1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accomodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/SmallPtrSet.h" 152 #include "llvm/ADT/SmallSet.h" 153 #include "llvm/ADT/SmallVector.h" 154 #include "llvm/ADT/Statistic.h" 155 #include "llvm/ADT/UniqueVector.h" 156 #include "llvm/CodeGen/LexicalScopes.h" 157 #include "llvm/CodeGen/MachineBasicBlock.h" 158 #include "llvm/CodeGen/MachineFrameInfo.h" 159 #include "llvm/CodeGen/MachineFunction.h" 160 #include "llvm/CodeGen/MachineFunctionPass.h" 161 #include "llvm/CodeGen/MachineInstr.h" 162 #include "llvm/CodeGen/MachineInstrBuilder.h" 163 #include "llvm/CodeGen/MachineMemOperand.h" 164 #include "llvm/CodeGen/MachineOperand.h" 165 #include "llvm/CodeGen/PseudoSourceValue.h" 166 #include "llvm/CodeGen/RegisterScavenging.h" 167 #include "llvm/CodeGen/TargetFrameLowering.h" 168 #include "llvm/CodeGen/TargetInstrInfo.h" 169 #include "llvm/CodeGen/TargetLowering.h" 170 #include "llvm/CodeGen/TargetPassConfig.h" 171 #include "llvm/CodeGen/TargetRegisterInfo.h" 172 #include "llvm/CodeGen/TargetSubtargetInfo.h" 173 #include "llvm/Config/llvm-config.h" 174 #include "llvm/IR/DIBuilder.h" 175 #include "llvm/IR/DebugInfoMetadata.h" 176 #include "llvm/IR/DebugLoc.h" 177 #include "llvm/IR/Function.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/MC/MCRegisterInfo.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/raw_ostream.h" 186 #include <algorithm> 187 #include <cassert> 188 #include <cstdint> 189 #include <functional> 190 #include <queue> 191 #include <tuple> 192 #include <utility> 193 #include <vector> 194 #include <limits.h> 195 #include <limits> 196 197 #include "LiveDebugValues.h" 198 199 using namespace llvm; 200 201 #define DEBUG_TYPE "livedebugvalues" 202 203 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 204 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); 205 206 // Act more like the VarLoc implementation, by propagating some locations too 207 // far and ignoring some transfers. 208 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 209 cl::desc("Act like old LiveDebugValues did"), 210 cl::init(false)); 211 212 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. 213 static cl::opt<bool> 214 ObserveAllStackops("observe-all-stack-ops", cl::Hidden, 215 cl::desc("Allow non-kill spill and restores"), 216 cl::init(false)); 217 218 namespace { 219 220 // The location at which a spilled value resides. It consists of a register and 221 // an offset. 222 struct SpillLoc { 223 unsigned SpillBase; 224 int SpillOffset; 225 bool operator==(const SpillLoc &Other) const { 226 return std::tie(SpillBase, SpillOffset) == 227 std::tie(Other.SpillBase, Other.SpillOffset); 228 } 229 bool operator<(const SpillLoc &Other) const { 230 return std::tie(SpillBase, SpillOffset) < 231 std::tie(Other.SpillBase, Other.SpillOffset); 232 } 233 }; 234 235 class LocIdx { 236 unsigned Location; 237 238 // Default constructor is private, initializing to an illegal location number. 239 // Use only for "not an entry" elements in IndexedMaps. 240 LocIdx() : Location(UINT_MAX) { } 241 242 public: 243 #define NUM_LOC_BITS 24 244 LocIdx(unsigned L) : Location(L) { 245 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 246 } 247 248 static LocIdx MakeIllegalLoc() { 249 return LocIdx(); 250 } 251 252 bool isIllegal() const { 253 return Location == UINT_MAX; 254 } 255 256 uint64_t asU64() const { 257 return Location; 258 } 259 260 bool operator==(unsigned L) const { 261 return Location == L; 262 } 263 264 bool operator==(const LocIdx &L) const { 265 return Location == L.Location; 266 } 267 268 bool operator!=(unsigned L) const { 269 return !(*this == L); 270 } 271 272 bool operator!=(const LocIdx &L) const { 273 return !(*this == L); 274 } 275 276 bool operator<(const LocIdx &Other) const { 277 return Location < Other.Location; 278 } 279 }; 280 281 class LocIdxToIndexFunctor { 282 public: 283 using argument_type = LocIdx; 284 unsigned operator()(const LocIdx &L) const { 285 return L.asU64(); 286 } 287 }; 288 289 /// Unique identifier for a value defined by an instruction, as a value type. 290 /// Casts back and forth to a uint64_t. Probably replacable with something less 291 /// bit-constrained. Each value identifies the instruction and machine location 292 /// where the value is defined, although there may be no corresponding machine 293 /// operand for it (ex: regmasks clobbering values). The instructions are 294 /// one-based, and definitions that are PHIs have instruction number zero. 295 /// 296 /// The obvious limits of a 1M block function or 1M instruction blocks are 297 /// problematic; but by that point we should probably have bailed out of 298 /// trying to analyse the function. 299 class ValueIDNum { 300 uint64_t BlockNo : 20; /// The block where the def happens. 301 uint64_t InstNo : 20; /// The Instruction where the def happens. 302 /// One based, is distance from start of block. 303 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 304 305 public: 306 // XXX -- temporarily enabled while the live-in / live-out tables are moved 307 // to something more type-y 308 ValueIDNum() : BlockNo(0xFFFFF), 309 InstNo(0xFFFFF), 310 LocNo(0xFFFFFF) { } 311 312 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 313 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } 314 315 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 316 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } 317 318 uint64_t getBlock() const { return BlockNo; } 319 uint64_t getInst() const { return InstNo; } 320 uint64_t getLoc() const { return LocNo; } 321 bool isPHI() const { return InstNo == 0; } 322 323 uint64_t asU64() const { 324 uint64_t TmpBlock = BlockNo; 325 uint64_t TmpInst = InstNo; 326 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 327 } 328 329 static ValueIDNum fromU64(uint64_t v) { 330 uint64_t L = (v & 0x3FFF); 331 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 332 } 333 334 bool operator<(const ValueIDNum &Other) const { 335 return asU64() < Other.asU64(); 336 } 337 338 bool operator==(const ValueIDNum &Other) const { 339 return std::tie(BlockNo, InstNo, LocNo) == 340 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 341 } 342 343 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 344 345 std::string asString(const std::string &mlocname) const { 346 return Twine("bb ") 347 .concat(Twine(BlockNo).concat(Twine(" inst ").concat( 348 Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname)))))) 349 .str(); 350 } 351 352 static ValueIDNum EmptyValue; 353 }; 354 355 } // end anonymous namespace 356 357 namespace { 358 359 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 360 /// the the value, and Boolean of whether or not it's indirect. 361 class DbgValueProperties { 362 public: 363 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 364 : DIExpr(DIExpr), Indirect(Indirect) {} 365 366 /// Extract properties from an existing DBG_VALUE instruction. 367 DbgValueProperties(const MachineInstr &MI) { 368 assert(MI.isDebugValue()); 369 DIExpr = MI.getDebugExpression(); 370 Indirect = MI.getOperand(1).isImm(); 371 } 372 373 bool operator==(const DbgValueProperties &Other) const { 374 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 375 } 376 377 bool operator!=(const DbgValueProperties &Other) const { 378 return !(*this == Other); 379 } 380 381 const DIExpression *DIExpr; 382 bool Indirect; 383 }; 384 385 /// Tracker for what values are in machine locations. Listens to the Things 386 /// being Done by various instructions, and maintains a table of what machine 387 /// locations have what values (as defined by a ValueIDNum). 388 /// 389 /// There are potentially a much larger number of machine locations on the 390 /// target machine than the actual working-set size of the function. On x86 for 391 /// example, we're extremely unlikely to want to track values through control 392 /// or debug registers. To avoid doing so, MLocTracker has several layers of 393 /// indirection going on, with two kinds of ``location'': 394 /// * A LocID uniquely identifies a register or spill location, with a 395 /// predictable value. 396 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 397 /// Whenever a location is def'd or used by a MachineInstr, we automagically 398 /// create a new LocIdx for a location, but not otherwise. This ensures we only 399 /// account for locations that are actually used or defined. The cost is another 400 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 401 /// fairly cheap, and the compiler tries to reduce the working-set at any one 402 /// time in the function anyway. 403 /// 404 /// Register mask operands completely blow this out of the water; I've just 405 /// piled hacks on top of hacks to get around that. 406 class MLocTracker { 407 public: 408 MachineFunction &MF; 409 const TargetInstrInfo &TII; 410 const TargetRegisterInfo &TRI; 411 const TargetLowering &TLI; 412 413 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 414 typedef IndexedMap<ValueIDNum, LocIdxToIndexFunctor> LocToValueType; 415 416 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 417 /// packed, entries only exist for locations that are being tracked. 418 LocToValueType LocIdxToIDNum; 419 420 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 421 /// LocIdx key / number for that location. There are always at least as many 422 /// as the number of registers on the target -- if the value in the register 423 /// is not being tracked, then the LocIdx value will be zero. New entries are 424 /// appended if a new spill slot begins being tracked. 425 /// This, and the corresponding reverse map persist for the analysis of the 426 /// whole function, and is necessarying for decoding various vectors of 427 /// values. 428 std::vector<LocIdx> LocIDToLocIdx; 429 430 /// Inverse map of LocIDToLocIdx. 431 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 432 433 /// Unique-ification of spill slots. Used to number them -- their LocID 434 /// number is the index in SpillLocs minus one plus NumRegs. 435 UniqueVector<SpillLoc> SpillLocs; 436 437 // If we discover a new machine location, assign it an mphi with this 438 // block number. 439 unsigned CurBB; 440 441 /// Cached local copy of the number of registers the target has. 442 unsigned NumRegs; 443 444 /// Collection of register mask operands that have been observed. Second part 445 /// of pair indicates the instruction that they happened in. Used to 446 /// reconstruct where defs happened if we start tracking a location later 447 /// on. 448 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 449 450 /// Iterator for locations and the values they contain. Dereferencing 451 /// produces a struct/pair containing the LocIdx key for this location, 452 /// and a reference to the value currently stored. Simplifies the process 453 /// of seeking a particular location. 454 class MLocIterator { 455 LocToValueType &ValueMap; 456 LocIdx Idx; 457 458 public: 459 class value_type { 460 public: 461 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } 462 const LocIdx Idx; /// Read-only index of this location. 463 ValueIDNum &Value; /// Reference to the stored value at this location. 464 }; 465 466 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 467 : ValueMap(ValueMap), Idx(Idx) { } 468 469 bool operator==(const MLocIterator &Other) const { 470 assert(&ValueMap == &Other.ValueMap); 471 return Idx == Other.Idx; 472 } 473 474 bool operator!=(const MLocIterator &Other) const { 475 return !(*this == Other); 476 } 477 478 void operator++() { 479 Idx = LocIdx(Idx.asU64() + 1); 480 } 481 482 value_type operator*() { 483 return value_type(Idx, ValueMap[LocIdx(Idx)]); 484 } 485 }; 486 487 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 488 const TargetRegisterInfo &TRI, const TargetLowering &TLI) 489 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 490 LocIdxToIDNum(ValueIDNum::EmptyValue), 491 LocIdxToLocID(0) { 492 NumRegs = TRI.getNumRegs(); 493 reset(); 494 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 495 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 496 497 // Always track SP. This avoids the implicit clobbering caused by regmasks 498 // from affectings its values. (LiveDebugValues disbelieves calls and 499 // regmasks that claim to clobber SP). 500 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 501 if (SP) { 502 unsigned ID = getLocID(SP, false); 503 (void)lookupOrTrackRegister(ID); 504 } 505 } 506 507 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 508 /// or spill number, and flag for whether it's a spill or not. 509 unsigned getLocID(Register RegOrSpill, bool isSpill) { 510 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); 511 } 512 513 /// Accessor for reading the value at Idx. 514 ValueIDNum getNumAtPos(LocIdx Idx) const { 515 assert(Idx.asU64() < LocIdxToIDNum.size()); 516 return LocIdxToIDNum[Idx]; 517 } 518 519 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 520 521 /// Reset all locations to contain a PHI value at the designated block. Used 522 /// sometimes for actual PHI values, othertimes to indicate the block entry 523 /// value (before any more information is known). 524 void setMPhis(unsigned NewCurBB) { 525 CurBB = NewCurBB; 526 for (auto Location : locations()) 527 Location.Value = {CurBB, 0, Location.Idx}; 528 } 529 530 /// Load values for each location from array of ValueIDNums. Take current 531 /// bbnum just in case we read a value from a hitherto untouched register. 532 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 533 CurBB = NewCurBB; 534 // Iterate over all tracked locations, and load each locations live-in 535 // value into our local index. 536 for (auto Location : locations()) 537 Location.Value = Locs[Location.Idx.asU64()]; 538 } 539 540 /// Wipe any un-necessary location records after traversing a block. 541 void reset(void) { 542 // We could reset all the location values too; however either loadFromArray 543 // or setMPhis should be called before this object is re-used. Just 544 // clear Masks, they're definitely not needed. 545 Masks.clear(); 546 } 547 548 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 549 /// the information in this pass uninterpretable. 550 void clear(void) { 551 reset(); 552 LocIDToLocIdx.clear(); 553 LocIdxToLocID.clear(); 554 LocIdxToIDNum.clear(); 555 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 556 SpillLocs = decltype(SpillLocs)(); 557 558 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 559 } 560 561 /// Set a locaiton to a certain value. 562 void setMLoc(LocIdx L, ValueIDNum Num) { 563 assert(L.asU64() < LocIdxToIDNum.size()); 564 LocIdxToIDNum[L] = Num; 565 } 566 567 /// Create a LocIdx for an untracked register ID. Initialize it to either an 568 /// mphi value representing a live-in, or a recent register mask clobber. 569 LocIdx trackRegister(unsigned ID) { 570 assert(ID != 0); 571 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 572 LocIdxToIDNum.grow(NewIdx); 573 LocIdxToLocID.grow(NewIdx); 574 575 // Default: it's an mphi. 576 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 577 // Was this reg ever touched by a regmask? 578 for (const auto &MaskPair : reverse(Masks)) { 579 if (MaskPair.first->clobbersPhysReg(ID)) { 580 // There was an earlier def we skipped. 581 ValNum = {CurBB, MaskPair.second, NewIdx}; 582 break; 583 } 584 } 585 586 LocIdxToIDNum[NewIdx] = ValNum; 587 LocIdxToLocID[NewIdx] = ID; 588 return NewIdx; 589 } 590 591 LocIdx lookupOrTrackRegister(unsigned ID) { 592 LocIdx &Index = LocIDToLocIdx[ID]; 593 if (Index.isIllegal()) 594 Index = trackRegister(ID); 595 return Index; 596 } 597 598 /// Record a definition of the specified register at the given block / inst. 599 /// This doesn't take a ValueIDNum, because the definition and its location 600 /// are synonymous. 601 void defReg(Register R, unsigned BB, unsigned Inst) { 602 unsigned ID = getLocID(R, false); 603 LocIdx Idx = lookupOrTrackRegister(ID); 604 ValueIDNum ValueID = {BB, Inst, Idx}; 605 LocIdxToIDNum[Idx] = ValueID; 606 } 607 608 /// Set a register to a value number. To be used if the value number is 609 /// known in advance. 610 void setReg(Register R, ValueIDNum ValueID) { 611 unsigned ID = getLocID(R, false); 612 LocIdx Idx = lookupOrTrackRegister(ID); 613 LocIdxToIDNum[Idx] = ValueID; 614 } 615 616 ValueIDNum readReg(Register R) { 617 unsigned ID = getLocID(R, false); 618 LocIdx Idx = lookupOrTrackRegister(ID); 619 return LocIdxToIDNum[Idx]; 620 } 621 622 /// Reset a register value to zero / empty. Needed to replicate the 623 /// VarLoc implementation where a copy to/from a register effectively 624 /// clears the contents of the source register. (Values can only have one 625 /// machine location in VarLocBasedImpl). 626 void wipeRegister(Register R) { 627 unsigned ID = getLocID(R, false); 628 LocIdx Idx = LocIDToLocIdx[ID]; 629 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 630 } 631 632 /// Determine the LocIdx of an existing register. 633 LocIdx getRegMLoc(Register R) { 634 unsigned ID = getLocID(R, false); 635 return LocIDToLocIdx[ID]; 636 } 637 638 /// Record a RegMask operand being executed. Defs any register we currently 639 /// track, stores a pointer to the mask in case we have to account for it 640 /// later. 641 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { 642 // Ensure SP exists, so that we don't override it later. 643 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 644 645 // Def any register we track have that isn't preserved. The regmask 646 // terminates the liveness of a register, meaning its value can't be 647 // relied upon -- we represent this by giving it a new value. 648 for (auto Location : locations()) { 649 unsigned ID = LocIdxToLocID[Location.Idx]; 650 // Don't clobber SP, even if the mask says it's clobbered. 651 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 652 defReg(ID, CurBB, InstID); 653 } 654 Masks.push_back(std::make_pair(MO, InstID)); 655 } 656 657 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 658 LocIdx getOrTrackSpillLoc(SpillLoc L) { 659 unsigned SpillID = SpillLocs.idFor(L); 660 if (SpillID == 0) { 661 SpillID = SpillLocs.insert(L); 662 unsigned L = getLocID(SpillID, true); 663 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 664 LocIdxToIDNum.grow(Idx); 665 LocIdxToLocID.grow(Idx); 666 LocIDToLocIdx.push_back(Idx); 667 LocIdxToLocID[Idx] = L; 668 return Idx; 669 } else { 670 unsigned L = getLocID(SpillID, true); 671 LocIdx Idx = LocIDToLocIdx[L]; 672 return Idx; 673 } 674 } 675 676 /// Set the value stored in a spill slot. 677 void setSpill(SpillLoc L, ValueIDNum ValueID) { 678 LocIdx Idx = getOrTrackSpillLoc(L); 679 LocIdxToIDNum[Idx] = ValueID; 680 } 681 682 /// Read whatever value is in a spill slot, or None if it isn't tracked. 683 Optional<ValueIDNum> readSpill(SpillLoc L) { 684 unsigned SpillID = SpillLocs.idFor(L); 685 if (SpillID == 0) 686 return None; 687 688 unsigned LocID = getLocID(SpillID, true); 689 LocIdx Idx = LocIDToLocIdx[LocID]; 690 return LocIdxToIDNum[Idx]; 691 } 692 693 /// Determine the LocIdx of a spill slot. Return None if it previously 694 /// hasn't had a value assigned. 695 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 696 unsigned SpillID = SpillLocs.idFor(L); 697 if (SpillID == 0) 698 return None; 699 unsigned LocNo = getLocID(SpillID, true); 700 return LocIDToLocIdx[LocNo]; 701 } 702 703 /// Return true if Idx is a spill machine location. 704 bool isSpill(LocIdx Idx) const { 705 return LocIdxToLocID[Idx] >= NumRegs; 706 } 707 708 MLocIterator begin() { 709 return MLocIterator(LocIdxToIDNum, 0); 710 } 711 712 MLocIterator end() { 713 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 714 } 715 716 /// Return a range over all locations currently tracked. 717 iterator_range<MLocIterator> locations() { 718 return llvm::make_range(begin(), end()); 719 } 720 721 std::string LocIdxToName(LocIdx Idx) const { 722 unsigned ID = LocIdxToLocID[Idx]; 723 if (ID >= NumRegs) 724 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 725 else 726 return TRI.getRegAsmName(ID).str(); 727 } 728 729 std::string IDAsString(const ValueIDNum &Num) const { 730 std::string DefName = LocIdxToName(Num.getLoc()); 731 return Num.asString(DefName); 732 } 733 734 LLVM_DUMP_METHOD 735 void dump() { 736 for (auto Location : locations()) { 737 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 738 std::string DefName = Location.Value.asString(MLocName); 739 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 740 } 741 } 742 743 LLVM_DUMP_METHOD 744 void dump_mloc_map() { 745 for (auto Location : locations()) { 746 std::string foo = LocIdxToName(Location.Idx); 747 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 748 } 749 } 750 751 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 752 /// information in \pProperties, for variable Var. Don't insert it anywhere, 753 /// just return the builder for it. 754 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 755 const DbgValueProperties &Properties) { 756 DebugLoc DL = 757 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 758 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 759 760 const DIExpression *Expr = Properties.DIExpr; 761 if (!MLoc) { 762 // No location -> DBG_VALUE $noreg 763 MIB.addReg(0, RegState::Debug); 764 MIB.addReg(0, RegState::Debug); 765 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 766 unsigned LocID = LocIdxToLocID[*MLoc]; 767 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 768 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 769 Spill.SpillOffset); 770 unsigned Base = Spill.SpillBase; 771 MIB.addReg(Base, RegState::Debug); 772 MIB.addImm(0); 773 } else { 774 unsigned LocID = LocIdxToLocID[*MLoc]; 775 MIB.addReg(LocID, RegState::Debug); 776 if (Properties.Indirect) 777 MIB.addImm(0); 778 else 779 MIB.addReg(0, RegState::Debug); 780 } 781 782 MIB.addMetadata(Var.getVariable()); 783 MIB.addMetadata(Expr); 784 return MIB; 785 } 786 }; 787 788 /// Class recording the (high level) _value_ of a variable. Identifies either 789 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 790 /// This class also stores meta-information about how the value is qualified. 791 /// Used to reason about variable values when performing the second 792 /// (DebugVariable specific) dataflow analysis. 793 class DbgValue { 794 public: 795 union { 796 /// If Kind is Def, the value number that this value is based on. 797 ValueIDNum ID; 798 /// If Kind is Const, the MachineOperand defining this value. 799 MachineOperand MO; 800 /// For a NoVal DbgValue, which block it was generated in. 801 unsigned BlockNo; 802 }; 803 /// Qualifiers for the ValueIDNum above. 804 DbgValueProperties Properties; 805 806 typedef enum { 807 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 808 Def, // This value is defined by an inst, or is a PHI value. 809 Const, // A constant value contained in the MachineOperand field. 810 Proposed, // This is a tentative PHI value, which may be confirmed or 811 // invalidated later. 812 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores 813 // which block this was generated in. 814 } KindT; 815 /// Discriminator for whether this is a constant or an in-program value. 816 KindT Kind; 817 818 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 819 : ID(Val), Properties(Prop), Kind(Kind) { 820 assert(Kind == Def || Kind == Proposed); 821 } 822 823 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 824 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 825 assert(Kind == NoVal); 826 } 827 828 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 829 : MO(MO), Properties(Prop), Kind(Kind) { 830 assert(Kind == Const); 831 } 832 833 DbgValue(const DbgValueProperties &Prop, KindT Kind) 834 : Properties(Prop), Kind(Kind) { 835 assert(Kind == Undef && 836 "Empty DbgValue constructor must pass in Undef kind"); 837 } 838 839 void dump(const MLocTracker *MTrack) const { 840 if (Kind == Const) { 841 MO.dump(); 842 } else if (Kind == NoVal) { 843 dbgs() << "NoVal(" << BlockNo << ")"; 844 } else if (Kind == Proposed) { 845 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 846 } else { 847 assert(Kind == Def); 848 dbgs() << MTrack->IDAsString(ID); 849 } 850 if (Properties.Indirect) 851 dbgs() << " indir"; 852 if (Properties.DIExpr) 853 dbgs() << " " << *Properties.DIExpr; 854 } 855 856 bool operator==(const DbgValue &Other) const { 857 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 858 return false; 859 else if (Kind == Proposed && ID != Other.ID) 860 return false; 861 else if (Kind == Def && ID != Other.ID) 862 return false; 863 else if (Kind == NoVal && BlockNo != Other.BlockNo) 864 return false; 865 else if (Kind == Const) 866 return MO.isIdenticalTo(Other.MO); 867 868 return true; 869 } 870 871 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 872 }; 873 874 /// Types for recording sets of variable fragments that overlap. For a given 875 /// local variable, we record all other fragments of that variable that could 876 /// overlap it, to reduce search time. 877 using FragmentOfVar = 878 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 879 using OverlapMap = 880 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 881 882 /// Collection of DBG_VALUEs observed when traversing a block. Records each 883 /// variable and the value the DBG_VALUE refers to. Requires the machine value 884 /// location dataflow algorithm to have run already, so that values can be 885 /// identified. 886 class VLocTracker { 887 public: 888 /// Map DebugVariable to the latest Value it's defined to have. 889 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 890 /// the order in this container. 891 /// We only retain the last DbgValue in each block for each variable, to 892 /// determine the blocks live-out variable value. The Vars container forms the 893 /// transfer function for this block, as part of the dataflow analysis. The 894 /// movement of values between locations inside of a block is handled at a 895 /// much later stage, in the TransferTracker class. 896 MapVector<DebugVariable, DbgValue> Vars; 897 DenseMap<DebugVariable, const DILocation *> Scopes; 898 MachineBasicBlock *MBB; 899 900 public: 901 VLocTracker() {} 902 903 void defVar(const MachineInstr &MI, Optional<ValueIDNum> ID) { 904 // XXX skipping overlapping fragments for now. 905 assert(MI.isDebugValue()); 906 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 907 MI.getDebugLoc()->getInlinedAt()); 908 DbgValueProperties Properties(MI); 909 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 910 : DbgValue(Properties, DbgValue::Undef); 911 912 // Attempt insertion; overwrite if it's already mapped. 913 auto Result = Vars.insert(std::make_pair(Var, Rec)); 914 if (!Result.second) 915 Result.first->second = Rec; 916 Scopes[Var] = MI.getDebugLoc().get(); 917 } 918 919 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 920 // XXX skipping overlapping fragments for now. 921 assert(MI.isDebugValue()); 922 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 923 MI.getDebugLoc()->getInlinedAt()); 924 DbgValueProperties Properties(MI); 925 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 926 927 // Attempt insertion; overwrite if it's already mapped. 928 auto Result = Vars.insert(std::make_pair(Var, Rec)); 929 if (!Result.second) 930 Result.first->second = Rec; 931 Scopes[Var] = MI.getDebugLoc().get(); 932 } 933 }; 934 935 /// Tracker for converting machine value locations and variable values into 936 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 937 /// specifying block live-in locations and transfers within blocks. 938 /// 939 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 940 /// and must be initialized with the set of variable values that are live-in to 941 /// the block. The caller then repeatedly calls process(). TransferTracker picks 942 /// out variable locations for the live-in variable values (if there _is_ a 943 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 944 /// stepped through, transfers of values between machine locations are 945 /// identified and if profitable, a DBG_VALUE created. 946 /// 947 /// This is where debug use-before-defs would be resolved: a variable with an 948 /// unavailable value could materialize in the middle of a block, when the 949 /// value becomes available. Or, we could detect clobbers and re-specify the 950 /// variable in a backup location. (XXX these are unimplemented). 951 class TransferTracker { 952 public: 953 const TargetInstrInfo *TII; 954 /// This machine location tracker is assumed to always contain the up-to-date 955 /// value mapping for all machine locations. TransferTracker only reads 956 /// information from it. (XXX make it const?) 957 MLocTracker *MTracker; 958 MachineFunction &MF; 959 960 /// Record of all changes in variable locations at a block position. Awkwardly 961 /// we allow inserting either before or after the point: MBB != nullptr 962 /// indicates it's before, otherwise after. 963 struct Transfer { 964 MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes 965 MachineBasicBlock *MBB; /// non-null if we should insert after. 966 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 967 }; 968 969 typedef struct { 970 LocIdx Loc; 971 DbgValueProperties Properties; 972 } LocAndProperties; 973 974 /// Collection of transfers (DBG_VALUEs) to be inserted. 975 SmallVector<Transfer, 32> Transfers; 976 977 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 978 /// between TransferTrackers view of variable locations and MLocTrackers. For 979 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 980 /// does not. 981 std::vector<ValueIDNum> VarLocs; 982 983 /// Map from LocIdxes to which DebugVariables are based that location. 984 /// Mantained while stepping through the block. Not accurate if 985 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 986 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 987 988 /// Map from DebugVariable to it's current location and qualifying meta 989 /// information. To be used in conjunction with ActiveMLocs to construct 990 /// enough information for the DBG_VALUEs for a particular LocIdx. 991 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 992 993 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 994 SmallVector<MachineInstr *, 4> PendingDbgValues; 995 996 const TargetRegisterInfo &TRI; 997 const BitVector &CalleeSavedRegs; 998 999 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 1000 MachineFunction &MF, const TargetRegisterInfo &TRI, 1001 const BitVector &CalleeSavedRegs) 1002 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 1003 CalleeSavedRegs(CalleeSavedRegs) {} 1004 1005 /// Load object with live-in variable values. \p mlocs contains the live-in 1006 /// values in each machine location, while \p vlocs the live-in variable 1007 /// values. This method picks variable locations for the live-in variables, 1008 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 1009 /// object fields to track variable locations as we step through the block. 1010 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 1011 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 1012 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 1013 unsigned NumLocs) { 1014 ActiveMLocs.clear(); 1015 ActiveVLocs.clear(); 1016 VarLocs.clear(); 1017 VarLocs.reserve(NumLocs); 1018 1019 auto isCalleeSaved = [&](LocIdx L) { 1020 unsigned Reg = MTracker->LocIdxToLocID[L]; 1021 if (Reg >= MTracker->NumRegs) 1022 return false; 1023 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 1024 if (CalleeSavedRegs.test(*RAI)) 1025 return true; 1026 return false; 1027 }; 1028 1029 // Map of the preferred location for each value. 1030 std::map<ValueIDNum, LocIdx> ValueToLoc; 1031 1032 // Produce a map of value numbers to the current machine locs they live 1033 // in. When emulating VarLocBasedImpl, there should only be one 1034 // location; when not, we get to pick. 1035 for (auto Location : MTracker->locations()) { 1036 LocIdx Idx = Location.Idx; 1037 ValueIDNum &VNum = MLocs[Idx.asU64()]; 1038 VarLocs.push_back(VNum); 1039 auto it = ValueToLoc.find(VNum); 1040 // In order of preference, pick: 1041 // * Callee saved registers, 1042 // * Other registers, 1043 // * Spill slots. 1044 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 1045 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 1046 // Insert, or overwrite if insertion failed. 1047 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 1048 if (!PrefLocRes.second) 1049 PrefLocRes.first->second = Idx; 1050 } 1051 } 1052 1053 // Now map variables to their picked LocIdxes. 1054 for (auto Var : VLocs) { 1055 if (Var.second.Kind == DbgValue::Const) { 1056 PendingDbgValues.push_back( 1057 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 1058 continue; 1059 } 1060 1061 // If the value has no location, we can't make a variable location. 1062 auto ValuesPreferredLoc = ValueToLoc.find(Var.second.ID); 1063 if (ValuesPreferredLoc == ValueToLoc.end()) 1064 continue; 1065 1066 LocIdx M = ValuesPreferredLoc->second; 1067 auto NewValue = LocAndProperties{M, Var.second.Properties}; 1068 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 1069 if (!Result.second) 1070 Result.first->second = NewValue; 1071 ActiveMLocs[M].insert(Var.first); 1072 PendingDbgValues.push_back( 1073 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 1074 } 1075 flushDbgValues(MBB.begin(), &MBB); 1076 } 1077 1078 /// Helper to move created DBG_VALUEs into Transfers collection. 1079 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 1080 if (PendingDbgValues.size() > 0) { 1081 Transfers.push_back({Pos, MBB, PendingDbgValues}); 1082 PendingDbgValues.clear(); 1083 } 1084 } 1085 1086 /// Handle a DBG_VALUE within a block. Terminate the variables current 1087 /// location, and record the value its DBG_VALUE refers to, so that we can 1088 /// detect location transfers later on. 1089 void redefVar(const MachineInstr &MI) { 1090 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1091 MI.getDebugLoc()->getInlinedAt()); 1092 const MachineOperand &MO = MI.getOperand(0); 1093 1094 // Erase any previous location, 1095 auto It = ActiveVLocs.find(Var); 1096 if (It != ActiveVLocs.end()) { 1097 ActiveMLocs[It->second.Loc].erase(Var); 1098 } 1099 1100 // Insert a new variable location. Ignore non-register locations, we don't 1101 // transfer those, and can't currently describe spill locs independently of 1102 // regs. 1103 // (This is because a spill location is a DBG_VALUE of the stack pointer). 1104 if (!MO.isReg() || MO.getReg() == 0) { 1105 if (It != ActiveVLocs.end()) 1106 ActiveVLocs.erase(It); 1107 return; 1108 } 1109 1110 Register Reg = MO.getReg(); 1111 LocIdx MLoc = MTracker->getRegMLoc(Reg); 1112 DbgValueProperties Properties(MI); 1113 1114 // Check whether our local copy of values-by-location in #VarLocs is out of 1115 // date. Wipe old tracking data for the location if it's been clobbered in 1116 // the meantime. 1117 if (MTracker->getNumAtPos(MLoc) != VarLocs[MLoc.asU64()]) { 1118 for (auto &P : ActiveMLocs[MLoc.asU64()]) { 1119 ActiveVLocs.erase(P); 1120 } 1121 ActiveMLocs[MLoc].clear(); 1122 VarLocs[MLoc.asU64()] = MTracker->getNumAtPos(MLoc); 1123 } 1124 1125 ActiveMLocs[MLoc].insert(Var); 1126 if (It == ActiveVLocs.end()) { 1127 ActiveVLocs.insert(std::make_pair(Var, LocAndProperties{MLoc, Properties})); 1128 } else { 1129 It->second.Loc = MLoc; 1130 It->second.Properties = Properties; 1131 } 1132 } 1133 1134 /// Explicitly terminate variable locations based on \p mloc. Creates undef 1135 /// DBG_VALUEs for any variables that were located there, and clears 1136 /// #ActiveMLoc / #ActiveVLoc tracking information for that location. 1137 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { 1138 assert(MTracker->isSpill(MLoc)); 1139 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 1140 if (ActiveMLocIt == ActiveMLocs.end()) 1141 return; 1142 1143 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 1144 1145 for (auto &Var : ActiveMLocIt->second) { 1146 auto ActiveVLocIt = ActiveVLocs.find(Var); 1147 // Create an undef. We can't feed in a nullptr DIExpression alas, 1148 // so use the variables last expression. Pass None as the location. 1149 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 1150 DbgValueProperties Properties(Expr, false); 1151 PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); 1152 ActiveVLocs.erase(ActiveVLocIt); 1153 } 1154 flushDbgValues(Pos, nullptr); 1155 1156 ActiveMLocIt->second.clear(); 1157 } 1158 1159 /// Transfer variables based on \p Src to be based on \p Dst. This handles 1160 /// both register copies as well as spills and restores. Creates DBG_VALUEs 1161 /// describing the movement. 1162 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 1163 // Does Src still contain the value num we expect? If not, it's been 1164 // clobbered in the meantime, and our variable locations are stale. 1165 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 1166 return; 1167 1168 // assert(ActiveMLocs[Dst].size() == 0); 1169 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 1170 ActiveMLocs[Dst] = ActiveMLocs[Src]; 1171 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 1172 1173 // For each variable based on Src; create a location at Dst. 1174 for (auto &Var : ActiveMLocs[Src]) { 1175 auto ActiveVLocIt = ActiveVLocs.find(Var); 1176 assert(ActiveVLocIt != ActiveVLocs.end()); 1177 ActiveVLocIt->second.Loc = Dst; 1178 1179 assert(Dst != 0); 1180 MachineInstr *MI = 1181 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 1182 PendingDbgValues.push_back(MI); 1183 } 1184 ActiveMLocs[Src].clear(); 1185 flushDbgValues(Pos, nullptr); 1186 1187 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 1188 // about the old location. 1189 if (EmulateOldLDV) 1190 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 1191 } 1192 1193 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 1194 const DebugVariable &Var, 1195 const DbgValueProperties &Properties) { 1196 DebugLoc DL = 1197 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 1198 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 1199 MIB.add(MO); 1200 if (Properties.Indirect) 1201 MIB.addImm(0); 1202 else 1203 MIB.addReg(0); 1204 MIB.addMetadata(Var.getVariable()); 1205 MIB.addMetadata(Properties.DIExpr); 1206 return MIB; 1207 } 1208 }; 1209 1210 class InstrRefBasedLDV : public LDVImpl { 1211 private: 1212 using FragmentInfo = DIExpression::FragmentInfo; 1213 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 1214 1215 // Helper while building OverlapMap, a map of all fragments seen for a given 1216 // DILocalVariable. 1217 using VarToFragments = 1218 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1219 1220 /// Machine location/value transfer function, a mapping of which locations 1221 // are assigned which new values. 1222 typedef std::map<LocIdx, ValueIDNum> MLocTransferMap; 1223 1224 /// Live in/out structure for the variable values: a per-block map of 1225 /// variables to their values. XXX, better name? 1226 typedef DenseMap<const MachineBasicBlock *, 1227 DenseMap<DebugVariable, DbgValue> *> 1228 LiveIdxT; 1229 1230 typedef std::pair<DebugVariable, DbgValue> VarAndLoc; 1231 1232 /// Type for a live-in value: the predecessor block, and its value. 1233 typedef std::pair<MachineBasicBlock *, DbgValue *> InValueT; 1234 1235 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1236 /// Used as the result type for the variable value dataflow problem. 1237 typedef SmallVector<SmallVector<VarAndLoc, 8>, 8> LiveInsT; 1238 1239 const TargetRegisterInfo *TRI; 1240 const TargetInstrInfo *TII; 1241 const TargetFrameLowering *TFI; 1242 BitVector CalleeSavedRegs; 1243 LexicalScopes LS; 1244 TargetPassConfig *TPC; 1245 1246 /// Object to track machine locations as we step through a block. Could 1247 /// probably be a field rather than a pointer, as it's always used. 1248 MLocTracker *MTracker; 1249 1250 /// Number of the current block LiveDebugValues is stepping through. 1251 unsigned CurBB; 1252 1253 /// Number of the current instruction LiveDebugValues is evaluating. 1254 unsigned CurInst; 1255 1256 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1257 /// steps through a block. Reads the values at each location from the 1258 /// MLocTracker object. 1259 VLocTracker *VTracker; 1260 1261 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1262 /// between locations during stepping, creates new DBG_VALUEs when values move 1263 /// location. 1264 TransferTracker *TTracker; 1265 1266 /// Blocks which are artificial, i.e. blocks which exclusively contain 1267 /// instructions without DebugLocs, or with line 0 locations. 1268 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1269 1270 // Mapping of blocks to and from their RPOT order. 1271 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1272 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1273 DenseMap<unsigned, unsigned> BBNumToRPO; 1274 1275 // Map of overlapping variable fragments. 1276 OverlapMap OverlapFragments; 1277 VarToFragments SeenFragments; 1278 1279 /// Tests whether this instruction is a spill to a stack slot. 1280 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1281 1282 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1283 /// criteria to make this decision: 1284 /// - Is this instruction a store to a spill slot? 1285 /// - Is there a register operand that is both used and killed? 1286 /// TODO: Store optimization can fold spills into other stores (including 1287 /// other spills). We do not handle this yet (more than one memory operand). 1288 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1289 unsigned &Reg); 1290 1291 /// If a given instruction is identified as a spill, return the spill slot 1292 /// and set \p Reg to the spilled register. 1293 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1294 MachineFunction *MF, unsigned &Reg); 1295 1296 /// Given a spill instruction, extract the register and offset used to 1297 /// address the spill slot in a target independent way. 1298 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1299 1300 /// Observe a single instruction while stepping through a block. 1301 void process(MachineInstr &MI); 1302 1303 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1304 /// \returns true if MI was recognized and processed. 1305 bool transferDebugValue(const MachineInstr &MI); 1306 1307 /// Examines whether \p MI is copy instruction, and notifies trackers. 1308 /// \returns true if MI was recognized and processed. 1309 bool transferRegisterCopy(MachineInstr &MI); 1310 1311 /// Examines whether \p MI is stack spill or restore instruction, and 1312 /// notifies trackers. \returns true if MI was recognized and processed. 1313 bool transferSpillOrRestoreInst(MachineInstr &MI); 1314 1315 /// Examines \p MI for any registers that it defines, and notifies trackers. 1316 void transferRegisterDef(MachineInstr &MI); 1317 1318 /// Copy one location to the other, accounting for movement of subregisters 1319 /// too. 1320 void performCopy(Register Src, Register Dst); 1321 1322 void accumulateFragmentMap(MachineInstr &MI); 1323 1324 /// Step through the function, recording register definitions and movements 1325 /// in an MLocTracker. Convert the observations into a per-block transfer 1326 /// function in \p MLocTransfer, suitable for using with the machine value 1327 /// location dataflow problem. 1328 void 1329 produceMLocTransferFunction(MachineFunction &MF, 1330 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1331 unsigned MaxNumBlocks); 1332 1333 /// Solve the machine value location dataflow problem. Takes as input the 1334 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1335 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1336 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1337 /// number, the inner by LocIdx. 1338 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1339 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1340 1341 /// Perform a control flow join (lattice value meet) of the values in machine 1342 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1343 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1344 /// from \p InLocs, and assigning the newly computed live ins back into 1345 /// \p InLocs. \returns two bools -- the first indicates whether a change 1346 /// was made, the second whether a lattice downgrade occurred. If the latter 1347 /// is true, revisiting this block is necessary. 1348 std::tuple<bool, bool> 1349 mlocJoin(MachineBasicBlock &MBB, 1350 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1351 ValueIDNum **OutLocs, ValueIDNum *InLocs); 1352 1353 /// Solve the variable value dataflow problem, for a single lexical scope. 1354 /// Uses the algorithm from the file comment to resolve control flow joins, 1355 /// although there are extra hacks, see vlocJoin. Reads the 1356 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see 1357 /// mlocDataflow) and reads the variable values transfer function from 1358 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, 1359 /// with the live-ins permanently stored to \p Output once the fixedpoint is 1360 /// reached. 1361 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1362 /// that we should be tracking. 1363 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but 1364 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations 1365 /// through. 1366 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, 1367 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1368 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1369 LiveInsT &Output, ValueIDNum **MOutLocs, 1370 ValueIDNum **MInLocs, 1371 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1372 1373 /// Compute the live-ins to a block, considering control flow merges according 1374 /// to the method in the file comment. Live out and live in variable values 1375 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB 1376 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins 1377 /// are modified. 1378 /// \p InLocsT Output argument, storage for calculated live-ins. 1379 /// \returns two bools -- the first indicates whether a change 1380 /// was made, the second whether a lattice downgrade occurred. If the latter 1381 /// is true, revisiting this block is necessary. 1382 std::tuple<bool, bool> 1383 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 1384 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, 1385 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, 1386 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1387 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 1388 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1389 DenseMap<DebugVariable, DbgValue> &InLocsT); 1390 1391 /// Continue exploration of the variable-value lattice, as explained in the 1392 /// file-level comment. \p OldLiveInLocation contains the current 1393 /// exploration position, from which we need to descend further. \p Values 1394 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of 1395 /// the current block, and \p CandidateLocations a set of locations that 1396 /// should be considered as PHI locations, if we reach the bottom of the 1397 /// lattice. \returns true if we should downgrade; the value is the agreeing 1398 /// value number in a non-backedge predecessor. 1399 bool vlocDowngradeLattice(const MachineBasicBlock &MBB, 1400 const DbgValue &OldLiveInLocation, 1401 const SmallVectorImpl<InValueT> &Values, 1402 unsigned CurBlockRPONum); 1403 1404 /// For the given block and live-outs feeding into it, try to find a 1405 /// machine location where they all join. If a solution for all predecessors 1406 /// can't be found, a location where all non-backedge-predecessors join 1407 /// will be returned instead. While this method finds a join location, this 1408 /// says nothing as to whether it should be used. 1409 /// \returns Pair of value ID if found, and true when the correct value 1410 /// is available on all predecessor edges, or false if it's only available 1411 /// for non-backedge predecessors. 1412 std::tuple<Optional<ValueIDNum>, bool> 1413 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, 1414 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 1415 ValueIDNum **MInLocs, 1416 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); 1417 1418 /// Given the solutions to the two dataflow problems, machine value locations 1419 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 1420 /// TransferTracker class over the function to produce live-in and transfer 1421 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 1422 /// order given by AllVarsNumbering -- this could be any stable order, but 1423 /// right now "order of appearence in function, when explored in RPO", so 1424 /// that we can compare explictly against VarLocBasedImpl. 1425 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 1426 ValueIDNum **MInLocs, 1427 DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1428 1429 /// Boilerplate computation of some initial sets, artifical blocks and 1430 /// RPOT block ordering. 1431 void initialSetup(MachineFunction &MF); 1432 1433 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 1434 1435 public: 1436 /// Default construct and initialize the pass. 1437 InstrRefBasedLDV(); 1438 1439 LLVM_DUMP_METHOD 1440 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1441 1442 bool isCalleeSaved(LocIdx L) { 1443 unsigned Reg = MTracker->LocIdxToLocID[L]; 1444 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1445 if (CalleeSavedRegs.test(*RAI)) 1446 return true; 1447 return false; 1448 } 1449 }; 1450 1451 } // end anonymous namespace 1452 1453 //===----------------------------------------------------------------------===// 1454 // Implementation 1455 //===----------------------------------------------------------------------===// 1456 1457 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 1458 1459 /// Default construct and initialize the pass. 1460 InstrRefBasedLDV::InstrRefBasedLDV() {} 1461 1462 //===----------------------------------------------------------------------===// 1463 // Debug Range Extension Implementation 1464 //===----------------------------------------------------------------------===// 1465 1466 #ifndef NDEBUG 1467 // Something to restore in the future. 1468 // void InstrRefBasedLDV::printVarLocInMBB(..) 1469 #endif 1470 1471 SpillLoc 1472 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1473 assert(MI.hasOneMemOperand() && 1474 "Spill instruction does not have exactly one memory operand?"); 1475 auto MMOI = MI.memoperands_begin(); 1476 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1477 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1478 "Inconsistent memory operand in spill instruction"); 1479 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1480 const MachineBasicBlock *MBB = MI.getParent(); 1481 Register Reg; 1482 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1483 return {Reg, Offset}; 1484 } 1485 1486 /// End all previous ranges related to @MI and start a new range from @MI 1487 /// if it is a DBG_VALUE instr. 1488 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 1489 if (!MI.isDebugValue()) 1490 return false; 1491 1492 const DILocalVariable *Var = MI.getDebugVariable(); 1493 const DIExpression *Expr = MI.getDebugExpression(); 1494 const DILocation *DebugLoc = MI.getDebugLoc(); 1495 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1496 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1497 "Expected inlined-at fields to agree"); 1498 1499 DebugVariable V(Var, Expr, InlinedAt); 1500 1501 // If there are no instructions in this lexical scope, do no location tracking 1502 // at all, this variable shouldn't get a legitimate location range. 1503 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1504 if (Scope == nullptr) 1505 return true; // handled it; by doing nothing 1506 1507 const MachineOperand &MO = MI.getOperand(0); 1508 1509 // MLocTracker needs to know that this register is read, even if it's only 1510 // read by a debug inst. 1511 if (MO.isReg() && MO.getReg() != 0) 1512 (void)MTracker->readReg(MO.getReg()); 1513 1514 // If we're preparing for the second analysis (variables), the machine value 1515 // locations are already solved, and we report this DBG_VALUE and the value 1516 // it refers to to VLocTracker. 1517 if (VTracker) { 1518 if (MO.isReg()) { 1519 // Feed defVar the new variable location, or if this is a 1520 // DBG_VALUE $noreg, feed defVar None. 1521 if (MO.getReg()) 1522 VTracker->defVar(MI, MTracker->readReg(MO.getReg())); 1523 else 1524 VTracker->defVar(MI, None); 1525 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1526 MI.getOperand(0).isCImm()) { 1527 VTracker->defVar(MI, MI.getOperand(0)); 1528 } 1529 } 1530 1531 // If performing final tracking of transfers, report this variable definition 1532 // to the TransferTracker too. 1533 if (TTracker) 1534 TTracker->redefVar(MI); 1535 return true; 1536 } 1537 1538 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1539 // Meta Instructions do not affect the debug liveness of any register they 1540 // define. 1541 if (MI.isImplicitDef()) { 1542 // Except when there's an implicit def, and the location it's defining has 1543 // no value number. The whole point of an implicit def is to announce that 1544 // the register is live, without be specific about it's value. So define 1545 // a value if there isn't one already. 1546 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1547 // Has a legitimate value -> ignore the implicit def. 1548 if (Num.getLoc() != 0) 1549 return; 1550 // Otherwise, def it here. 1551 } else if (MI.isMetaInstruction()) 1552 return; 1553 1554 MachineFunction *MF = MI.getMF(); 1555 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1556 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1557 1558 // Find the regs killed by MI, and find regmasks of preserved regs. 1559 // Max out the number of statically allocated elements in `DeadRegs`, as this 1560 // prevents fallback to std::set::count() operations. 1561 SmallSet<uint32_t, 32> DeadRegs; 1562 SmallVector<const uint32_t *, 4> RegMasks; 1563 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1564 for (const MachineOperand &MO : MI.operands()) { 1565 // Determine whether the operand is a register def. 1566 if (MO.isReg() && MO.isDef() && MO.getReg() && 1567 Register::isPhysicalRegister(MO.getReg()) && 1568 !(MI.isCall() && MO.getReg() == SP)) { 1569 // Remove ranges of all aliased registers. 1570 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1571 // FIXME: Can we break out of this loop early if no insertion occurs? 1572 DeadRegs.insert(*RAI); 1573 } else if (MO.isRegMask()) { 1574 RegMasks.push_back(MO.getRegMask()); 1575 RegMaskPtrs.push_back(&MO); 1576 } 1577 } 1578 1579 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1580 for (uint32_t DeadReg : DeadRegs) 1581 MTracker->defReg(DeadReg, CurBB, CurInst); 1582 1583 for (auto *MO : RegMaskPtrs) 1584 MTracker->writeRegMask(MO, CurBB, CurInst); 1585 } 1586 1587 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1588 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1589 1590 MTracker->setReg(DstRegNum, SrcValue); 1591 1592 // In all circumstances, re-def the super registers. It's definitely a new 1593 // value now. This doesn't uniquely identify the composition of subregs, for 1594 // example, two identical values in subregisters composed in different 1595 // places would not get equal value numbers. 1596 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 1597 MTracker->defReg(*SRI, CurBB, CurInst); 1598 1599 // If we're emulating VarLocBasedImpl, just define all the subregisters. 1600 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 1601 // through prior copies. 1602 if (EmulateOldLDV) { 1603 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 1604 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 1605 return; 1606 } 1607 1608 // Otherwise, actually copy subregisters from one location to another. 1609 // XXX: in addition, any subregisters of DstRegNum that don't line up with 1610 // the source register should be def'd. 1611 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1612 unsigned SrcSubReg = SRI.getSubReg(); 1613 unsigned SubRegIdx = SRI.getSubRegIndex(); 1614 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1615 if (!DstSubReg) 1616 continue; 1617 1618 // Do copy. There are two matching subregisters, the source value should 1619 // have been def'd when the super-reg was, the latter might not be tracked 1620 // yet. 1621 // This will force SrcSubReg to be tracked, if it isn't yet. 1622 (void)MTracker->readReg(SrcSubReg); 1623 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 1624 assert(SrcL.asU64()); 1625 (void)MTracker->readReg(DstSubReg); 1626 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 1627 assert(DstL.asU64()); 1628 (void)DstL; 1629 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 1630 1631 MTracker->setReg(DstSubReg, CpyValue); 1632 } 1633 } 1634 1635 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1636 MachineFunction *MF) { 1637 // TODO: Handle multiple stores folded into one. 1638 if (!MI.hasOneMemOperand()) 1639 return false; 1640 1641 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1642 return false; // This is not a spill instruction, since no valid size was 1643 // returned from either function. 1644 1645 return true; 1646 } 1647 1648 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1649 MachineFunction *MF, unsigned &Reg) { 1650 if (!isSpillInstruction(MI, MF)) 1651 return false; 1652 1653 // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an 1654 // actual register number. 1655 if (ObserveAllStackops) { 1656 int FI; 1657 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1658 return Reg != 0; 1659 } 1660 1661 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { 1662 if (!MO.isReg() || !MO.isUse()) { 1663 Reg = 0; 1664 return false; 1665 } 1666 Reg = MO.getReg(); 1667 return MO.isKill(); 1668 }; 1669 1670 for (const MachineOperand &MO : MI.operands()) { 1671 // In a spill instruction generated by the InlineSpiller the spilled 1672 // register has its kill flag set. 1673 if (isKilledReg(MO, Reg)) 1674 return true; 1675 if (Reg != 0) { 1676 // Check whether next instruction kills the spilled register. 1677 // FIXME: Current solution does not cover search for killed register in 1678 // bundles and instructions further down the chain. 1679 auto NextI = std::next(MI.getIterator()); 1680 // Skip next instruction that points to basic block end iterator. 1681 if (MI.getParent()->end() == NextI) 1682 continue; 1683 unsigned RegNext; 1684 for (const MachineOperand &MONext : NextI->operands()) { 1685 // Return true if we came across the register from the 1686 // previous spill instruction that is killed in NextI. 1687 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1688 return true; 1689 } 1690 } 1691 } 1692 // Return false if we didn't find spilled register. 1693 return false; 1694 } 1695 1696 Optional<SpillLoc> 1697 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1698 MachineFunction *MF, unsigned &Reg) { 1699 if (!MI.hasOneMemOperand()) 1700 return None; 1701 1702 // FIXME: Handle folded restore instructions with more than one memory 1703 // operand. 1704 if (MI.getRestoreSize(TII)) { 1705 Reg = MI.getOperand(0).getReg(); 1706 return extractSpillBaseRegAndOffset(MI); 1707 } 1708 return None; 1709 } 1710 1711 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1712 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1713 // limitations under the new model. Therefore, when comparing them, compare 1714 // versions that don't attempt spills or restores at all. 1715 if (EmulateOldLDV) 1716 return false; 1717 1718 MachineFunction *MF = MI.getMF(); 1719 unsigned Reg; 1720 Optional<SpillLoc> Loc; 1721 1722 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1723 1724 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1725 // written to, terminate that variable location. The value in memory 1726 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1727 if (isSpillInstruction(MI, MF)) { 1728 Loc = extractSpillBaseRegAndOffset(MI); 1729 1730 if (TTracker) { 1731 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1732 if (MLoc) 1733 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1734 } 1735 } 1736 1737 // Try to recognise spill and restore instructions that may transfer a value. 1738 if (isLocationSpill(MI, MF, Reg)) { 1739 Loc = extractSpillBaseRegAndOffset(MI); 1740 auto ValueID = MTracker->readReg(Reg); 1741 1742 // If the location is empty, produce a phi, signify it's the live-in value. 1743 if (ValueID.getLoc() == 0) 1744 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1745 1746 MTracker->setSpill(*Loc, ValueID); 1747 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1748 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1749 LocIdx SpillLocIdx = *OptSpillLocIdx; 1750 1751 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1752 if (TTracker) 1753 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1754 MI.getIterator()); 1755 1756 // VarLocBasedImpl would, at this point, stop tracking the source 1757 // register of the store. 1758 if (EmulateOldLDV) { 1759 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1760 MTracker->defReg(*RAI, CurBB, CurInst); 1761 } 1762 } else { 1763 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1764 return false; 1765 1766 // Is there a value to be restored? 1767 auto OptValueID = MTracker->readSpill(*Loc); 1768 if (OptValueID) { 1769 ValueIDNum ValueID = *OptValueID; 1770 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1771 // XXX -- can we recover sub-registers of this value? Until we can, first 1772 // overwrite all defs of the register being restored to. 1773 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1774 MTracker->defReg(*RAI, CurBB, CurInst); 1775 1776 // Now override the reg we're restoring to. 1777 MTracker->setReg(Reg, ValueID); 1778 1779 // Report this restore to the transfer tracker too. 1780 if (TTracker) 1781 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1782 MI.getIterator()); 1783 } else { 1784 // There isn't anything in the location; not clear if this is a code path 1785 // that still runs. Def this register anyway just in case. 1786 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1787 MTracker->defReg(*RAI, CurBB, CurInst); 1788 1789 // Force the spill slot to be tracked. 1790 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 1791 1792 // Set the restored value to be a machine phi number, signifying that it's 1793 // whatever the spills live-in value is in this block. Definitely has 1794 // a LocIdx due to the setSpill above. 1795 ValueIDNum ValueID = {CurBB, 0, L}; 1796 MTracker->setReg(Reg, ValueID); 1797 MTracker->setSpill(*Loc, ValueID); 1798 } 1799 } 1800 return true; 1801 } 1802 1803 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1804 auto DestSrc = TII->isCopyInstr(MI); 1805 if (!DestSrc) 1806 return false; 1807 1808 const MachineOperand *DestRegOp = DestSrc->Destination; 1809 const MachineOperand *SrcRegOp = DestSrc->Source; 1810 1811 auto isCalleeSavedReg = [&](unsigned Reg) { 1812 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1813 if (CalleeSavedRegs.test(*RAI)) 1814 return true; 1815 return false; 1816 }; 1817 1818 Register SrcReg = SrcRegOp->getReg(); 1819 Register DestReg = DestRegOp->getReg(); 1820 1821 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1822 if (SrcReg == DestReg) 1823 return true; 1824 1825 // For emulating VarLocBasedImpl: 1826 // We want to recognize instructions where destination register is callee 1827 // saved register. If register that could be clobbered by the call is 1828 // included, there would be a great chance that it is going to be clobbered 1829 // soon. It is more likely that previous register, which is callee saved, is 1830 // going to stay unclobbered longer, even if it is killed. 1831 // 1832 // For InstrRefBasedImpl, we can track multiple locations per value, so 1833 // ignore this condition. 1834 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1835 return false; 1836 1837 // InstrRefBasedImpl only followed killing copies. 1838 if (EmulateOldLDV && !SrcRegOp->isKill()) 1839 return false; 1840 1841 // Copy MTracker info, including subregs if available. 1842 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1843 1844 // Only produce a transfer of DBG_VALUE within a block where old LDV 1845 // would have. We might make use of the additional value tracking in some 1846 // other way, later. 1847 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1848 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1849 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1850 1851 // VarLocBasedImpl would quit tracking the old location after copying. 1852 if (EmulateOldLDV && SrcReg != DestReg) 1853 MTracker->defReg(SrcReg, CurBB, CurInst); 1854 1855 return true; 1856 } 1857 1858 /// Accumulate a mapping between each DILocalVariable fragment and other 1859 /// fragments of that DILocalVariable which overlap. This reduces work during 1860 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1861 /// known-to-overlap fragments are present". 1862 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1863 /// fragment usage. 1864 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1865 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1866 MI.getDebugLoc()->getInlinedAt()); 1867 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1868 1869 // If this is the first sighting of this variable, then we are guaranteed 1870 // there are currently no overlapping fragments either. Initialize the set 1871 // of seen fragments, record no overlaps for the current one, and return. 1872 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1873 if (SeenIt == SeenFragments.end()) { 1874 SmallSet<FragmentInfo, 4> OneFragment; 1875 OneFragment.insert(ThisFragment); 1876 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1877 1878 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1879 return; 1880 } 1881 1882 // If this particular Variable/Fragment pair already exists in the overlap 1883 // map, it has already been accounted for. 1884 auto IsInOLapMap = 1885 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1886 if (!IsInOLapMap.second) 1887 return; 1888 1889 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1890 auto &AllSeenFragments = SeenIt->second; 1891 1892 // Otherwise, examine all other seen fragments for this variable, with "this" 1893 // fragment being a previously unseen fragment. Record any pair of 1894 // overlapping fragments. 1895 for (auto &ASeenFragment : AllSeenFragments) { 1896 // Does this previously seen fragment overlap? 1897 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1898 // Yes: Mark the current fragment as being overlapped. 1899 ThisFragmentsOverlaps.push_back(ASeenFragment); 1900 // Mark the previously seen fragment as being overlapped by the current 1901 // one. 1902 auto ASeenFragmentsOverlaps = 1903 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1904 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1905 "Previously seen var fragment has no vector of overlaps"); 1906 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1907 } 1908 } 1909 1910 AllSeenFragments.insert(ThisFragment); 1911 } 1912 1913 void InstrRefBasedLDV::process(MachineInstr &MI) { 1914 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1915 // none of these should we interpret it's register defs as new value 1916 // definitions. 1917 if (transferDebugValue(MI)) 1918 return; 1919 if (transferRegisterCopy(MI)) 1920 return; 1921 if (transferSpillOrRestoreInst(MI)) 1922 return; 1923 transferRegisterDef(MI); 1924 } 1925 1926 void InstrRefBasedLDV::produceMLocTransferFunction( 1927 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1928 unsigned MaxNumBlocks) { 1929 // Because we try to optimize around register mask operands by ignoring regs 1930 // that aren't currently tracked, we set up something ugly for later: RegMask 1931 // operands that are seen earlier than the first use of a register, still need 1932 // to clobber that register in the transfer function. But this information 1933 // isn't actively recorded. Instead, we track each RegMask used in each block, 1934 // and accumulated the clobbered but untracked registers in each block into 1935 // the following bitvector. Later, if new values are tracked, we can add 1936 // appropriate clobbers. 1937 SmallVector<BitVector, 32> BlockMasks; 1938 BlockMasks.resize(MaxNumBlocks); 1939 1940 // Reserve one bit per register for the masks described above. 1941 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1942 for (auto &BV : BlockMasks) 1943 BV.resize(TRI->getNumRegs(), true); 1944 1945 // Step through all instructions and inhale the transfer function. 1946 for (auto &MBB : MF) { 1947 // Object fields that are read by trackers to know where we are in the 1948 // function. 1949 CurBB = MBB.getNumber(); 1950 CurInst = 1; 1951 1952 // Set all machine locations to a PHI value. For transfer function 1953 // production only, this signifies the live-in value to the block. 1954 MTracker->reset(); 1955 MTracker->setMPhis(CurBB); 1956 1957 // Step through each instruction in this block. 1958 for (auto &MI : MBB) { 1959 process(MI); 1960 // Also accumulate fragment map. 1961 if (MI.isDebugValue()) 1962 accumulateFragmentMap(MI); 1963 ++CurInst; 1964 } 1965 1966 // Produce the transfer function, a map of machine location to new value. If 1967 // any machine location has the live-in phi value from the start of the 1968 // block, it's live-through and doesn't need recording in the transfer 1969 // function. 1970 for (auto Location : MTracker->locations()) { 1971 LocIdx Idx = Location.Idx; 1972 ValueIDNum &P = Location.Value; 1973 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1974 continue; 1975 1976 // Insert-or-update. 1977 auto &TransferMap = MLocTransfer[CurBB]; 1978 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1979 if (!Result.second) 1980 Result.first->second = P; 1981 } 1982 1983 // Accumulate any bitmask operands into the clobberred reg mask for this 1984 // block. 1985 for (auto &P : MTracker->Masks) { 1986 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1987 } 1988 } 1989 1990 // Compute a bitvector of all the registers that are tracked in this block. 1991 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 1992 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1993 BitVector UsedRegs(TRI->getNumRegs()); 1994 for (auto Location : MTracker->locations()) { 1995 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1996 if (ID >= TRI->getNumRegs() || ID == SP) 1997 continue; 1998 UsedRegs.set(ID); 1999 } 2000 2001 // Check that any regmask-clobber of a register that gets tracked, is not 2002 // live-through in the transfer function. It needs to be clobbered at the 2003 // very least. 2004 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 2005 BitVector &BV = BlockMasks[I]; 2006 BV.flip(); 2007 BV &= UsedRegs; 2008 // This produces all the bits that we clobber, but also use. Check that 2009 // they're all clobbered or at least set in the designated transfer 2010 // elem. 2011 for (unsigned Bit : BV.set_bits()) { 2012 unsigned ID = MTracker->getLocID(Bit, false); 2013 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 2014 auto &TransferMap = MLocTransfer[I]; 2015 2016 // Install a value representing the fact that this location is effectively 2017 // written to in this block. As there's no reserved value, instead use 2018 // a value number that is never generated. Pick the value number for the 2019 // first instruction in the block, def'ing this location, which we know 2020 // this block never used anyway. 2021 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 2022 auto Result = 2023 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 2024 if (!Result.second) { 2025 ValueIDNum &ValueID = Result.first->second; 2026 if (ValueID.getBlock() == I && ValueID.isPHI()) 2027 // It was left as live-through. Set it to clobbered. 2028 ValueID = NotGeneratedNum; 2029 } 2030 } 2031 } 2032 } 2033 2034 std::tuple<bool, bool> 2035 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 2036 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2037 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 2038 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2039 bool Changed = false; 2040 bool DowngradeOccurred = false; 2041 2042 // Collect predecessors that have been visited. Anything that hasn't been 2043 // visited yet is a backedge on the first iteration, and the meet of it's 2044 // lattice value for all locations will be unaffected. 2045 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 2046 for (auto Pred : MBB.predecessors()) { 2047 if (Visited.count(Pred)) { 2048 BlockOrders.push_back(Pred); 2049 } 2050 } 2051 2052 // Visit predecessors in RPOT order. 2053 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 2054 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 2055 }; 2056 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2057 2058 // Skip entry block. 2059 if (BlockOrders.size() == 0) 2060 return std::tuple<bool, bool>(false, false); 2061 2062 // Step through all machine locations, then look at each predecessor and 2063 // detect disagreements. 2064 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 2065 for (auto Location : MTracker->locations()) { 2066 LocIdx Idx = Location.Idx; 2067 // Pick out the first predecessors live-out value for this location. It's 2068 // guaranteed to be not a backedge, as we order by RPO. 2069 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 2070 2071 // Some flags for whether there's a disagreement, and whether it's a 2072 // disagreement with a backedge or not. 2073 bool Disagree = false; 2074 bool NonBackEdgeDisagree = false; 2075 2076 // Loop around everything that wasn't 'base'. 2077 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 2078 auto *MBB = BlockOrders[I]; 2079 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 2080 // Live-out of a predecessor disagrees with the first predecessor. 2081 Disagree = true; 2082 2083 // Test whether it's a disagreemnt in the backedges or not. 2084 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 2085 NonBackEdgeDisagree = true; 2086 } 2087 } 2088 2089 bool OverRide = false; 2090 if (Disagree && !NonBackEdgeDisagree) { 2091 // Only the backedges disagree. Consider demoting the livein 2092 // lattice value, as per the file level comment. The value we consider 2093 // demoting to is the value that the non-backedge predecessors agree on. 2094 // The order of values is that non-PHIs are \top, a PHI at this block 2095 // \bot, and phis between the two are ordered by their RPO number. 2096 // If there's no agreement, or we've already demoted to this PHI value 2097 // before, replace with a PHI value at this block. 2098 2099 // Calculate order numbers: zero means normal def, nonzero means RPO 2100 // number. 2101 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 2102 if (!BaseVal.isPHI()) 2103 BaseBlockRPONum = 0; 2104 2105 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 2106 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 2107 if (!InLocID.isPHI()) 2108 InLocRPONum = 0; 2109 2110 // Should we ignore the disagreeing backedges, and override with the 2111 // value the other predecessors agree on (in "base")? 2112 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 2113 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 2114 // Override. 2115 OverRide = true; 2116 DowngradeOccurred = true; 2117 } 2118 } 2119 // else: if we disagree in the non-backedges, then this is definitely 2120 // a control flow merge where different values merge. Make it a PHI. 2121 2122 // Generate a phi... 2123 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 2124 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 2125 if (InLocs[Idx.asU64()] != NewVal) { 2126 Changed |= true; 2127 InLocs[Idx.asU64()] = NewVal; 2128 } 2129 } 2130 2131 // Uhhhhhh, reimplement NumInserted and NumRemoved pls. 2132 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2133 } 2134 2135 void InstrRefBasedLDV::mlocDataflow( 2136 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2137 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2138 std::priority_queue<unsigned int, std::vector<unsigned int>, 2139 std::greater<unsigned int>> 2140 Worklist, Pending; 2141 2142 // We track what is on the current and pending worklist to avoid inserting 2143 // the same thing twice. We could avoid this with a custom priority queue, 2144 // but this is probably not worth it. 2145 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2146 2147 // Initialize worklist with every block to be visited. 2148 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2149 Worklist.push(I); 2150 OnWorklist.insert(OrderToBB[I]); 2151 } 2152 2153 MTracker->reset(); 2154 2155 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 2156 // the incoming value to the function. 2157 MTracker->setMPhis(0); 2158 for (auto Location : MTracker->locations()) 2159 MInLocs[0][Location.Idx.asU64()] = Location.Value; 2160 2161 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2162 while (!Worklist.empty() || !Pending.empty()) { 2163 // Vector for storing the evaluated block transfer function. 2164 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2165 2166 while (!Worklist.empty()) { 2167 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2168 CurBB = MBB->getNumber(); 2169 Worklist.pop(); 2170 2171 // Join the values in all predecessor blocks. 2172 bool InLocsChanged, DowngradeOccurred; 2173 std::tie(InLocsChanged, DowngradeOccurred) = 2174 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2175 InLocsChanged |= Visited.insert(MBB).second; 2176 2177 // If a downgrade occurred, book us in for re-examination on the next 2178 // iteration. 2179 if (DowngradeOccurred && OnPending.insert(MBB).second) 2180 Pending.push(BBToOrder[MBB]); 2181 2182 // Don't examine transfer function if we've visited this loc at least 2183 // once, and inlocs haven't changed. 2184 if (!InLocsChanged) 2185 continue; 2186 2187 // Load the current set of live-ins into MLocTracker. 2188 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2189 2190 // Each element of the transfer function can be a new def, or a read of 2191 // a live-in value. Evaluate each element, and store to "ToRemap". 2192 ToRemap.clear(); 2193 for (auto &P : MLocTransfer[CurBB]) { 2194 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2195 // This is a movement of whatever was live in. Read it. 2196 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 2197 ToRemap.push_back(std::make_pair(P.first, NewID)); 2198 } else { 2199 // It's a def. Just set it. 2200 assert(P.second.getBlock() == CurBB); 2201 ToRemap.push_back(std::make_pair(P.first, P.second)); 2202 } 2203 } 2204 2205 // Commit the transfer function changes into mloc tracker, which 2206 // transforms the contents of the MLocTracker into the live-outs. 2207 for (auto &P : ToRemap) 2208 MTracker->setMLoc(P.first, P.second); 2209 2210 // Now copy out-locs from mloc tracker into out-loc vector, checking 2211 // whether changes have occurred. These changes can have come from both 2212 // the transfer function, and mlocJoin. 2213 bool OLChanged = false; 2214 for (auto Location : MTracker->locations()) { 2215 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2216 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2217 } 2218 2219 MTracker->reset(); 2220 2221 // No need to examine successors again if out-locs didn't change. 2222 if (!OLChanged) 2223 continue; 2224 2225 // All successors should be visited: put any back-edges on the pending 2226 // list for the next dataflow iteration, and any other successors to be 2227 // visited this iteration, if they're not going to be already. 2228 for (auto s : MBB->successors()) { 2229 // Does branching to this successor represent a back-edge? 2230 if (BBToOrder[s] > BBToOrder[MBB]) { 2231 // No: visit it during this dataflow iteration. 2232 if (OnWorklist.insert(s).second) 2233 Worklist.push(BBToOrder[s]); 2234 } else { 2235 // Yes: visit it on the next iteration. 2236 if (OnPending.insert(s).second) 2237 Pending.push(BBToOrder[s]); 2238 } 2239 } 2240 } 2241 2242 Worklist.swap(Pending); 2243 std::swap(OnPending, OnWorklist); 2244 OnPending.clear(); 2245 // At this point, pending must be empty, since it was just the empty 2246 // worklist 2247 assert(Pending.empty() && "Pending should be empty"); 2248 } 2249 2250 // Once all the live-ins don't change on mlocJoin(), we've reached a 2251 // fixedpoint. 2252 } 2253 2254 bool InstrRefBasedLDV::vlocDowngradeLattice( 2255 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2256 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2257 // Ranking value preference: see file level comment, the highest rank is 2258 // a plain def, followed by PHI values in reverse post-order. Numerically, 2259 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2260 // one, and consider the lowest value the highest ranked. 2261 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2262 if (!OldLiveInLocation.ID.isPHI()) 2263 OldLiveInRank = 0; 2264 2265 // Allow any unresolvable conflict to be over-ridden. 2266 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2267 // Although if it was an unresolvable conflict from _this_ block, then 2268 // all other seeking of downgrades and PHIs must have failed before hand. 2269 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2270 return false; 2271 OldLiveInRank = INT_MIN; 2272 } 2273 2274 auto &InValue = *Values[0].second; 2275 2276 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2277 return false; 2278 2279 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2280 int ThisRank = ThisRPO + 1; 2281 if (!InValue.ID.isPHI()) 2282 ThisRank = 0; 2283 2284 // Too far down the lattice? 2285 if (ThisRPO >= CurBlockRPONum) 2286 return false; 2287 2288 // Higher in the lattice than what we've already explored? 2289 if (ThisRank <= OldLiveInRank) 2290 return false; 2291 2292 return true; 2293 } 2294 2295 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2296 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2297 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2298 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2299 // Collect a set of locations from predecessor where its live-out value can 2300 // be found. 2301 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2302 unsigned NumLocs = MTracker->getNumLocs(); 2303 unsigned BackEdgesStart = 0; 2304 2305 for (auto p : BlockOrders) { 2306 // Pick out where backedges start in the list of predecessors. Relies on 2307 // BlockOrders being sorted by RPO. 2308 if (BBToOrder[p] < BBToOrder[&MBB]) 2309 ++BackEdgesStart; 2310 2311 // For each predecessor, create a new set of locations. 2312 Locs.resize(Locs.size() + 1); 2313 unsigned ThisBBNum = p->getNumber(); 2314 auto LiveOutMap = LiveOuts.find(p); 2315 if (LiveOutMap == LiveOuts.end()) 2316 // This predecessor isn't in scope, it must have no live-in/live-out 2317 // locations. 2318 continue; 2319 2320 auto It = LiveOutMap->second->find(Var); 2321 if (It == LiveOutMap->second->end()) 2322 // There's no value recorded for this variable in this predecessor, 2323 // leave an empty set of locations. 2324 continue; 2325 2326 const DbgValue &OutVal = It->second; 2327 2328 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2329 // Consts and no-values cannot have locations we can join on. 2330 continue; 2331 2332 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2333 ValueIDNum ValToLookFor = OutVal.ID; 2334 2335 // Search the live-outs of the predecessor for the specified value. 2336 for (unsigned int I = 0; I < NumLocs; ++I) { 2337 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2338 Locs.back().push_back(LocIdx(I)); 2339 } 2340 } 2341 2342 // If there were no locations at all, return an empty result. 2343 if (Locs.empty()) 2344 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2345 2346 // Lambda for seeking a common location within a range of location-sets. 2347 typedef SmallVector<SmallVector<LocIdx, 4>, 8>::iterator LocsIt; 2348 auto SeekLocation = 2349 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2350 // Starting with the first set of locations, take the intersection with 2351 // subsequent sets. 2352 SmallVector<LocIdx, 4> base = Locs[0]; 2353 for (auto &S : SearchRange) { 2354 SmallVector<LocIdx, 4> new_base; 2355 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2356 std::inserter(new_base, new_base.begin())); 2357 base = new_base; 2358 } 2359 if (base.empty()) 2360 return None; 2361 2362 // We now have a set of LocIdxes that contain the right output value in 2363 // each of the predecessors. Pick the lowest; if there's a register loc, 2364 // that'll be it. 2365 return *base.begin(); 2366 }; 2367 2368 // Search for a common location for all predecessors. If we can't, then fall 2369 // back to only finding a common location between non-backedge predecessors. 2370 bool ValidForAllLocs = true; 2371 auto TheLoc = SeekLocation(Locs); 2372 if (!TheLoc) { 2373 ValidForAllLocs = false; 2374 TheLoc = 2375 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2376 } 2377 2378 if (!TheLoc) 2379 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2380 2381 // Return a PHI-value-number for the found location. 2382 LocIdx L = *TheLoc; 2383 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2384 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2385 } 2386 2387 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2388 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2389 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2390 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2391 ValueIDNum **MInLocs, 2392 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2393 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2394 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2395 bool DowngradeOccurred = false; 2396 2397 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2398 // _does_ assign a variable value. No live-ins for this scope are transferred 2399 // in though, so we can return immediately. 2400 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2401 if (VLOCVisited) 2402 return std::tuple<bool, bool>(true, false); 2403 return std::tuple<bool, bool>(false, false); 2404 } 2405 2406 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2407 bool Changed = false; 2408 2409 // Find any live-ins computed in a prior iteration. 2410 auto ILSIt = VLOCInLocs.find(&MBB); 2411 assert(ILSIt != VLOCInLocs.end()); 2412 auto &ILS = *ILSIt->second; 2413 2414 // Order predecessors by RPOT order, for exploring them in that order. 2415 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2416 for (auto p : MBB.predecessors()) 2417 BlockOrders.push_back(p); 2418 2419 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2420 return BBToOrder[A] < BBToOrder[B]; 2421 }; 2422 2423 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2424 2425 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2426 2427 // Force a re-visit to loop heads in the first dataflow iteration. 2428 // FIXME: if we could "propose" Const values this wouldn't be needed, 2429 // because they'd need to be confirmed before being emitted. 2430 if (!BlockOrders.empty() && 2431 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2432 VLOCVisited) 2433 DowngradeOccurred = true; 2434 2435 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2436 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2437 (void)Result; 2438 assert(Result.second); 2439 }; 2440 2441 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2442 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2443 2444 ConfirmValue(Var, NoLocPHIVal); 2445 }; 2446 2447 // Attempt to join the values for each variable. 2448 for (auto &Var : AllVars) { 2449 // Collect all the DbgValues for this variable. 2450 SmallVector<InValueT, 8> Values; 2451 bool Bail = false; 2452 unsigned BackEdgesStart = 0; 2453 for (auto p : BlockOrders) { 2454 // If the predecessor isn't in scope / to be explored, we'll never be 2455 // able to join any locations. 2456 if (BlocksToExplore.find(p) == BlocksToExplore.end()) { 2457 Bail = true; 2458 break; 2459 } 2460 2461 // Don't attempt to handle unvisited predecessors: they're implicitly 2462 // "unknown"s in the lattice. 2463 if (VLOCVisited && !VLOCVisited->count(p)) 2464 continue; 2465 2466 // If the predecessors OutLocs is absent, there's not much we can do. 2467 auto OL = VLOCOutLocs.find(p); 2468 if (OL == VLOCOutLocs.end()) { 2469 Bail = true; 2470 break; 2471 } 2472 2473 // No live-out value for this predecessor also means we can't produce 2474 // a joined value. 2475 auto VIt = OL->second->find(Var); 2476 if (VIt == OL->second->end()) { 2477 Bail = true; 2478 break; 2479 } 2480 2481 // Keep track of where back-edges begin in the Values vector. Relies on 2482 // BlockOrders being sorted by RPO. 2483 unsigned ThisBBRPONum = BBToOrder[p]; 2484 if (ThisBBRPONum < CurBlockRPONum) 2485 ++BackEdgesStart; 2486 2487 Values.push_back(std::make_pair(p, &VIt->second)); 2488 } 2489 2490 // If there were no values, or one of the predecessors couldn't have a 2491 // value, then give up immediately. It's not safe to produce a live-in 2492 // value. 2493 if (Bail || Values.size() == 0) 2494 continue; 2495 2496 // Enumeration identifying the current state of the predecessors values. 2497 enum { 2498 Unset = 0, 2499 Agreed, // All preds agree on the variable value. 2500 PropDisagree, // All preds agree, but the value kind is Proposed in some. 2501 BEDisagree, // Only back-edges disagree on variable value. 2502 PHINeeded, // Non-back-edge predecessors have conflicing values. 2503 NoSolution // Conflicting Value metadata makes solution impossible. 2504 } OurState = Unset; 2505 2506 // All (non-entry) blocks have at least one non-backedge predecessor. 2507 // Pick the variable value from the first of these, to compare against 2508 // all others. 2509 const DbgValue &FirstVal = *Values[0].second; 2510 const ValueIDNum &FirstID = FirstVal.ID; 2511 2512 // Scan for variable values that can't be resolved: if they have different 2513 // DIExpressions, different indirectness, or are mixed constants / 2514 // non-constants. 2515 for (auto &V : Values) { 2516 if (V.second->Properties != FirstVal.Properties) 2517 OurState = NoSolution; 2518 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2519 OurState = NoSolution; 2520 } 2521 2522 // Flags diagnosing _how_ the values disagree. 2523 bool NonBackEdgeDisagree = false; 2524 bool DisagreeOnPHINess = false; 2525 bool IDDisagree = false; 2526 bool Disagree = false; 2527 if (OurState == Unset) { 2528 for (auto &V : Values) { 2529 if (*V.second == FirstVal) 2530 continue; // No disagreement. 2531 2532 Disagree = true; 2533 2534 // Flag whether the value number actually diagrees. 2535 if (V.second->ID != FirstID) 2536 IDDisagree = true; 2537 2538 // Distinguish whether disagreement happens in backedges or not. 2539 // Relies on Values (and BlockOrders) being sorted by RPO. 2540 unsigned ThisBBRPONum = BBToOrder[V.first]; 2541 if (ThisBBRPONum < CurBlockRPONum) 2542 NonBackEdgeDisagree = true; 2543 2544 // Is there a difference in whether the value is definite or only 2545 // proposed? 2546 if (V.second->Kind != FirstVal.Kind && 2547 (V.second->Kind == DbgValue::Proposed || 2548 V.second->Kind == DbgValue::Def) && 2549 (FirstVal.Kind == DbgValue::Proposed || 2550 FirstVal.Kind == DbgValue::Def)) 2551 DisagreeOnPHINess = true; 2552 } 2553 2554 // Collect those flags together and determine an overall state for 2555 // what extend the predecessors agree on a live-in value. 2556 if (!Disagree) 2557 OurState = Agreed; 2558 else if (!IDDisagree && DisagreeOnPHINess) 2559 OurState = PropDisagree; 2560 else if (!NonBackEdgeDisagree) 2561 OurState = BEDisagree; 2562 else 2563 OurState = PHINeeded; 2564 } 2565 2566 // An extra indicator: if we only disagree on whether the value is a 2567 // Def, or proposed, then also flag whether that disagreement happens 2568 // in backedges only. 2569 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 2570 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 2571 2572 const auto &Properties = FirstVal.Properties; 2573 2574 auto OldLiveInIt = ILS.find(Var); 2575 const DbgValue *OldLiveInLocation = 2576 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 2577 2578 bool OverRide = false; 2579 if (OurState == BEDisagree && OldLiveInLocation) { 2580 // Only backedges disagree: we can consider downgrading. If there was a 2581 // previous live-in value, use it to work out whether the current 2582 // incoming value represents a lattice downgrade or not. 2583 OverRide = 2584 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 2585 } 2586 2587 // Use the current state of predecessor agreement and other flags to work 2588 // out what to do next. Possibilities include: 2589 // * Accept a value all predecessors agree on, or accept one that 2590 // represents a step down the exploration lattice, 2591 // * Use a PHI value number, if one can be found, 2592 // * Propose a PHI value number, and see if it gets confirmed later, 2593 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 2594 if (OurState == Agreed) { 2595 // Easiest solution: all predecessors agree on the variable value. 2596 ConfirmValue(Var, FirstVal); 2597 } else if (OurState == BEDisagree && OverRide) { 2598 // Only backedges disagree, and the other predecessors have produced 2599 // a new live-in value further down the exploration lattice. 2600 DowngradeOccurred = true; 2601 ConfirmValue(Var, FirstVal); 2602 } else if (OurState == PropDisagree) { 2603 // Predecessors agree on value, but some say it's only a proposed value. 2604 // Propagate it as proposed: unless it was proposed in this block, in 2605 // which case we're able to confirm the value. 2606 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 2607 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2608 } else if (PropOnlyInBEs) { 2609 // If only backedges disagree, a higher (in RPO) block confirmed this 2610 // location, and we need to propagate it into this loop. 2611 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2612 } else { 2613 // Otherwise; a Def meeting a Proposed is still a Proposed. 2614 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 2615 } 2616 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 2617 // Predecessors disagree and can't be downgraded: this can only be 2618 // solved with a PHI. Use pickVPHILoc to go look for one. 2619 Optional<ValueIDNum> VPHI; 2620 bool AllEdgesVPHI = false; 2621 std::tie(VPHI, AllEdgesVPHI) = 2622 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 2623 2624 if (VPHI && AllEdgesVPHI) { 2625 // There's a PHI value that's valid for all predecessors -- we can use 2626 // it. If any of the non-backedge predecessors have proposed values 2627 // though, this PHI is also only proposed, until the predecessors are 2628 // confirmed. 2629 DbgValue::KindT K = DbgValue::Def; 2630 for (unsigned int I = 0; I < BackEdgesStart; ++I) 2631 if (Values[I].second->Kind == DbgValue::Proposed) 2632 K = DbgValue::Proposed; 2633 2634 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 2635 } else if (VPHI) { 2636 // There's a PHI value, but it's only legal for backedges. Leave this 2637 // as a proposed PHI value: it might come back on the backedges, 2638 // and allow us to confirm it in the future. 2639 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 2640 ConfirmValue(Var, NoBEValue); 2641 } else { 2642 ConfirmNoVal(Var, Properties); 2643 } 2644 } else { 2645 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 2646 ConfirmNoVal(Var, Properties); 2647 } 2648 } 2649 2650 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 2651 Changed = ILS != InLocsT; 2652 if (Changed) 2653 ILS = InLocsT; 2654 2655 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2656 } 2657 2658 void InstrRefBasedLDV::vlocDataflow( 2659 const LexicalScope *Scope, const DILocation *DILoc, 2660 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2661 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2662 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2663 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2664 // This method is much like mlocDataflow: but focuses on a single 2665 // LexicalScope at a time. Pick out a set of blocks and variables that are 2666 // to have their value assignments solved, then run our dataflow algorithm 2667 // until a fixedpoint is reached. 2668 std::priority_queue<unsigned int, std::vector<unsigned int>, 2669 std::greater<unsigned int>> 2670 Worklist, Pending; 2671 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2672 2673 // The set of blocks we'll be examining. 2674 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2675 2676 // The order in which to examine them (RPO). 2677 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2678 2679 // RPO ordering function. 2680 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2681 return BBToOrder[A] < BBToOrder[B]; 2682 }; 2683 2684 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2685 2686 // A separate container to distinguish "blocks we're exploring" versus 2687 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2688 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2689 2690 // Old LiveDebugValues tracks variable locations that come out of blocks 2691 // not in scope, where DBG_VALUEs occur. This is something we could 2692 // legitimately ignore, but lets allow it for now. 2693 if (EmulateOldLDV) 2694 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2695 2696 // We also need to propagate variable values through any artificial blocks 2697 // that immediately follow blocks in scope. 2698 DenseSet<const MachineBasicBlock *> ToAdd; 2699 2700 // Helper lambda: For a given block in scope, perform a depth first search 2701 // of all the artificial successors, adding them to the ToAdd collection. 2702 auto AccumulateArtificialBlocks = 2703 [this, &ToAdd, &BlocksToExplore, 2704 &InScopeBlocks](const MachineBasicBlock *MBB) { 2705 // Depth-first-search state: each node is a block and which successor 2706 // we're currently exploring. 2707 SmallVector<std::pair<const MachineBasicBlock *, 2708 MachineBasicBlock::const_succ_iterator>, 2709 8> 2710 DFS; 2711 2712 // Find any artificial successors not already tracked. 2713 for (auto *succ : MBB->successors()) { 2714 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2715 continue; 2716 if (!ArtificialBlocks.count(succ)) 2717 continue; 2718 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2719 ToAdd.insert(succ); 2720 } 2721 2722 // Search all those blocks, depth first. 2723 while (!DFS.empty()) { 2724 const MachineBasicBlock *CurBB = DFS.back().first; 2725 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2726 // Walk back if we've explored this blocks successors to the end. 2727 if (CurSucc == CurBB->succ_end()) { 2728 DFS.pop_back(); 2729 continue; 2730 } 2731 2732 // If the current successor is artificial and unexplored, descend into 2733 // it. 2734 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2735 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2736 ToAdd.insert(*CurSucc); 2737 continue; 2738 } 2739 2740 ++CurSucc; 2741 } 2742 }; 2743 2744 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2745 // for artificial successors. 2746 for (auto *MBB : BlocksToExplore) 2747 AccumulateArtificialBlocks(MBB); 2748 for (auto *MBB : InScopeBlocks) 2749 AccumulateArtificialBlocks(MBB); 2750 2751 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2752 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2753 2754 // Single block scope: not interesting! No propagation at all. Note that 2755 // this could probably go above ArtificialBlocks without damage, but 2756 // that then produces output differences from original-live-debug-values, 2757 // which propagates from a single block into many artificial ones. 2758 if (BlocksToExplore.size() == 1) 2759 return; 2760 2761 // Picks out relevants blocks RPO order and sort them. 2762 for (auto *MBB : BlocksToExplore) 2763 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2764 2765 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2766 unsigned NumBlocks = BlockOrders.size(); 2767 2768 // Allocate some vectors for storing the live ins and live outs. Large. 2769 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 2770 LiveIns.resize(NumBlocks); 2771 LiveOuts.resize(NumBlocks); 2772 2773 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2774 // vlocJoin. 2775 LiveIdxT LiveOutIdx, LiveInIdx; 2776 LiveOutIdx.reserve(NumBlocks); 2777 LiveInIdx.reserve(NumBlocks); 2778 for (unsigned I = 0; I < NumBlocks; ++I) { 2779 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2780 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2781 } 2782 2783 for (auto *MBB : BlockOrders) { 2784 Worklist.push(BBToOrder[MBB]); 2785 OnWorklist.insert(MBB); 2786 } 2787 2788 // Iterate over all the blocks we selected, propagating variable values. 2789 bool FirstTrip = true; 2790 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 2791 while (!Worklist.empty() || !Pending.empty()) { 2792 while (!Worklist.empty()) { 2793 auto *MBB = OrderToBB[Worklist.top()]; 2794 CurBB = MBB->getNumber(); 2795 Worklist.pop(); 2796 2797 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 2798 2799 // Join values from predecessors. Updates LiveInIdx, and writes output 2800 // into JoinedInLocs. 2801 bool InLocsChanged, DowngradeOccurred; 2802 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 2803 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 2804 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 2805 BlocksToExplore, JoinedInLocs); 2806 2807 bool FirstVisit = VLOCVisited.insert(MBB).second; 2808 2809 // Always explore transfer function if inlocs changed, or if we've not 2810 // visited this block before. 2811 InLocsChanged |= FirstVisit; 2812 2813 // If a downgrade occurred, book us in for re-examination on the next 2814 // iteration. 2815 if (DowngradeOccurred && OnPending.insert(MBB).second) 2816 Pending.push(BBToOrder[MBB]); 2817 2818 if (!InLocsChanged) 2819 continue; 2820 2821 // Do transfer function. 2822 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2823 for (auto &Transfer : VTracker.Vars) { 2824 // Is this var we're mangling in this scope? 2825 if (VarsWeCareAbout.count(Transfer.first)) { 2826 // Erase on empty transfer (DBG_VALUE $noreg). 2827 if (Transfer.second.Kind == DbgValue::Undef) { 2828 JoinedInLocs.erase(Transfer.first); 2829 } else { 2830 // Insert new variable value; or overwrite. 2831 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 2832 auto Result = JoinedInLocs.insert(NewValuePair); 2833 if (!Result.second) 2834 Result.first->second = Transfer.second; 2835 } 2836 } 2837 } 2838 2839 // Did the live-out locations change? 2840 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 2841 2842 // If they haven't changed, there's no need to explore further. 2843 if (!OLChanged) 2844 continue; 2845 2846 // Commit to the live-out record. 2847 *LiveOutIdx[MBB] = JoinedInLocs; 2848 2849 // We should visit all successors. Ensure we'll visit any non-backedge 2850 // successors during this dataflow iteration; book backedge successors 2851 // to be visited next time around. 2852 for (auto s : MBB->successors()) { 2853 // Ignore out of scope / not-to-be-explored successors. 2854 if (LiveInIdx.find(s) == LiveInIdx.end()) 2855 continue; 2856 2857 if (BBToOrder[s] > BBToOrder[MBB]) { 2858 if (OnWorklist.insert(s).second) 2859 Worklist.push(BBToOrder[s]); 2860 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2861 Pending.push(BBToOrder[s]); 2862 } 2863 } 2864 } 2865 Worklist.swap(Pending); 2866 std::swap(OnWorklist, OnPending); 2867 OnPending.clear(); 2868 assert(Pending.empty()); 2869 FirstTrip = false; 2870 } 2871 2872 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 2873 // as being variable-PHIs, because those did not have their machine-PHI 2874 // value confirmed. Such variable values are places that could have been 2875 // PHIs, but are not. 2876 for (auto *MBB : BlockOrders) { 2877 auto &VarMap = *LiveInIdx[MBB]; 2878 for (auto &P : VarMap) { 2879 if (P.second.Kind == DbgValue::Proposed || 2880 P.second.Kind == DbgValue::NoVal) 2881 continue; 2882 Output[MBB->getNumber()].push_back(P); 2883 } 2884 } 2885 2886 BlockOrders.clear(); 2887 BlocksToExplore.clear(); 2888 } 2889 2890 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2891 void InstrRefBasedLDV::dump_mloc_transfer( 2892 const MLocTransferMap &mloc_transfer) const { 2893 for (auto &P : mloc_transfer) { 2894 std::string foo = MTracker->LocIdxToName(P.first); 2895 std::string bar = MTracker->IDAsString(P.second); 2896 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2897 } 2898 } 2899 #endif 2900 2901 void InstrRefBasedLDV::emitLocations( 2902 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, 2903 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 2904 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); 2905 unsigned NumLocs = MTracker->getNumLocs(); 2906 2907 // For each block, load in the machine value locations and variable value 2908 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2909 // to be inserted will be created along the way. 2910 for (MachineBasicBlock &MBB : MF) { 2911 unsigned bbnum = MBB.getNumber(); 2912 MTracker->reset(); 2913 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2914 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2915 NumLocs); 2916 2917 CurBB = bbnum; 2918 CurInst = 1; 2919 for (auto &MI : MBB) { 2920 process(MI); 2921 ++CurInst; 2922 } 2923 } 2924 2925 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2926 // in DWARF in different orders. Use the order that they appear when walking 2927 // through each block / each instruction, stored in AllVarsNumbering. 2928 auto OrderDbgValues = [&](const MachineInstr *A, 2929 const MachineInstr *B) -> bool { 2930 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2931 A->getDebugLoc()->getInlinedAt()); 2932 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2933 B->getDebugLoc()->getInlinedAt()); 2934 return AllVarsNumbering.find(VarA)->second < 2935 AllVarsNumbering.find(VarB)->second; 2936 }; 2937 2938 // Go through all the transfers recorded in the TransferTracker -- this is 2939 // both the live-ins to a block, and any movements of values that happen 2940 // in the middle. 2941 for (auto &P : TTracker->Transfers) { 2942 // Sort them according to appearance order. 2943 llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues); 2944 // Insert either before or after the designated point... 2945 if (P.MBB) { 2946 MachineBasicBlock &MBB = *P.MBB; 2947 for (auto *MI : P.Insts) { 2948 MBB.insert(P.Pos, MI); 2949 } 2950 } else { 2951 MachineBasicBlock &MBB = *P.Pos->getParent(); 2952 for (auto *MI : P.Insts) { 2953 MBB.insertAfter(P.Pos, MI); 2954 } 2955 } 2956 } 2957 } 2958 2959 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2960 // Build some useful data structures. 2961 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2962 if (const DebugLoc &DL = MI.getDebugLoc()) 2963 return DL.getLine() != 0; 2964 return false; 2965 }; 2966 // Collect a set of all the artificial blocks. 2967 for (auto &MBB : MF) 2968 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2969 ArtificialBlocks.insert(&MBB); 2970 2971 // Compute mappings of block <=> RPO order. 2972 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2973 unsigned int RPONumber = 0; 2974 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 2975 OrderToBB[RPONumber] = *RI; 2976 BBToOrder[*RI] = RPONumber; 2977 BBNumToRPO[(*RI)->getNumber()] = RPONumber; 2978 ++RPONumber; 2979 } 2980 } 2981 2982 /// Calculate the liveness information for the given machine function and 2983 /// extend ranges across basic blocks. 2984 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2985 TargetPassConfig *TPC) { 2986 // No subprogram means this function contains no debuginfo. 2987 if (!MF.getFunction().getSubprogram()) 2988 return false; 2989 2990 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2991 this->TPC = TPC; 2992 2993 TRI = MF.getSubtarget().getRegisterInfo(); 2994 TII = MF.getSubtarget().getInstrInfo(); 2995 TFI = MF.getSubtarget().getFrameLowering(); 2996 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2997 LS.initialize(MF); 2998 2999 MTracker = 3000 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3001 VTracker = nullptr; 3002 TTracker = nullptr; 3003 3004 SmallVector<MLocTransferMap, 32> MLocTransfer; 3005 SmallVector<VLocTracker, 8> vlocs; 3006 LiveInsT SavedLiveIns; 3007 3008 int MaxNumBlocks = -1; 3009 for (auto &MBB : MF) 3010 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3011 assert(MaxNumBlocks >= 0); 3012 ++MaxNumBlocks; 3013 3014 MLocTransfer.resize(MaxNumBlocks); 3015 vlocs.resize(MaxNumBlocks); 3016 SavedLiveIns.resize(MaxNumBlocks); 3017 3018 initialSetup(MF); 3019 3020 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 3021 3022 // Allocate and initialize two array-of-arrays for the live-in and live-out 3023 // machine values. The outer dimension is the block number; while the inner 3024 // dimension is a LocIdx from MLocTracker. 3025 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 3026 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 3027 unsigned NumLocs = MTracker->getNumLocs(); 3028 for (int i = 0; i < MaxNumBlocks; ++i) { 3029 MOutLocs[i] = new ValueIDNum[NumLocs]; 3030 MInLocs[i] = new ValueIDNum[NumLocs]; 3031 } 3032 3033 // Solve the machine value dataflow problem using the MLocTransfer function, 3034 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3035 // both live-ins and live-outs for decision making in the variable value 3036 // dataflow problem. 3037 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 3038 3039 // Walk back through each block / instruction, collecting DBG_VALUE 3040 // instructions and recording what machine value their operands refer to. 3041 for (auto &OrderPair : OrderToBB) { 3042 MachineBasicBlock &MBB = *OrderPair.second; 3043 CurBB = MBB.getNumber(); 3044 VTracker = &vlocs[CurBB]; 3045 VTracker->MBB = &MBB; 3046 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 3047 CurInst = 1; 3048 for (auto &MI : MBB) { 3049 process(MI); 3050 ++CurInst; 3051 } 3052 MTracker->reset(); 3053 } 3054 3055 // Number all variables in the order that they appear, to be used as a stable 3056 // insertion order later. 3057 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3058 3059 // Map from one LexicalScope to all the variables in that scope. 3060 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 3061 3062 // Map from One lexical scope to all blocks in that scope. 3063 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 3064 ScopeToBlocks; 3065 3066 // Store a DILocation that describes a scope. 3067 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3068 3069 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3070 // the order is unimportant, it just has to be stable. 3071 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3072 auto *MBB = OrderToBB[I]; 3073 auto *VTracker = &vlocs[MBB->getNumber()]; 3074 // Collect each variable with a DBG_VALUE in this block. 3075 for (auto &idx : VTracker->Vars) { 3076 const auto &Var = idx.first; 3077 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3078 assert(ScopeLoc != nullptr); 3079 auto *Scope = LS.findLexicalScope(ScopeLoc); 3080 3081 // No insts in scope -> shouldn't have been recorded. 3082 assert(Scope != nullptr); 3083 3084 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3085 ScopeToVars[Scope].insert(Var); 3086 ScopeToBlocks[Scope].insert(VTracker->MBB); 3087 ScopeToDILocation[Scope] = ScopeLoc; 3088 } 3089 } 3090 3091 // OK. Iterate over scopes: there might be something to be said for 3092 // ordering them by size/locality, but that's for the future. For each scope, 3093 // solve the variable value problem, producing a map of variables to values 3094 // in SavedLiveIns. 3095 for (auto &P : ScopeToVars) { 3096 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 3097 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3098 vlocs); 3099 } 3100 3101 // Using the computed value locations and variable values for each block, 3102 // create the DBG_VALUE instructions representing the extended variable 3103 // locations. 3104 emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); 3105 3106 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3107 delete[] MOutLocs[Idx]; 3108 delete[] MInLocs[Idx]; 3109 } 3110 delete[] MOutLocs; 3111 delete[] MInLocs; 3112 3113 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3114 bool Changed = TTracker->Transfers.size() != 0; 3115 3116 delete MTracker; 3117 delete TTracker; 3118 MTracker = nullptr; 3119 VTracker = nullptr; 3120 TTracker = nullptr; 3121 3122 ArtificialBlocks.clear(); 3123 OrderToBB.clear(); 3124 BBToOrder.clear(); 3125 BBNumToRPO.clear(); 3126 3127 return Changed; 3128 } 3129 3130 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3131 return new InstrRefBasedLDV(); 3132 } 3133