back to the same place.
1348         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
1349         TTracker->clobberMloc(*MLoc, MI.getIterator());
1350       }
1351     }
1352   }
1353 
1354   // Try to recognise spill and restore instructions that may transfer a value.
1355   if (isLocationSpill(MI, MF, Reg)) {
1356     Loc = extractSpillBaseRegAndOffset(MI);
1357     auto ValueID = MTracker->readReg(Reg);
1358 
1359     // If the location is empty, produce a phi, signify it's the live-in value.
1360     if (ValueID.getLoc() == 0)
1361       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1362 
1363     MTracker->setSpill(*Loc, ValueID);
1364     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1365     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1366     LocIdx SpillLocIdx = *OptSpillLocIdx;
1367 
1368     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1369     if (TTracker)
1370       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1371                               MI.getIterator());
1372   } else {
1373     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1374       return false;
1375 
1376     // Is there a value to be restored?
1377     auto OptValueID = MTracker->readSpill(*Loc);
1378     if (OptValueID) {
1379       ValueIDNum ValueID = *OptValueID;
1380       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1381       // XXX -- can we recover sub-registers of this value? Until we can, first
1382       // overwrite all defs of the register being restored to.
1383       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1384         MTracker->defReg(*RAI, CurBB, CurInst);
1385 
1386       // Now override the reg we're restoring to.
1387       MTracker->setReg(Reg, ValueID);
1388 
1389       // Report this restore to the transfer tracker too.
1390       if (TTracker)
1391         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1392                                 MI.getIterator());
1393     } else {
1394       // There isn't anything in the location; not clear if this is a code path
1395       // that still runs. Def this register anyway just in case.
1396       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1397         MTracker->defReg(*RAI, CurBB, CurInst);
1398 
1399       // Force the spill slot to be tracked.
1400       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
1401 
1402       // Set the restored value to be a machine phi number, signifying that it's
1403       // whatever the spills live-in value is in this block. Definitely has
1404       // a LocIdx due to the setSpill above.
1405       ValueIDNum ValueID = {CurBB, 0, L};
1406       MTracker->setReg(Reg, ValueID);
1407       MTracker->setSpill(*Loc, ValueID);
1408     }
1409   }
1410   return true;
1411 }
1412 
1413 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1414   auto DestSrc = TII->isCopyInstr(MI);
1415   if (!DestSrc)
1416     return false;
1417 
1418   const MachineOperand *DestRegOp = DestSrc->Destination;
1419   const MachineOperand *SrcRegOp = DestSrc->Source;
1420 
1421   auto isCalleeSavedReg = [&](unsigned Reg) {
1422     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1423       if (CalleeSavedRegs.test(*RAI))
1424         return true;
1425     return false;
1426   };
1427 
1428   Register SrcReg = SrcRegOp->getReg();
1429   Register DestReg = DestRegOp->getReg();
1430 
1431   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1432   if (SrcReg == DestReg)
1433     return true;
1434 
1435   // For emulating VarLocBasedImpl:
1436   // We want to recognize instructions where destination register is callee
1437   // saved register. If register that could be clobbered by the call is
1438   // included, there would be a great chance that it is going to be clobbered
1439   // soon. It is more likely that previous register, which is callee saved, is
1440   // going to stay unclobbered longer, even if it is killed.
1441   //
1442   // For InstrRefBasedImpl, we can track multiple locations per value, so
1443   // ignore this condition.
1444   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1445     return false;
1446 
1447   // InstrRefBasedImpl only followed killing copies.
1448   if (EmulateOldLDV && !SrcRegOp->isKill())
1449     return false;
1450 
1451   // Copy MTracker info, including subregs if available.
1452   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1453 
1454   // Only produce a transfer of DBG_VALUE within a block where old LDV
1455   // would have. We might make use of the additional value tracking in some
1456   // other way, later.
1457   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1458     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1459                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1460 
1461   // VarLocBasedImpl would quit tracking the old location after copying.
1462   if (EmulateOldLDV && SrcReg != DestReg)
1463     MTracker->defReg(SrcReg, CurBB, CurInst);
1464 
1465   // Finally, the copy might have clobbered variables based on the destination
1466   // register. Tell TTracker about it, in case a backup location exists.
1467   if (TTracker) {
1468     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1469       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1470       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1471     }
1472   }
1473 
1474   return true;
1475 }
1476 
1477 /// Accumulate a mapping between each DILocalVariable fragment and other
1478 /// fragments of that DILocalVariable which overlap. This reduces work during
1479 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1480 /// known-to-overlap fragments are present".
1481 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1482 ///           fragment usage.
1483 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1484   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1485                       MI.getDebugLoc()->getInlinedAt());
1486   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1487 
1488   // If this is the first sighting of this variable, then we are guaranteed
1489   // there are currently no overlapping fragments either. Initialize the set
1490   // of seen fragments, record no overlaps for the current one, and return.
1491   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1492   if (SeenIt == SeenFragments.end()) {
1493     SmallSet<FragmentInfo, 4> OneFragment;
1494     OneFragment.insert(ThisFragment);
1495     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1496 
1497     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1498     return;
1499   }
1500 
1501   // If this particular Variable/Fragment pair already exists in the overlap
1502   // map, it has already been accounted for.
1503   auto IsInOLapMap =
1504       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1505   if (!IsInOLapMap.second)
1506     return;
1507 
1508   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1509   auto &AllSeenFragments = SeenIt->second;
1510 
1511   // Otherwise, examine all other seen fragments for this variable, with "this"
1512   // fragment being a previously unseen fragment. Record any pair of
1513   // overlapping fragments.
1514   for (auto &ASeenFragment : AllSeenFragments) {
1515     // Does this previously seen fragment overlap?
1516     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1517       // Yes: Mark the current fragment as being overlapped.
1518       ThisFragmentsOverlaps.push_back(ASeenFragment);
1519       // Mark the previously seen fragment as being overlapped by the current
1520       // one.
1521       auto ASeenFragmentsOverlaps =
1522           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1523       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1524              "Previously seen var fragment has no vector of overlaps");
1525       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1526     }
1527   }
1528 
1529   AllSeenFragments.insert(ThisFragment);
1530 }
1531 
1532 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1533                                ValueIDNum **MLiveIns) {
1534   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1535   // none of these should we interpret it's register defs as new value
1536   // definitions.
1537   if (transferDebugValue(MI))
1538     return;
1539   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1540     return;
1541   if (transferDebugPHI(MI))
1542     return;
1543   if (transferRegisterCopy(MI))
1544     return;
1545   if (transferSpillOrRestoreInst(MI))
1546     return;
1547   transferRegisterDef(MI);
1548 }
1549 
1550 void InstrRefBasedLDV::produceMLocTransferFunction(
1551     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1552     unsigned MaxNumBlocks) {
1553   // Because we try to optimize around register mask operands by ignoring regs
1554   // that aren't currently tracked, we set up something ugly for later: RegMask
1555   // operands that are seen earlier than the first use of a register, still need
1556   // to clobber that register in the transfer function. But this information
1557   // isn't actively recorded. Instead, we track each RegMask used in each block,
1558   // and accumulated the clobbered but untracked registers in each block into
1559   // the following bitvector. Later, if new values are tracked, we can add
1560   // appropriate clobbers.
1561   SmallVector<BitVector, 32> BlockMasks;
1562   BlockMasks.resize(MaxNumBlocks);
1563 
1564   // Reserve one bit per register for the masks described above.
1565   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1566   for (auto &BV : BlockMasks)
1567     BV.resize(TRI->getNumRegs(), true);
1568 
1569   // Step through all instructions and inhale the transfer function.
1570   for (auto &MBB : MF) {
1571     // Object fields that are read by trackers to know where we are in the
1572     // function.
1573     CurBB = MBB.getNumber();
1574     CurInst = 1;
1575 
1576     // Set all machine locations to a PHI value. For transfer function
1577     // production only, this signifies the live-in value to the block.
1578     MTracker->reset();
1579     MTracker->setMPhis(CurBB);
1580 
1581     // Step through each instruction in this block.
1582     for (auto &MI : MBB) {
1583       process(MI);
1584       // Also accumulate fragment map.
1585       if (MI.isDebugValue())
1586         accumulateFragmentMap(MI);
1587 
1588       // Create a map from the instruction number (if present) to the
1589       // MachineInstr and its position.
1590       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1591         auto InstrAndPos = std::make_pair(&MI, CurInst);
1592         auto InsertResult =
1593             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1594 
1595         // There should never be duplicate instruction numbers.
1596         assert(InsertResult.second);
1597         (void)InsertResult;
1598       }
1599 
1600       ++CurInst;
1601     }
1602 
1603     // Produce the transfer function, a map of machine location to new value. If
1604     // any machine location has the live-in phi value from the start of the
1605     // block, it's live-through and doesn't need recording in the transfer
1606     // function.
1607     for (auto Location : MTracker->locations()) {
1608       LocIdx Idx = Location.Idx;
1609       ValueIDNum &P = Location.Value;
1610       if (P.isPHI() && P.getLoc() == Idx.asU64())
1611         continue;
1612 
1613       // Insert-or-update.
1614       auto &TransferMap = MLocTransfer[CurBB];
1615       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1616       if (!Result.second)
1617         Result.first->second = P;
1618     }
1619 
1620     // Accumulate any bitmask operands into the clobberred reg mask for this
1621     // block.
1622     for (auto &P : MTracker->Masks) {
1623       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1624     }
1625   }
1626 
1627   // Compute a bitvector of all the registers that are tracked in this block.
1628   BitVector UsedRegs(TRI->getNumRegs());
1629   for (auto Location : MTracker->locations()) {
1630     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1631     // Ignore stack slots, and aliases of the stack pointer.
1632     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1633       continue;
1634     UsedRegs.set(ID);
1635   }
1636 
1637   // Check that any regmask-clobber of a register that gets tracked, is not
1638   // live-through in the transfer function. It needs to be clobbered at the
1639   // very least.
1640   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1641     BitVector &BV = BlockMasks[I];
1642     BV.flip();
1643     BV &= UsedRegs;
1644     // This produces all the bits that we clobber, but also use. Check that
1645     // they're all clobbered or at least set in the designated transfer
1646     // elem.
1647     for (unsigned Bit : BV.set_bits()) {
1648       unsigned ID = MTracker->getLocID(Bit, false);
1649       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1650       auto &TransferMap = MLocTransfer[I];
1651 
1652       // Install a value representing the fact that this location is effectively
1653       // written to in this block. As there's no reserved value, instead use
1654       // a value number that is never generated. Pick the value number for the
1655       // first instruction in the block, def'ing this location, which we know
1656       // this block never used anyway.
1657       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1658       auto Result =
1659         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1660       if (!Result.second) {
1661         ValueIDNum &ValueID = Result.first->second;
1662         if (ValueID.getBlock() == I && ValueID.isPHI())
1663           // It was left as live-through. Set it to clobbered.
1664           ValueID = NotGeneratedNum;
1665       }
1666     }
1667   }
1668 }
1669 
1670 bool InstrRefBasedLDV::mlocJoin(
1671     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1672     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1673   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1674   bool Changed = false;
1675 
1676   // Handle value-propagation when control flow merges on entry to a block. For
1677   // any location without a PHI already placed, the location has the same value
1678   // as its predecessors. If a PHI is placed, test to see whether it's now a
1679   // redundant PHI that we can eliminate.
1680 
1681   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1682   for (auto Pred : MBB.predecessors())
1683     BlockOrders.push_back(Pred);
1684 
1685   // Visit predecessors in RPOT order.
1686   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1687     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1688   };
1689   llvm::sort(BlockOrders, Cmp);
1690 
1691   // Skip entry block.
1692   if (BlockOrders.size() == 0)
1693     return false;
1694 
1695   // Step through all machine locations, look at each predecessor and test
1696   // whether we can eliminate redundant PHIs.
1697   for (auto Location : MTracker->locations()) {
1698     LocIdx Idx = Location.Idx;
1699 
1700     // Pick out the first predecessors live-out value for this location. It's
1701     // guaranteed to not be a backedge, as we order by RPO.
1702     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1703 
1704     // If we've already eliminated a PHI here, do no further checking, just
1705     // propagate the first live-in value into this block.
1706     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1707       if (InLocs[Idx.asU64()] != FirstVal) {
1708         InLocs[Idx.asU64()] = FirstVal;
1709         Changed |= true;
1710       }
1711       continue;
1712     }
1713 
1714     // We're now examining a PHI to see whether it's un-necessary. Loop around
1715     // the other live-in values and test whether they're all the same.
1716     bool Disagree = false;
1717     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1718       const MachineBasicBlock *PredMBB = BlockOrders[I];
1719       const ValueIDNum &PredLiveOut =
1720           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1721 
1722       // Incoming values agree, continue trying to eliminate this PHI.
1723       if (FirstVal == PredLiveOut)
1724         continue;
1725 
1726       // We can also accept a PHI value that feeds back into itself.
1727       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1728         continue;
1729 
1730       // Live-out of a predecessor disagrees with the first predecessor.
1731       Disagree = true;
1732     }
1733 
1734     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1735     if (!Disagree) {
1736       InLocs[Idx.asU64()] = FirstVal;
1737       Changed |= true;
1738     }
1739   }
1740 
1741   // TODO: Reimplement NumInserted and NumRemoved.
1742   return Changed;
1743 }
1744 
1745 void InstrRefBasedLDV::placeMLocPHIs(MachineFunction &MF,
1746                               SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1747                               ValueIDNum **MInLocs,
1748                               SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1749   // To avoid repeatedly running the PHI placement algorithm, leverage the
1750   // fact that a def of register MUST also def its register units. Find the
1751   // units for registers, place PHIs for them, and then replicate them for
1752   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1753   // arguments) don't lead to register units being tracked, just place PHIs for
1754   // those registers directly. Do the same for stack slots.
1755   SmallSet<Register, 32> RegUnitsToPHIUp;
1756   SmallSet<LocIdx, 32> LocsToPHI;
1757   for (auto Location : MTracker->locations()) {
1758     LocIdx L = Location.Idx;
1759     if (MTracker->isSpill(L)) {
1760       LocsToPHI.insert(L);
1761       continue;
1762     }
1763 
1764     Register R = MTracker->LocIdxToLocID[L];
1765     SmallSet<Register, 8> FoundRegUnits;
1766     bool AnyIllegal = false;
1767     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1768       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1769         if (!MTracker->isRegisterTracked(*URoot)) {
1770           // Not all roots were loaded into the tracking map: this register
1771           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1772           // for this reg, but don't iterate units.
1773           AnyIllegal = true;
1774         } else {
1775           FoundRegUnits.insert(*URoot);
1776         }
1777       }
1778     }
1779 
1780     if (AnyIllegal) {
1781       LocsToPHI.insert(L);
1782       continue;
1783     }
1784 
1785     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
1786   }
1787 
1788   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
1789   // collection.
1790   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
1791   auto CollectPHIsForLoc = [&](LocIdx L) {
1792     // Collect the set of defs.
1793     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
1794     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
1795       MachineBasicBlock *MBB = OrderToBB[I];
1796       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
1797       if (TransferFunc.find(L) != TransferFunc.end())
1798         DefBlocks.insert(MBB);
1799     }
1800 
1801     // The entry block defs the location too: it's the live-in / argument value.
1802     // Only insert if there are other defs though; everything is trivially live
1803     // through otherwise.
1804     if (!DefBlocks.empty())
1805       DefBlocks.insert(&*MF.begin());
1806 
1807     // Ask the SSA construction algorithm where we should put PHIs. Clear
1808     // anything that might have been hanging around from earlier.
1809     PHIBlocks.clear();
1810     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
1811   };
1812 
1813   // For spill slots, and locations with no reg units, just place PHIs.
1814   for (LocIdx L : LocsToPHI) {
1815     CollectPHIsForLoc(L);
1816     // Install those PHI values into the live-in value array.
1817     for (const MachineBasicBlock *MBB : PHIBlocks)
1818       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
1819   }
1820 
1821   // For reg units, place PHIs, and then place them for any aliasing registers.
1822   for (Register R : RegUnitsToPHIUp) {
1823     LocIdx L = MTracker->lookupOrTrackRegister(R);
1824     CollectPHIsForLoc(L);
1825 
1826     // Install those PHI values into the live-in value array.
1827     for (const MachineBasicBlock *MBB : PHIBlocks)
1828       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
1829 
1830     // Now find aliases and install PHIs for those.
1831     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
1832       // Super-registers that are "above" the largest register read/written by
1833       // the function will alias, but will not be tracked.
1834       if (!MTracker->isRegisterTracked(*RAI))
1835         continue;
1836 
1837       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
1838       for (const MachineBasicBlock *MBB : PHIBlocks)
1839         MInLocs[MBB->getNumber()][AliasLoc.asU64()] =
1840             ValueIDNum(MBB->getNumber(), 0, AliasLoc);
1841     }
1842   }
1843 }
1844 
1845 void InstrRefBasedLDV::buildMLocValueMap(
1846     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1847     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1848   std::priority_queue<unsigned int, std::vector<unsigned int>,
1849                       std::greater<unsigned int>>
1850       Worklist, Pending;
1851 
1852   // We track what is on the current and pending worklist to avoid inserting
1853   // the same thing twice. We could avoid this with a custom priority queue,
1854   // but this is probably not worth it.
1855   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
1856 
1857   // Initialize worklist with every block to be visited. Also produce list of
1858   // all blocks.
1859   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
1860   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
1861     Worklist.push(I);
1862     OnWorklist.insert(OrderToBB[I]);
1863     AllBlocks.insert(OrderToBB[I]);
1864   }
1865 
1866   // Initialize entry block to PHIs. These represent arguments.
1867   for (auto Location : MTracker->locations())
1868     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
1869 
1870   MTracker->reset();
1871 
1872   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
1873   // any machine-location that isn't live-through a block to be def'd in that
1874   // block.
1875   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
1876 
1877   // Propagate values to eliminate redundant PHIs. At the same time, this
1878   // produces the table of Block x Location => Value for the entry to each
1879   // block.
1880   // The kind of PHIs we can eliminate are, for example, where one path in a
1881   // conditional spills and restores a register, and the register still has
1882   // the same value once control flow joins, unbeknowns to the PHI placement
1883   // code. Propagating values allows us to identify such un-necessary PHIs and
1884   // remove them.
1885   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1886   while (!Worklist.empty() || !Pending.empty()) {
1887     // Vector for storing the evaluated block transfer function.
1888     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
1889 
1890     while (!Worklist.empty()) {
1891       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1892       CurBB = MBB->getNumber();
1893       Worklist.pop();
1894 
1895       // Join the values in all predecessor blocks.
1896       bool InLocsChanged;
1897       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
1898       InLocsChanged |= Visited.insert(MBB).second;
1899 
1900       // Don't examine transfer function if we've visited this loc at least
1901       // once, and inlocs haven't changed.
1902       if (!InLocsChanged)
1903         continue;
1904 
1905       // Load the current set of live-ins into MLocTracker.
1906       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
1907 
1908       // Each element of the transfer function can be a new def, or a read of
1909       // a live-in value. Evaluate each element, and store to "ToRemap".
1910       ToRemap.clear();
1911       for (auto &P : MLocTransfer[CurBB]) {
1912         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
1913           // This is a movement of whatever was live in. Read it.
1914           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
1915           ToRemap.push_back(std::make_pair(P.first, NewID));
1916         } else {
1917           // It's a def. Just set it.
1918           assert(P.second.getBlock() == CurBB);
1919           ToRemap.push_back(std::make_pair(P.first, P.second));
1920         }
1921       }
1922 
1923       // Commit the transfer function changes into mloc tracker, which
1924       // transforms the contents of the MLocTracker into the live-outs.
1925       for (auto &P : ToRemap)
1926         MTracker->setMLoc(P.first, P.second);
1927 
1928       // Now copy out-locs from mloc tracker into out-loc vector, checking
1929       // whether changes have occurred. These changes can have come from both
1930       // the transfer function, and mlocJoin.
1931       bool OLChanged = false;
1932       for (auto Location : MTracker->locations()) {
1933         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
1934         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
1935       }
1936 
1937       MTracker->reset();
1938 
1939       // No need to examine successors again if out-locs didn't change.
1940       if (!OLChanged)
1941         continue;
1942 
1943       // All successors should be visited: put any back-edges on the pending
1944       // list for the next pass-through, and any other successors to be
1945       // visited this pass, if they're not going to be already.
1946       for (auto s : MBB->successors()) {
1947         // Does branching to this successor represent a back-edge?
1948         if (BBToOrder[s] > BBToOrder[MBB]) {
1949           // No: visit it during this dataflow iteration.
1950           if (OnWorklist.insert(s).second)
1951             Worklist.push(BBToOrder[s]);
1952         } else {
1953           // Yes: visit it on the next iteration.
1954           if (OnPending.insert(s).second)
1955             Pending.push(BBToOrder[s]);
1956         }
1957       }
1958     }
1959 
1960     Worklist.swap(Pending);
1961     std::swap(OnPending, OnWorklist);
1962     OnPending.clear();
1963     // At this point, pending must be empty, since it was just the empty
1964     // worklist
1965     assert(Pending.empty() && "Pending should be empty");
1966   }
1967 
1968   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
1969   // redundant PHIs.
1970 }
1971 
1972 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
1973 // template specialisations for graph traits and a successor enumerator.
1974 namespace llvm {
1975 template <> struct GraphTraits<MachineBasicBlock> {
1976   using NodeRef = MachineBasicBlock *;
1977   using ChildIteratorType = MachineBasicBlock::succ_iterator;
1978 
1979   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1980   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1981   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1982 };
1983 
1984 template <> struct GraphTraits<const MachineBasicBlock> {
1985   using NodeRef = const MachineBasicBlock *;
1986   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1987 
1988   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1989   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1990   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1991 };
1992 
1993 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
1994 using MachineDomTreeChildGetter =
1995     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
1996 
1997 namespace IDFCalculatorDetail {
1998 template <>
1999 typename MachineDomTreeChildGetter::ChildrenTy
2000 MachineDomTreeChildGetter::get(const NodeRef &N) {
2001   return {N->succ_begin(), N->succ_end()};
2002 }
2003 } // namespace IDFCalculatorDetail
2004 } // namespace llvm
2005 
2006 void InstrRefBasedLDV::BlockPHIPlacement(
2007     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2008     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2009     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2010   // Apply IDF calculator to the designated set of location defs, storing
2011   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2012   // InstrRefBasedLDV object.
2013   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2014   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2015 
2016   IDF.setLiveInBlocks(AllBlocks);
2017   IDF.setDefiningBlocks(DefBlocks);
2018   IDF.calculate(PHIBlocks);
2019 }
2020 
2021 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2022     const MachineBasicBlock &MBB, const DebugVariable &Var,
2023     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2024     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2025   // Collect a set of locations from predecessor where its live-out value can
2026   // be found.
2027   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2028   SmallVector<const DbgValueProperties *, 4> Properties;
2029   unsigned NumLocs = MTracker->getNumLocs();
2030 
2031   // No predecessors means no PHIs.
2032   if (BlockOrders.empty())
2033     return None;
2034 
2035   for (auto p : BlockOrders) {
2036     unsigned ThisBBNum = p->getNumber();
2037     auto OutValIt = LiveOuts.find(p);
2038     if (OutValIt == LiveOuts.end())
2039       // If we have a predecessor not in scope, we'll never find a PHI position.
2040       return None;
2041     const DbgValue &OutVal = *OutValIt->second;
2042 
2043     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2044       // Consts and no-values cannot have locations we can join on.
2045       return None;
2046 
2047     Properties.push_back(&OutVal.Properties);
2048 
2049     // Create new empty vector of locations.
2050     Locs.resize(Locs.size() + 1);
2051 
2052     // If the live-in value is a def, find the locations where that value is
2053     // present. Do the same for VPHIs where we know the VPHI value.
2054     if (OutVal.Kind == DbgValue::Def ||
2055         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2056          OutVal.ID != ValueIDNum::EmptyValue)) {
2057       ValueIDNum ValToLookFor = OutVal.ID;
2058       // Search the live-outs of the predecessor for the specified value.
2059       for (unsigned int I = 0; I < NumLocs; ++I) {
2060         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2061           Locs.back().push_back(LocIdx(I));
2062       }
2063     } else {
2064       assert(OutVal.Kind == DbgValue::VPHI);
2065       // For VPHIs where we don't know the location, we definitely can't find
2066       // a join loc.
2067       if (OutVal.BlockNo != MBB.getNumber())
2068         return None;
2069 
2070       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2071       // a value that's live-through the whole loop. (It has to be a backedge,
2072       // because a block can't dominate itself). We can accept as a PHI location
2073       // any location where the other predecessors agree, _and_ the machine
2074       // locations feed back into themselves. Therefore, add all self-looping
2075       // machine-value PHI locations.
2076       for (unsigned int I = 0; I < NumLocs; ++I) {
2077         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2078         if (MOutLocs[ThisBBNum][I] == MPHI)
2079           Locs.back().push_back(LocIdx(I));
2080       }
2081     }
2082   }
2083 
2084   // We should have found locations for all predecessors, or returned.
2085   assert(Locs.size() == BlockOrders.size());
2086 
2087   // Check that all properties are the same. We can't pick a location if they're
2088   // not.
2089   const DbgValueProperties *Properties0 = Properties[0];
2090   for (auto *Prop : Properties)
2091     if (*Prop != *Properties0)
2092       return None;
2093 
2094   // Starting with the first set of locations, take the intersection with
2095   // subsequent sets.
2096   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2097   for (unsigned int I = 1; I < Locs.size(); ++I) {
2098     auto &LocVec = Locs[I];
2099     SmallVector<LocIdx, 4> NewCandidates;
2100     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2101                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2102     CandidateLocs = NewCandidates;
2103   }
2104   if (CandidateLocs.empty())
2105     return None;
2106 
2107   // We now have a set of LocIdxes that contain the right output value in
2108   // each of the predecessors. Pick the lowest; if there's a register loc,
2109   // that'll be it.
2110   LocIdx L = *CandidateLocs.begin();
2111 
2112   // Return a PHI-value-number for the found location.
2113   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2114   return PHIVal;
2115 }
2116 
2117 bool InstrRefBasedLDV::vlocJoin(
2118     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2119     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2120     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2121     DbgValue &LiveIn) {
2122   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2123   // _does_ assign a variable value. No live-ins for this scope are transferred
2124   // in though, so we can return immediately.
2125   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB))
2126     return false;
2127 
2128   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2129   bool Changed = false;
2130 
2131   // Order predecessors by RPOT order, for exploring them in that order.
2132   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2133 
2134   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2135     return BBToOrder[A] < BBToOrder[B];
2136   };
2137 
2138   llvm::sort(BlockOrders, Cmp);
2139 
2140   unsigned CurBlockRPONum = BBToOrder[&MBB];
2141 
2142   // Collect all the incoming DbgValues for this variable, from predecessor
2143   // live-out values.
2144   SmallVector<InValueT, 8> Values;
2145   bool Bail = false;
2146   int BackEdgesStart = 0;
2147   for (auto p : BlockOrders) {
2148     // If the predecessor isn't in scope / to be explored, we'll never be
2149     // able to join any locations.
2150     if (!BlocksToExplore.contains(p)) {
2151       Bail = true;
2152       break;
2153     }
2154 
2155     // All Live-outs will have been initialized.
2156     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2157 
2158     // Keep track of where back-edges begin in the Values vector. Relies on
2159     // BlockOrders being sorted by RPO.
2160     unsigned ThisBBRPONum = BBToOrder[p];
2161     if (ThisBBRPONum < CurBlockRPONum)
2162       ++BackEdgesStart;
2163 
2164     Values.push_back(std::make_pair(p, &OutLoc));
2165   }
2166 
2167   // If there were no values, or one of the predecessors couldn't have a
2168   // value, then give up immediately. It's not safe to produce a live-in
2169   // value. Leave as whatever it was before.
2170   if (Bail || Values.size() == 0)
2171     return false;
2172 
2173   // All (non-entry) blocks have at least one non-backedge predecessor.
2174   // Pick the variable value from the first of these, to compare against
2175   // all others.
2176   const DbgValue &FirstVal = *Values[0].second;
2177 
2178   // If the old live-in value is not a PHI then either a) no PHI is needed
2179   // here, or b) we eliminated the PHI that was here. If so, we can just
2180   // propagate in the first parent's incoming value.
2181   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2182     Changed = LiveIn != FirstVal;
2183     if (Changed)
2184       LiveIn = FirstVal;
2185     return Changed;
2186   }
2187 
2188   // Scan for variable values that can never be resolved: if they have
2189   // different DIExpressions, different indirectness, or are mixed constants /
2190   // non-constants.
2191   for (auto &V : Values) {
2192     if (V.second->Properties != FirstVal.Properties)
2193       return false;
2194     if (V.second->Kind == DbgValue::NoVal)
2195       return false;
2196     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2197       return false;
2198   }
2199 
2200   // Try to eliminate this PHI. Do the incoming values all agree?
2201   bool Disagree = false;
2202   for (auto &V : Values) {
2203     if (*V.second == FirstVal)
2204       continue; // No disagreement.
2205 
2206     // Eliminate if a backedge feeds a VPHI back into itself.
2207     if (V.second->Kind == DbgValue::VPHI &&
2208         V.second->BlockNo == MBB.getNumber() &&
2209         // Is this a backedge?
2210         std::distance(Values.begin(), &V) >= BackEdgesStart)
2211       continue;
2212 
2213     Disagree = true;
2214   }
2215 
2216   // No disagreement -> live-through value.
2217   if (!Disagree) {
2218     Changed = LiveIn != FirstVal;
2219     if (Changed)
2220       LiveIn = FirstVal;
2221     return Changed;
2222   } else {
2223     // Otherwise use a VPHI.
2224     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2225     Changed = LiveIn != VPHI;
2226     if (Changed)
2227       LiveIn = VPHI;
2228     return Changed;
2229   }
2230 }
2231 
2232 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2233     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2234     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2235     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2236     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2237   // This method is much like buildMLocValueMap: but focuses on a single
2238   // LexicalScope at a time. Pick out a set of blocks and variables that are
2239   // to have their value assignments solved, then run our dataflow algorithm
2240   // until a fixedpoint is reached.
2241   std::priority_queue<unsigned int, std::vector<unsigned int>,
2242                       std::greater<unsigned int>>
2243       Worklist, Pending;
2244   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2245 
2246   // The set of blocks we'll be examining.
2247   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2248 
2249   // The order in which to examine them (RPO).
2250   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2251 
2252   // RPO ordering function.
2253   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2254     return BBToOrder[A] < BBToOrder[B];
2255   };
2256 
2257   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2258 
2259   // A separate container to distinguish "blocks we're exploring" versus
2260   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2261   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2262 
2263   // Old LiveDebugValues tracks variable locations that come out of blocks
2264   // not in scope, where DBG_VALUEs occur. This is something we could
2265   // legitimately ignore, but lets allow it for now.
2266   if (EmulateOldLDV)
2267     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2268 
2269   // We also need to propagate variable values through any artificial blocks
2270   // that immediately follow blocks in scope.
2271   DenseSet<const MachineBasicBlock *> ToAdd;
2272 
2273   // Helper lambda: For a given block in scope, perform a depth first search
2274   // of all the artificial successors, adding them to the ToAdd collection.
2275   auto AccumulateArtificialBlocks =
2276       [this, &ToAdd, &BlocksToExplore,
2277        &InScopeBlocks](const MachineBasicBlock *MBB) {
2278         // Depth-first-search state: each node is a block and which successor
2279         // we're currently exploring.
2280         SmallVector<std::pair<const MachineBasicBlock *,
2281                               MachineBasicBlock::const_succ_iterator>,
2282                     8>
2283             DFS;
2284 
2285         // Find any artificial successors not already tracked.
2286         for (auto *succ : MBB->successors()) {
2287           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2288             continue;
2289           if (!ArtificialBlocks.count(succ))
2290             continue;
2291           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2292           ToAdd.insert(succ);
2293         }
2294 
2295         // Search all those blocks, depth first.
2296         while (!DFS.empty()) {
2297           const MachineBasicBlock *CurBB = DFS.back().first;
2298           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2299           // Walk back if we've explored this blocks successors to the end.
2300           if (CurSucc == CurBB->succ_end()) {
2301             DFS.pop_back();
2302             continue;
2303           }
2304 
2305           // If the current successor is artificial and unexplored, descend into
2306           // it.
2307           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2308             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2309             ToAdd.insert(*CurSucc);
2310             continue;
2311           }
2312 
2313           ++CurSucc;
2314         }
2315       };
2316 
2317   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2318   // for artificial successors.
2319   for (auto *MBB : BlocksToExplore)
2320     AccumulateArtificialBlocks(MBB);
2321   for (auto *MBB : InScopeBlocks)
2322     AccumulateArtificialBlocks(MBB);
2323 
2324   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2325   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2326 
2327   // Single block scope: not interesting! No propagation at all. Note that
2328   // this could probably go above ArtificialBlocks without damage, but
2329   // that then produces output differences from original-live-debug-values,
2330   // which propagates from a single block into many artificial ones.
2331   if (BlocksToExplore.size() == 1)
2332     return;
2333 
2334   // Convert a const set to a non-const set. LexicalScopes
2335   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2336   // (Neither of them mutate anything).
2337   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2338   for (const auto *MBB : BlocksToExplore)
2339     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2340 
2341   // Picks out relevants blocks RPO order and sort them.
2342   for (auto *MBB : BlocksToExplore)
2343     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2344 
2345   llvm::sort(BlockOrders, Cmp);
2346   unsigned NumBlocks = BlockOrders.size();
2347 
2348   // Allocate some vectors for storing the live ins and live outs. Large.
2349   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2350   LiveIns.reserve(NumBlocks);
2351   LiveOuts.reserve(NumBlocks);
2352 
2353   // Initialize all values to start as NoVals. This signifies "it's live
2354   // through, but we don't know what it is".
2355   DbgValueProperties EmptyProperties(EmptyExpr, false);
2356   for (unsigned int I = 0; I < NumBlocks; ++I) {
2357     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2358     LiveIns.push_back(EmptyDbgValue);
2359     LiveOuts.push_back(EmptyDbgValue);
2360   }
2361 
2362   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2363   // vlocJoin.
2364   LiveIdxT LiveOutIdx, LiveInIdx;
2365   LiveOutIdx.reserve(NumBlocks);
2366   LiveInIdx.reserve(NumBlocks);
2367   for (unsigned I = 0; I < NumBlocks; ++I) {
2368     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2369     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2370   }
2371 
2372   // Loop over each variable and place PHIs for it, then propagate values
2373   // between blocks. This keeps the locality of working on one lexical scope at
2374   // at time, but avoids re-processing variable values because some other
2375   // variable has been assigned.
2376   for (auto &Var : VarsWeCareAbout) {
2377     // Re-initialize live-ins and live-outs, to clear the remains of previous
2378     // variables live-ins / live-outs.
2379     for (unsigned int I = 0; I < NumBlocks; ++I) {
2380       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2381       LiveIns[I] = EmptyDbgValue;
2382       LiveOuts[I] = EmptyDbgValue;
2383     }
2384 
2385     // Place PHIs for variable values, using the LLVM IDF calculator.
2386     // Collect the set of blocks where variables are def'd.
2387     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2388     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2389       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2390       if (TransferFunc.find(Var) != TransferFunc.end())
2391         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2392     }
2393 
2394     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2395 
2396     // Request the set of PHIs we should insert for this variable.
2397     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2398 
2399     // Insert PHIs into the per-block live-in tables for this variable.
2400     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2401       unsigned BlockNo = PHIMBB->getNumber();
2402       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2403       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2404     }
2405 
2406     for (auto *MBB : BlockOrders) {
2407       Worklist.push(BBToOrder[MBB]);
2408       OnWorklist.insert(MBB);
2409     }
2410 
2411     // Iterate over all the blocks we selected, propagating the variables value.
2412     // This loop does two things:
2413     //  * Eliminates un-necessary VPHIs in vlocJoin,
2414     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2415     //    stores the result to the blocks live-outs.
2416     // Always evaluate the transfer function on the first iteration, and when
2417     // the live-ins change thereafter.
2418     bool FirstTrip = true;
2419     while (!Worklist.empty() || !Pending.empty()) {
2420       while (!Worklist.empty()) {
2421         auto *MBB = OrderToBB[Worklist.top()];
2422         CurBB = MBB->getNumber();
2423         Worklist.pop();
2424 
2425         auto LiveInsIt = LiveInIdx.find(MBB);
2426         assert(LiveInsIt != LiveInIdx.end());
2427         DbgValue *LiveIn = LiveInsIt->second;
2428 
2429         // Join values from predecessors. Updates LiveInIdx, and writes output
2430         // into JoinedInLocs.
2431         bool InLocsChanged =
2432             vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn);
2433 
2434         SmallVector<const MachineBasicBlock *, 8> Preds;
2435         for (const auto *Pred : MBB->predecessors())
2436           Preds.push_back(Pred);
2437 
2438         // If this block's live-in value is a VPHI, try to pick a machine-value
2439         // for it. This makes the machine-value available and propagated
2440         // through all blocks by the time value propagation finishes. We can't
2441         // do this any earlier as it needs to read the block live-outs.
2442         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2443           // There's a small possibility that on a preceeding path, a VPHI is
2444           // eliminated and transitions from VPHI-with-location to
2445           // live-through-value. As a result, the selected location of any VPHI
2446           // might change, so we need to re-compute it on each iteration.
2447           Optional<ValueIDNum> ValueNum =
2448               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2449 
2450           if (ValueNum) {
2451             InLocsChanged |= LiveIn->ID != *ValueNum;
2452             LiveIn->ID = *ValueNum;
2453           }
2454         }
2455 
2456         if (!InLocsChanged && !FirstTrip)
2457           continue;
2458 
2459         DbgValue *LiveOut = LiveOutIdx[MBB];
2460         bool OLChanged = false;
2461 
2462         // Do transfer function.
2463         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2464         auto TransferIt = VTracker.Vars.find(Var);
2465         if (TransferIt != VTracker.Vars.end()) {
2466           // Erase on empty transfer (DBG_VALUE $noreg).
2467           if (TransferIt->second.Kind == DbgValue::Undef) {
2468             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2469             if (*LiveOut != NewVal) {
2470               *LiveOut = NewVal;
2471               OLChanged = true;
2472             }
2473           } else {
2474             // Insert new variable value; or overwrite.
2475             if (*LiveOut != TransferIt->second) {
2476               *LiveOut = TransferIt->second;
2477               OLChanged = true;
2478             }
2479           }
2480         } else {
2481           // Just copy live-ins to live-outs, for anything not transferred.
2482           if (*LiveOut != *LiveIn) {
2483             *LiveOut = *LiveIn;
2484             OLChanged = true;
2485           }
2486         }
2487 
2488         // If no live-out value changed, there's no need to explore further.
2489         if (!OLChanged)
2490           continue;
2491 
2492         // We should visit all successors. Ensure we'll visit any non-backedge
2493         // successors during this dataflow iteration; book backedge successors
2494         // to be visited next time around.
2495         for (auto s : MBB->successors()) {
2496           // Ignore out of scope / not-to-be-explored successors.
2497           if (LiveInIdx.find(s) == LiveInIdx.end())
2498             continue;
2499 
2500           if (BBToOrder[s] > BBToOrder[MBB]) {
2501             if (OnWorklist.insert(s).second)
2502               Worklist.push(BBToOrder[s]);
2503           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2504             Pending.push(BBToOrder[s]);
2505           }
2506         }
2507       }
2508       Worklist.swap(Pending);
2509       std::swap(OnWorklist, OnPending);
2510       OnPending.clear();
2511       assert(Pending.empty());
2512       FirstTrip = false;
2513     }
2514 
2515     // Save live-ins to output vector. Ignore any that are still marked as being
2516     // VPHIs with no location -- those are variables that we know the value of,
2517     // but are not actually available in the register file.
2518     for (auto *MBB : BlockOrders) {
2519       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2520       if (BlockLiveIn->Kind == DbgValue::NoVal)
2521         continue;
2522       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2523           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2524         continue;
2525       if (BlockLiveIn->Kind == DbgValue::VPHI)
2526         BlockLiveIn->Kind = DbgValue::Def;
2527       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2528     }
2529   } // Per-variable loop.
2530 
2531   BlockOrders.clear();
2532   BlocksToExplore.clear();
2533 }
2534 
2535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2536 void InstrRefBasedLDV::dump_mloc_transfer(
2537     const MLocTransferMap &mloc_transfer) const {
2538   for (auto &P : mloc_transfer) {
2539     std::string foo = MTracker->LocIdxToName(P.first);
2540     std::string bar = MTracker->IDAsString(P.second);
2541     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2542   }
2543 }
2544 #endif
2545 
2546 void InstrRefBasedLDV::emitLocations(
2547     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2548     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2549     const TargetPassConfig &TPC) {
2550   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2551   unsigned NumLocs = MTracker->getNumLocs();
2552 
2553   // For each block, load in the machine value locations and variable value
2554   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2555   // to be inserted will be created along the way.
2556   for (MachineBasicBlock &MBB : MF) {
2557     unsigned bbnum = MBB.getNumber();
2558     MTracker->reset();
2559     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2560     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2561                          NumLocs);
2562 
2563     CurBB = bbnum;
2564     CurInst = 1;
2565     for (auto &MI : MBB) {
2566       process(MI, MOutLocs, MInLocs);
2567       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2568       ++CurInst;
2569     }
2570   }
2571 
2572   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2573   // in DWARF in different orders. Use the order that they appear when walking
2574   // through each block / each instruction, stored in AllVarsNumbering.
2575   auto OrderDbgValues = [&](const MachineInstr *A,
2576                             const MachineInstr *B) -> bool {
2577     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2578                        A->getDebugLoc()->getInlinedAt());
2579     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2580                        B->getDebugLoc()->getInlinedAt());
2581     return AllVarsNumbering.find(VarA)->second <
2582            AllVarsNumbering.find(VarB)->second;
2583   };
2584 
2585   // Go through all the transfers recorded in the TransferTracker -- this is
2586   // both the live-ins to a block, and any movements of values that happen
2587   // in the middle.
2588   for (auto &P : TTracker->Transfers) {
2589     // Sort them according to appearance order.
2590     llvm::sort(P.Insts, OrderDbgValues);
2591     // Insert either before or after the designated point...
2592     if (P.MBB) {
2593       MachineBasicBlock &MBB = *P.MBB;
2594       for (auto *MI : P.Insts) {
2595         MBB.insert(P.Pos, MI);
2596       }
2597     } else {
2598       // Terminators, like tail calls, can clobber things. Don't try and place
2599       // transfers after them.
2600       if (P.Pos->isTerminator())
2601         continue;
2602 
2603       MachineBasicBlock &MBB = *P.Pos->getParent();
2604       for (auto *MI : P.Insts) {
2605         MBB.insertAfterBundle(P.Pos, MI);
2606       }
2607     }
2608   }
2609 }
2610 
2611 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2612   // Build some useful data structures.
2613 
2614   LLVMContext &Context = MF.getFunction().getContext();
2615   EmptyExpr = DIExpression::get(Context, {});
2616 
2617   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2618     if (const DebugLoc &DL = MI.getDebugLoc())
2619       return DL.getLine() != 0;
2620     return false;
2621   };
2622   // Collect a set of all the artificial blocks.
2623   for (auto &MBB : MF)
2624     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2625       ArtificialBlocks.insert(&MBB);
2626 
2627   // Compute mappings of block <=> RPO order.
2628   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2629   unsigned int RPONumber = 0;
2630   for (MachineBasicBlock *MBB : RPOT) {
2631     OrderToBB[RPONumber] = MBB;
2632     BBToOrder[MBB] = RPONumber;
2633     BBNumToRPO[MBB->getNumber()] = RPONumber;
2634     ++RPONumber;
2635   }
2636 
2637   // Order value substitutions by their "source" operand pair, for quick lookup.
2638   llvm::sort(MF.DebugValueSubstitutions);
2639 
2640 #ifdef EXPENSIVE_CHECKS
2641   // As an expensive check, test whether there are any duplicate substitution
2642   // sources in the collection.
2643   if (MF.DebugValueSubstitutions.size() > 2) {
2644     for (auto It = MF.DebugValueSubstitutions.begin();
2645          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2646       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2647                                               "substitution seen");
2648     }
2649   }
2650 #endif
2651 }
2652 
2653 /// Calculate the liveness information for the given machine function and
2654 /// extend ranges across basic blocks.
2655 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2656                                     MachineDominatorTree *DomTree,
2657                                     TargetPassConfig *TPC,
2658                                     unsigned InputBBLimit,
2659                                     unsigned InputDbgValLimit) {
2660   // No subprogram means this function contains no debuginfo.
2661   if (!MF.getFunction().getSubprogram())
2662     return false;
2663 
2664   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2665   this->TPC = TPC;
2666 
2667   this->DomTree = DomTree;
2668   TRI = MF.getSubtarget().getRegisterInfo();
2669   TII = MF.getSubtarget().getInstrInfo();
2670   TFI = MF.getSubtarget().getFrameLowering();
2671   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2672   MFI = &MF.getFrameInfo();
2673   LS.initialize(MF);
2674 
2675   MTracker =
2676       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2677   VTracker = nullptr;
2678   TTracker = nullptr;
2679 
2680   SmallVector<MLocTransferMap, 32> MLocTransfer;
2681   SmallVector<VLocTracker, 8> vlocs;
2682   LiveInsT SavedLiveIns;
2683 
2684   int MaxNumBlocks = -1;
2685   for (auto &MBB : MF)
2686     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2687   assert(MaxNumBlocks >= 0);
2688   ++MaxNumBlocks;
2689 
2690   MLocTransfer.resize(MaxNumBlocks);
2691   vlocs.resize(MaxNumBlocks);
2692   SavedLiveIns.resize(MaxNumBlocks);
2693 
2694   initialSetup(MF);
2695 
2696   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2697 
2698   // Allocate and initialize two array-of-arrays for the live-in and live-out
2699   // machine values. The outer dimension is the block number; while the inner
2700   // dimension is a LocIdx from MLocTracker.
2701   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2702   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2703   unsigned NumLocs = MTracker->getNumLocs();
2704   for (int i = 0; i < MaxNumBlocks; ++i) {
2705     // These all auto-initialize to ValueIDNum::EmptyValue
2706     MOutLocs[i] = new ValueIDNum[NumLocs];
2707     MInLocs[i] = new ValueIDNum[NumLocs];
2708   }
2709 
2710   // Solve the machine value dataflow problem using the MLocTransfer function,
2711   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2712   // both live-ins and live-outs for decision making in the variable value
2713   // dataflow problem.
2714   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2715 
2716   // Patch up debug phi numbers, turning unknown block-live-in values into
2717   // either live-through machine values, or PHIs.
2718   for (auto &DBG_PHI : DebugPHINumToValue) {
2719     // Identify unresolved block-live-ins.
2720     ValueIDNum &Num = DBG_PHI.ValueRead;
2721     if (!Num.isPHI())
2722       continue;
2723 
2724     unsigned BlockNo = Num.getBlock();
2725     LocIdx LocNo = Num.getLoc();
2726     Num = MInLocs[BlockNo][LocNo.asU64()];
2727   }
2728   // Later, we'll be looking up ranges of instruction numbers.
2729   llvm::sort(DebugPHINumToValue);
2730 
2731   // Walk back through each block / instruction, collecting DBG_VALUE
2732   // instructions and recording what machine value their operands refer to.
2733   for (auto &OrderPair : OrderToBB) {
2734     MachineBasicBlock &MBB = *OrderPair.second;
2735     CurBB = MBB.getNumber();
2736     VTracker = &vlocs[CurBB];
2737     VTracker->MBB = &MBB;
2738     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2739     CurInst = 1;
2740     for (auto &MI : MBB) {
2741       process(MI, MOutLocs, MInLocs);
2742       ++CurInst;
2743     }
2744     MTracker->reset();
2745   }
2746 
2747   // Number all variables in the order that they appear, to be used as a stable
2748   // insertion order later.
2749   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2750 
2751   // Map from one LexicalScope to all the variables in that scope.
2752   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2753 
2754   // Map from One lexical scope to all blocks in that scope.
2755   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2756       ScopeToBlocks;
2757 
2758   // Store a DILocation that describes a scope.
2759   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2760 
2761   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2762   // the order is unimportant, it just has to be stable.
2763   unsigned VarAssignCount = 0;
2764   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2765     auto *MBB = OrderToBB[I];
2766     auto *VTracker = &vlocs[MBB->getNumber()];
2767     // Collect each variable with a DBG_VALUE in this block.
2768     for (auto &idx : VTracker->Vars) {
2769       const auto &Var = idx.first;
2770       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2771       assert(ScopeLoc != nullptr);
2772       auto *Scope = LS.findLexicalScope(ScopeLoc);
2773 
2774       // No insts in scope -> shouldn't have been recorded.
2775       assert(Scope != nullptr);
2776 
2777       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2778       ScopeToVars[Scope].insert(Var);
2779       ScopeToBlocks[Scope].insert(VTracker->MBB);
2780       ScopeToDILocation[Scope] = ScopeLoc;
2781       ++VarAssignCount;
2782     }
2783   }
2784 
2785   bool Changed = false;
2786 
2787   // If we have an extremely large number of variable assignments and blocks,
2788   // bail out at this point. We've burnt some time doing analysis already,
2789   // however we should cut our losses.
2790   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2791       VarAssignCount > InputDbgValLimit) {
2792     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
2793                       << " has " << MaxNumBlocks << " basic blocks and "
2794                       << VarAssignCount
2795                       << " variable assignments, exceeding limits.\n");
2796   } else {
2797     // Compute the extended ranges, iterating over scopes. There might be
2798     // something to be said for ordering them by size/locality, but that's for
2799     // the future. For each scope, solve the variable value problem, producing
2800     // a map of variables to values in SavedLiveIns.
2801     for (auto &P : ScopeToVars) {
2802       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
2803                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
2804                    vlocs);
2805     }
2806 
2807     // Using the computed value locations and variable values for each block,
2808     // create the DBG_VALUE instructions representing the extended variable
2809     // locations.
2810     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
2811 
2812     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
2813     Changed = TTracker->Transfers.size() != 0;
2814   }
2815 
2816   // Common clean-up of memory.
2817   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
2818     delete[] MOutLocs[Idx];
2819     delete[] MInLocs[Idx];
2820   }
2821   delete[] MOutLocs;
2822   delete[] MInLocs;
2823 
2824   delete MTracker;
2825   delete TTracker;
2826   MTracker = nullptr;
2827   VTracker = nullptr;
2828   TTracker = nullptr;
2829 
2830   ArtificialBlocks.clear();
2831   OrderToBB.clear();
2832   BBToOrder.clear();
2833   BBNumToRPO.clear();
2834   DebugInstrNumToInstr.clear();
2835   DebugPHINumToValue.clear();
2836 
2837   return Changed;
2838 }
2839 
2840 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
2841   return new InstrRefBasedLDV();
2842 }
2843 
2844 namespace {
2845 class LDVSSABlock;
2846 class LDVSSAUpdater;
2847 
2848 // Pick a type to identify incoming block values as we construct SSA. We
2849 // can't use anything more robust than an integer unfortunately, as SSAUpdater
2850 // expects to zero-initialize the type.
2851 typedef uint64_t BlockValueNum;
2852 
2853 /// Represents an SSA PHI node for the SSA updater class. Contains the block
2854 /// this PHI is in, the value number it would have, and the expected incoming
2855 /// values from parent blocks.
2856 class LDVSSAPhi {
2857 public:
2858   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
2859   LDVSSABlock *ParentBlock;
2860   BlockValueNum PHIValNum;
2861   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
2862       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
2863 
2864   LDVSSABlock *getParent() { return ParentBlock; }
2865 };
2866 
2867 /// Thin wrapper around a block predecessor iterator. Only difference from a
2868 /// normal block iterator is that it dereferences to an LDVSSABlock.
2869 class LDVSSABlockIterator {
2870 public:
2871   MachineBasicBlock::pred_iterator PredIt;
2872   LDVSSAUpdater &Updater;
2873 
2874   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
2875                       LDVSSAUpdater &Updater)
2876       : PredIt(PredIt), Updater(Updater) {}
2877 
2878   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
2879     return OtherIt.PredIt != PredIt;
2880   }
2881 
2882   LDVSSABlockIterator &operator++() {
2883     ++PredIt;
2884     return *this;
2885   }
2886 
2887   LDVSSABlock *operator*();
2888 };
2889 
2890 /// Thin wrapper around a block for SSA Updater interface. Necessary because
2891 /// we need to track the PHI value(s) that we may have observed as necessary
2892 /// in this block.
2893 class LDVSSABlock {
2894 public:
2895   MachineBasicBlock &BB;
2896   LDVSSAUpdater &Updater;
2897   using PHIListT = SmallVector<LDVSSAPhi, 1>;
2898   /// List of PHIs in this block. There should only ever be one.
2899   PHIListT PHIList;
2900 
2901   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
2902       : BB(BB), Updater(Updater) {}
2903 
2904   LDVSSABlockIterator succ_begin() {
2905     return LDVSSABlockIterator(BB.succ_begin(), Updater);
2906   }
2907 
2908   LDVSSABlockIterator succ_end() {
2909     return LDVSSABlockIterator(BB.succ_end(), Updater);
2910   }
2911 
2912   /// SSAUpdater has requested a PHI: create that within this block record.
2913   LDVSSAPhi *newPHI(BlockValueNum Value) {
2914     PHIList.emplace_back(Value, this);
2915     return &PHIList.back();
2916   }
2917 
2918   /// SSAUpdater wishes to know what PHIs already exist in this block.
2919   PHIListT &phis() { return PHIList; }
2920 };
2921 
2922 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
2923 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
2924 // SSAUpdaterTraits<LDVSSAUpdater>.
2925 class LDVSSAUpdater {
2926 public:
2927   /// Map of value numbers to PHI records.
2928   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
2929   /// Map of which blocks generate Undef values -- blocks that are not
2930   /// dominated by any Def.
2931   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
2932   /// Map of machine blocks to our own records of them.
2933   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
2934   /// Machine location where any PHI must occur.
2935   LocIdx Loc;
2936   /// Table of live-in machine value numbers for blocks / locations.
2937   ValueIDNum **MLiveIns;
2938 
2939   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
2940 
2941   void reset() {
2942     for (auto &Block : BlockMap)
2943       delete Block.second;
2944 
2945     PHIs.clear();
2946     UndefMap.clear();
2947     BlockMap.clear();
2948   }
2949 
2950   ~LDVSSAUpdater() { reset(); }
2951 
2952   /// For a given MBB, create a wrapper block for it. Stores it in the
2953   /// LDVSSAUpdater block map.
2954   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
2955     auto it = BlockMap.find(BB);
2956     if (it == BlockMap.end()) {
2957       BlockMap[BB] = new LDVSSABlock(*BB, *this);
2958       it = BlockMap.find(BB);
2959     }
2960     return it->second;
2961   }
2962 
2963   /// Find the live-in value number for the given block. Looks up the value at
2964   /// the PHI location on entry.
2965   BlockValueNum getValue(LDVSSABlock *LDVBB) {
2966     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
2967   }
2968 };
2969 
2970 LDVSSABlock *LDVSSABlockIterator::operator*() {
2971   return Updater.getSSALDVBlock(*PredIt);
2972 }
2973 
2974 #ifndef NDEBUG
2975 
2976 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
2977   out << "SSALDVPHI " << PHI.PHIValNum;
2978   return out;
2979 }
2980 
2981 #endif
2982 
2983 } // namespace
2984 
2985 namespace llvm {
2986 
2987 /// Template specialization to give SSAUpdater access to CFG and value
2988 /// information. SSAUpdater calls methods in these traits, passing in the
2989 /// LDVSSAUpdater object, to learn about blocks and the values they define.
2990 /// It also provides methods to create PHI nodes and track them.
2991 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
2992 public:
2993   using BlkT = LDVSSABlock;
2994   using ValT = BlockValueNum;
2995   using PhiT = LDVSSAPhi;
2996   using BlkSucc_iterator = LDVSSABlockIterator;
2997 
2998   // Methods to access block successors -- dereferencing to our wrapper class.
2999   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3000   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3001 
3002   /// Iterator for PHI operands.
3003   class PHI_iterator {
3004   private:
3005     LDVSSAPhi *PHI;
3006     unsigned Idx;
3007 
3008   public:
3009     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3010         : PHI(P), Idx(0) {}
3011     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3012         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3013 
3014     PHI_iterator &operator++() {
3015       Idx++;
3016       return *this;
3017     }
3018     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3019     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3020 
3021     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3022 
3023     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3024   };
3025 
3026   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3027 
3028   static inline PHI_iterator PHI_end(PhiT *PHI) {
3029     return PHI_iterator(PHI, true);
3030   }
3031 
3032   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3033   /// vector.
3034   static void FindPredecessorBlocks(LDVSSABlock *BB,
3035                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3036     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3037                                           E = BB->BB.pred_end();
3038          PI != E; ++PI)
3039       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3040   }
3041 
3042   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3043   /// register. For LiveDebugValues, represents a block identified as not having
3044   /// any DBG_PHI predecessors.
3045   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3046     // Create a value number for this block -- it needs to be unique and in the
3047     // "undef" collection, so that we know it's not real. Use a number
3048     // representing a PHI into this block.
3049     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3050     Updater->UndefMap[&BB->BB] = Num;
3051     return Num;
3052   }
3053 
3054   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3055   /// SSAUpdater will populate it with information about incoming values. The
3056   /// value number of this PHI is whatever the  machine value number problem
3057   /// solution determined it to be. This includes non-phi values if SSAUpdater
3058   /// tries to create a PHI where the incoming values are identical.
3059   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3060                                    LDVSSAUpdater *Updater) {
3061     BlockValueNum PHIValNum = Updater->getValue(BB);
3062     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3063     Updater->PHIs[PHIValNum] = PHI;
3064     return PHIValNum;
3065   }
3066 
3067   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3068   /// the specified predecessor block.
3069   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3070     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3071   }
3072 
3073   /// ValueIsPHI - Check if the instruction that defines the specified value
3074   /// is a PHI instruction.
3075   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3076     auto PHIIt = Updater->PHIs.find(Val);
3077     if (PHIIt == Updater->PHIs.end())
3078       return nullptr;
3079     return PHIIt->second;
3080   }
3081 
3082   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3083   /// operands, i.e., it was just added.
3084   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3085     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3086     if (PHI && PHI->IncomingValues.size() == 0)
3087       return PHI;
3088     return nullptr;
3089   }
3090 
3091   /// GetPHIValue - For the specified PHI instruction, return the value
3092   /// that it defines.
3093   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3094 };
3095 
3096 } // end namespace llvm
3097 
3098 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3099                                                       ValueIDNum **MLiveOuts,
3100                                                       ValueIDNum **MLiveIns,
3101                                                       MachineInstr &Here,
3102                                                       uint64_t InstrNum) {
3103   // Pick out records of DBG_PHI instructions that have been observed. If there
3104   // are none, then we cannot compute a value number.
3105   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3106                                     DebugPHINumToValue.end(), InstrNum);
3107   auto LowerIt = RangePair.first;
3108   auto UpperIt = RangePair.second;
3109 
3110   // No DBG_PHI means there can be no location.
3111   if (LowerIt == UpperIt)
3112     return None;
3113 
3114   // If there's only one DBG_PHI, then that is our value number.
3115   if (std::distance(LowerIt, UpperIt) == 1)
3116     return LowerIt->ValueRead;
3117 
3118   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3119 
3120   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3121   // technically possible for us to merge values in different registers in each
3122   // block, but highly unlikely that LLVM will generate such code after register
3123   // allocation.
3124   LocIdx Loc = LowerIt->ReadLoc;
3125 
3126   // We have several DBG_PHIs, and a use position (the Here inst). All each
3127   // DBG_PHI does is identify a value at a program position. We can treat each
3128   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3129   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3130   // determine which Def is used at the Use, and any PHIs that happen along
3131   // the way.
3132   // Adapted LLVM SSA Updater:
3133   LDVSSAUpdater Updater(Loc, MLiveIns);
3134   // Map of which Def or PHI is the current value in each block.
3135   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3136   // Set of PHIs that we have created along the way.
3137   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3138 
3139   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3140   // for the SSAUpdater.
3141   for (const auto &DBG_PHI : DBGPHIRange) {
3142     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3143     const ValueIDNum &Num = DBG_PHI.ValueRead;
3144     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3145   }
3146 
3147   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3148   const auto &AvailIt = AvailableValues.find(HereBlock);
3149   if (AvailIt != AvailableValues.end()) {
3150     // Actually, we already know what the value is -- the Use is in the same
3151     // block as the Def.
3152     return ValueIDNum::fromU64(AvailIt->second);
3153   }
3154 
3155   // Otherwise, we must use the SSA Updater. It will identify the value number
3156   // that we are to use, and the PHIs that must happen along the way.
3157   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3158   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3159   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3160 
3161   // We have the number for a PHI, or possibly live-through value, to be used
3162   // at this Use. There are a number of things we have to check about it though:
3163   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3164   //    Use was not completely dominated by DBG_PHIs and we should abort.
3165   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3166   //    we've left SSA form. Validate that the inputs to each PHI are the
3167   //    expected values.
3168   //  * Is a PHI we've created actually a merging of values, or are all the
3169   //    predecessor values the same, leading to a non-PHI machine value number?
3170   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3171   //    the ValidatedValues collection below to sort this out.
3172   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3173 
3174   // Define all the input DBG_PHI values in ValidatedValues.
3175   for (const auto &DBG_PHI : DBGPHIRange) {
3176     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3177     const ValueIDNum &Num = DBG_PHI.ValueRead;
3178     ValidatedValues.insert(std::make_pair(Block, Num));
3179   }
3180 
3181   // Sort PHIs to validate into RPO-order.
3182   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3183   for (auto &PHI : CreatedPHIs)
3184     SortedPHIs.push_back(PHI);
3185 
3186   std::sort(
3187       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3188         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3189       });
3190 
3191   for (auto &PHI : SortedPHIs) {
3192     ValueIDNum ThisBlockValueNum =
3193         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3194 
3195     // Are all these things actually defined?
3196     for (auto &PHIIt : PHI->IncomingValues) {
3197       // Any undef input means DBG_PHIs didn't dominate the use point.
3198       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3199         return None;
3200 
3201       ValueIDNum ValueToCheck;
3202       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3203 
3204       auto VVal = ValidatedValues.find(PHIIt.first);
3205       if (VVal == ValidatedValues.end()) {
3206         // We cross a loop, and this is a backedge. LLVMs tail duplication
3207         // happens so late that DBG_PHI instructions should not be able to
3208         // migrate into loops -- meaning we can only be live-through this
3209         // loop.
3210         ValueToCheck = ThisBlockValueNum;
3211       } else {
3212         // Does the block have as a live-out, in the location we're examining,
3213         // the value that we expect? If not, it's been moved or clobbered.
3214         ValueToCheck = VVal->second;
3215       }
3216 
3217       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3218         return None;
3219     }
3220 
3221     // Record this value as validated.
3222     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3223   }
3224 
3225   // All the PHIs are valid: we can return what the SSAUpdater said our value
3226   // number was.
3227   return Result;
3228 }
3229