1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/ADT/UniqueVector.h"
157 #include "llvm/CodeGen/LexicalScopes.h"
158 #include "llvm/CodeGen/MachineBasicBlock.h"
159 #include "llvm/CodeGen/MachineFrameInfo.h"
160 #include "llvm/CodeGen/MachineFunction.h"
161 #include "llvm/CodeGen/MachineFunctionPass.h"
162 #include "llvm/CodeGen/MachineInstr.h"
163 #include "llvm/CodeGen/MachineInstrBuilder.h"
164 #include "llvm/CodeGen/MachineMemOperand.h"
165 #include "llvm/CodeGen/MachineOperand.h"
166 #include "llvm/CodeGen/PseudoSourceValue.h"
167 #include "llvm/CodeGen/RegisterScavenging.h"
168 #include "llvm/CodeGen/TargetFrameLowering.h"
169 #include "llvm/CodeGen/TargetInstrInfo.h"
170 #include "llvm/CodeGen/TargetLowering.h"
171 #include "llvm/CodeGen/TargetPassConfig.h"
172 #include "llvm/CodeGen/TargetRegisterInfo.h"
173 #include "llvm/CodeGen/TargetSubtargetInfo.h"
174 #include "llvm/Config/llvm-config.h"
175 #include "llvm/IR/DIBuilder.h"
176 #include "llvm/IR/DebugInfoMetadata.h"
177 #include "llvm/IR/DebugLoc.h"
178 #include "llvm/IR/Function.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/InitializePasses.h"
181 #include "llvm/MC/MCRegisterInfo.h"
182 #include "llvm/Pass.h"
183 #include "llvm/Support/Casting.h"
184 #include "llvm/Support/Compiler.h"
185 #include "llvm/Support/Debug.h"
186 #include "llvm/Support/TypeSize.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
189 #include <algorithm>
190 #include <cassert>
191 #include <cstdint>
192 #include <functional>
193 #include <queue>
194 #include <tuple>
195 #include <utility>
196 #include <vector>
197 #include <limits.h>
198 #include <limits>
199 
200 #include "LiveDebugValues.h"
201 
202 using namespace llvm;
203 
204 // SSAUpdaterImple sets DEBUG_TYPE, change it.
205 #undef DEBUG_TYPE
206 #define DEBUG_TYPE "livedebugvalues"
207 
208 // Act more like the VarLoc implementation, by propagating some locations too
209 // far and ignoring some transfers.
210 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
211                                    cl::desc("Act like old LiveDebugValues did"),
212                                    cl::init(false));
213 
214 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
215 static cl::opt<bool>
216     ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
217                        cl::desc("Allow non-kill spill and restores"),
218                        cl::init(false));
219 
220 namespace {
221 
222 // The location at which a spilled value resides. It consists of a register and
223 // an offset.
224 struct SpillLoc {
225   unsigned SpillBase;
226   StackOffset SpillOffset;
227   bool operator==(const SpillLoc &Other) const {
228     return std::make_pair(SpillBase, SpillOffset) ==
229            std::make_pair(Other.SpillBase, Other.SpillOffset);
230   }
231   bool operator<(const SpillLoc &Other) const {
232     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
233                     SpillOffset.getScalable()) <
234            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
235                     Other.SpillOffset.getScalable());
236   }
237 };
238 
239 class LocIdx {
240   unsigned Location;
241 
242   // Default constructor is private, initializing to an illegal location number.
243   // Use only for "not an entry" elements in IndexedMaps.
244   LocIdx() : Location(UINT_MAX) { }
245 
246 public:
247   #define NUM_LOC_BITS 24
248   LocIdx(unsigned L) : Location(L) {
249     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
250   }
251 
252   static LocIdx MakeIllegalLoc() {
253     return LocIdx();
254   }
255 
256   bool isIllegal() const {
257     return Location == UINT_MAX;
258   }
259 
260   uint64_t asU64() const {
261     return Location;
262   }
263 
264   bool operator==(unsigned L) const {
265     return Location == L;
266   }
267 
268   bool operator==(const LocIdx &L) const {
269     return Location == L.Location;
270   }
271 
272   bool operator!=(unsigned L) const {
273     return !(*this == L);
274   }
275 
276   bool operator!=(const LocIdx &L) const {
277     return !(*this == L);
278   }
279 
280   bool operator<(const LocIdx &Other) const {
281     return Location < Other.Location;
282   }
283 };
284 
285 class LocIdxToIndexFunctor {
286 public:
287   using argument_type = LocIdx;
288   unsigned operator()(const LocIdx &L) const {
289     return L.asU64();
290   }
291 };
292 
293 /// Unique identifier for a value defined by an instruction, as a value type.
294 /// Casts back and forth to a uint64_t. Probably replacable with something less
295 /// bit-constrained. Each value identifies the instruction and machine location
296 /// where the value is defined, although there may be no corresponding machine
297 /// operand for it (ex: regmasks clobbering values). The instructions are
298 /// one-based, and definitions that are PHIs have instruction number zero.
299 ///
300 /// The obvious limits of a 1M block function or 1M instruction blocks are
301 /// problematic; but by that point we should probably have bailed out of
302 /// trying to analyse the function.
303 class ValueIDNum {
304   uint64_t BlockNo : 20;         /// The block where the def happens.
305   uint64_t InstNo : 20;          /// The Instruction where the def happens.
306                                  /// One based, is distance from start of block.
307   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
308 
309 public:
310   // XXX -- temporarily enabled while the live-in / live-out tables are moved
311   // to something more type-y
312   ValueIDNum() : BlockNo(0xFFFFF),
313                  InstNo(0xFFFFF),
314                  LocNo(0xFFFFFF) { }
315 
316   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
317     : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
318 
319   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
320     : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
321 
322   uint64_t getBlock() const { return BlockNo; }
323   uint64_t getInst() const { return InstNo; }
324   uint64_t getLoc() const { return LocNo; }
325   bool isPHI() const { return InstNo == 0; }
326 
327   uint64_t asU64() const {
328     uint64_t TmpBlock = BlockNo;
329     uint64_t TmpInst = InstNo;
330     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
331   }
332 
333   static ValueIDNum fromU64(uint64_t v) {
334     uint64_t L = (v & 0x3FFF);
335     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
336   }
337 
338   bool operator<(const ValueIDNum &Other) const {
339     return asU64() < Other.asU64();
340   }
341 
342   bool operator==(const ValueIDNum &Other) const {
343     return std::tie(BlockNo, InstNo, LocNo) ==
344            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
345   }
346 
347   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
348 
349   std::string asString(const std::string &mlocname) const {
350     return Twine("Value{bb: ")
351         .concat(Twine(BlockNo).concat(
352             Twine(", inst: ")
353                 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
354                             .concat(Twine(", loc: ").concat(Twine(mlocname)))
355                             .concat(Twine("}")))))
356         .str();
357   }
358 
359   static ValueIDNum EmptyValue;
360 };
361 
362 } // end anonymous namespace
363 
364 namespace {
365 
366 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
367 /// the the value, and Boolean of whether or not it's indirect.
368 class DbgValueProperties {
369 public:
370   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
371       : DIExpr(DIExpr), Indirect(Indirect) {}
372 
373   /// Extract properties from an existing DBG_VALUE instruction.
374   DbgValueProperties(const MachineInstr &MI) {
375     assert(MI.isDebugValue());
376     DIExpr = MI.getDebugExpression();
377     Indirect = MI.getOperand(1).isImm();
378   }
379 
380   bool operator==(const DbgValueProperties &Other) const {
381     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
382   }
383 
384   bool operator!=(const DbgValueProperties &Other) const {
385     return !(*this == Other);
386   }
387 
388   const DIExpression *DIExpr;
389   bool Indirect;
390 };
391 
392 /// Tracker for what values are in machine locations. Listens to the Things
393 /// being Done by various instructions, and maintains a table of what machine
394 /// locations have what values (as defined by a ValueIDNum).
395 ///
396 /// There are potentially a much larger number of machine locations on the
397 /// target machine than the actual working-set size of the function. On x86 for
398 /// example, we're extremely unlikely to want to track values through control
399 /// or debug registers. To avoid doing so, MLocTracker has several layers of
400 /// indirection going on, with two kinds of ``location'':
401 ///  * A LocID uniquely identifies a register or spill location, with a
402 ///    predictable value.
403 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
404 /// Whenever a location is def'd or used by a MachineInstr, we automagically
405 /// create a new LocIdx for a location, but not otherwise. This ensures we only
406 /// account for locations that are actually used or defined. The cost is another
407 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
408 /// fairly cheap, and the compiler tries to reduce the working-set at any one
409 /// time in the function anyway.
410 ///
411 /// Register mask operands completely blow this out of the water; I've just
412 /// piled hacks on top of hacks to get around that.
413 class MLocTracker {
414 public:
415   MachineFunction &MF;
416   const TargetInstrInfo &TII;
417   const TargetRegisterInfo &TRI;
418   const TargetLowering &TLI;
419 
420   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
421   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
422 
423   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
424   /// packed, entries only exist for locations that are being tracked.
425   LocToValueType LocIdxToIDNum;
426 
427   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
428   /// LocIdx key / number for that location. There are always at least as many
429   /// as the number of registers on the target -- if the value in the register
430   /// is not being tracked, then the LocIdx value will be zero. New entries are
431   /// appended if a new spill slot begins being tracked.
432   /// This, and the corresponding reverse map persist for the analysis of the
433   /// whole function, and is necessarying for decoding various vectors of
434   /// values.
435   std::vector<LocIdx> LocIDToLocIdx;
436 
437   /// Inverse map of LocIDToLocIdx.
438   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
439 
440   /// Unique-ification of spill slots. Used to number them -- their LocID
441   /// number is the index in SpillLocs minus one plus NumRegs.
442   UniqueVector<SpillLoc> SpillLocs;
443 
444   // If we discover a new machine location, assign it an mphi with this
445   // block number.
446   unsigned CurBB;
447 
448   /// Cached local copy of the number of registers the target has.
449   unsigned NumRegs;
450 
451   /// Collection of register mask operands that have been observed. Second part
452   /// of pair indicates the instruction that they happened in. Used to
453   /// reconstruct where defs happened if we start tracking a location later
454   /// on.
455   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
456 
457   /// Iterator for locations and the values they contain. Dereferencing
458   /// produces a struct/pair containing the LocIdx key for this location,
459   /// and a reference to the value currently stored. Simplifies the process
460   /// of seeking a particular location.
461   class MLocIterator {
462     LocToValueType &ValueMap;
463     LocIdx Idx;
464 
465   public:
466     class value_type {
467       public:
468       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
469       const LocIdx Idx;  /// Read-only index of this location.
470       ValueIDNum &Value; /// Reference to the stored value at this location.
471     };
472 
473     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
474       : ValueMap(ValueMap), Idx(Idx) { }
475 
476     bool operator==(const MLocIterator &Other) const {
477       assert(&ValueMap == &Other.ValueMap);
478       return Idx == Other.Idx;
479     }
480 
481     bool operator!=(const MLocIterator &Other) const {
482       return !(*this == Other);
483     }
484 
485     void operator++() {
486       Idx = LocIdx(Idx.asU64() + 1);
487     }
488 
489     value_type operator*() {
490       return value_type(Idx, ValueMap[LocIdx(Idx)]);
491     }
492   };
493 
494   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
495               const TargetRegisterInfo &TRI, const TargetLowering &TLI)
496       : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
497         LocIdxToIDNum(ValueIDNum::EmptyValue),
498         LocIdxToLocID(0) {
499     NumRegs = TRI.getNumRegs();
500     reset();
501     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
502     assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
503 
504     // Always track SP. This avoids the implicit clobbering caused by regmasks
505     // from affectings its values. (LiveDebugValues disbelieves calls and
506     // regmasks that claim to clobber SP).
507     Register SP = TLI.getStackPointerRegisterToSaveRestore();
508     if (SP) {
509       unsigned ID = getLocID(SP, false);
510       (void)lookupOrTrackRegister(ID);
511     }
512   }
513 
514   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
515   /// or spill number, and flag for whether it's a spill or not.
516   unsigned getLocID(Register RegOrSpill, bool isSpill) {
517     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
518   }
519 
520   /// Accessor for reading the value at Idx.
521   ValueIDNum getNumAtPos(LocIdx Idx) const {
522     assert(Idx.asU64() < LocIdxToIDNum.size());
523     return LocIdxToIDNum[Idx];
524   }
525 
526   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
527 
528   /// Reset all locations to contain a PHI value at the designated block. Used
529   /// sometimes for actual PHI values, othertimes to indicate the block entry
530   /// value (before any more information is known).
531   void setMPhis(unsigned NewCurBB) {
532     CurBB = NewCurBB;
533     for (auto Location : locations())
534       Location.Value = {CurBB, 0, Location.Idx};
535   }
536 
537   /// Load values for each location from array of ValueIDNums. Take current
538   /// bbnum just in case we read a value from a hitherto untouched register.
539   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
540     CurBB = NewCurBB;
541     // Iterate over all tracked locations, and load each locations live-in
542     // value into our local index.
543     for (auto Location : locations())
544       Location.Value = Locs[Location.Idx.asU64()];
545   }
546 
547   /// Wipe any un-necessary location records after traversing a block.
548   void reset(void) {
549     // We could reset all the location values too; however either loadFromArray
550     // or setMPhis should be called before this object is re-used. Just
551     // clear Masks, they're definitely not needed.
552     Masks.clear();
553   }
554 
555   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
556   /// the information in this pass uninterpretable.
557   void clear(void) {
558     reset();
559     LocIDToLocIdx.clear();
560     LocIdxToLocID.clear();
561     LocIdxToIDNum.clear();
562     //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
563     SpillLocs = decltype(SpillLocs)();
564 
565     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
566   }
567 
568   /// Set a locaiton to a certain value.
569   void setMLoc(LocIdx L, ValueIDNum Num) {
570     assert(L.asU64() < LocIdxToIDNum.size());
571     LocIdxToIDNum[L] = Num;
572   }
573 
574   /// Create a LocIdx for an untracked register ID. Initialize it to either an
575   /// mphi value representing a live-in, or a recent register mask clobber.
576   LocIdx trackRegister(unsigned ID) {
577     assert(ID != 0);
578     LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
579     LocIdxToIDNum.grow(NewIdx);
580     LocIdxToLocID.grow(NewIdx);
581 
582     // Default: it's an mphi.
583     ValueIDNum ValNum = {CurBB, 0, NewIdx};
584     // Was this reg ever touched by a regmask?
585     for (const auto &MaskPair : reverse(Masks)) {
586       if (MaskPair.first->clobbersPhysReg(ID)) {
587         // There was an earlier def we skipped.
588         ValNum = {CurBB, MaskPair.second, NewIdx};
589         break;
590       }
591     }
592 
593     LocIdxToIDNum[NewIdx] = ValNum;
594     LocIdxToLocID[NewIdx] = ID;
595     return NewIdx;
596   }
597 
598   LocIdx lookupOrTrackRegister(unsigned ID) {
599     LocIdx &Index = LocIDToLocIdx[ID];
600     if (Index.isIllegal())
601       Index = trackRegister(ID);
602     return Index;
603   }
604 
605   /// Record a definition of the specified register at the given block / inst.
606   /// This doesn't take a ValueIDNum, because the definition and its location
607   /// are synonymous.
608   void defReg(Register R, unsigned BB, unsigned Inst) {
609     unsigned ID = getLocID(R, false);
610     LocIdx Idx = lookupOrTrackRegister(ID);
611     ValueIDNum ValueID = {BB, Inst, Idx};
612     LocIdxToIDNum[Idx] = ValueID;
613   }
614 
615   /// Set a register to a value number. To be used if the value number is
616   /// known in advance.
617   void setReg(Register R, ValueIDNum ValueID) {
618     unsigned ID = getLocID(R, false);
619     LocIdx Idx = lookupOrTrackRegister(ID);
620     LocIdxToIDNum[Idx] = ValueID;
621   }
622 
623   ValueIDNum readReg(Register R) {
624     unsigned ID = getLocID(R, false);
625     LocIdx Idx = lookupOrTrackRegister(ID);
626     return LocIdxToIDNum[Idx];
627   }
628 
629   /// Reset a register value to zero / empty. Needed to replicate the
630   /// VarLoc implementation where a copy to/from a register effectively
631   /// clears the contents of the source register. (Values can only have one
632   ///  machine location in VarLocBasedImpl).
633   void wipeRegister(Register R) {
634     unsigned ID = getLocID(R, false);
635     LocIdx Idx = LocIDToLocIdx[ID];
636     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
637   }
638 
639   /// Determine the LocIdx of an existing register.
640   LocIdx getRegMLoc(Register R) {
641     unsigned ID = getLocID(R, false);
642     return LocIDToLocIdx[ID];
643   }
644 
645   /// Record a RegMask operand being executed. Defs any register we currently
646   /// track, stores a pointer to the mask in case we have to account for it
647   /// later.
648   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
649     // Ensure SP exists, so that we don't override it later.
650     Register SP = TLI.getStackPointerRegisterToSaveRestore();
651 
652     // Def any register we track have that isn't preserved. The regmask
653     // terminates the liveness of a register, meaning its value can't be
654     // relied upon -- we represent this by giving it a new value.
655     for (auto Location : locations()) {
656       unsigned ID = LocIdxToLocID[Location.Idx];
657       // Don't clobber SP, even if the mask says it's clobbered.
658       if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
659         defReg(ID, CurBB, InstID);
660     }
661     Masks.push_back(std::make_pair(MO, InstID));
662   }
663 
664   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
665   LocIdx getOrTrackSpillLoc(SpillLoc L) {
666     unsigned SpillID = SpillLocs.idFor(L);
667     if (SpillID == 0) {
668       SpillID = SpillLocs.insert(L);
669       unsigned L = getLocID(SpillID, true);
670       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
671       LocIdxToIDNum.grow(Idx);
672       LocIdxToLocID.grow(Idx);
673       LocIDToLocIdx.push_back(Idx);
674       LocIdxToLocID[Idx] = L;
675       return Idx;
676     } else {
677       unsigned L = getLocID(SpillID, true);
678       LocIdx Idx = LocIDToLocIdx[L];
679       return Idx;
680     }
681   }
682 
683   /// Set the value stored in a spill slot.
684   void setSpill(SpillLoc L, ValueIDNum ValueID) {
685     LocIdx Idx = getOrTrackSpillLoc(L);
686     LocIdxToIDNum[Idx] = ValueID;
687   }
688 
689   /// Read whatever value is in a spill slot, or None if it isn't tracked.
690   Optional<ValueIDNum> readSpill(SpillLoc L) {
691     unsigned SpillID = SpillLocs.idFor(L);
692     if (SpillID == 0)
693       return None;
694 
695     unsigned LocID = getLocID(SpillID, true);
696     LocIdx Idx = LocIDToLocIdx[LocID];
697     return LocIdxToIDNum[Idx];
698   }
699 
700   /// Determine the LocIdx of a spill slot. Return None if it previously
701   /// hasn't had a value assigned.
702   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
703     unsigned SpillID = SpillLocs.idFor(L);
704     if (SpillID == 0)
705       return None;
706     unsigned LocNo = getLocID(SpillID, true);
707     return LocIDToLocIdx[LocNo];
708   }
709 
710   /// Return true if Idx is a spill machine location.
711   bool isSpill(LocIdx Idx) const {
712     return LocIdxToLocID[Idx] >= NumRegs;
713   }
714 
715   MLocIterator begin() {
716     return MLocIterator(LocIdxToIDNum, 0);
717   }
718 
719   MLocIterator end() {
720     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
721   }
722 
723   /// Return a range over all locations currently tracked.
724   iterator_range<MLocIterator> locations() {
725     return llvm::make_range(begin(), end());
726   }
727 
728   std::string LocIdxToName(LocIdx Idx) const {
729     unsigned ID = LocIdxToLocID[Idx];
730     if (ID >= NumRegs)
731       return Twine("slot ").concat(Twine(ID - NumRegs)).str();
732     else
733       return TRI.getRegAsmName(ID).str();
734   }
735 
736   std::string IDAsString(const ValueIDNum &Num) const {
737     std::string DefName = LocIdxToName(Num.getLoc());
738     return Num.asString(DefName);
739   }
740 
741   LLVM_DUMP_METHOD
742   void dump() {
743     for (auto Location : locations()) {
744       std::string MLocName = LocIdxToName(Location.Value.getLoc());
745       std::string DefName = Location.Value.asString(MLocName);
746       dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
747     }
748   }
749 
750   LLVM_DUMP_METHOD
751   void dump_mloc_map() {
752     for (auto Location : locations()) {
753       std::string foo = LocIdxToName(Location.Idx);
754       dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
755     }
756   }
757 
758   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
759   /// information in \pProperties, for variable Var. Don't insert it anywhere,
760   /// just return the builder for it.
761   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
762                               const DbgValueProperties &Properties) {
763     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
764                                   Var.getVariable()->getScope(),
765                                   const_cast<DILocation *>(Var.getInlinedAt()));
766     auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
767 
768     const DIExpression *Expr = Properties.DIExpr;
769     if (!MLoc) {
770       // No location -> DBG_VALUE $noreg
771       MIB.addReg(0, RegState::Debug);
772       MIB.addReg(0, RegState::Debug);
773     } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
774       unsigned LocID = LocIdxToLocID[*MLoc];
775       const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
776 
777       auto *TRI = MF.getSubtarget().getRegisterInfo();
778       Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
779                                           Spill.SpillOffset);
780       unsigned Base = Spill.SpillBase;
781       MIB.addReg(Base, RegState::Debug);
782       MIB.addImm(0);
783     } else {
784       unsigned LocID = LocIdxToLocID[*MLoc];
785       MIB.addReg(LocID, RegState::Debug);
786       if (Properties.Indirect)
787         MIB.addImm(0);
788       else
789         MIB.addReg(0, RegState::Debug);
790     }
791 
792     MIB.addMetadata(Var.getVariable());
793     MIB.addMetadata(Expr);
794     return MIB;
795   }
796 };
797 
798 /// Class recording the (high level) _value_ of a variable. Identifies either
799 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
800 /// This class also stores meta-information about how the value is qualified.
801 /// Used to reason about variable values when performing the second
802 /// (DebugVariable specific) dataflow analysis.
803 class DbgValue {
804 public:
805   union {
806     /// If Kind is Def, the value number that this value is based on.
807     ValueIDNum ID;
808     /// If Kind is Const, the MachineOperand defining this value.
809     MachineOperand MO;
810     /// For a NoVal DbgValue, which block it was generated in.
811     unsigned BlockNo;
812   };
813   /// Qualifiers for the ValueIDNum above.
814   DbgValueProperties Properties;
815 
816   typedef enum {
817     Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
818     Def,       // This value is defined by an inst, or is a PHI value.
819     Const,     // A constant value contained in the MachineOperand field.
820     Proposed,  // This is a tentative PHI value, which may be confirmed or
821                // invalidated later.
822     NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
823                // which block this was generated in.
824    } KindT;
825   /// Discriminator for whether this is a constant or an in-program value.
826   KindT Kind;
827 
828   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
829     : ID(Val), Properties(Prop), Kind(Kind) {
830     assert(Kind == Def || Kind == Proposed);
831   }
832 
833   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
834     : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
835     assert(Kind == NoVal);
836   }
837 
838   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
839     : MO(MO), Properties(Prop), Kind(Kind) {
840     assert(Kind == Const);
841   }
842 
843   DbgValue(const DbgValueProperties &Prop, KindT Kind)
844     : Properties(Prop), Kind(Kind) {
845     assert(Kind == Undef &&
846            "Empty DbgValue constructor must pass in Undef kind");
847   }
848 
849   void dump(const MLocTracker *MTrack) const {
850     if (Kind == Const) {
851       MO.dump();
852     } else if (Kind == NoVal) {
853       dbgs() << "NoVal(" << BlockNo << ")";
854     } else if (Kind == Proposed) {
855       dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
856     } else {
857       assert(Kind == Def);
858       dbgs() << MTrack->IDAsString(ID);
859     }
860     if (Properties.Indirect)
861       dbgs() << " indir";
862     if (Properties.DIExpr)
863       dbgs() << " " << *Properties.DIExpr;
864   }
865 
866   bool operator==(const DbgValue &Other) const {
867     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
868       return false;
869     else if (Kind == Proposed && ID != Other.ID)
870       return false;
871     else if (Kind == Def && ID != Other.ID)
872       return false;
873     else if (Kind == NoVal && BlockNo != Other.BlockNo)
874       return false;
875     else if (Kind == Const)
876       return MO.isIdenticalTo(Other.MO);
877 
878     return true;
879   }
880 
881   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
882 };
883 
884 /// Types for recording sets of variable fragments that overlap. For a given
885 /// local variable, we record all other fragments of that variable that could
886 /// overlap it, to reduce search time.
887 using FragmentOfVar =
888     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
889 using OverlapMap =
890     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
891 
892 /// Collection of DBG_VALUEs observed when traversing a block. Records each
893 /// variable and the value the DBG_VALUE refers to. Requires the machine value
894 /// location dataflow algorithm to have run already, so that values can be
895 /// identified.
896 class VLocTracker {
897 public:
898   /// Map DebugVariable to the latest Value it's defined to have.
899   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
900   /// the order in this container.
901   /// We only retain the last DbgValue in each block for each variable, to
902   /// determine the blocks live-out variable value. The Vars container forms the
903   /// transfer function for this block, as part of the dataflow analysis. The
904   /// movement of values between locations inside of a block is handled at a
905   /// much later stage, in the TransferTracker class.
906   MapVector<DebugVariable, DbgValue> Vars;
907   DenseMap<DebugVariable, const DILocation *> Scopes;
908   MachineBasicBlock *MBB;
909 
910 public:
911   VLocTracker() {}
912 
913   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
914               Optional<ValueIDNum> ID) {
915     assert(MI.isDebugValue() || MI.isDebugRef());
916     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
917                       MI.getDebugLoc()->getInlinedAt());
918     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
919                         : DbgValue(Properties, DbgValue::Undef);
920 
921     // Attempt insertion; overwrite if it's already mapped.
922     auto Result = Vars.insert(std::make_pair(Var, Rec));
923     if (!Result.second)
924       Result.first->second = Rec;
925     Scopes[Var] = MI.getDebugLoc().get();
926   }
927 
928   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
929     // Only DBG_VALUEs can define constant-valued variables.
930     assert(MI.isDebugValue());
931     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
932                       MI.getDebugLoc()->getInlinedAt());
933     DbgValueProperties Properties(MI);
934     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
935 
936     // Attempt insertion; overwrite if it's already mapped.
937     auto Result = Vars.insert(std::make_pair(Var, Rec));
938     if (!Result.second)
939       Result.first->second = Rec;
940     Scopes[Var] = MI.getDebugLoc().get();
941   }
942 };
943 
944 /// Tracker for converting machine value locations and variable values into
945 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
946 /// specifying block live-in locations and transfers within blocks.
947 ///
948 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
949 /// and must be initialized with the set of variable values that are live-in to
950 /// the block. The caller then repeatedly calls process(). TransferTracker picks
951 /// out variable locations for the live-in variable values (if there _is_ a
952 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
953 /// stepped through, transfers of values between machine locations are
954 /// identified and if profitable, a DBG_VALUE created.
955 ///
956 /// This is where debug use-before-defs would be resolved: a variable with an
957 /// unavailable value could materialize in the middle of a block, when the
958 /// value becomes available. Or, we could detect clobbers and re-specify the
959 /// variable in a backup location. (XXX these are unimplemented).
960 class TransferTracker {
961 public:
962   const TargetInstrInfo *TII;
963   /// This machine location tracker is assumed to always contain the up-to-date
964   /// value mapping for all machine locations. TransferTracker only reads
965   /// information from it. (XXX make it const?)
966   MLocTracker *MTracker;
967   MachineFunction &MF;
968 
969   /// Record of all changes in variable locations at a block position. Awkwardly
970   /// we allow inserting either before or after the point: MBB != nullptr
971   /// indicates it's before, otherwise after.
972   struct Transfer {
973     MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
974     MachineBasicBlock *MBB;          /// non-null if we should insert after.
975     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
976   };
977 
978   struct LocAndProperties {
979     LocIdx Loc;
980     DbgValueProperties Properties;
981   };
982 
983   /// Collection of transfers (DBG_VALUEs) to be inserted.
984   SmallVector<Transfer, 32> Transfers;
985 
986   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
987   /// between TransferTrackers view of variable locations and MLocTrackers. For
988   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
989   /// does not.
990   std::vector<ValueIDNum> VarLocs;
991 
992   /// Map from LocIdxes to which DebugVariables are based that location.
993   /// Mantained while stepping through the block. Not accurate if
994   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
995   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
996 
997   /// Map from DebugVariable to it's current location and qualifying meta
998   /// information. To be used in conjunction with ActiveMLocs to construct
999   /// enough information for the DBG_VALUEs for a particular LocIdx.
1000   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
1001 
1002   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
1003   SmallVector<MachineInstr *, 4> PendingDbgValues;
1004 
1005   /// Record of a use-before-def: created when a value that's live-in to the
1006   /// current block isn't available in any machine location, but it will be
1007   /// defined in this block.
1008   struct UseBeforeDef {
1009     /// Value of this variable, def'd in block.
1010     ValueIDNum ID;
1011     /// Identity of this variable.
1012     DebugVariable Var;
1013     /// Additional variable properties.
1014     DbgValueProperties Properties;
1015   };
1016 
1017   /// Map from instruction index (within the block) to the set of UseBeforeDefs
1018   /// that become defined at that instruction.
1019   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
1020 
1021   /// The set of variables that are in UseBeforeDefs and can become a location
1022   /// once the relevant value is defined. An element being erased from this
1023   /// collection prevents the use-before-def materializing.
1024   DenseSet<DebugVariable> UseBeforeDefVariables;
1025 
1026   const TargetRegisterInfo &TRI;
1027   const BitVector &CalleeSavedRegs;
1028 
1029   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
1030                   MachineFunction &MF, const TargetRegisterInfo &TRI,
1031                   const BitVector &CalleeSavedRegs)
1032       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1033         CalleeSavedRegs(CalleeSavedRegs) {}
1034 
1035   /// Load object with live-in variable values. \p mlocs contains the live-in
1036   /// values in each machine location, while \p vlocs the live-in variable
1037   /// values. This method picks variable locations for the live-in variables,
1038   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1039   /// object fields to track variable locations as we step through the block.
1040   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
1041   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1042                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1043                   unsigned NumLocs) {
1044     ActiveMLocs.clear();
1045     ActiveVLocs.clear();
1046     VarLocs.clear();
1047     VarLocs.reserve(NumLocs);
1048     UseBeforeDefs.clear();
1049     UseBeforeDefVariables.clear();
1050 
1051     auto isCalleeSaved = [&](LocIdx L) {
1052       unsigned Reg = MTracker->LocIdxToLocID[L];
1053       if (Reg >= MTracker->NumRegs)
1054         return false;
1055       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1056         if (CalleeSavedRegs.test(*RAI))
1057           return true;
1058       return false;
1059     };
1060 
1061     // Map of the preferred location for each value.
1062     std::map<ValueIDNum, LocIdx> ValueToLoc;
1063 
1064     // Produce a map of value numbers to the current machine locs they live
1065     // in. When emulating VarLocBasedImpl, there should only be one
1066     // location; when not, we get to pick.
1067     for (auto Location : MTracker->locations()) {
1068       LocIdx Idx = Location.Idx;
1069       ValueIDNum &VNum = MLocs[Idx.asU64()];
1070       VarLocs.push_back(VNum);
1071       auto it = ValueToLoc.find(VNum);
1072       // In order of preference, pick:
1073       //  * Callee saved registers,
1074       //  * Other registers,
1075       //  * Spill slots.
1076       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1077           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1078         // Insert, or overwrite if insertion failed.
1079         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1080         if (!PrefLocRes.second)
1081           PrefLocRes.first->second = Idx;
1082       }
1083     }
1084 
1085     // Now map variables to their picked LocIdxes.
1086     for (auto Var : VLocs) {
1087       if (Var.second.Kind == DbgValue::Const) {
1088         PendingDbgValues.push_back(
1089             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1090         continue;
1091       }
1092 
1093       // If the value has no location, we can't make a variable location.
1094       const ValueIDNum &Num = Var.second.ID;
1095       auto ValuesPreferredLoc = ValueToLoc.find(Num);
1096       if (ValuesPreferredLoc == ValueToLoc.end()) {
1097         // If it's a def that occurs in this block, register it as a
1098         // use-before-def to be resolved as we step through the block.
1099         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
1100           addUseBeforeDef(Var.first, Var.second.Properties, Num);
1101         continue;
1102       }
1103 
1104       LocIdx M = ValuesPreferredLoc->second;
1105       auto NewValue = LocAndProperties{M, Var.second.Properties};
1106       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1107       if (!Result.second)
1108         Result.first->second = NewValue;
1109       ActiveMLocs[M].insert(Var.first);
1110       PendingDbgValues.push_back(
1111           MTracker->emitLoc(M, Var.first, Var.second.Properties));
1112     }
1113     flushDbgValues(MBB.begin(), &MBB);
1114   }
1115 
1116   /// Record that \p Var has value \p ID, a value that becomes available
1117   /// later in the function.
1118   void addUseBeforeDef(const DebugVariable &Var,
1119                        const DbgValueProperties &Properties, ValueIDNum ID) {
1120     UseBeforeDef UBD = {ID, Var, Properties};
1121     UseBeforeDefs[ID.getInst()].push_back(UBD);
1122     UseBeforeDefVariables.insert(Var);
1123   }
1124 
1125   /// After the instruction at index \p Inst and position \p pos has been
1126   /// processed, check whether it defines a variable value in a use-before-def.
1127   /// If so, and the variable value hasn't changed since the start of the
1128   /// block, create a DBG_VALUE.
1129   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
1130     auto MIt = UseBeforeDefs.find(Inst);
1131     if (MIt == UseBeforeDefs.end())
1132       return;
1133 
1134     for (auto &Use : MIt->second) {
1135       LocIdx L = Use.ID.getLoc();
1136 
1137       // If something goes very wrong, we might end up labelling a COPY
1138       // instruction or similar with an instruction number, where it doesn't
1139       // actually define a new value, instead it moves a value. In case this
1140       // happens, discard.
1141       if (MTracker->LocIdxToIDNum[L] != Use.ID)
1142         continue;
1143 
1144       // If a different debug instruction defined the variable value / location
1145       // since the start of the block, don't materialize this use-before-def.
1146       if (!UseBeforeDefVariables.count(Use.Var))
1147         continue;
1148 
1149       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
1150     }
1151     flushDbgValues(pos, nullptr);
1152   }
1153 
1154   /// Helper to move created DBG_VALUEs into Transfers collection.
1155   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1156     if (PendingDbgValues.size() > 0) {
1157       Transfers.push_back({Pos, MBB, PendingDbgValues});
1158       PendingDbgValues.clear();
1159     }
1160   }
1161 
1162   /// Change a variable value after encountering a DBG_VALUE inside a block.
1163   void redefVar(const MachineInstr &MI) {
1164     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1165                       MI.getDebugLoc()->getInlinedAt());
1166     DbgValueProperties Properties(MI);
1167 
1168     const MachineOperand &MO = MI.getOperand(0);
1169 
1170     // Ignore non-register locations, we don't transfer those.
1171     if (!MO.isReg() || MO.getReg() == 0) {
1172       auto It = ActiveVLocs.find(Var);
1173       if (It != ActiveVLocs.end()) {
1174         ActiveMLocs[It->second.Loc].erase(Var);
1175         ActiveVLocs.erase(It);
1176      }
1177       // Any use-before-defs no longer apply.
1178       UseBeforeDefVariables.erase(Var);
1179       return;
1180     }
1181 
1182     Register Reg = MO.getReg();
1183     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1184     redefVar(MI, Properties, NewLoc);
1185   }
1186 
1187   /// Handle a change in variable location within a block. Terminate the
1188   /// variables current location, and record the value it now refers to, so
1189   /// that we can detect location transfers later on.
1190   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1191                 Optional<LocIdx> OptNewLoc) {
1192     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1193                       MI.getDebugLoc()->getInlinedAt());
1194     // Any use-before-defs no longer apply.
1195     UseBeforeDefVariables.erase(Var);
1196 
1197     // Erase any previous location,
1198     auto It = ActiveVLocs.find(Var);
1199     if (It != ActiveVLocs.end())
1200       ActiveMLocs[It->second.Loc].erase(Var);
1201 
1202     // If there _is_ no new location, all we had to do was erase.
1203     if (!OptNewLoc)
1204       return;
1205     LocIdx NewLoc = *OptNewLoc;
1206 
1207     // Check whether our local copy of values-by-location in #VarLocs is out of
1208     // date. Wipe old tracking data for the location if it's been clobbered in
1209     // the meantime.
1210     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1211       for (auto &P : ActiveMLocs[NewLoc]) {
1212         ActiveVLocs.erase(P);
1213       }
1214       ActiveMLocs[NewLoc.asU64()].clear();
1215       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1216     }
1217 
1218     ActiveMLocs[NewLoc].insert(Var);
1219     if (It == ActiveVLocs.end()) {
1220       ActiveVLocs.insert(
1221           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1222     } else {
1223       It->second.Loc = NewLoc;
1224       It->second.Properties = Properties;
1225     }
1226   }
1227 
1228   /// Explicitly terminate variable locations based on \p mloc. Creates undef
1229   /// DBG_VALUEs for any variables that were located there, and clears
1230   /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
1231   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
1232     assert(MTracker->isSpill(MLoc));
1233     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1234     if (ActiveMLocIt == ActiveMLocs.end())
1235       return;
1236 
1237     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1238 
1239     for (auto &Var : ActiveMLocIt->second) {
1240       auto ActiveVLocIt = ActiveVLocs.find(Var);
1241       // Create an undef. We can't feed in a nullptr DIExpression alas,
1242       // so use the variables last expression. Pass None as the location.
1243       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1244       DbgValueProperties Properties(Expr, false);
1245       PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
1246       ActiveVLocs.erase(ActiveVLocIt);
1247     }
1248     flushDbgValues(Pos, nullptr);
1249 
1250     ActiveMLocIt->second.clear();
1251   }
1252 
1253   /// Transfer variables based on \p Src to be based on \p Dst. This handles
1254   /// both register copies as well as spills and restores. Creates DBG_VALUEs
1255   /// describing the movement.
1256   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1257     // Does Src still contain the value num we expect? If not, it's been
1258     // clobbered in the meantime, and our variable locations are stale.
1259     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1260       return;
1261 
1262     // assert(ActiveMLocs[Dst].size() == 0);
1263     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1264     ActiveMLocs[Dst] = ActiveMLocs[Src];
1265     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1266 
1267     // For each variable based on Src; create a location at Dst.
1268     for (auto &Var : ActiveMLocs[Src]) {
1269       auto ActiveVLocIt = ActiveVLocs.find(Var);
1270       assert(ActiveVLocIt != ActiveVLocs.end());
1271       ActiveVLocIt->second.Loc = Dst;
1272 
1273       assert(Dst != 0);
1274       MachineInstr *MI =
1275           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1276       PendingDbgValues.push_back(MI);
1277     }
1278     ActiveMLocs[Src].clear();
1279     flushDbgValues(Pos, nullptr);
1280 
1281     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1282     // about the old location.
1283     if (EmulateOldLDV)
1284       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1285   }
1286 
1287   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1288                                 const DebugVariable &Var,
1289                                 const DbgValueProperties &Properties) {
1290     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1291                                   Var.getVariable()->getScope(),
1292                                   const_cast<DILocation *>(Var.getInlinedAt()));
1293     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1294     MIB.add(MO);
1295     if (Properties.Indirect)
1296       MIB.addImm(0);
1297     else
1298       MIB.addReg(0);
1299     MIB.addMetadata(Var.getVariable());
1300     MIB.addMetadata(Properties.DIExpr);
1301     return MIB;
1302   }
1303 };
1304 
1305 class InstrRefBasedLDV : public LDVImpl {
1306 private:
1307   using FragmentInfo = DIExpression::FragmentInfo;
1308   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1309 
1310   // Helper while building OverlapMap, a map of all fragments seen for a given
1311   // DILocalVariable.
1312   using VarToFragments =
1313       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1314 
1315   /// Machine location/value transfer function, a mapping of which locations
1316   /// are assigned which new values.
1317   using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
1318 
1319   /// Live in/out structure for the variable values: a per-block map of
1320   /// variables to their values. XXX, better name?
1321   using LiveIdxT =
1322       DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
1323 
1324   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1325 
1326   /// Type for a live-in value: the predecessor block, and its value.
1327   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1328 
1329   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1330   /// Used as the result type for the variable value dataflow problem.
1331   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1332 
1333   const TargetRegisterInfo *TRI;
1334   const TargetInstrInfo *TII;
1335   const TargetFrameLowering *TFI;
1336   const MachineFrameInfo *MFI;
1337   BitVector CalleeSavedRegs;
1338   LexicalScopes LS;
1339   TargetPassConfig *TPC;
1340 
1341   /// Object to track machine locations as we step through a block. Could
1342   /// probably be a field rather than a pointer, as it's always used.
1343   MLocTracker *MTracker;
1344 
1345   /// Number of the current block LiveDebugValues is stepping through.
1346   unsigned CurBB;
1347 
1348   /// Number of the current instruction LiveDebugValues is evaluating.
1349   unsigned CurInst;
1350 
1351   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1352   /// steps through a block. Reads the values at each location from the
1353   /// MLocTracker object.
1354   VLocTracker *VTracker;
1355 
1356   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1357   /// between locations during stepping, creates new DBG_VALUEs when values move
1358   /// location.
1359   TransferTracker *TTracker;
1360 
1361   /// Blocks which are artificial, i.e. blocks which exclusively contain
1362   /// instructions without DebugLocs, or with line 0 locations.
1363   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1364 
1365   // Mapping of blocks to and from their RPOT order.
1366   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1367   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1368   DenseMap<unsigned, unsigned> BBNumToRPO;
1369 
1370   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1371   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1372   /// Map from debug instruction number to the MachineInstr labelled with that
1373   /// number, and its location within the function. Used to transform
1374   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1375   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1376 
1377   /// Record of where we observed a DBG_PHI instruction.
1378   class DebugPHIRecord {
1379   public:
1380     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
1381     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
1382     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
1383     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
1384 
1385     operator unsigned() const { return InstrNum; }
1386   };
1387 
1388   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1389   /// DBG_PHI read and where. Populated and edited during the machine value
1390   /// location problem -- we use LLVMs SSA Updater to fix changes by
1391   /// optimizations that destroy PHI instructions.
1392   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1393 
1394   // Map of overlapping variable fragments.
1395   OverlapMap OverlapFragments;
1396   VarToFragments SeenFragments;
1397 
1398   /// Tests whether this instruction is a spill to a stack slot.
1399   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1400 
1401   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1402   /// criteria to make this decision:
1403   /// - Is this instruction a store to a spill slot?
1404   /// - Is there a register operand that is both used and killed?
1405   /// TODO: Store optimization can fold spills into other stores (including
1406   /// other spills). We do not handle this yet (more than one memory operand).
1407   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1408                        unsigned &Reg);
1409 
1410   /// If a given instruction is identified as a spill, return the spill slot
1411   /// and set \p Reg to the spilled register.
1412   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1413                                           MachineFunction *MF, unsigned &Reg);
1414 
1415   /// Given a spill instruction, extract the register and offset used to
1416   /// address the spill slot in a target independent way.
1417   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1418 
1419   /// Observe a single instruction while stepping through a block.
1420   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
1421                ValueIDNum **MLiveIns = nullptr);
1422 
1423   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1424   /// \returns true if MI was recognized and processed.
1425   bool transferDebugValue(const MachineInstr &MI);
1426 
1427   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1428   /// \returns true if MI was recognized and processed.
1429   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
1430                              ValueIDNum **MLiveIns);
1431 
1432   /// Stores value-information about where this PHI occurred, and what
1433   /// instruction number is associated with it.
1434   /// \returns true if MI was recognized and processed.
1435   bool transferDebugPHI(MachineInstr &MI);
1436 
1437   /// Examines whether \p MI is copy instruction, and notifies trackers.
1438   /// \returns true if MI was recognized and processed.
1439   bool transferRegisterCopy(MachineInstr &MI);
1440 
1441   /// Examines whether \p MI is stack spill or restore  instruction, and
1442   /// notifies trackers. \returns true if MI was recognized and processed.
1443   bool transferSpillOrRestoreInst(MachineInstr &MI);
1444 
1445   /// Examines \p MI for any registers that it defines, and notifies trackers.
1446   void transferRegisterDef(MachineInstr &MI);
1447 
1448   /// Copy one location to the other, accounting for movement of subregisters
1449   /// too.
1450   void performCopy(Register Src, Register Dst);
1451 
1452   void accumulateFragmentMap(MachineInstr &MI);
1453 
1454   /// Determine the machine value number referred to by (potentially several)
1455   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1456   /// DBG_PHIs, shifting the position where values in registers merge, and
1457   /// forming another mini-ssa problem to solve.
1458   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1459   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1460   /// \returns The machine value number at position Here, or None.
1461   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1462                                       ValueIDNum **MLiveOuts,
1463                                       ValueIDNum **MLiveIns, MachineInstr &Here,
1464                                       uint64_t InstrNum);
1465 
1466   /// Step through the function, recording register definitions and movements
1467   /// in an MLocTracker. Convert the observations into a per-block transfer
1468   /// function in \p MLocTransfer, suitable for using with the machine value
1469   /// location dataflow problem.
1470   void
1471   produceMLocTransferFunction(MachineFunction &MF,
1472                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1473                               unsigned MaxNumBlocks);
1474 
1475   /// Solve the machine value location dataflow problem. Takes as input the
1476   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1477   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1478   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1479   /// number, the inner by LocIdx.
1480   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1481                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1482 
1483   /// Perform a control flow join (lattice value meet) of the values in machine
1484   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1485   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1486   /// from \p InLocs, and assigning the newly computed live ins back into
1487   /// \p InLocs. \returns two bools -- the first indicates whether a change
1488   /// was made, the second whether a lattice downgrade occurred. If the latter
1489   /// is true, revisiting this block is necessary.
1490   std::tuple<bool, bool>
1491   mlocJoin(MachineBasicBlock &MBB,
1492            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1493            ValueIDNum **OutLocs, ValueIDNum *InLocs);
1494 
1495   /// Solve the variable value dataflow problem, for a single lexical scope.
1496   /// Uses the algorithm from the file comment to resolve control flow joins,
1497   /// although there are extra hacks, see vlocJoin. Reads the
1498   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1499   /// mlocDataflow) and reads the variable values transfer function from
1500   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1501   /// with the live-ins permanently stored to \p Output once the fixedpoint is
1502   /// reached.
1503   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1504   /// that we should be tracking.
1505   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1506   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1507   /// through.
1508   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1509                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1510                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1511                     LiveInsT &Output, ValueIDNum **MOutLocs,
1512                     ValueIDNum **MInLocs,
1513                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1514 
1515   /// Compute the live-ins to a block, considering control flow merges according
1516   /// to the method in the file comment. Live out and live in variable values
1517   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1518   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1519   /// are modified.
1520   /// \p InLocsT Output argument, storage for calculated live-ins.
1521   /// \returns two bools -- the first indicates whether a change
1522   /// was made, the second whether a lattice downgrade occurred. If the latter
1523   /// is true, revisiting this block is necessary.
1524   std::tuple<bool, bool>
1525   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1526            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1527            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1528            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1529            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1530            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1531            DenseMap<DebugVariable, DbgValue> &InLocsT);
1532 
1533   /// Continue exploration of the variable-value lattice, as explained in the
1534   /// file-level comment. \p OldLiveInLocation contains the current
1535   /// exploration position, from which we need to descend further. \p Values
1536   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1537   /// the current block, and \p CandidateLocations a set of locations that
1538   /// should be considered as PHI locations, if we reach the bottom of the
1539   /// lattice. \returns true if we should downgrade; the value is the agreeing
1540   /// value number in a non-backedge predecessor.
1541   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1542                             const DbgValue &OldLiveInLocation,
1543                             const SmallVectorImpl<InValueT> &Values,
1544                             unsigned CurBlockRPONum);
1545 
1546   /// For the given block and live-outs feeding into it, try to find a
1547   /// machine location where they all join. If a solution for all predecessors
1548   /// can't be found, a location where all non-backedge-predecessors join
1549   /// will be returned instead. While this method finds a join location, this
1550   /// says nothing as to whether it should be used.
1551   /// \returns Pair of value ID if found, and true when the correct value
1552   /// is available on all predecessor edges, or false if it's only available
1553   /// for non-backedge predecessors.
1554   std::tuple<Optional<ValueIDNum>, bool>
1555   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1556               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1557               ValueIDNum **MInLocs,
1558               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1559 
1560   /// Given the solutions to the two dataflow problems, machine value locations
1561   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1562   /// TransferTracker class over the function to produce live-in and transfer
1563   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1564   /// order given by AllVarsNumbering -- this could be any stable order, but
1565   /// right now "order of appearence in function, when explored in RPO", so
1566   /// that we can compare explictly against VarLocBasedImpl.
1567   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1568                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1569                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
1570 
1571   /// Boilerplate computation of some initial sets, artifical blocks and
1572   /// RPOT block ordering.
1573   void initialSetup(MachineFunction &MF);
1574 
1575   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1576 
1577 public:
1578   /// Default construct and initialize the pass.
1579   InstrRefBasedLDV();
1580 
1581   LLVM_DUMP_METHOD
1582   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1583 
1584   bool isCalleeSaved(LocIdx L) {
1585     unsigned Reg = MTracker->LocIdxToLocID[L];
1586     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1587       if (CalleeSavedRegs.test(*RAI))
1588         return true;
1589     return false;
1590   }
1591 };
1592 
1593 } // end anonymous namespace
1594 
1595 //===----------------------------------------------------------------------===//
1596 //            Implementation
1597 //===----------------------------------------------------------------------===//
1598 
1599 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1600 
1601 /// Default construct and initialize the pass.
1602 InstrRefBasedLDV::InstrRefBasedLDV() {}
1603 
1604 //===----------------------------------------------------------------------===//
1605 //            Debug Range Extension Implementation
1606 //===----------------------------------------------------------------------===//
1607 
1608 #ifndef NDEBUG
1609 // Something to restore in the future.
1610 // void InstrRefBasedLDV::printVarLocInMBB(..)
1611 #endif
1612 
1613 SpillLoc
1614 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1615   assert(MI.hasOneMemOperand() &&
1616          "Spill instruction does not have exactly one memory operand?");
1617   auto MMOI = MI.memoperands_begin();
1618   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1619   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1620          "Inconsistent memory operand in spill instruction");
1621   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1622   const MachineBasicBlock *MBB = MI.getParent();
1623   Register Reg;
1624   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1625   return {Reg, Offset};
1626 }
1627 
1628 /// End all previous ranges related to @MI and start a new range from @MI
1629 /// if it is a DBG_VALUE instr.
1630 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1631   if (!MI.isDebugValue())
1632     return false;
1633 
1634   const DILocalVariable *Var = MI.getDebugVariable();
1635   const DIExpression *Expr = MI.getDebugExpression();
1636   const DILocation *DebugLoc = MI.getDebugLoc();
1637   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1638   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1639          "Expected inlined-at fields to agree");
1640 
1641   DebugVariable V(Var, Expr, InlinedAt);
1642   DbgValueProperties Properties(MI);
1643 
1644   // If there are no instructions in this lexical scope, do no location tracking
1645   // at all, this variable shouldn't get a legitimate location range.
1646   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1647   if (Scope == nullptr)
1648     return true; // handled it; by doing nothing
1649 
1650   const MachineOperand &MO = MI.getOperand(0);
1651 
1652   // MLocTracker needs to know that this register is read, even if it's only
1653   // read by a debug inst.
1654   if (MO.isReg() && MO.getReg() != 0)
1655     (void)MTracker->readReg(MO.getReg());
1656 
1657   // If we're preparing for the second analysis (variables), the machine value
1658   // locations are already solved, and we report this DBG_VALUE and the value
1659   // it refers to to VLocTracker.
1660   if (VTracker) {
1661     if (MO.isReg()) {
1662       // Feed defVar the new variable location, or if this is a
1663       // DBG_VALUE $noreg, feed defVar None.
1664       if (MO.getReg())
1665         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1666       else
1667         VTracker->defVar(MI, Properties, None);
1668     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1669                MI.getOperand(0).isCImm()) {
1670       VTracker->defVar(MI, MI.getOperand(0));
1671     }
1672   }
1673 
1674   // If performing final tracking of transfers, report this variable definition
1675   // to the TransferTracker too.
1676   if (TTracker)
1677     TTracker->redefVar(MI);
1678   return true;
1679 }
1680 
1681 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1682                                              ValueIDNum **MLiveOuts,
1683                                              ValueIDNum **MLiveIns) {
1684   if (!MI.isDebugRef())
1685     return false;
1686 
1687   // Only handle this instruction when we are building the variable value
1688   // transfer function.
1689   if (!VTracker)
1690     return false;
1691 
1692   unsigned InstNo = MI.getOperand(0).getImm();
1693   unsigned OpNo = MI.getOperand(1).getImm();
1694 
1695   const DILocalVariable *Var = MI.getDebugVariable();
1696   const DIExpression *Expr = MI.getDebugExpression();
1697   const DILocation *DebugLoc = MI.getDebugLoc();
1698   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1699   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1700          "Expected inlined-at fields to agree");
1701 
1702   DebugVariable V(Var, Expr, InlinedAt);
1703 
1704   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1705   if (Scope == nullptr)
1706     return true; // Handled by doing nothing. This variable is never in scope.
1707 
1708   const MachineFunction &MF = *MI.getParent()->getParent();
1709 
1710   // Various optimizations may have happened to the value during codegen,
1711   // recorded in the value substitution table. Apply any substitutions to
1712   // the instruction / operand number in this DBG_INSTR_REF.
1713   auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1714   while (Sub != MF.DebugValueSubstitutions.end()) {
1715     InstNo = Sub->second.first;
1716     OpNo = Sub->second.second;
1717     Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1718   }
1719 
1720   // Default machine value number is <None> -- if no instruction defines
1721   // the corresponding value, it must have been optimized out.
1722   Optional<ValueIDNum> NewID = None;
1723 
1724   // Try to lookup the instruction number, and find the machine value number
1725   // that it defines. It could be an instruction, or a PHI.
1726   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1727   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1728                                 DebugPHINumToValue.end(), InstNo);
1729   if (InstrIt != DebugInstrNumToInstr.end()) {
1730     const MachineInstr &TargetInstr = *InstrIt->second.first;
1731     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1732 
1733     // Pick out the designated operand.
1734     assert(OpNo < TargetInstr.getNumOperands());
1735     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1736 
1737     // Today, this can only be a register.
1738     assert(MO.isReg() && MO.isDef());
1739 
1740     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1741     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1742     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1743   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1744     // It's actually a PHI value. Which value it is might not be obvious, use
1745     // the resolver helper to find out.
1746     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1747                            MI, InstNo);
1748   }
1749 
1750   // We, we have a value number or None. Tell the variable value tracker about
1751   // it. The rest of this LiveDebugValues implementation acts exactly the same
1752   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1753   // aren't immediately available).
1754   DbgValueProperties Properties(Expr, false);
1755   VTracker->defVar(MI, Properties, NewID);
1756 
1757   // If we're on the final pass through the function, decompose this INSTR_REF
1758   // into a plain DBG_VALUE.
1759   if (!TTracker)
1760     return true;
1761 
1762   // Pick a location for the machine value number, if such a location exists.
1763   // (This information could be stored in TransferTracker to make it faster).
1764   Optional<LocIdx> FoundLoc = None;
1765   for (auto Location : MTracker->locations()) {
1766     LocIdx CurL = Location.Idx;
1767     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1768     if (NewID && ID == NewID) {
1769       // If this is the first location with that value, pick it. Otherwise,
1770       // consider whether it's a "longer term" location.
1771       if (!FoundLoc) {
1772         FoundLoc = CurL;
1773         continue;
1774       }
1775 
1776       if (MTracker->isSpill(CurL))
1777         FoundLoc = CurL; // Spills are a longer term location.
1778       else if (!MTracker->isSpill(*FoundLoc) &&
1779                !MTracker->isSpill(CurL) &&
1780                !isCalleeSaved(*FoundLoc) &&
1781                isCalleeSaved(CurL))
1782         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1783     }
1784   }
1785 
1786   // Tell transfer tracker that the variable value has changed.
1787   TTracker->redefVar(MI, Properties, FoundLoc);
1788 
1789   // If there was a value with no location; but the value is defined in a
1790   // later instruction in this block, this is a block-local use-before-def.
1791   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1792       NewID->getInst() > CurInst)
1793     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1794 
1795   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1796   // This DBG_VALUE is potentially a $noreg / undefined location, if
1797   // FoundLoc is None.
1798   // (XXX -- could morph the DBG_INSTR_REF in the future).
1799   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1800   TTracker->PendingDbgValues.push_back(DbgMI);
1801   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1802   return true;
1803 }
1804 
1805 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1806   if (!MI.isDebugPHI())
1807     return false;
1808 
1809   // Analyse these only when solving the machine value location problem.
1810   if (VTracker || TTracker)
1811     return true;
1812 
1813   // First operand is the value location, either a stack slot or register.
1814   // Second is the debug instruction number of the original PHI.
1815   const MachineOperand &MO = MI.getOperand(0);
1816   unsigned InstrNum = MI.getOperand(1).getImm();
1817 
1818   if (MO.isReg()) {
1819     // The value is whatever's currently in the register. Read and record it,
1820     // to be analysed later.
1821     Register Reg = MO.getReg();
1822     ValueIDNum Num = MTracker->readReg(Reg);
1823     auto PHIRec = DebugPHIRecord(
1824         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1825     DebugPHINumToValue.push_back(PHIRec);
1826   } else {
1827     // The value is whatever's in this stack slot.
1828     assert(MO.isFI());
1829     unsigned FI = MO.getIndex();
1830 
1831     // If the stack slot is dead, then this was optimized away.
1832     // FIXME: stack slot colouring should account for slots that get merged.
1833     if (MFI->isDeadObjectIndex(FI))
1834       return true;
1835 
1836     // Identify this spill slot.
1837     Register Base;
1838     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1839     SpillLoc SL = {Base, Offs};
1840     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
1841 
1842     if (!Num)
1843       // Nothing ever writes to this slot. Curious, but nothing we can do.
1844       return true;
1845 
1846     // Record this DBG_PHI for later analysis.
1847     auto DbgPHI = DebugPHIRecord(
1848         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
1849     DebugPHINumToValue.push_back(DbgPHI);
1850   }
1851 
1852   return true;
1853 }
1854 
1855 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1856   // Meta Instructions do not affect the debug liveness of any register they
1857   // define.
1858   if (MI.isImplicitDef()) {
1859     // Except when there's an implicit def, and the location it's defining has
1860     // no value number. The whole point of an implicit def is to announce that
1861     // the register is live, without be specific about it's value. So define
1862     // a value if there isn't one already.
1863     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1864     // Has a legitimate value -> ignore the implicit def.
1865     if (Num.getLoc() != 0)
1866       return;
1867     // Otherwise, def it here.
1868   } else if (MI.isMetaInstruction())
1869     return;
1870 
1871   MachineFunction *MF = MI.getMF();
1872   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1873   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1874 
1875   // Find the regs killed by MI, and find regmasks of preserved regs.
1876   // Max out the number of statically allocated elements in `DeadRegs`, as this
1877   // prevents fallback to std::set::count() operations.
1878   SmallSet<uint32_t, 32> DeadRegs;
1879   SmallVector<const uint32_t *, 4> RegMasks;
1880   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1881   for (const MachineOperand &MO : MI.operands()) {
1882     // Determine whether the operand is a register def.
1883     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1884         Register::isPhysicalRegister(MO.getReg()) &&
1885         !(MI.isCall() && MO.getReg() == SP)) {
1886       // Remove ranges of all aliased registers.
1887       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1888         // FIXME: Can we break out of this loop early if no insertion occurs?
1889         DeadRegs.insert(*RAI);
1890     } else if (MO.isRegMask()) {
1891       RegMasks.push_back(MO.getRegMask());
1892       RegMaskPtrs.push_back(&MO);
1893     }
1894   }
1895 
1896   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1897   for (uint32_t DeadReg : DeadRegs)
1898     MTracker->defReg(DeadReg, CurBB, CurInst);
1899 
1900   for (auto *MO : RegMaskPtrs)
1901     MTracker->writeRegMask(MO, CurBB, CurInst);
1902 }
1903 
1904 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1905   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1906 
1907   MTracker->setReg(DstRegNum, SrcValue);
1908 
1909   // In all circumstances, re-def the super registers. It's definitely a new
1910   // value now. This doesn't uniquely identify the composition of subregs, for
1911   // example, two identical values in subregisters composed in different
1912   // places would not get equal value numbers.
1913   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1914     MTracker->defReg(*SRI, CurBB, CurInst);
1915 
1916   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1917   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1918   // through prior copies.
1919   if (EmulateOldLDV) {
1920     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1921       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1922     return;
1923   }
1924 
1925   // Otherwise, actually copy subregisters from one location to another.
1926   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1927   // the source register should be def'd.
1928   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1929     unsigned SrcSubReg = SRI.getSubReg();
1930     unsigned SubRegIdx = SRI.getSubRegIndex();
1931     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1932     if (!DstSubReg)
1933       continue;
1934 
1935     // Do copy. There are two matching subregisters, the source value should
1936     // have been def'd when the super-reg was, the latter might not be tracked
1937     // yet.
1938     // This will force SrcSubReg to be tracked, if it isn't yet.
1939     (void)MTracker->readReg(SrcSubReg);
1940     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1941     assert(SrcL.asU64());
1942     (void)MTracker->readReg(DstSubReg);
1943     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1944     assert(DstL.asU64());
1945     (void)DstL;
1946     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1947 
1948     MTracker->setReg(DstSubReg, CpyValue);
1949   }
1950 }
1951 
1952 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1953                                           MachineFunction *MF) {
1954   // TODO: Handle multiple stores folded into one.
1955   if (!MI.hasOneMemOperand())
1956     return false;
1957 
1958   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1959     return false; // This is not a spill instruction, since no valid size was
1960                   // returned from either function.
1961 
1962   return true;
1963 }
1964 
1965 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1966                                        MachineFunction *MF, unsigned &Reg) {
1967   if (!isSpillInstruction(MI, MF))
1968     return false;
1969 
1970   // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
1971   // actual register number.
1972   if (ObserveAllStackops) {
1973     int FI;
1974     Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1975     return Reg != 0;
1976   }
1977 
1978   auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
1979     if (!MO.isReg() || !MO.isUse()) {
1980       Reg = 0;
1981       return false;
1982     }
1983     Reg = MO.getReg();
1984     return MO.isKill();
1985   };
1986 
1987   for (const MachineOperand &MO : MI.operands()) {
1988     // In a spill instruction generated by the InlineSpiller the spilled
1989     // register has its kill flag set.
1990     if (isKilledReg(MO, Reg))
1991       return true;
1992     if (Reg != 0) {
1993       // Check whether next instruction kills the spilled register.
1994       // FIXME: Current solution does not cover search for killed register in
1995       // bundles and instructions further down the chain.
1996       auto NextI = std::next(MI.getIterator());
1997       // Skip next instruction that points to basic block end iterator.
1998       if (MI.getParent()->end() == NextI)
1999         continue;
2000       unsigned RegNext;
2001       for (const MachineOperand &MONext : NextI->operands()) {
2002         // Return true if we came across the register from the
2003         // previous spill instruction that is killed in NextI.
2004         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
2005           return true;
2006       }
2007     }
2008   }
2009   // Return false if we didn't find spilled register.
2010   return false;
2011 }
2012 
2013 Optional<SpillLoc>
2014 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
2015                                        MachineFunction *MF, unsigned &Reg) {
2016   if (!MI.hasOneMemOperand())
2017     return None;
2018 
2019   // FIXME: Handle folded restore instructions with more than one memory
2020   // operand.
2021   if (MI.getRestoreSize(TII)) {
2022     Reg = MI.getOperand(0).getReg();
2023     return extractSpillBaseRegAndOffset(MI);
2024   }
2025   return None;
2026 }
2027 
2028 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2029   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2030   // limitations under the new model. Therefore, when comparing them, compare
2031   // versions that don't attempt spills or restores at all.
2032   if (EmulateOldLDV)
2033     return false;
2034 
2035   MachineFunction *MF = MI.getMF();
2036   unsigned Reg;
2037   Optional<SpillLoc> Loc;
2038 
2039   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2040 
2041   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2042   // written to, terminate that variable location. The value in memory
2043   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2044   if (isSpillInstruction(MI, MF)) {
2045     Loc = extractSpillBaseRegAndOffset(MI);
2046 
2047     if (TTracker) {
2048       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
2049       if (MLoc)
2050         TTracker->clobberMloc(*MLoc, MI.getIterator());
2051     }
2052   }
2053 
2054   // Try to recognise spill and restore instructions that may transfer a value.
2055   if (isLocationSpill(MI, MF, Reg)) {
2056     Loc = extractSpillBaseRegAndOffset(MI);
2057     auto ValueID = MTracker->readReg(Reg);
2058 
2059     // If the location is empty, produce a phi, signify it's the live-in value.
2060     if (ValueID.getLoc() == 0)
2061       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
2062 
2063     MTracker->setSpill(*Loc, ValueID);
2064     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
2065     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
2066     LocIdx SpillLocIdx = *OptSpillLocIdx;
2067 
2068     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
2069     if (TTracker)
2070       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
2071                               MI.getIterator());
2072   } else {
2073     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
2074       return false;
2075 
2076     // Is there a value to be restored?
2077     auto OptValueID = MTracker->readSpill(*Loc);
2078     if (OptValueID) {
2079       ValueIDNum ValueID = *OptValueID;
2080       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
2081       // XXX -- can we recover sub-registers of this value? Until we can, first
2082       // overwrite all defs of the register being restored to.
2083       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2084         MTracker->defReg(*RAI, CurBB, CurInst);
2085 
2086       // Now override the reg we're restoring to.
2087       MTracker->setReg(Reg, ValueID);
2088 
2089       // Report this restore to the transfer tracker too.
2090       if (TTracker)
2091         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
2092                                 MI.getIterator());
2093     } else {
2094       // There isn't anything in the location; not clear if this is a code path
2095       // that still runs. Def this register anyway just in case.
2096       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2097         MTracker->defReg(*RAI, CurBB, CurInst);
2098 
2099       // Force the spill slot to be tracked.
2100       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
2101 
2102       // Set the restored value to be a machine phi number, signifying that it's
2103       // whatever the spills live-in value is in this block. Definitely has
2104       // a LocIdx due to the setSpill above.
2105       ValueIDNum ValueID = {CurBB, 0, L};
2106       MTracker->setReg(Reg, ValueID);
2107       MTracker->setSpill(*Loc, ValueID);
2108     }
2109   }
2110   return true;
2111 }
2112 
2113 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2114   auto DestSrc = TII->isCopyInstr(MI);
2115   if (!DestSrc)
2116     return false;
2117 
2118   const MachineOperand *DestRegOp = DestSrc->Destination;
2119   const MachineOperand *SrcRegOp = DestSrc->Source;
2120 
2121   auto isCalleeSavedReg = [&](unsigned Reg) {
2122     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2123       if (CalleeSavedRegs.test(*RAI))
2124         return true;
2125     return false;
2126   };
2127 
2128   Register SrcReg = SrcRegOp->getReg();
2129   Register DestReg = DestRegOp->getReg();
2130 
2131   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2132   if (SrcReg == DestReg)
2133     return true;
2134 
2135   // For emulating VarLocBasedImpl:
2136   // We want to recognize instructions where destination register is callee
2137   // saved register. If register that could be clobbered by the call is
2138   // included, there would be a great chance that it is going to be clobbered
2139   // soon. It is more likely that previous register, which is callee saved, is
2140   // going to stay unclobbered longer, even if it is killed.
2141   //
2142   // For InstrRefBasedImpl, we can track multiple locations per value, so
2143   // ignore this condition.
2144   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2145     return false;
2146 
2147   // InstrRefBasedImpl only followed killing copies.
2148   if (EmulateOldLDV && !SrcRegOp->isKill())
2149     return false;
2150 
2151   // Copy MTracker info, including subregs if available.
2152   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2153 
2154   // Only produce a transfer of DBG_VALUE within a block where old LDV
2155   // would have. We might make use of the additional value tracking in some
2156   // other way, later.
2157   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2158     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2159                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2160 
2161   // VarLocBasedImpl would quit tracking the old location after copying.
2162   if (EmulateOldLDV && SrcReg != DestReg)
2163     MTracker->defReg(SrcReg, CurBB, CurInst);
2164 
2165   return true;
2166 }
2167 
2168 /// Accumulate a mapping between each DILocalVariable fragment and other
2169 /// fragments of that DILocalVariable which overlap. This reduces work during
2170 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2171 /// known-to-overlap fragments are present".
2172 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
2173 ///           fragment usage.
2174 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2175   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2176                       MI.getDebugLoc()->getInlinedAt());
2177   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2178 
2179   // If this is the first sighting of this variable, then we are guaranteed
2180   // there are currently no overlapping fragments either. Initialize the set
2181   // of seen fragments, record no overlaps for the current one, and return.
2182   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2183   if (SeenIt == SeenFragments.end()) {
2184     SmallSet<FragmentInfo, 4> OneFragment;
2185     OneFragment.insert(ThisFragment);
2186     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2187 
2188     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2189     return;
2190   }
2191 
2192   // If this particular Variable/Fragment pair already exists in the overlap
2193   // map, it has already been accounted for.
2194   auto IsInOLapMap =
2195       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2196   if (!IsInOLapMap.second)
2197     return;
2198 
2199   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2200   auto &AllSeenFragments = SeenIt->second;
2201 
2202   // Otherwise, examine all other seen fragments for this variable, with "this"
2203   // fragment being a previously unseen fragment. Record any pair of
2204   // overlapping fragments.
2205   for (auto &ASeenFragment : AllSeenFragments) {
2206     // Does this previously seen fragment overlap?
2207     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2208       // Yes: Mark the current fragment as being overlapped.
2209       ThisFragmentsOverlaps.push_back(ASeenFragment);
2210       // Mark the previously seen fragment as being overlapped by the current
2211       // one.
2212       auto ASeenFragmentsOverlaps =
2213           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2214       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2215              "Previously seen var fragment has no vector of overlaps");
2216       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2217     }
2218   }
2219 
2220   AllSeenFragments.insert(ThisFragment);
2221 }
2222 
2223 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
2224                                ValueIDNum **MLiveIns) {
2225   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2226   // none of these should we interpret it's register defs as new value
2227   // definitions.
2228   if (transferDebugValue(MI))
2229     return;
2230   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2231     return;
2232   if (transferDebugPHI(MI))
2233     return;
2234   if (transferRegisterCopy(MI))
2235     return;
2236   if (transferSpillOrRestoreInst(MI))
2237     return;
2238   transferRegisterDef(MI);
2239 }
2240 
2241 void InstrRefBasedLDV::produceMLocTransferFunction(
2242     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2243     unsigned MaxNumBlocks) {
2244   // Because we try to optimize around register mask operands by ignoring regs
2245   // that aren't currently tracked, we set up something ugly for later: RegMask
2246   // operands that are seen earlier than the first use of a register, still need
2247   // to clobber that register in the transfer function. But this information
2248   // isn't actively recorded. Instead, we track each RegMask used in each block,
2249   // and accumulated the clobbered but untracked registers in each block into
2250   // the following bitvector. Later, if new values are tracked, we can add
2251   // appropriate clobbers.
2252   SmallVector<BitVector, 32> BlockMasks;
2253   BlockMasks.resize(MaxNumBlocks);
2254 
2255   // Reserve one bit per register for the masks described above.
2256   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2257   for (auto &BV : BlockMasks)
2258     BV.resize(TRI->getNumRegs(), true);
2259 
2260   // Step through all instructions and inhale the transfer function.
2261   for (auto &MBB : MF) {
2262     // Object fields that are read by trackers to know where we are in the
2263     // function.
2264     CurBB = MBB.getNumber();
2265     CurInst = 1;
2266 
2267     // Set all machine locations to a PHI value. For transfer function
2268     // production only, this signifies the live-in value to the block.
2269     MTracker->reset();
2270     MTracker->setMPhis(CurBB);
2271 
2272     // Step through each instruction in this block.
2273     for (auto &MI : MBB) {
2274       process(MI);
2275       // Also accumulate fragment map.
2276       if (MI.isDebugValue())
2277         accumulateFragmentMap(MI);
2278 
2279       // Create a map from the instruction number (if present) to the
2280       // MachineInstr and its position.
2281       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2282         auto InstrAndPos = std::make_pair(&MI, CurInst);
2283         auto InsertResult =
2284             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2285 
2286         // There should never be duplicate instruction numbers.
2287         assert(InsertResult.second);
2288         (void)InsertResult;
2289       }
2290 
2291       ++CurInst;
2292     }
2293 
2294     // Produce the transfer function, a map of machine location to new value. If
2295     // any machine location has the live-in phi value from the start of the
2296     // block, it's live-through and doesn't need recording in the transfer
2297     // function.
2298     for (auto Location : MTracker->locations()) {
2299       LocIdx Idx = Location.Idx;
2300       ValueIDNum &P = Location.Value;
2301       if (P.isPHI() && P.getLoc() == Idx.asU64())
2302         continue;
2303 
2304       // Insert-or-update.
2305       auto &TransferMap = MLocTransfer[CurBB];
2306       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2307       if (!Result.second)
2308         Result.first->second = P;
2309     }
2310 
2311     // Accumulate any bitmask operands into the clobberred reg mask for this
2312     // block.
2313     for (auto &P : MTracker->Masks) {
2314       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2315     }
2316   }
2317 
2318   // Compute a bitvector of all the registers that are tracked in this block.
2319   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2320   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2321   BitVector UsedRegs(TRI->getNumRegs());
2322   for (auto Location : MTracker->locations()) {
2323     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2324     if (ID >= TRI->getNumRegs() || ID == SP)
2325       continue;
2326     UsedRegs.set(ID);
2327   }
2328 
2329   // Check that any regmask-clobber of a register that gets tracked, is not
2330   // live-through in the transfer function. It needs to be clobbered at the
2331   // very least.
2332   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2333     BitVector &BV = BlockMasks[I];
2334     BV.flip();
2335     BV &= UsedRegs;
2336     // This produces all the bits that we clobber, but also use. Check that
2337     // they're all clobbered or at least set in the designated transfer
2338     // elem.
2339     for (unsigned Bit : BV.set_bits()) {
2340       unsigned ID = MTracker->getLocID(Bit, false);
2341       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2342       auto &TransferMap = MLocTransfer[I];
2343 
2344       // Install a value representing the fact that this location is effectively
2345       // written to in this block. As there's no reserved value, instead use
2346       // a value number that is never generated. Pick the value number for the
2347       // first instruction in the block, def'ing this location, which we know
2348       // this block never used anyway.
2349       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2350       auto Result =
2351         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2352       if (!Result.second) {
2353         ValueIDNum &ValueID = Result.first->second;
2354         if (ValueID.getBlock() == I && ValueID.isPHI())
2355           // It was left as live-through. Set it to clobbered.
2356           ValueID = NotGeneratedNum;
2357       }
2358     }
2359   }
2360 }
2361 
2362 std::tuple<bool, bool>
2363 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2364                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2365                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2366   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2367   bool Changed = false;
2368   bool DowngradeOccurred = false;
2369 
2370   // Collect predecessors that have been visited. Anything that hasn't been
2371   // visited yet is a backedge on the first iteration, and the meet of it's
2372   // lattice value for all locations will be unaffected.
2373   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2374   for (auto Pred : MBB.predecessors()) {
2375     if (Visited.count(Pred)) {
2376       BlockOrders.push_back(Pred);
2377     }
2378   }
2379 
2380   // Visit predecessors in RPOT order.
2381   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2382     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2383   };
2384   llvm::sort(BlockOrders, Cmp);
2385 
2386   // Skip entry block.
2387   if (BlockOrders.size() == 0)
2388     return std::tuple<bool, bool>(false, false);
2389 
2390   // Step through all machine locations, then look at each predecessor and
2391   // detect disagreements.
2392   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2393   for (auto Location : MTracker->locations()) {
2394     LocIdx Idx = Location.Idx;
2395     // Pick out the first predecessors live-out value for this location. It's
2396     // guaranteed to be not a backedge, as we order by RPO.
2397     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2398 
2399     // Some flags for whether there's a disagreement, and whether it's a
2400     // disagreement with a backedge or not.
2401     bool Disagree = false;
2402     bool NonBackEdgeDisagree = false;
2403 
2404     // Loop around everything that wasn't 'base'.
2405     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2406       auto *MBB = BlockOrders[I];
2407       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2408         // Live-out of a predecessor disagrees with the first predecessor.
2409         Disagree = true;
2410 
2411         // Test whether it's a disagreemnt in the backedges or not.
2412         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2413           NonBackEdgeDisagree = true;
2414       }
2415     }
2416 
2417     bool OverRide = false;
2418     if (Disagree && !NonBackEdgeDisagree) {
2419       // Only the backedges disagree. Consider demoting the livein
2420       // lattice value, as per the file level comment. The value we consider
2421       // demoting to is the value that the non-backedge predecessors agree on.
2422       // The order of values is that non-PHIs are \top, a PHI at this block
2423       // \bot, and phis between the two are ordered by their RPO number.
2424       // If there's no agreement, or we've already demoted to this PHI value
2425       // before, replace with a PHI value at this block.
2426 
2427       // Calculate order numbers: zero means normal def, nonzero means RPO
2428       // number.
2429       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2430       if (!BaseVal.isPHI())
2431         BaseBlockRPONum = 0;
2432 
2433       ValueIDNum &InLocID = InLocs[Idx.asU64()];
2434       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2435       if (!InLocID.isPHI())
2436         InLocRPONum = 0;
2437 
2438       // Should we ignore the disagreeing backedges, and override with the
2439       // value the other predecessors agree on (in "base")?
2440       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2441       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2442         // Override.
2443         OverRide = true;
2444         DowngradeOccurred = true;
2445       }
2446     }
2447     // else: if we disagree in the non-backedges, then this is definitely
2448     // a control flow merge where different values merge. Make it a PHI.
2449 
2450     // Generate a phi...
2451     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2452     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2453     if (InLocs[Idx.asU64()] != NewVal) {
2454       Changed |= true;
2455       InLocs[Idx.asU64()] = NewVal;
2456     }
2457   }
2458 
2459   // TODO: Reimplement NumInserted and NumRemoved.
2460   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2461 }
2462 
2463 void InstrRefBasedLDV::mlocDataflow(
2464     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2465     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2466   std::priority_queue<unsigned int, std::vector<unsigned int>,
2467                       std::greater<unsigned int>>
2468       Worklist, Pending;
2469 
2470   // We track what is on the current and pending worklist to avoid inserting
2471   // the same thing twice. We could avoid this with a custom priority queue,
2472   // but this is probably not worth it.
2473   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2474 
2475   // Initialize worklist with every block to be visited.
2476   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2477     Worklist.push(I);
2478     OnWorklist.insert(OrderToBB[I]);
2479   }
2480 
2481   MTracker->reset();
2482 
2483   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2484   // the incoming value to the function.
2485   MTracker->setMPhis(0);
2486   for (auto Location : MTracker->locations())
2487     MInLocs[0][Location.Idx.asU64()] = Location.Value;
2488 
2489   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2490   while (!Worklist.empty() || !Pending.empty()) {
2491     // Vector for storing the evaluated block transfer function.
2492     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2493 
2494     while (!Worklist.empty()) {
2495       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2496       CurBB = MBB->getNumber();
2497       Worklist.pop();
2498 
2499       // Join the values in all predecessor blocks.
2500       bool InLocsChanged, DowngradeOccurred;
2501       std::tie(InLocsChanged, DowngradeOccurred) =
2502           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2503       InLocsChanged |= Visited.insert(MBB).second;
2504 
2505       // If a downgrade occurred, book us in for re-examination on the next
2506       // iteration.
2507       if (DowngradeOccurred && OnPending.insert(MBB).second)
2508         Pending.push(BBToOrder[MBB]);
2509 
2510       // Don't examine transfer function if we've visited this loc at least
2511       // once, and inlocs haven't changed.
2512       if (!InLocsChanged)
2513         continue;
2514 
2515       // Load the current set of live-ins into MLocTracker.
2516       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2517 
2518       // Each element of the transfer function can be a new def, or a read of
2519       // a live-in value. Evaluate each element, and store to "ToRemap".
2520       ToRemap.clear();
2521       for (auto &P : MLocTransfer[CurBB]) {
2522         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2523           // This is a movement of whatever was live in. Read it.
2524           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2525           ToRemap.push_back(std::make_pair(P.first, NewID));
2526         } else {
2527           // It's a def. Just set it.
2528           assert(P.second.getBlock() == CurBB);
2529           ToRemap.push_back(std::make_pair(P.first, P.second));
2530         }
2531       }
2532 
2533       // Commit the transfer function changes into mloc tracker, which
2534       // transforms the contents of the MLocTracker into the live-outs.
2535       for (auto &P : ToRemap)
2536         MTracker->setMLoc(P.first, P.second);
2537 
2538       // Now copy out-locs from mloc tracker into out-loc vector, checking
2539       // whether changes have occurred. These changes can have come from both
2540       // the transfer function, and mlocJoin.
2541       bool OLChanged = false;
2542       for (auto Location : MTracker->locations()) {
2543         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2544         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2545       }
2546 
2547       MTracker->reset();
2548 
2549       // No need to examine successors again if out-locs didn't change.
2550       if (!OLChanged)
2551         continue;
2552 
2553       // All successors should be visited: put any back-edges on the pending
2554       // list for the next dataflow iteration, and any other successors to be
2555       // visited this iteration, if they're not going to be already.
2556       for (auto s : MBB->successors()) {
2557         // Does branching to this successor represent a back-edge?
2558         if (BBToOrder[s] > BBToOrder[MBB]) {
2559           // No: visit it during this dataflow iteration.
2560           if (OnWorklist.insert(s).second)
2561             Worklist.push(BBToOrder[s]);
2562         } else {
2563           // Yes: visit it on the next iteration.
2564           if (OnPending.insert(s).second)
2565             Pending.push(BBToOrder[s]);
2566         }
2567       }
2568     }
2569 
2570     Worklist.swap(Pending);
2571     std::swap(OnPending, OnWorklist);
2572     OnPending.clear();
2573     // At this point, pending must be empty, since it was just the empty
2574     // worklist
2575     assert(Pending.empty() && "Pending should be empty");
2576   }
2577 
2578   // Once all the live-ins don't change on mlocJoin(), we've reached a
2579   // fixedpoint.
2580 }
2581 
2582 bool InstrRefBasedLDV::vlocDowngradeLattice(
2583     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2584     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2585   // Ranking value preference: see file level comment, the highest rank is
2586   // a plain def, followed by PHI values in reverse post-order. Numerically,
2587   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2588   // one, and consider the lowest value the highest ranked.
2589   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2590   if (!OldLiveInLocation.ID.isPHI())
2591     OldLiveInRank = 0;
2592 
2593   // Allow any unresolvable conflict to be over-ridden.
2594   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2595     // Although if it was an unresolvable conflict from _this_ block, then
2596     // all other seeking of downgrades and PHIs must have failed before hand.
2597     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2598       return false;
2599     OldLiveInRank = INT_MIN;
2600   }
2601 
2602   auto &InValue = *Values[0].second;
2603 
2604   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2605     return false;
2606 
2607   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2608   int ThisRank = ThisRPO + 1;
2609   if (!InValue.ID.isPHI())
2610     ThisRank = 0;
2611 
2612   // Too far down the lattice?
2613   if (ThisRPO >= CurBlockRPONum)
2614     return false;
2615 
2616   // Higher in the lattice than what we've already explored?
2617   if (ThisRank <= OldLiveInRank)
2618     return false;
2619 
2620   return true;
2621 }
2622 
2623 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2624     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2625     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2626     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2627   // Collect a set of locations from predecessor where its live-out value can
2628   // be found.
2629   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2630   unsigned NumLocs = MTracker->getNumLocs();
2631   unsigned BackEdgesStart = 0;
2632 
2633   for (auto p : BlockOrders) {
2634     // Pick out where backedges start in the list of predecessors. Relies on
2635     // BlockOrders being sorted by RPO.
2636     if (BBToOrder[p] < BBToOrder[&MBB])
2637       ++BackEdgesStart;
2638 
2639     // For each predecessor, create a new set of locations.
2640     Locs.resize(Locs.size() + 1);
2641     unsigned ThisBBNum = p->getNumber();
2642     auto LiveOutMap = LiveOuts.find(p);
2643     if (LiveOutMap == LiveOuts.end())
2644       // This predecessor isn't in scope, it must have no live-in/live-out
2645       // locations.
2646       continue;
2647 
2648     auto It = LiveOutMap->second->find(Var);
2649     if (It == LiveOutMap->second->end())
2650       // There's no value recorded for this variable in this predecessor,
2651       // leave an empty set of locations.
2652       continue;
2653 
2654     const DbgValue &OutVal = It->second;
2655 
2656     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2657       // Consts and no-values cannot have locations we can join on.
2658       continue;
2659 
2660     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2661     ValueIDNum ValToLookFor = OutVal.ID;
2662 
2663     // Search the live-outs of the predecessor for the specified value.
2664     for (unsigned int I = 0; I < NumLocs; ++I) {
2665       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2666         Locs.back().push_back(LocIdx(I));
2667     }
2668   }
2669 
2670   // If there were no locations at all, return an empty result.
2671   if (Locs.empty())
2672     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2673 
2674   // Lambda for seeking a common location within a range of location-sets.
2675   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2676   auto SeekLocation =
2677       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2678     // Starting with the first set of locations, take the intersection with
2679     // subsequent sets.
2680     SmallVector<LocIdx, 4> base = Locs[0];
2681     for (auto &S : SearchRange) {
2682       SmallVector<LocIdx, 4> new_base;
2683       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2684                             std::inserter(new_base, new_base.begin()));
2685       base = new_base;
2686     }
2687     if (base.empty())
2688       return None;
2689 
2690     // We now have a set of LocIdxes that contain the right output value in
2691     // each of the predecessors. Pick the lowest; if there's a register loc,
2692     // that'll be it.
2693     return *base.begin();
2694   };
2695 
2696   // Search for a common location for all predecessors. If we can't, then fall
2697   // back to only finding a common location between non-backedge predecessors.
2698   bool ValidForAllLocs = true;
2699   auto TheLoc = SeekLocation(Locs);
2700   if (!TheLoc) {
2701     ValidForAllLocs = false;
2702     TheLoc =
2703         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2704   }
2705 
2706   if (!TheLoc)
2707     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2708 
2709   // Return a PHI-value-number for the found location.
2710   LocIdx L = *TheLoc;
2711   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2712   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2713 }
2714 
2715 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2716     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2717     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2718     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2719     ValueIDNum **MInLocs,
2720     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2721     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2722     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2723   bool DowngradeOccurred = false;
2724 
2725   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2726   // _does_ assign a variable value. No live-ins for this scope are transferred
2727   // in though, so we can return immediately.
2728   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2729     if (VLOCVisited)
2730       return std::tuple<bool, bool>(true, false);
2731     return std::tuple<bool, bool>(false, false);
2732   }
2733 
2734   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2735   bool Changed = false;
2736 
2737   // Find any live-ins computed in a prior iteration.
2738   auto ILSIt = VLOCInLocs.find(&MBB);
2739   assert(ILSIt != VLOCInLocs.end());
2740   auto &ILS = *ILSIt->second;
2741 
2742   // Order predecessors by RPOT order, for exploring them in that order.
2743   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2744 
2745   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2746     return BBToOrder[A] < BBToOrder[B];
2747   };
2748 
2749   llvm::sort(BlockOrders, Cmp);
2750 
2751   unsigned CurBlockRPONum = BBToOrder[&MBB];
2752 
2753   // Force a re-visit to loop heads in the first dataflow iteration.
2754   // FIXME: if we could "propose" Const values this wouldn't be needed,
2755   // because they'd need to be confirmed before being emitted.
2756   if (!BlockOrders.empty() &&
2757       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2758       VLOCVisited)
2759     DowngradeOccurred = true;
2760 
2761   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2762     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2763     (void)Result;
2764     assert(Result.second);
2765   };
2766 
2767   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2768     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2769 
2770     ConfirmValue(Var, NoLocPHIVal);
2771   };
2772 
2773   // Attempt to join the values for each variable.
2774   for (auto &Var : AllVars) {
2775     // Collect all the DbgValues for this variable.
2776     SmallVector<InValueT, 8> Values;
2777     bool Bail = false;
2778     unsigned BackEdgesStart = 0;
2779     for (auto p : BlockOrders) {
2780       // If the predecessor isn't in scope / to be explored, we'll never be
2781       // able to join any locations.
2782       if (!BlocksToExplore.contains(p)) {
2783         Bail = true;
2784         break;
2785       }
2786 
2787       // Don't attempt to handle unvisited predecessors: they're implicitly
2788       // "unknown"s in the lattice.
2789       if (VLOCVisited && !VLOCVisited->count(p))
2790         continue;
2791 
2792       // If the predecessors OutLocs is absent, there's not much we can do.
2793       auto OL = VLOCOutLocs.find(p);
2794       if (OL == VLOCOutLocs.end()) {
2795         Bail = true;
2796         break;
2797       }
2798 
2799       // No live-out value for this predecessor also means we can't produce
2800       // a joined value.
2801       auto VIt = OL->second->find(Var);
2802       if (VIt == OL->second->end()) {
2803         Bail = true;
2804         break;
2805       }
2806 
2807       // Keep track of where back-edges begin in the Values vector. Relies on
2808       // BlockOrders being sorted by RPO.
2809       unsigned ThisBBRPONum = BBToOrder[p];
2810       if (ThisBBRPONum < CurBlockRPONum)
2811         ++BackEdgesStart;
2812 
2813       Values.push_back(std::make_pair(p, &VIt->second));
2814     }
2815 
2816     // If there were no values, or one of the predecessors couldn't have a
2817     // value, then give up immediately. It's not safe to produce a live-in
2818     // value.
2819     if (Bail || Values.size() == 0)
2820       continue;
2821 
2822     // Enumeration identifying the current state of the predecessors values.
2823     enum {
2824       Unset = 0,
2825       Agreed,       // All preds agree on the variable value.
2826       PropDisagree, // All preds agree, but the value kind is Proposed in some.
2827       BEDisagree,   // Only back-edges disagree on variable value.
2828       PHINeeded,    // Non-back-edge predecessors have conflicing values.
2829       NoSolution    // Conflicting Value metadata makes solution impossible.
2830     } OurState = Unset;
2831 
2832     // All (non-entry) blocks have at least one non-backedge predecessor.
2833     // Pick the variable value from the first of these, to compare against
2834     // all others.
2835     const DbgValue &FirstVal = *Values[0].second;
2836     const ValueIDNum &FirstID = FirstVal.ID;
2837 
2838     // Scan for variable values that can't be resolved: if they have different
2839     // DIExpressions, different indirectness, or are mixed constants /
2840     // non-constants.
2841     for (auto &V : Values) {
2842       if (V.second->Properties != FirstVal.Properties)
2843         OurState = NoSolution;
2844       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2845         OurState = NoSolution;
2846     }
2847 
2848     // Flags diagnosing _how_ the values disagree.
2849     bool NonBackEdgeDisagree = false;
2850     bool DisagreeOnPHINess = false;
2851     bool IDDisagree = false;
2852     bool Disagree = false;
2853     if (OurState == Unset) {
2854       for (auto &V : Values) {
2855         if (*V.second == FirstVal)
2856           continue; // No disagreement.
2857 
2858         Disagree = true;
2859 
2860         // Flag whether the value number actually diagrees.
2861         if (V.second->ID != FirstID)
2862           IDDisagree = true;
2863 
2864         // Distinguish whether disagreement happens in backedges or not.
2865         // Relies on Values (and BlockOrders) being sorted by RPO.
2866         unsigned ThisBBRPONum = BBToOrder[V.first];
2867         if (ThisBBRPONum < CurBlockRPONum)
2868           NonBackEdgeDisagree = true;
2869 
2870         // Is there a difference in whether the value is definite or only
2871         // proposed?
2872         if (V.second->Kind != FirstVal.Kind &&
2873             (V.second->Kind == DbgValue::Proposed ||
2874              V.second->Kind == DbgValue::Def) &&
2875             (FirstVal.Kind == DbgValue::Proposed ||
2876              FirstVal.Kind == DbgValue::Def))
2877           DisagreeOnPHINess = true;
2878       }
2879 
2880       // Collect those flags together and determine an overall state for
2881       // what extend the predecessors agree on a live-in value.
2882       if (!Disagree)
2883         OurState = Agreed;
2884       else if (!IDDisagree && DisagreeOnPHINess)
2885         OurState = PropDisagree;
2886       else if (!NonBackEdgeDisagree)
2887         OurState = BEDisagree;
2888       else
2889         OurState = PHINeeded;
2890     }
2891 
2892     // An extra indicator: if we only disagree on whether the value is a
2893     // Def, or proposed, then also flag whether that disagreement happens
2894     // in backedges only.
2895     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2896                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2897 
2898     const auto &Properties = FirstVal.Properties;
2899 
2900     auto OldLiveInIt = ILS.find(Var);
2901     const DbgValue *OldLiveInLocation =
2902         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2903 
2904     bool OverRide = false;
2905     if (OurState == BEDisagree && OldLiveInLocation) {
2906       // Only backedges disagree: we can consider downgrading. If there was a
2907       // previous live-in value, use it to work out whether the current
2908       // incoming value represents a lattice downgrade or not.
2909       OverRide =
2910           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2911     }
2912 
2913     // Use the current state of predecessor agreement and other flags to work
2914     // out what to do next. Possibilities include:
2915     //  * Accept a value all predecessors agree on, or accept one that
2916     //    represents a step down the exploration lattice,
2917     //  * Use a PHI value number, if one can be found,
2918     //  * Propose a PHI value number, and see if it gets confirmed later,
2919     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2920     if (OurState == Agreed) {
2921       // Easiest solution: all predecessors agree on the variable value.
2922       ConfirmValue(Var, FirstVal);
2923     } else if (OurState == BEDisagree && OverRide) {
2924       // Only backedges disagree, and the other predecessors have produced
2925       // a new live-in value further down the exploration lattice.
2926       DowngradeOccurred = true;
2927       ConfirmValue(Var, FirstVal);
2928     } else if (OurState == PropDisagree) {
2929       // Predecessors agree on value, but some say it's only a proposed value.
2930       // Propagate it as proposed: unless it was proposed in this block, in
2931       // which case we're able to confirm the value.
2932       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2933         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2934       } else if (PropOnlyInBEs) {
2935         // If only backedges disagree, a higher (in RPO) block confirmed this
2936         // location, and we need to propagate it into this loop.
2937         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2938       } else {
2939         // Otherwise; a Def meeting a Proposed is still a Proposed.
2940         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2941       }
2942     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2943       // Predecessors disagree and can't be downgraded: this can only be
2944       // solved with a PHI. Use pickVPHILoc to go look for one.
2945       Optional<ValueIDNum> VPHI;
2946       bool AllEdgesVPHI = false;
2947       std::tie(VPHI, AllEdgesVPHI) =
2948           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2949 
2950       if (VPHI && AllEdgesVPHI) {
2951         // There's a PHI value that's valid for all predecessors -- we can use
2952         // it. If any of the non-backedge predecessors have proposed values
2953         // though, this PHI is also only proposed, until the predecessors are
2954         // confirmed.
2955         DbgValue::KindT K = DbgValue::Def;
2956         for (unsigned int I = 0; I < BackEdgesStart; ++I)
2957           if (Values[I].second->Kind == DbgValue::Proposed)
2958             K = DbgValue::Proposed;
2959 
2960         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2961       } else if (VPHI) {
2962         // There's a PHI value, but it's only legal for backedges. Leave this
2963         // as a proposed PHI value: it might come back on the backedges,
2964         // and allow us to confirm it in the future.
2965         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2966         ConfirmValue(Var, NoBEValue);
2967       } else {
2968         ConfirmNoVal(Var, Properties);
2969       }
2970     } else {
2971       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2972       ConfirmNoVal(Var, Properties);
2973     }
2974   }
2975 
2976   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2977   Changed = ILS != InLocsT;
2978   if (Changed)
2979     ILS = InLocsT;
2980 
2981   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2982 }
2983 
2984 void InstrRefBasedLDV::vlocDataflow(
2985     const LexicalScope *Scope, const DILocation *DILoc,
2986     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2987     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2988     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2989     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2990   // This method is much like mlocDataflow: but focuses on a single
2991   // LexicalScope at a time. Pick out a set of blocks and variables that are
2992   // to have their value assignments solved, then run our dataflow algorithm
2993   // until a fixedpoint is reached.
2994   std::priority_queue<unsigned int, std::vector<unsigned int>,
2995                       std::greater<unsigned int>>
2996       Worklist, Pending;
2997   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2998 
2999   // The set of blocks we'll be examining.
3000   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3001 
3002   // The order in which to examine them (RPO).
3003   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3004 
3005   // RPO ordering function.
3006   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3007     return BBToOrder[A] < BBToOrder[B];
3008   };
3009 
3010   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3011 
3012   // A separate container to distinguish "blocks we're exploring" versus
3013   // "blocks that are potentially in scope. See comment at start of vlocJoin.
3014   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
3015 
3016   // Old LiveDebugValues tracks variable locations that come out of blocks
3017   // not in scope, where DBG_VALUEs occur. This is something we could
3018   // legitimately ignore, but lets allow it for now.
3019   if (EmulateOldLDV)
3020     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3021 
3022   // We also need to propagate variable values through any artificial blocks
3023   // that immediately follow blocks in scope.
3024   DenseSet<const MachineBasicBlock *> ToAdd;
3025 
3026   // Helper lambda: For a given block in scope, perform a depth first search
3027   // of all the artificial successors, adding them to the ToAdd collection.
3028   auto AccumulateArtificialBlocks =
3029       [this, &ToAdd, &BlocksToExplore,
3030        &InScopeBlocks](const MachineBasicBlock *MBB) {
3031         // Depth-first-search state: each node is a block and which successor
3032         // we're currently exploring.
3033         SmallVector<std::pair<const MachineBasicBlock *,
3034                               MachineBasicBlock::const_succ_iterator>,
3035                     8>
3036             DFS;
3037 
3038         // Find any artificial successors not already tracked.
3039         for (auto *succ : MBB->successors()) {
3040           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
3041             continue;
3042           if (!ArtificialBlocks.count(succ))
3043             continue;
3044           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
3045           ToAdd.insert(succ);
3046         }
3047 
3048         // Search all those blocks, depth first.
3049         while (!DFS.empty()) {
3050           const MachineBasicBlock *CurBB = DFS.back().first;
3051           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3052           // Walk back if we've explored this blocks successors to the end.
3053           if (CurSucc == CurBB->succ_end()) {
3054             DFS.pop_back();
3055             continue;
3056           }
3057 
3058           // If the current successor is artificial and unexplored, descend into
3059           // it.
3060           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3061             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
3062             ToAdd.insert(*CurSucc);
3063             continue;
3064           }
3065 
3066           ++CurSucc;
3067         }
3068       };
3069 
3070   // Search in-scope blocks and those containing a DBG_VALUE from this scope
3071   // for artificial successors.
3072   for (auto *MBB : BlocksToExplore)
3073     AccumulateArtificialBlocks(MBB);
3074   for (auto *MBB : InScopeBlocks)
3075     AccumulateArtificialBlocks(MBB);
3076 
3077   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3078   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
3079 
3080   // Single block scope: not interesting! No propagation at all. Note that
3081   // this could probably go above ArtificialBlocks without damage, but
3082   // that then produces output differences from original-live-debug-values,
3083   // which propagates from a single block into many artificial ones.
3084   if (BlocksToExplore.size() == 1)
3085     return;
3086 
3087   // Picks out relevants blocks RPO order and sort them.
3088   for (auto *MBB : BlocksToExplore)
3089     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3090 
3091   llvm::sort(BlockOrders, Cmp);
3092   unsigned NumBlocks = BlockOrders.size();
3093 
3094   // Allocate some vectors for storing the live ins and live outs. Large.
3095   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
3096   LiveIns.resize(NumBlocks);
3097   LiveOuts.resize(NumBlocks);
3098 
3099   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3100   // vlocJoin.
3101   LiveIdxT LiveOutIdx, LiveInIdx;
3102   LiveOutIdx.reserve(NumBlocks);
3103   LiveInIdx.reserve(NumBlocks);
3104   for (unsigned I = 0; I < NumBlocks; ++I) {
3105     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3106     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3107   }
3108 
3109   for (auto *MBB : BlockOrders) {
3110     Worklist.push(BBToOrder[MBB]);
3111     OnWorklist.insert(MBB);
3112   }
3113 
3114   // Iterate over all the blocks we selected, propagating variable values.
3115   bool FirstTrip = true;
3116   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
3117   while (!Worklist.empty() || !Pending.empty()) {
3118     while (!Worklist.empty()) {
3119       auto *MBB = OrderToBB[Worklist.top()];
3120       CurBB = MBB->getNumber();
3121       Worklist.pop();
3122 
3123       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
3124 
3125       // Join values from predecessors. Updates LiveInIdx, and writes output
3126       // into JoinedInLocs.
3127       bool InLocsChanged, DowngradeOccurred;
3128       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
3129           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
3130           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
3131           BlocksToExplore, JoinedInLocs);
3132 
3133       bool FirstVisit = VLOCVisited.insert(MBB).second;
3134 
3135       // Always explore transfer function if inlocs changed, or if we've not
3136       // visited this block before.
3137       InLocsChanged |= FirstVisit;
3138 
3139       // If a downgrade occurred, book us in for re-examination on the next
3140       // iteration.
3141       if (DowngradeOccurred && OnPending.insert(MBB).second)
3142         Pending.push(BBToOrder[MBB]);
3143 
3144       if (!InLocsChanged)
3145         continue;
3146 
3147       // Do transfer function.
3148       auto &VTracker = AllTheVLocs[MBB->getNumber()];
3149       for (auto &Transfer : VTracker.Vars) {
3150         // Is this var we're mangling in this scope?
3151         if (VarsWeCareAbout.count(Transfer.first)) {
3152           // Erase on empty transfer (DBG_VALUE $noreg).
3153           if (Transfer.second.Kind == DbgValue::Undef) {
3154             JoinedInLocs.erase(Transfer.first);
3155           } else {
3156             // Insert new variable value; or overwrite.
3157             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
3158             auto Result = JoinedInLocs.insert(NewValuePair);
3159             if (!Result.second)
3160               Result.first->second = Transfer.second;
3161           }
3162         }
3163       }
3164 
3165       // Did the live-out locations change?
3166       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
3167 
3168       // If they haven't changed, there's no need to explore further.
3169       if (!OLChanged)
3170         continue;
3171 
3172       // Commit to the live-out record.
3173       *LiveOutIdx[MBB] = JoinedInLocs;
3174 
3175       // We should visit all successors. Ensure we'll visit any non-backedge
3176       // successors during this dataflow iteration; book backedge successors
3177       // to be visited next time around.
3178       for (auto s : MBB->successors()) {
3179         // Ignore out of scope / not-to-be-explored successors.
3180         if (LiveInIdx.find(s) == LiveInIdx.end())
3181           continue;
3182 
3183         if (BBToOrder[s] > BBToOrder[MBB]) {
3184           if (OnWorklist.insert(s).second)
3185             Worklist.push(BBToOrder[s]);
3186         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3187           Pending.push(BBToOrder[s]);
3188         }
3189       }
3190     }
3191     Worklist.swap(Pending);
3192     std::swap(OnWorklist, OnPending);
3193     OnPending.clear();
3194     assert(Pending.empty());
3195     FirstTrip = false;
3196   }
3197 
3198   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3199   // as being variable-PHIs, because those did not have their machine-PHI
3200   // value confirmed. Such variable values are places that could have been
3201   // PHIs, but are not.
3202   for (auto *MBB : BlockOrders) {
3203     auto &VarMap = *LiveInIdx[MBB];
3204     for (auto &P : VarMap) {
3205       if (P.second.Kind == DbgValue::Proposed ||
3206           P.second.Kind == DbgValue::NoVal)
3207         continue;
3208       Output[MBB->getNumber()].push_back(P);
3209     }
3210   }
3211 
3212   BlockOrders.clear();
3213   BlocksToExplore.clear();
3214 }
3215 
3216 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3217 void InstrRefBasedLDV::dump_mloc_transfer(
3218     const MLocTransferMap &mloc_transfer) const {
3219   for (auto &P : mloc_transfer) {
3220     std::string foo = MTracker->LocIdxToName(P.first);
3221     std::string bar = MTracker->IDAsString(P.second);
3222     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3223   }
3224 }
3225 #endif
3226 
3227 void InstrRefBasedLDV::emitLocations(
3228     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
3229     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3230   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
3231   unsigned NumLocs = MTracker->getNumLocs();
3232 
3233   // For each block, load in the machine value locations and variable value
3234   // live-ins, then step through each instruction in the block. New DBG_VALUEs
3235   // to be inserted will be created along the way.
3236   for (MachineBasicBlock &MBB : MF) {
3237     unsigned bbnum = MBB.getNumber();
3238     MTracker->reset();
3239     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3240     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3241                          NumLocs);
3242 
3243     CurBB = bbnum;
3244     CurInst = 1;
3245     for (auto &MI : MBB) {
3246       process(MI, MOutLocs, MInLocs);
3247       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3248       ++CurInst;
3249     }
3250   }
3251 
3252   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3253   // in DWARF in different orders. Use the order that they appear when walking
3254   // through each block / each instruction, stored in AllVarsNumbering.
3255   auto OrderDbgValues = [&](const MachineInstr *A,
3256                             const MachineInstr *B) -> bool {
3257     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3258                        A->getDebugLoc()->getInlinedAt());
3259     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3260                        B->getDebugLoc()->getInlinedAt());
3261     return AllVarsNumbering.find(VarA)->second <
3262            AllVarsNumbering.find(VarB)->second;
3263   };
3264 
3265   // Go through all the transfers recorded in the TransferTracker -- this is
3266   // both the live-ins to a block, and any movements of values that happen
3267   // in the middle.
3268   for (auto &P : TTracker->Transfers) {
3269     // Sort them according to appearance order.
3270     llvm::sort(P.Insts, OrderDbgValues);
3271     // Insert either before or after the designated point...
3272     if (P.MBB) {
3273       MachineBasicBlock &MBB = *P.MBB;
3274       for (auto *MI : P.Insts) {
3275         MBB.insert(P.Pos, MI);
3276       }
3277     } else {
3278       MachineBasicBlock &MBB = *P.Pos->getParent();
3279       for (auto *MI : P.Insts) {
3280         MBB.insertAfter(P.Pos, MI);
3281       }
3282     }
3283   }
3284 }
3285 
3286 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3287   // Build some useful data structures.
3288   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3289     if (const DebugLoc &DL = MI.getDebugLoc())
3290       return DL.getLine() != 0;
3291     return false;
3292   };
3293   // Collect a set of all the artificial blocks.
3294   for (auto &MBB : MF)
3295     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3296       ArtificialBlocks.insert(&MBB);
3297 
3298   // Compute mappings of block <=> RPO order.
3299   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3300   unsigned int RPONumber = 0;
3301   for (MachineBasicBlock *MBB : RPOT) {
3302     OrderToBB[RPONumber] = MBB;
3303     BBToOrder[MBB] = RPONumber;
3304     BBNumToRPO[MBB->getNumber()] = RPONumber;
3305     ++RPONumber;
3306   }
3307 }
3308 
3309 /// Calculate the liveness information for the given machine function and
3310 /// extend ranges across basic blocks.
3311 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3312                                     TargetPassConfig *TPC) {
3313   // No subprogram means this function contains no debuginfo.
3314   if (!MF.getFunction().getSubprogram())
3315     return false;
3316 
3317   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3318   this->TPC = TPC;
3319 
3320   TRI = MF.getSubtarget().getRegisterInfo();
3321   TII = MF.getSubtarget().getInstrInfo();
3322   TFI = MF.getSubtarget().getFrameLowering();
3323   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3324   MFI = &MF.getFrameInfo();
3325   LS.initialize(MF);
3326 
3327   MTracker =
3328       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3329   VTracker = nullptr;
3330   TTracker = nullptr;
3331 
3332   SmallVector<MLocTransferMap, 32> MLocTransfer;
3333   SmallVector<VLocTracker, 8> vlocs;
3334   LiveInsT SavedLiveIns;
3335 
3336   int MaxNumBlocks = -1;
3337   for (auto &MBB : MF)
3338     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3339   assert(MaxNumBlocks >= 0);
3340   ++MaxNumBlocks;
3341 
3342   MLocTransfer.resize(MaxNumBlocks);
3343   vlocs.resize(MaxNumBlocks);
3344   SavedLiveIns.resize(MaxNumBlocks);
3345 
3346   initialSetup(MF);
3347 
3348   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3349 
3350   // Allocate and initialize two array-of-arrays for the live-in and live-out
3351   // machine values. The outer dimension is the block number; while the inner
3352   // dimension is a LocIdx from MLocTracker.
3353   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3354   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3355   unsigned NumLocs = MTracker->getNumLocs();
3356   for (int i = 0; i < MaxNumBlocks; ++i) {
3357     MOutLocs[i] = new ValueIDNum[NumLocs];
3358     MInLocs[i] = new ValueIDNum[NumLocs];
3359   }
3360 
3361   // Solve the machine value dataflow problem using the MLocTransfer function,
3362   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3363   // both live-ins and live-outs for decision making in the variable value
3364   // dataflow problem.
3365   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3366 
3367   // Patch up debug phi numbers, turning unknown block-live-in values into
3368   // either live-through machine values, or PHIs.
3369   for (auto &DBG_PHI : DebugPHINumToValue) {
3370     // Identify unresolved block-live-ins.
3371     ValueIDNum &Num = DBG_PHI.ValueRead;
3372     if (!Num.isPHI())
3373       continue;
3374 
3375     unsigned BlockNo = Num.getBlock();
3376     LocIdx LocNo = Num.getLoc();
3377     Num = MInLocs[BlockNo][LocNo.asU64()];
3378   }
3379   // Later, we'll be looking up ranges of instruction numbers.
3380   llvm::sort(DebugPHINumToValue);
3381 
3382   // Walk back through each block / instruction, collecting DBG_VALUE
3383   // instructions and recording what machine value their operands refer to.
3384   for (auto &OrderPair : OrderToBB) {
3385     MachineBasicBlock &MBB = *OrderPair.second;
3386     CurBB = MBB.getNumber();
3387     VTracker = &vlocs[CurBB];
3388     VTracker->MBB = &MBB;
3389     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3390     CurInst = 1;
3391     for (auto &MI : MBB) {
3392       process(MI, MOutLocs, MInLocs);
3393       ++CurInst;
3394     }
3395     MTracker->reset();
3396   }
3397 
3398   // Number all variables in the order that they appear, to be used as a stable
3399   // insertion order later.
3400   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3401 
3402   // Map from one LexicalScope to all the variables in that scope.
3403   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3404 
3405   // Map from One lexical scope to all blocks in that scope.
3406   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3407       ScopeToBlocks;
3408 
3409   // Store a DILocation that describes a scope.
3410   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3411 
3412   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3413   // the order is unimportant, it just has to be stable.
3414   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3415     auto *MBB = OrderToBB[I];
3416     auto *VTracker = &vlocs[MBB->getNumber()];
3417     // Collect each variable with a DBG_VALUE in this block.
3418     for (auto &idx : VTracker->Vars) {
3419       const auto &Var = idx.first;
3420       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3421       assert(ScopeLoc != nullptr);
3422       auto *Scope = LS.findLexicalScope(ScopeLoc);
3423 
3424       // No insts in scope -> shouldn't have been recorded.
3425       assert(Scope != nullptr);
3426 
3427       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3428       ScopeToVars[Scope].insert(Var);
3429       ScopeToBlocks[Scope].insert(VTracker->MBB);
3430       ScopeToDILocation[Scope] = ScopeLoc;
3431     }
3432   }
3433 
3434   // OK. Iterate over scopes: there might be something to be said for
3435   // ordering them by size/locality, but that's for the future. For each scope,
3436   // solve the variable value problem, producing a map of variables to values
3437   // in SavedLiveIns.
3438   for (auto &P : ScopeToVars) {
3439     vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3440                  ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3441                  vlocs);
3442   }
3443 
3444   // Using the computed value locations and variable values for each block,
3445   // create the DBG_VALUE instructions representing the extended variable
3446   // locations.
3447   emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering);
3448 
3449   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3450     delete[] MOutLocs[Idx];
3451     delete[] MInLocs[Idx];
3452   }
3453   delete[] MOutLocs;
3454   delete[] MInLocs;
3455 
3456   // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3457   bool Changed = TTracker->Transfers.size() != 0;
3458 
3459   delete MTracker;
3460   delete TTracker;
3461   MTracker = nullptr;
3462   VTracker = nullptr;
3463   TTracker = nullptr;
3464 
3465   ArtificialBlocks.clear();
3466   OrderToBB.clear();
3467   BBToOrder.clear();
3468   BBNumToRPO.clear();
3469   DebugInstrNumToInstr.clear();
3470   DebugPHINumToValue.clear();
3471 
3472   return Changed;
3473 }
3474 
3475 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3476   return new InstrRefBasedLDV();
3477 }
3478 
3479 namespace {
3480 class LDVSSABlock;
3481 class LDVSSAUpdater;
3482 
3483 // Pick a type to identify incoming block values as we construct SSA. We
3484 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3485 // expects to zero-initialize the type.
3486 typedef uint64_t BlockValueNum;
3487 
3488 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3489 /// this PHI is in, the value number it would have, and the expected incoming
3490 /// values from parent blocks.
3491 class LDVSSAPhi {
3492 public:
3493   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3494   LDVSSABlock *ParentBlock;
3495   BlockValueNum PHIValNum;
3496   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3497       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3498 
3499   LDVSSABlock *getParent() { return ParentBlock; }
3500 };
3501 
3502 /// Thin wrapper around a block predecessor iterator. Only difference from a
3503 /// normal block iterator is that it dereferences to an LDVSSABlock.
3504 class LDVSSABlockIterator {
3505 public:
3506   MachineBasicBlock::pred_iterator PredIt;
3507   LDVSSAUpdater &Updater;
3508 
3509   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3510                       LDVSSAUpdater &Updater)
3511       : PredIt(PredIt), Updater(Updater) {}
3512 
3513   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3514     return OtherIt.PredIt != PredIt;
3515   }
3516 
3517   LDVSSABlockIterator &operator++() {
3518     ++PredIt;
3519     return *this;
3520   }
3521 
3522   LDVSSABlock *operator*();
3523 };
3524 
3525 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3526 /// we need to track the PHI value(s) that we may have observed as necessary
3527 /// in this block.
3528 class LDVSSABlock {
3529 public:
3530   MachineBasicBlock &BB;
3531   LDVSSAUpdater &Updater;
3532   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3533   /// List of PHIs in this block. There should only ever be one.
3534   PHIListT PHIList;
3535 
3536   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3537       : BB(BB), Updater(Updater) {}
3538 
3539   LDVSSABlockIterator succ_begin() {
3540     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3541   }
3542 
3543   LDVSSABlockIterator succ_end() {
3544     return LDVSSABlockIterator(BB.succ_end(), Updater);
3545   }
3546 
3547   /// SSAUpdater has requested a PHI: create that within this block record.
3548   LDVSSAPhi *newPHI(BlockValueNum Value) {
3549     PHIList.emplace_back(Value, this);
3550     return &PHIList.back();
3551   }
3552 
3553   /// SSAUpdater wishes to know what PHIs already exist in this block.
3554   PHIListT &phis() { return PHIList; }
3555 };
3556 
3557 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3558 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3559 // SSAUpdaterTraits<LDVSSAUpdater>.
3560 class LDVSSAUpdater {
3561 public:
3562   /// Map of value numbers to PHI records.
3563   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3564   /// Map of which blocks generate Undef values -- blocks that are not
3565   /// dominated by any Def.
3566   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3567   /// Map of machine blocks to our own records of them.
3568   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3569   /// Machine location where any PHI must occur.
3570   LocIdx Loc;
3571   /// Table of live-in machine value numbers for blocks / locations.
3572   ValueIDNum **MLiveIns;
3573 
3574   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3575 
3576   void reset() {
3577     for (auto &Block : BlockMap)
3578       delete Block.second;
3579 
3580     PHIs.clear();
3581     UndefMap.clear();
3582     BlockMap.clear();
3583   }
3584 
3585   ~LDVSSAUpdater() { reset(); }
3586 
3587   /// For a given MBB, create a wrapper block for it. Stores it in the
3588   /// LDVSSAUpdater block map.
3589   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3590     auto it = BlockMap.find(BB);
3591     if (it == BlockMap.end()) {
3592       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3593       it = BlockMap.find(BB);
3594     }
3595     return it->second;
3596   }
3597 
3598   /// Find the live-in value number for the given block. Looks up the value at
3599   /// the PHI location on entry.
3600   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3601     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3602   }
3603 };
3604 
3605 LDVSSABlock *LDVSSABlockIterator::operator*() {
3606   return Updater.getSSALDVBlock(*PredIt);
3607 }
3608 
3609 } // namespace
3610 
3611 namespace llvm {
3612 
3613 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3614   out << "SSALDVPHI " << PHI.PHIValNum;
3615   return out;
3616 }
3617 
3618 /// Template specialization to give SSAUpdater access to CFG and value
3619 /// information. SSAUpdater calls methods in these traits, passing in the
3620 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3621 /// It also provides methods to create PHI nodes and track them.
3622 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3623 public:
3624   using BlkT = LDVSSABlock;
3625   using ValT = BlockValueNum;
3626   using PhiT = LDVSSAPhi;
3627   using BlkSucc_iterator = LDVSSABlockIterator;
3628 
3629   // Methods to access block successors -- dereferencing to our wrapper class.
3630   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3631   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3632 
3633   /// Iterator for PHI operands.
3634   class PHI_iterator {
3635   private:
3636     LDVSSAPhi *PHI;
3637     unsigned Idx;
3638 
3639   public:
3640     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3641         : PHI(P), Idx(0) {}
3642     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3643         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3644 
3645     PHI_iterator &operator++() {
3646       Idx++;
3647       return *this;
3648     }
3649     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3650     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3651 
3652     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3653 
3654     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3655   };
3656 
3657   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3658 
3659   static inline PHI_iterator PHI_end(PhiT *PHI) {
3660     return PHI_iterator(PHI, true);
3661   }
3662 
3663   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3664   /// vector.
3665   static void FindPredecessorBlocks(LDVSSABlock *BB,
3666                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3667     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3668                                           E = BB->BB.pred_end();
3669          PI != E; ++PI)
3670       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3671   }
3672 
3673   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3674   /// register. For LiveDebugValues, represents a block identified as not having
3675   /// any DBG_PHI predecessors.
3676   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3677     // Create a value number for this block -- it needs to be unique and in the
3678     // "undef" collection, so that we know it's not real. Use a number
3679     // representing a PHI into this block.
3680     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3681     Updater->UndefMap[&BB->BB] = Num;
3682     return Num;
3683   }
3684 
3685   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3686   /// SSAUpdater will populate it with information about incoming values. The
3687   /// value number of this PHI is whatever the  machine value number problem
3688   /// solution determined it to be. This includes non-phi values if SSAUpdater
3689   /// tries to create a PHI where the incoming values are identical.
3690   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3691                                    LDVSSAUpdater *Updater) {
3692     BlockValueNum PHIValNum = Updater->getValue(BB);
3693     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3694     Updater->PHIs[PHIValNum] = PHI;
3695     return PHIValNum;
3696   }
3697 
3698   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3699   /// the specified predecessor block.
3700   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3701     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3702   }
3703 
3704   /// ValueIsPHI - Check if the instruction that defines the specified value
3705   /// is a PHI instruction.
3706   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3707     auto PHIIt = Updater->PHIs.find(Val);
3708     if (PHIIt == Updater->PHIs.end())
3709       return nullptr;
3710     return PHIIt->second;
3711   }
3712 
3713   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3714   /// operands, i.e., it was just added.
3715   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3716     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3717     if (PHI && PHI->IncomingValues.size() == 0)
3718       return PHI;
3719     return nullptr;
3720   }
3721 
3722   /// GetPHIValue - For the specified PHI instruction, return the value
3723   /// that it defines.
3724   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3725 };
3726 
3727 } // end namespace llvm
3728 
3729 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3730                                                       ValueIDNum **MLiveOuts,
3731                                                       ValueIDNum **MLiveIns,
3732                                                       MachineInstr &Here,
3733                                                       uint64_t InstrNum) {
3734   // Pick out records of DBG_PHI instructions that have been observed. If there
3735   // are none, then we cannot compute a value number.
3736   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3737                                     DebugPHINumToValue.end(), InstrNum);
3738   auto LowerIt = RangePair.first;
3739   auto UpperIt = RangePair.second;
3740 
3741   // No DBG_PHI means there can be no location.
3742   if (LowerIt == UpperIt)
3743     return None;
3744 
3745   // If there's only one DBG_PHI, then that is our value number.
3746   if (std::distance(LowerIt, UpperIt) == 1)
3747     return LowerIt->ValueRead;
3748 
3749   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3750 
3751   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3752   // technically possible for us to merge values in different registers in each
3753   // block, but highly unlikely that LLVM will generate such code after register
3754   // allocation.
3755   LocIdx Loc = LowerIt->ReadLoc;
3756 
3757   // We have several DBG_PHIs, and a use position (the Here inst). All each
3758   // DBG_PHI does is identify a value at a program position. We can treat each
3759   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3760   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3761   // determine which Def is used at the Use, and any PHIs that happen along
3762   // the way.
3763   // Adapted LLVM SSA Updater:
3764   LDVSSAUpdater Updater(Loc, MLiveIns);
3765   // Map of which Def or PHI is the current value in each block.
3766   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3767   // Set of PHIs that we have created along the way.
3768   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3769 
3770   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3771   // for the SSAUpdater.
3772   for (const auto &DBG_PHI : DBGPHIRange) {
3773     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3774     const ValueIDNum &Num = DBG_PHI.ValueRead;
3775     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3776   }
3777 
3778   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3779   const auto &AvailIt = AvailableValues.find(HereBlock);
3780   if (AvailIt != AvailableValues.end()) {
3781     // Actually, we already know what the value is -- the Use is in the same
3782     // block as the Def.
3783     return ValueIDNum::fromU64(AvailIt->second);
3784   }
3785 
3786   // Otherwise, we must use the SSA Updater. It will identify the value number
3787   // that we are to use, and the PHIs that must happen along the way.
3788   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3789   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3790   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3791 
3792   // We have the number for a PHI, or possibly live-through value, to be used
3793   // at this Use. There are a number of things we have to check about it though:
3794   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3795   //    Use was not completely dominated by DBG_PHIs and we should abort.
3796   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3797   //    we've left SSA form. Validate that the inputs to each PHI are the
3798   //    expected values.
3799   //  * Is a PHI we've created actually a merging of values, or are all the
3800   //    predecessor values the same, leading to a non-PHI machine value number?
3801   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3802   //    the ValidatedValues collection below to sort this out.
3803   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3804 
3805   // Define all the input DBG_PHI values in ValidatedValues.
3806   for (const auto &DBG_PHI : DBGPHIRange) {
3807     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3808     const ValueIDNum &Num = DBG_PHI.ValueRead;
3809     ValidatedValues.insert(std::make_pair(Block, Num));
3810   }
3811 
3812   // Sort PHIs to validate into RPO-order.
3813   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3814   for (auto &PHI : CreatedPHIs)
3815     SortedPHIs.push_back(PHI);
3816 
3817   std::sort(
3818       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3819         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3820       });
3821 
3822   for (auto &PHI : SortedPHIs) {
3823     ValueIDNum ThisBlockValueNum =
3824         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3825 
3826     // Are all these things actually defined?
3827     for (auto &PHIIt : PHI->IncomingValues) {
3828       // Any undef input means DBG_PHIs didn't dominate the use point.
3829       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3830         return None;
3831 
3832       ValueIDNum ValueToCheck;
3833       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3834 
3835       auto VVal = ValidatedValues.find(PHIIt.first);
3836       if (VVal == ValidatedValues.end()) {
3837         // We cross a loop, and this is a backedge. LLVMs tail duplication
3838         // happens so late that DBG_PHI instructions should not be able to
3839         // migrate into loops -- meaning we can only be live-through this
3840         // loop.
3841         ValueToCheck = ThisBlockValueNum;
3842       } else {
3843         // Does the block have as a live-out, in the location we're examining,
3844         // the value that we expect? If not, it's been moved or clobbered.
3845         ValueToCheck = VVal->second;
3846       }
3847 
3848       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3849         return None;
3850     }
3851 
3852     // Record this value as validated.
3853     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3854   }
3855 
3856   // All the PHIs are valid: we can return what the SSAUpdater said our value
3857   // number was.
3858   return Result;
3859 }
3860